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THESIS ABSTRACT

This dissertation provides an overview of the benefits of spacecraft formation flying

(SFF), of the sources of collision risk in SFF, and a discussion on how relative orbital

dynamics make the problem of collision risk management (COLRM) in SFF different from

the standard obstacle avoidance problem in robotics. Progress in SFF COLRM is classified

in terms of foundational work, which consists of the formulation and basic properties of

stochastic collision risk indicators, and operational work, which is concerned with SFF

collision risk quantification, interpretation and decision-making, and reduction. Except for

collision risk reduction, this doctoral investigation contributes to all aspects of the SFF

COLRM problem.

First, a sampling method is developed for the computation of probability measures

associated with rare event simulation, with the goal of computing instantaneous and joint-

time collision probabilities in SFF with comparable performance to Monte Carlo. Second,

a methodology is developed for examining the consistency between collision risk insights

that may be gleaned from distance-based and probability-based collision risk indicators,

with recommendations for certain distance-based collision risk indicators whose relation-

ship to collision probability is in accordance with intuition. Third, a new collision region

is introduced which arises from the combination of mutually orthogonal circular constraint

violations, and its application to the approximate satisfaction of spherical avoidance con-

straints is motivated by quantifying the extent of the overestimate of stochastic collision risk

measures based on the proposed collision region when compared to their isotropic coun-

terparts. Fourth, for sensitivity analyses of the direct and inverse instantaneous collision

probability problems, their soundness is substantiated by proving the absolute continuity

of the Euclidean norm of an absolutely continuous finite-dimensional random vector. For

instantaneous collision conditions based on balls with respect to arbitrary norms in relative

position space, their corresponding joint-time collision probability measures are shown to

xxxiii



be well-defined and computable.

Together, these contributions to an integrated approach to SFF COLRM constitute

progress toward the goal of practical implementations of mission concepts based on the

spacecraft formation flying paradigm.
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CHAPTER 1

INTRODUCTION

1.1 Spacecraft formation flying (SFF) – definition and benefits

Spacecraft formation flying (SFF) is defined as a “set of more than one spacecraft whose

dynamic states are coupled through a common control law”.[1] Under this commonly ac-

cepted definition, for any spacecraft formation, there exists at least one agent of such for-

mation which tracks a relative state with respect to some other agent of the formation, and

the control law of the former must be a function of its relative state with respect to the

latter. In other words, SFF is a group of more than one space vehicle, whose members are

coupled as follows: the control law of any member is a function of dynamic states relative

to other members of the group.

According to this SFF definition, spacecraft in constellations, though related opera-

tionally to each other, are not linked from the perspective of control laws; hence, spacecraft

constellations are not instances of SFF. Conversely, spacecraft that undergo certain oper-

ations that require relative control laws (such as rendezvous, docking, or relative station-

keeping, to name a few examples) are instances of SFF. In this dissertation, only instances

of SFF will be considered in which the intent is not to completely eliminate inter-agent

separation.

As a space mission design paradigm, SFF is attractive for several reasons. Chiefly,

spacecraft formations are able to replace failed agents or add new ones, and agents in

a spacecraft formation are able to exchange roles and/or tasks. The availability of such

mission architecture choices has broad implications. In particular, SFF can enable mis-

sions with increased system robustness, as deterioration or failure of an agent in a space-

craft formation may only cause performance degradation in the mission, rather than caus-
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ing the end of the mission.[2] Conversely, spacecraft formation missions may also have

longer lifetimes, as well as performance improvements over their lifetimes, due to the

ability to replace failed agents or add new ones. Hence, SFF schemes are advantageous

from a spacecraft systems engineering perspective because spacecraft missions may be-

come more scalable, adaptable, flexible, and/or maintainable as a result of implementing

the SFF paradigm.[3] Such performance-enhancing mission architecture capabilities are

unavailable to monolithic spacecraft missions.[4]

Additionally, the SFF concept may be employed to carry out high-precision scientific

missions, specifically, by distributing a formation over large regions and by using sensor

fusion.[5] These techniques may be applied in scientific endeavors such as gravity field

recovery, weather forecasting, exoplanet detection, and more.[5, 6, 7, 8, 9, 10, 11]

1.2 Nature of collision risk in spacecraft formation flying (SFF)

Because spacecraft formations are vulnerable to the threat of not only collisions with ob-

jects external to the formation, but also internal collisions (i.e., collisions among satellites

within the formation), the survivability and success of spacecraft formation missions are

intrinsically linked with the effective management of collision risk.[12]

Typically, agents in a spacecraft formation operate in close enough proximity to each

other that their individual dynamics can be modeled as small variations near a reference or-

bit.[2] Yet, unlike in the context of other proximity operations such as rendezvous, agents

in an SFF mission must operate without ever colliding or coming dangerously close to-

gether.[13] Since orbit navigation, dynamic modeling, and actuation errors, even if re-

ducible, cannot be fully eliminated, some level of inter-agent drift is inherent to spacecraft

formations;[2] hence, it is always possible that such drifting (or any maneuvering) might

cause collision events. Additionally, geometry maintenance constraints, as well as the pos-

sible failure of individual spacecraft, make collision risk assessment and risk reduction a

challenging problem in spacecraft formations.[13]
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Furthermore, several Earth-orbit regimes have become hosts to surging populations of

debris, whose presence is hazardous to current and future missions.[14, 15] Collision with

debris is an ever-intensifying concern because the debris population continues to grow

through three main modes: cascading random collisions, the introduction of new objects

to the environment every time a new mission is launched, and the lack of debris removal

implementation.[16, 17, 18, 19, 20, 21] Collisions with debris could do substantial harm

to active spacecraft, up to destroying such assets altogether.[17] In order to mitigate the

concerns of space debris, several schemes of debris removal have been proposed, although

none have been implemented.[20, 21] Thus, collision avoidance maneuvers remain the

“single most important technique in managing the risk associated with space object colli-

sion”.[22]

Therefore, the most important exogenous kinetic threat to spacecraft formations is ex-

ternal debris, even to a greater extent than to monolithic spacecraft. When in close ap-

proach, debris can be conceptualized as non-cooperative agents with high relative velocity

with respect to one (or several) agents in the formation. Hence, spacecraft encounters with

debris have been traditionally conceptualized as short-term, one-time encounters.[23, 24]

Whenever a correction maneuver is undertaken by an endangered agent in a spacecraft for-

mation, its effect is not isolated to said agent, but it necessarily induces changes to the

structure of the formation, and such changes may prompt corresponding actions by the

remaining agents in order to maintain safety and operational performance.[25, 26] Thus,

avoiding an external threat in SFF is a complex process because external debris avoidance

maneuvers many induce unintended internal collision risk which must also be avoided.

Consequently, even when considering the short-term risk of debris impact, the primary

safety concern to spacecraft formations stems from the long-term risk of potential colli-

sions between pairs of agents in such formations. Since the threat of internal collisions

is ever present, methods of internal collision monitoring and avoidance must meet safety

constraints while minimizing resource expenditure in order to extend mission lifetime.[2]
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Therefore, this dissertation focuses on the risk of internal collisions in spacecraft forma-

tions.

1.3 Overview of the collision risk management (COLRM) process in spacecraft for-

mation flying (SFF)

Fundamentally, collision risk management (COLRM) is an inherent operational function

in SFF which seeks to reconcile two primary aims: first, to ensure the safe and continued

operation of spacecraft formations considering the ongoing threat of collisions; and sec-

ond, to balance safety requirements in a way that maximizes mission lifetime (which is

constrained by onboard propellant).[2, 12]

The ongoing process of spacecraft formation collision risk management involves the

following tasks: collision risk quantification, interpretation and decision-making, and re-

duction.[12] First, collision risk is quantified through some indicator, either a separation

metric or a measure of the likelihood of this adverse event.[27, 28] Second, the outcome

of this indicator should inform, via a predetermined rule, whether corrective actions are

warranted. Third, if necessary, collision avoidance (COLA) maneuvers must achieve the

reduction of quantifiable risk to a tolerable level.[13] This process is analogous to the man-

agement of debris collision risk for monolithic spacecraft.[29]

Implicit to the ongoing process of SFF COLRM are foundational COLRM tasks, which

pertain to the meaning of collision risk, and consequently, the suitable formulation of de-

terministic and stochastic representations of collision risk. First, collision events must be

defined in ways that are physically sensible, tractable, and consistent, and which might

be verifiable in the case of highly accurate relative state knowledge. Second, because rel-

ative state information is always imperfect in practice,[30] collision risk indicators must

be chosen in ways that adequately account for the uncertainty in relative state informa-

tion. The choice of collision risk indicator type is significant because it leads it to different

representations of collision risk thresholds, and consequently, different guidance and con-
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trol philosophies for collision risk reduction.[28] Therefore, the choice and computation of

suitable collision risk indicators is a central concern to the concept of operations for any

spacecraft formation mission.

Hence, in the field of SFF COLRM, a distinction may be made between foundational

work regarding collision risk indicators, and practical work that employs such collision risk

indicators in the context of ongoing operational tasks. As illustrated in Fig. 1.1, on the one

hand, foundational work in SFF COLRM includes the formal definition and basic prop-

erties of collision risk indicators, specifically, as it pertains to their well-definedness and

usability; such work becomes particularly relevant when new collision risk indicators are

introduced. On the other hand, operational SFF COLRM tasks are understood in this dis-

sertation as follows. First, SFF collision risk quantification work refers to any algorithms

or techniques that may be employed to quantify collision risk indicators. Second, SFF in-

terpretation and decision-making work includes: the relationship among different types of

collision risk indicators, the consistency of conclusions gleaned from different indicators,

the physical and operational interpretation of collision risk indicators, and any other work

that is relevant to the application of collision risk indicators in order to decide whether

collision avoidance maneuvers are operationally warranted. Finally, SFF collision risk re-

duction work encompasses relative trajectory planning algorithms and techniques whose

aim is to ensure the sufficient reduction of collision risk.

1.4 Contributions of this investigation

This dissertation focuses on contributions to the process of spacecraft formation COLRM.

These contributions rely upon the deterministic formulation of collision events, as well

as on the definition of uncertain collision risk indicators, which may be probabilistic,

separation-based, or both. These formulations are presented in Chapter 2.
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Figure 1.1: Classification of SFF COLRM work: foundational, and operational. Note:
collision risk is denoted as COLR.

1.4.1 Foundational work in spacecraft formation collision risk management

Contribution 1: To substantiate sensitivity studies of instantaneous collision probabilities

(with respect to hard-body radii), and to show the computability of joint-time SFF collision

risk measures whose corresponding instantaneous collision conditions are based on arbi-

trary norms in relative position space

The first part of this contribution addresses the instantaneous probability of collision

(IPC), which is employed for spacecraft collision risk quantification, specifically under

the hard-body radius (HBR) assumption.[31] When using a probabilistic description of

the relative position between two objects, and under the HBR assumption, the IPC can be

conceptualized as the probability mass within a Euclidean distance (away from the origin

of relative position space) equal to the joint HBR between both objects.[32]

Since the IPC depends on the HBR, it is important to ascertain the effects on the IPC

caused by changes in the HBR.[28, 31] Sensitivity analyses of the IPC can be formulated

in terms of changes to the cumulative distribution function (cdf) of the Euclidean norm of

the instantaneous relative position (denoted as R), which, in the limit of small changes,

involve derivatives of this cdf.[33] However, it is not known a priori whether the cdf of
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R is equal to the Lebesgue integral of its derivative, i.e., whether the cdf of R is an ab-

solutely continuous function.[34] In measure-theoretic terms, it is not known whether the

probability measure associated withR is absolutely continuous.[35] This would be the case

under the assumption of normality of the distribution of the relative position.[36] However,

there is growing evidence that normality is not an appropriate assumption for probability

distributions in space flight mechanics.[37]

In the first part of this contribution, it is proven that, for a finite dimensional random

vector with an absolutely continuous probability distribution (that is, if it has a probabil-

ity density function, or pdf, through which probability measures may be computed via

Lebesgue integration), then, its norm also has an absolutely continuous probability distri-

bution (i.e., it has a pdf).[12] This result lays the foundation for sensitivity analyses of the

IPC in a Lebesgue integral-derivative sense because, by assuming the existence of a pdf for

the relative position, it follows that R also has a pdf.

The second part of this contribution addresses the joint-time probability of collision

(Pc), which is the probability that two agents collide at any time within a finite time in-

terval.[31] The Pc is implicitly dependent on the underlying condition which defines an

instantaneous collision event. It is a known fact, if the instantaneous collision event is

defined via a Euclidean ball in relative position space, that the corresponding Pc is well-

defined.[38] However, instantaneous collision conditions may be operationally defined via

balls with respect to other norms in relative position space, such as the box norm,[39]

ellipsoidal norms,[40] or norms arising from meeting mutually orthogonal circular con-

straints.[41] Hence, it is not immediately clear whether Pc measures (induced via arbitrary

norms in relative position space) are well-defined.

In the second part of this contribution, the well-definedness and computability proper-

ties of Pc measures is extended to a-Pc measures, i.e., Pc measures that are induced by

instantaneous collision regions that are defined via balls with respect to arbitrary norms

(denoted by a) in relative position space. This result is shown under the assumptions of
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continuity of the flow function corresponding to the dynamics of relative agent motion, and

continuity of the joint HBR time-history. Under these conditions, a-Pc measures are well-

defined (i.e., they exist) and computable, i.e., finite timestep approximations to the a-Pc are

able to approximate real a-Pc values arbitrarily well in the limit.[41] These results buttress

the application of arbitrary a-norms in order to induce stochastic collision risk measures,

as well as applications of the measures in a SFF COLRM context. The construction of the

a-JTC set, upon which a-Pc measures are based, is illustrated in Fig. 1.2.
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Figure 1.2: Set (At) of initial conditions which, after propagation to time t, indicate an
a-norm collision condition. Note: the a−JTC set is constructed via the union of all At

sets, t ∈ [t0, tf ].

The first and second parts of this contribution are addressed in Chapters 3 and 4. Both

parts of this contribution represent foundational work in SFF COLRM; cf. Section 1.3.
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1.4.2 Algorithms and methods for SFF collision risk indicator quantification

Contribution 2: To motivate and develop sampling methods for probabilistic SFF collision

risk indicators, and to formulate practical computational techniques for separation-based

collision risk indicators

The problem of SFF COLRM differs from the standard obstacle avoidance problem in

robotics because of the instability of relative orbital dynamics, the lack of spatial restraints

in spacecraft motion, and limitations in sensing accuracy and onboard resources.[30] These

facts imply the need to quantify uncertain indicators of collision risk, to make decisions

based on acceptable risk thresholds, and to plan appropriate corrective actions to reduce

quantifiable collision risk accordingly.[29, 27, 28, 13]

Because the relative position between space objects cannot be deterministically known,

[42], the first part of this contribution focuses on probability measures associated with

the likelihood of collision events which have been explored considerably in SFF research,

being employed as probabilistic indicators of collision risk, with particular focus on the

Pc, which is the probability of collision over a finite time interval, and the instantaneous

probability of collision (IPC).[31, 43, 44] One consequence of the probability dilution

phenomenon in relative orbital dynamics is that, operationally, certain practitioners in the

spacecraft conjunction assessment community adopt a threshold of significance for Pc val-

ues of 1 × 10−7 (that is, Pc values above this threshold are considered significant, and

vice versa).[45, 29] Via the construct of projection instantaneous probabilities of collision,

it could be argued that this threshold of significance may also be valid for IPC values in

an SFF COLRM context [28] – and hence, this threshold may be regarded as valid for Pc

values in this context as well. Thus, for sampling algorithms employed to estimate SFF

probabilistic collision risk indicators, it would be beneficial to produce samples that allow

for accurately reproducing low-valued probability measures – which implies the need to

account for probabilistic outliers consistently.[46, 47]
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The first part of this contribution motivates the use of sampling algorithms for approxi-

mating the probability of joint-time events, i.e., events that involve the application of a sin-

gle logical condition over a finite time interval (such as the Pc) after propagating an initial

distribution through a dynamic process. Under certain conditions, estimating the probabil-

ity of joint-time events implies the need for computing probabilities over a number of sets

that is a combinatorial function of the number of timesteps into which the time interval

is subdivided.[38] This motivates the development of a sampling method (which naturally

allows for nonlinear sample element propagation) which has unbiased sample mean and

covariance over invertible linear transformations, and which has asymptotically unbiased

convergence for probability measures over measurable subsets of relative dynamic state

space. Specifically, the Mahalanobis Shell Sampling (MSS) algorithm is developed to ge-

ometrically sample from non-degenerate multivariate, normal distributions in a way that

allows for obtaining an arbitrary amount of sample points that may regarded as probabilis-

tic outliers in a systematic fashion, and without requiring unmanageably large sample sizes,

for the purpose of reproducing the probability of rare events (specifically, those involving

probability distribution tails). The MSS algorithm is then validated for application to SFF

probabilistic collision risk indicator computation through simulation in a pertinent relative

orbital dynamic context.

Some of the basic elements of the MSS algorithm are illustrated in Fig. 1.3 for the case

of sampling from an instantaneous relative position random variable Ri,j in R3: obtaining

a sample of the unit (s− 1)-hypercube, transforming this sample into a sample of the unit

(s − 1)-hypersphere, and transforming this sample (via 1st and 2nd order statistics of Ri,j)

into a sample of the d-Mahalanobis contour of Ri,j . The MSS algorithm, as well as study

of its stochastic convergence properties, are discussed in Chapter 6.

The second part of this contribution examines the problem of finding the minimum Eu-

clidean distance from the origin of a finite-dimensional space to a d-Mahalanobis contour

of a non-degenerate normal random vector X [Ld (X)]; this problem has applications for
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Figure 1.3: Initial steps for generating an MSS sample of relative position random vari-
able Ri,j in R3: a) sample of unit square, b) sample of unit 2-sphere, and c) sample of
d-Mahalanobis contour, Ld(Ri,j) in R3.

computing certain SFF collision risk indicators whose relationship to instantaneous and

joint-time probabilities of collision is consistent with intuition.[27, 28] Chapter 7 of the

general, finite-dimensional problem of finding the minimum Euclidean distance to Ld (X),

such as the existence of solutions to this problem, as well as upper and lower bounds to

these solutions.

These theoretical results are applied in the context of developing a computational method-

ology for finding the minimum Euclidean distance from the origin of three-dimensional rel-

ative position space to the d-Mahalanobis contour of the relative position Ri,j [Ld

(
Ri,j

)
];

this methodology employs a dimensionality-reducing, area-preserving mapping from the

unit square to the unit sphere, and a suitable coordinate transformation, in order to re-

frame the original problem (a three-dimensional non-convex minimization problem with

non-linear constraints) as an unconstrained two-dimensional search over a convex, simply-

connected region. This computational methodology is validated for searches which become

ill-condition after extended propagation horizons, as shown in Chapter 7.
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1.4.3 Spacecraft formation collision risk interpretation and decision-making

Contribution 3: To develop methodologies for comparison of distance-based and probability-

based SFF collision risk indicators, and to characterize properties of proposed indicators

which validate their practical use in SFF applications

With active SFF COLA methods, collision risk is managed through predicting the future

motion of agents, determining whether the anticipated collision risk is acceptable, and if it

is not, planning and executing COLA-dedicated maneuvers. The existing literature in active

SFF COLA can be broadly categorized in terms of which type of collision risk indicator is

chosen, whether inter-agent separation (via some function of the stochastic description of

the relative position),[48, 49, 50, 51, 52, 26, 53] or probability measures associated with

instantaneous or joint-time collision events.[13, 54, 55]

This dichotomy in guidance and control philosophies prompts study of the relationship

between separation- and probability-based collision risk indicators, specifically, to under-

stand whether insights on collision risk that may be inferred from each indicator type are

mutually consistent in view of the corresponding physical interpretation of each indica-

tor. First, the collision correlation index, which is an unbiased, normalized inner product

between two signals, and which can be interpreted as a coefficient of linear correlation

between the two signals, is proposed to compare time histories of the instantaneous prob-

ability of collision (IPC) and other separation-based indicators. In terms of the collision

correlation index, it has been found that the 99.73% minimum distance, denoted by ρ3σ,

has the most consistent relationship with the IPC over a significant propagation horizon,

and over a wide range of relative orbit regimes and spacecraft classes. Specifically, the ρ3σ

is more likely to indicate a close approach between agents while, at the same time, the IPC

indicates increased collision risk, and vice versa.

Therefore, the 99.73% minimum distance, ρ3σ, can be understood as a joint hard-body

radius such that, if the isotropic keep-out zone distance requirement between two agents is
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ρ3σ, the instantaneous probability that such agents are collision in 0.27%. Thus, the 99.73%

minimum distance is a collision risk boundary in relative position space with probabilistic

interpretation. Figure 1.4 illustrates the distinction between instantaneous collision regions

that define the IPC and ρ3σ. On the one hand, the IPC is found by fixing the joint HBR

and solving the direct-IPC problem; that is, computing the probability mass inside the

Euclidean ball with radius li,j centered at the origin of instantaneous relative position space.

On the other hand, the ρ3σ is obtained by letting the joint HBR vary and solving the inverse-

IPC problem; that is, finding the minimum joint HBR whose corresponding direct-problem

IPC has a predetermined value (in this case, 0.27%).
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Figure 1.4: Conceptual (Euclidean) direct and inverse IPC computation through integration
of relative position pdf for a system with normally distributed (two-dimensional) relative
position. Note: for a joint HBR set to ρ3σ, the corresponding IPC value is 0.27%.

The foregoing interpretation of ρ3σ has been validated through a computational inves-

tigation that shows, over a wide range of relative orbit regimes, that small changes to the

probability value that defines ρ3σ (that is, 0.27%) result in correspondingly small changes

to ρ3σ.[33] This result validates the foregoing interpretation of ρ3σ in the presence of small
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errors in computation or in navigation solutions, which would justify the use of this hybrid

collision risk indicator in practical SFF COLRM applications. Figure 1.5 conceptually il-

lustrates an examination of the sensitivity of ρ3σ to small changes in the target probability

which defines ρ3σ, i.e., p3σ = 0.27%.

Figure 1.5: Conceptual examination of the sensitivity of ρ3σ to small changes in the target
probability which defines ρ3σ, i.e., p3σ = 0.27%.

This contribution addresses advances to the field of spacecraft formation collision risk

interpretation and decision-making. The first part of this contribution is discussed in Chap-

ter 8, and it comprises a study undertaken to ascertain the extent of internal consistency

between conclusions gleaned from probabilistic collision risk indicators when compared to

distance-based collision risk indicators. In response to this study, a hybrid collision risk

indicator (that is, a distance-based collision risk indicator with probabilistic interpretation)

is developed, and it is empirically shown that this hybrid indicator has an appropriate re-

lationship to probabilistic indicators. Consequently, as shown in the second part of this

contribution (which is documented in Chapter 9), a sensitivity study of the hybrid indicator

is performed in order to verify whether its probabilistic interpretation is plausible.
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1.4.4 Cylindrical orthogonal norm-based stochastic collision risk measures in SFF

Contribution 4: To motivate the development of SFF COLRM frameworks based on the

cylindrical orthogonal collision region (COCR), and to show their feasibility by address-

ing region well-definedness, as well as inequalities and quantitative comparisons between

COCR-based stochastic SFF collision risk measures and counterparts in the literature

The operational aspect of the SFF COLRM process (collision risk quantification, inter-

pretation, and reduction) depends on both the choice and efficient formulation of suitable

collision risk indicators.[12] The formulation of collision risk indicators reflects how colli-

sion events are defined operationally – in the spaceflight mechanics community, commonly

defined as the violation of minimum distance constraint with respect to the Euclidean norm

under the HBR assumption.[27, 28, 38, 32, 56, 57]

This contribution motivates the use of new collision regions as alternatives to spher-

ical, three-dimensional (3D) avoidance regions (S3AC) in an SFF COLRM context. In

particular, the cylindrical orthogonal collision region (COCR) is constructed as the inter-

section of three mutually orthogonal 3D cylinders in relative position space, each of which

corresponds to a circular collision constraint in a planar, two-dimensional projection of

3D spacecraft relative motion. Hence, the COCR is the 3D region that is avoided when

at least one out of three mutually orthogonal planar circular constraints is satisfied at any

one time, as illustrated in Fig. 1.6. The COCR construct is advocated for application in

an SFF COLRM context because it provides both safety sufficiency and reduced conser-

vatism as compared to other collision regions that approximate spherical, 3D avoidance

regions advocated in the literature, such as box collision regions,[39] or infinite cylinders

corresponding to the two-dimensional circular avoidance constraints.[27, 28] Additionally,

avoiding a COCR may provide computational advantages to spacecraft relative trajectory

planning tasks – specifically, by leveraging existing work in the literature regarding planar

circular avoidance constraint satisfaction.[58, 53, 59, 60, 61, 62, 63]
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Figure 1.6: Construction of the cylindrical orthogonal collision region (COCR) in three-
dimensional relative position space.

The research work pertaining to this contribution motivates implementation of the COCR

construct in a SFF COLRM context by showing the feasibility of such an application,

specifically, by addressing concerns that arise from the construction of the COCR. First,

the COCR is shown to be a well-defined 3D collision region, and the deterministic ad-

vantages of employing the COCR over other approximate collision regions are quantified.

Second, leveraging the result of well-definedness and computability of stochastic measures

of collision risk under certain non-restrictive assumptions on relative dynamics (cf. Chap-

ter 4), it follows that stochastic measures of collision risk whose underlying instantaneous

collision conditions in relative position space are based on the COCR are well-defined and

computable, in both an instantaneous and a joint-time sense. Third, theoretical inequalities

for COCR-based instantaneous and joint-time probabilities of collision are presented in

terms of their Euclidean and box-norm, upper and lower bound counterparts. Fourth, these
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inequalities are computationally validated through numerical integration and large-sample

Monte Carlo simulation in the context of relevant geometric regimes of Clohessy-Wiltshire

(CW) relative orbital dynamics. Finally, the extent of the overestimate of stochastic colli-

sion risk measures based on the COCR over those based on spherical collision regions is

explored computationally.

Since this contribution is concerned with both the definition of new collision risk in-

dicators (specifically, stochastic collision risk measures based on the COCR) and with the

relationship between them and other existing collision risk indicators, this contribution may

be classified as belonging to both foundational work in SFF COLRM and to SFF collision

risk interpretation and decision-making; cf. Section 1.3. This contribution is addressed in

Chapter 10.

1.5 Dissertation outline

This dissertation, whose outline is summarized in Table 1.1, is organized as follows.

Contribution 1 comprises advancements in foundational SFF COLRM work, specifi-

cally, to ascertain whether the Euclidean norm of an absolutely continuous random vector

is also an absolutely continuous random variable (Ch. 3), and to establish whether a-Pc

measures are well-defined and computable (Ch 4).

Contribution 2 addresses SFF collision risk quantification, in particular, to introduce

and characterize the stochastic convergence properties of the MSS algorithm (Ch. 6), and

to present methodologies for the computation of distance-based collision risk indicators

(Ch. 7).

Contribution 3 focuses on SFF collision risk interpretation and decision-making, specif-

ically, to examine the consistency of the correlation relationship between dissimilar (but

complementary) types of SFF collision risk indicators (Ch. 8), and to ascertain whether it

is appropriate to conceptualize the 99.73% minimum distance (ρ3σ) indicator as encoding a

region in relative position space with a specific interpretation in terms of probabilistic SFF
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Table 1.1: Outline of contributions from this investigation to the SFF COLRM literature

SFF Foundational Operational
COLRM Definition/Basic

Quantification
Interpretation/

Category Properties Decision-Making

Contribution 1.1
Existence of ∥R∥2

pdf (Ch. 3)

Contribution 1.2
a-JTC measurability/

a-Pc computability (Ch. 4)

Contribution 2.1
MSS Convergence

(Ch. 6)

Contribution 2.2
Distance-based

indicators (Ch. 7)

Contribution 3.1
Risk Indicator

Correlations (Ch. 8)

Contribution 3.2
Sensitivity of
ρ3σ (Ch. 9)

Contribution 4
COCR-based IPC/Pc COCR-based IPC/Pc

well-definedness (Ch. 10) Inequalities (Ch. 10)

collision risk (Ch. 9).

Finally, Contribution 4 (Ch. 10) represents progress in foundational SFF COLRM

work, as well as in SFF collision risk interpretation. First, a new collision region, the

COCR, is introduced, and new probabilistic collision risk indicators based on the COCR

are shown to be well-defined. Second, inequalities are presented which relate COCR-based

collision probability measures to counterparts that are common in the literature; such in-

equalities are computationally validated.

This dissertation (Ch. 2) also restates the formal definition of SFF collision risk indica-

tors as they are understood in this work, and it outlines concepts in mathematical analysis

in order to provide basic background for the unfamiliar reader. Additionally, this disserta-

tion briefly discusses the adequacy of employing probabilistic SFF collision risk indicators
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based on stochastic representations of epistemic uncertainty (Ch. 5). Furthermore, this

dissertation recapitulates the geometry of closed Clohessy-Wiltshire (CW) relative orbital

geometry (Appx. A), as well as the basic properties of the Monte Carlo method (Appx. B).

Finally, a methodology for the management of large Monte Carlo samples for SFF collision

risk indicator computation and analysis is detailed in Appx. C.

1.6 Intended audience

Therefore, with the exception of SFF collision risk reduction (cf. Fig. 1.1), the contribu-

tions and supplementary content laid out in this dissertation (see Section 1.5) constitute a

systematic (albeit not comprehensive) treatment of the management of SFF collision risk.

This dissertation will be beneficial as a starting point to members of the the spaceflight

and astronautics communities who might be interested in a reference work which explores

the definition, usability, computation, and interpretation of SFF collision risk indicators, as

well as the underlying reasoning for these contributions.

Because of the prevalent nature of SFF collision risk (cf. Section 1.2), this dissertation

is thus useful in practical, flight hardware implementations of the SFF concept. Specifi-

cally, this dissertation is meant to assist existing or potential SFF practitioners seeking to

address questions that are central to the development and execution of any SFF-based space

mission concept of operations, such as: is it sensible to employ certain SFF collision risk

indicators commonly used in the literature? Is it possible to extract consistent information

from dissimilar, yet complementary SFF collision risk indicators? What are some methods

to compute such SFF collision risk indicators? Is it advantageous to introduce new ways to

conceptualize, quantify, and interpret SFF collision risk? Questions of this nature are rele-

vant to members of the spaceflight communities who might be interested in designing and

operating SFF missions, such as: space mission architects, spacecraft systems engineers,

space mission operators, command and data handling (CD&H) engineers, flight software

(FSW) engineers, trajectory designers, and spacecraft guidance, navigation, and controls
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(GN&C) engineers. It is therefore the author’s hope that this dissertation will be a valuable

resource for its intended audience.
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CHAPTER 2

BACKGROUND

This Chapter introduces certain helpful preliminaries to this

dissertation. First, the notation utilized in this dissertation is es-

tablished. Concepts related to mathematical analysis such as norms,

measures, and probabilities are expounded. Then, instantaneous

collision events are formally, topologically defined. Next, proba-

bilistic risk indicators employed in this dissertation are introduced

and discussed. Subsequently, distance-based collision risk indi-

cators examined in this dissertation are listed. Finally, a hybrid

collision risk indicator (that is, a distance-based collision risk in-

dicator with probabilistic interpretation) is presented.

2.1 Acronyms

Acronyms employed in this dissertation are listed on page xxxi. The Nomenclature may

employ these acronyms without further restating.

2.2 Nomenclature

A \B = complement of set A relative to set B; i.e, set of points

= in A that are not members of set B

A ⊊ B = proper subset relationship; i.e., A ⊆ B and A ̸= B

[A]C = complement of A relative to implied reference superset

= Ω ⊇ A; i.e., [A]C = Ω \ A

A0, B0 = amplitudes of radial and cross-track motion, respectively,
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= in closed CW trajectories, km

aj0 , nj0 = orbit semimajor axis [km] and mean motion [rad/s],

= respectively, of chief agent j0

Aj (·) = rotation matrix with rotation angle (·) along jth axis,

= j ∈ {1, 2, 3}

Aj1,...,jn = composite rotation matrix given by Ajn (·) . . . Aj1 (·)

BN,k = set of initial conditions {xi,j(t0)} such that

= xi,j(t) ∈ Ci,j (t; li,j(t), a), t = hT (c), c = k/N ,

= k ∈ {0, . . . , N}, N ∈ N

Bs|a
r (x) = open a-norm ball of radius r ∈ (0,∞) centered at x ∈ Rs,

= i.e., the set {y ∈ Rs : ∥x− y∥a < r}, s ∈ N

Bs
r (x), Br (x) = Bs|a

r (x) for Euclidean vector norm (i.e., a = Eu, or a = 2)

Bs|a
r (x) = closed a-norm ball of radius r ∈ (0,∞) centered at

= x ∈ Rs, i.e., the set {y ∈ Rs : ∥x− y∥a ≤ r}, s ∈ N

Bs

r (x), Br (x) = Bs|a
r (x) for Euclidean vector norm (i.e., a = Eu, or a = 2)

Cb ([a1, a2]) = space of continuous, bounded, real-valued functions

= f : [a1, a2]→ R

cdfX = cumulative distribution function (cdf) of univariate,

= real-valued random variable X

cdf−1
X = quantile function of univariate, real-valued random

= variable X; i.e., generalized inverse function of cdfX

Ci,j (t; li,j(t), a) = set in RnX whose projections onto RdR belong to

= Vi,j (t; li,j(t), a)

Ci,j = Ci,j (t; li,j(t), a) for a = Eu, time-invariant li,j

compm-IPCi,j = c.o.-IPCm-comparison index, m ∈ {1, 2, 3, 4}

compm-Pci,j = c.o.-Pc m-comparison index, m ∈ {1, 2, 3, 4}

compm-voli,j = COCR m-relative volumetric difference, m ∈ {1, 2, 3, 4}
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DEu = set of spherical coordinates, given by

= DEu = [0, 2π)× [0, π]s−2 × [0,∞)

Cov (X) = covariance of random variable X in Rs

D∗
Eu = restricted set of spherical coordinates, D∗

Eu ⊊ DEu

det (·) = determinant operator

dmax = cutoff Mahalanobis distance in MSS sample

dR = dimensionality of deterministic or random position

= vectors; dR ∈ {1, 2, 3}

DX (x) = Mahalanobis distance of instance x ∈ Rs of random

= variable X ∈ Rs

D1, G,H, S1, S2, S3, S4 = constants related to MSS sample mean and covariance

= estimators

D∗(Pn) = star discrepancy of set Pn = {yk} in [0, 1]s, k ∈ Sn

E [·] = expectation operator

esssupx∈Rs f(x) = essential supremum of a measurable function f : Rs → R

fEu = mapping (for finite-dimensional vector) from Cartesian to

= spherical coordinates, fEu : Rs → DEu

f ∗
Eu = restriction of Cartesian-to-spherical coordinate mapping

= fEu; i.e., f ∗
Eu : S∗

Eu → D∗
Eu

fE = characteristic (or indicator) function of subset E

Ft0 (t, x0), Ft,t0(x0) = solution (at time t) to dynamic system ẋ(τ) = f (τ, x(τ)),

= t0 ≤ τ ≤ t, for x(t0) = x0

gEu = mapping (for finite-dimensional vector) from spherical to

= Cartesian coordinates, gEu : DEu → Rs

g∗Eu = restriction of spherical-to-Cartesian coordinate mapping

= gEu; i.e., g∗Eu : D∗
Eu → S∗

Eu

gP = function that projects points in RnX onto points in RdR
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hR = cdf of Euclidean norm of position random variable R; i.e.,

= hR = cdfR, R = ∥R∥2

ĥR,N = Monte Carlo (MC) estimator of hR based on MC sample

= size N

hT = linear mapping from [0, 1] to [t0, tf ]

HEu = set complement of S∗
Eu; i.e., HEu = Rs \ S∗

Eu

If = integral of function f over [0, 1]s

inf (·) = infimum operator

IPCi,j (t; li,j(t), a) = instantaneous probability of a-norm collision between

= agents i and j at time t

IPCi,j(t) = IPCi,j (t; li,j(t), a) for a = Eu, time-invariant li,j

IPCW̃
i,j (t) = IPCi,j(t) computed on the W̃ -projection plane at time t

IPCi,j-ratiom(t) = c.o.-IPC difference (relative to m-bound) at time t,

= m ∈ {1, 2, 3, 4}

Is = identity matrix in Rs×s

Js = Jacobian matrix (in Rs×s) of spherical-to-Cartesian

= mapping gEu : DEu → Rs

Js = Jacobian of spherical-to-Cartesian mapping gEu;

= i.e., determinant of Js

JTCi,j ([t0, tf ]; li,j(·), a) = joint-time i-j a-norm collision event, t ∈ [t0, tf ]

JTCi,j[t0, tf ] = JTCi,j ([t0, tf ]; li,j(·), a) for a = Eu, time-invariant li,j

JTCN
i,j ([t0, tf ]; li,j(·), a) = N -timestep discretization of JTCi,j ([t0, tf ]; li,j(·), a),

= N ∈ N

JTCN
i,j[t0, tf ] = JTCN

i,j ([t0, tf ]; li,j(·), a) for a = Eu, time-invariant li,j

Ld (X) = d-Mahalanobis contour of non-degenerate normal random

= variable X ∈ Rs

li = characteristic length, or hard-body radius (HBR), of agent
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= i, m

li,j = i-j joint HBR, i.e., li,j
.
= li + lj , m

L(Rs) = set of Lebesgue-measurable subsets of Rs

L1(Rs) = set of Lebesgue-integrable, measurable real-valued

= functions g : Rs → R

L∞(Rs) = set of essentially bounded, measurable real-valued

= functions g : Rs → R

mod(a, n) = modulus of a after division by n

N (µ, Σ) = normal distribution with mean µ ∈ Rs and covariance

= matrix Σ ∈ Rs×s, Σ > 0

Nrep = number of times a finite random sample is repeated

Nsamples = total number of points in MSS sample

Nsh = number of shells in MSS sample

Nss = number of sample points per shell in MSS sample

p (·), P(·) = probability of event (·)

pcomp = lower limit on probabilistic collision risk indicators for

= relative change averaging

Pci,j ([t0, tf ]; li,j(·), a) = joint-time probability of i-j a-norm collision event,

= t ∈ [t0, tf ]

Pci,j[t0, tf ] = Pci,j ([t0, tf ]; li,j(·), a) for a = Eu, time-invariant li,j

PcNi,j ([t0, tf ]; li,j(·), a) = N -timestep discretization of Pci,j ([t0, tf ]; li,j(·), a),

= N ∈ N

PcNi,j[t0, tf ] = PcNi,j ([t0, tf ]; li,j(·), a) for a = Eu, time-invariant li,j

Pci,j-ratiom(t) = c.o.-Pc difference (relative to m-bound) at time t,

= m ∈ {1, 2, 3, 4}

pdfX = probability density function (pdf) of absolutely continuous

= random variable X
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pexc = probability of points precluded from MSS sample

pmfX = probability mass function (pmf) of discrete random

= variable X

preq, pthreshold = significance threshold for probabilistic collision risk

= indicators

pX (·) = probability measure associated with random vector X in

= probability space (Ω′,Σ′, pX); i.e., pX(E) = p (X ∈ E)

= for event E ∈ Σ′

p3σ = constant with value 1− cdfχ2
1
(32) ≈ 1− 0.9973 = 0.0027

R = position random variable in RdR , dR ∈ {1, 2, 3}, km

[R]J = expression of R ∈ RdR in the coordinates of a reference

= frame J

[R]H = [R]J for the Hill reference frame (H)

Ṙ(t) = time-rate of instantaneous position random variable at

= time t, R(t) (in RdR), km/s

R̃ = planar projection in R2 of position random variable R in

= R3, km

Q = field of real, rational numbers

Rs×m = set of all s×m real-valued matrices

R2
fit = coefficient of determination of stochastic convergence

= model fit

sepm
i,j = mth alternative separation measure between agents i and j,

= m ∈ {m1,m2,m3}, km

S∗
Eu = restricted set of Cartesian coordinates, S∗

Eu ⊊ Rs

Sn = set B = {1, . . . , n}, n ∈ N

S(s−1)|a
r (x) = (s− 1)-sphere (with respect to the a-norm) of radius

= r ∈ (0,∞) centered at x ∈ Rs, i.e., the set
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= {y ∈ Rs : ∥x− y∥a = r}

S(s−1) = unit (s− 1)-sphere under the Euclidean norm, i.e.,

= the set S(s−1)|Eu
1

(
0s×1

)
= {y ∈ Rs : ∥y∥2 = 1}

sup (·) = supremum operator

supp (f) = support of the function f , i.e., subset B of the domain of f

= where f(x) ̸= 0 ∀x ∈ B

TS2 = Lambert area-preserving mapping between the unit square

= and the unit 2-sphere; i.e., TS2 : [0, 1)× [0, 1]→ S2

U (A) = uniform distribution on A

uMC, uMSS = exponential rate of stochastic convergence with Monte

= Carlo and MSS samples, respectively

Var (X) = variance of univariate random variable X in R

Vd (X) = d-Mahalanobis volume of non-degenerate normal random

= variable X ∈ Rs

V d2
d1

(X) = d1, d2-Mahalanobis shell of non-degenerate normal

= random variable X ∈ Rs

Vi,j (t; li,j(t), a) = i-j a-norm intersection volume in RdR , i.e., the

= set BdR|a
li,j(t)

(
0dR×1

)
Vi,j = Vi,j (t; li,j(t), a) for a = Eu, time-invariant li,j

V W̃
i,j = i-j W̃ -projection collision disk in R2, i.e., the set

= B2|Eu
li,j

(
02×1

)
V W
i,j = i-j W̃ -projection collision cylinder in R3

Wl = collective weight of MSS sample points in lth shell

wl,q = weight of qth MSS sample point in lth shell

X̄ = expected (or “mean”) value of random variable X in Rs,

= i.e., X̄ .
= E [X]

X = dynamic state random variable in RnX , nX ∈ N

27



yoff = steady-state offset of along-track motion in closed CW

= trajectories, km

α0, β0 = phases of radial and cross-track motion, respectively, in

= closed CW trajectories, rad

Γ(x) = complete gamma function evaluated at x > 0

Γi,j = i-j collision correlation index over the [t0, t0 + T ] time

= interval

λ(·) = Lebesgue measure in Rs

µX = expected (or “mean”) value of random variable X in Rs

µ̂MSS, Σ̂MSS, p̂E,MSS = MSS estimators of sample mean, covariance, and

= probability measure of subset E

ΞJ2,J1 = coordinate transformation matrix in R3×3 from frame J1

= to frame J2

ρ3σ = 99.73% minimum distance, km

ΣX = covariance matrix of random variable X in Rs

Υ(l|N, k) = lth combination of
(
N+1
k+1

)
χ2
s = chi-square distribution with s ∈ N degrees of freedom

(Ω′,Σ′, ν) = measure space with reference set Ω′, sigma-algebra Σ′

= on Ω′, and measure ν on Σ′

0s×1, 0s×m = zero-valued vector (in Rs) and matrix (in Rs×m),

= respectively

⌈·⌉ = ceiling (or round-up) operator

⌊·⌋ = floor (or round-down) operator

⌊·⌉ = rounding operator

(̂ · ) = sample estimate of random variable (·)

(̃ · ) = countable counterpart of uncountable a-norm collision set

= (or probability based on this countable counterpart)
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(̄·) = expected (or “mean”) value of random variable (·)

( · ) = closed counterpart of open a-norm collision set (or

= probability based on this closed counterpart)

⟨·, ·⟩ = L2-inner product operator of real-valued “waveforms”,

= “signals”, or functions defined on the closed interval [a, b]

∥·∥2, ∥·∥Eu, ∥·∥ = L2 vector norm operator in Rs (also known as Euclidean

= norm)

∥·∥∞ = L∞ vector norm operator in Rs, given by max{|xi|}

= for x = [x1, . . . , xs]
T in Rs

∥·∥a, ∥·∥b = Generic vector norm operator in Rs (denoted as the a- or

= b-norm, respectively)

∥·∥co = Cylindrical orthogonal (c.o.) vector norm operator in R3

∥·∥CW = Clohessy-Wiltshire vector (CW) norm operator in Rs

∥·∥L1 = L1-norm of Lebesgue-measurable, Lebesgue-integrable,

= real-valued functions g : Rs → R

∥·∥L2 = L2-norm of Lebesgue-measurable, square-Lebesgue-

= integrable, real-valued “waveforms”, “signals”, or

= functions defined on the closed interval [a, b]

∥·∥L∞ = L∞-norm of Lebesgue-measurable, essentially bounded,

= real-valued functions g : Rs → R

∥·∥F , ∥·∥CW,F = Frobenius and Clohessy-Wiltshire (CW) matrix norm

= operator in Rs×s, respectively

∥·∥u = uniform norm (or sup-norm) for functions f : X → R

= on metric space X
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2.3 Notation

Vectors are underlined, while matrices and functions are not. Although boldface is reserved

for multidimensional variables (i.e., vectors and matrices), sometimes boldfacing such vari-

ables may be avoided for clarity. For mathematical objects {A, B, C} and for expressions

LHS and RHS, the statement “A .
= RHS” denotes that A is defined via the expression

RHS, whereas the statements “LHS =: B” and “C := RHS” indicate that the expressions

LHS and RHS are equal to B and C (respectively) by definition.

Let X ∈ RnX and R ∈ RdR denote a dynamic state and position state, respectively,

where nX and dR respectively denote the dimensions of X and R. (Note: since object

positions may be physically defined in 1, 2, or 3 dimensions, dR ∈ {1, 2, 3}.) Because

regions in both relative position and relative state space are addressed in this dissertation,

the dimensions of these spaces are denoted explicitly in order to avoid confusion with one

another or with generic finite-dimensional, real vector spaces (denoted by Rs).

When used with the subscript i, Xi and Ri denote the dynamic state and position of

agent i, respectively. It is understood that Ri refers to the position of the center of mass of

agent i with respect to the origin of some reference frame. When used with a composite

subscript such as “i-j”, Xi,j and Ri,j denote the dynamic state and position of agent i

relative to agent j, respectively, i.e., Xi,j
.
= Xi − Xj and Ri,j

.
= Ri − Rj .

When written in uppercase, X and R denote an uncertain dynamic state and uncertain

position, respectively. The nature of the initial state uncertainty (at time t0) is epistemic,

i.e., it arises from inaccuracies and errors inherent to measurement and estimation. Fur-

thermore, state uncertainty estimates at times t ≥ t0 are Bayesian in the sense that they are

dependent on the original uncertainty description at time t0, with propagation based on the

assumption of some dynamic model. Consequently, for any time t, a dynamic state X(t)

and position R(t) are interpreted as random variables (RVs) whose probability distribu-

tions reflect epistemic uncertainty. Conversely, when written in lowercase, x and r denote
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specific, deterministic “instances” or values that X and R may take on, respectively. The

variables µ and Σ are used to denote the expected value (or “mean”) and covariance of a

random variable, e.g., for X,

µX = E [X] (2.1)

ΣX = Cov (X) = E
[
(X− E [X]) (X− E [X])T

]
(2.2)

When referring to a square matrix in Rs×s, the notation “> 0” implies that such is a sym-

metric, positive definite matrix.[64]

Let ψ1, ψ2, ψ3 denote real numbers representing angles. Then, the direction cosine

matrices (DCMs; or coordinate transformation matrices) denoted by A1(ψ1), A2(ψ2), and

A3(ψ3) are given as follows, in accordance with the notation of Markley and Crassidis:[65]

A1(ψ1) =


1 0 0

0 cos(ψ1) sin(ψ1)

0 − sin(ψ1) cos(ψ1)

 (2.3)

A2(ψ2) =


cos(ψ2) 0 − sin(ψ2)

0 1 0

sin(ψ2) 0 cos(ψ2)

 (2.4)

A3(ψ3) =


cos(ψ3) sin(ψ3) 0

− sin(ψ3) cos(ψ3) 0

0 0 1

 (2.5)

Coordinate transformation matrices are orthonormal matrices; for further background on

orthogonal or orthonormal matrices, see Refs. [64, 65].

When inside a square bracket and with a subscript outside of such bracket, [R]J ∈ RdR

denotes that R ∈ RdR is expressed in the coordinates of a reference frame J ; similarly,
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[b]J ∈ R denotes the bth component of R in the J -frame (b ∈ {x, y, z}). When R ∈ R3

can be expressed in the coordinates of a W -frame as

[R]TW =

[
[x]W [y]W [z]W

]
(2.6)

and when overlaid by a tilde symbol, [R̃]W̃ ∈ R2 denotes the projection of R onto the W̃ -

projection plane (or simply W̃ ), where W̃ denotes the [x]W -[z]W plane frame. Thus, [R̃]W̃

is related to [R]W through the mapping [R̃]W̃ = Mp[R]W , where

Mp
.
=

1 0 0

0 0 1

 (2.7)

For example, given a coordinate frame J , if the W̃ -projection plane of interest is the [y]J -

[z]J plane, then one possibility for the coordinate transformation matrix (also known as a

direction cosine matrix, or DCM) from frame J to the projection frame W , ΞW,J , is given

by

ΞW,J
.
=


0 1 0

−1 0 0

0 0 1

 (2.8)

In the context of a measure space (Ω′,Σ′, ν), where Ω′ denotes a reference set (for a

probability measure, Ω′ is referred to as an “outcome” or “sample” space), Σ′ is a sigma-

algebra in Ω′, and ν : Σ′ → [0,∞] is a measure,[34] the statement “ν is defined in Σ′”

means that the sets for which ν has defined values belong to the sigma-algebra Σ′, as

reflected in the definition ν : Σ′ → [0,∞]. In this dissertation, only measure spaces of

the kind (Rs,L(Rs), ν) will be considered, where L(Rs) is the set of Lebesgue-measurable

subsets of Rs.[34] Note: probability spaces (or probability measure spaces) are measure

spaces.

This dissertation employs heavily the concepts of direct and inverse images of sets
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under functions. Consider a function g : A → B, and the sets A1 ⊆ A and B1 ⊆ B.

Then, the direct image of A1 under g, denoted by g(A1) ⊆ B, is the set of all values of

g(x) for which x ∈ A1. Similarly, the inverse image (or pre-image) of B1, denoted by

g−1(B1) ⊆ A, is the set of all points x such that g(x) ∈ B1. Explicitly,[34]

g(A1) = {g(x) : x ∈ A1} (2.9)

g−1(B1) = {x ∈ A : g(x) ∈ B1} (2.10)

In any space, a set is open if and only if it can be expressed as a union of open balls; the

topology of a space is the set of all open subsets in such space.[34] In this dissertation, the

underlying topology of Rs is assumed to be based on the Euclidean norm, ∥·∥2; that is, the

statement “A ∈ Rs is an open set” implicitly means that A is open with respect to the ∥·∥2

norm in Rs.[66] Additionally, vector norms (∥·∥) refer to the Euclidean norm (∥·∥2) unless

indicated otherwise. For two vector norms ∥·∥a and ∥·∥b in Rs to be equivalent means

that that there exist real-valued, scalar constants 0 < C1 ≤ C2 < ∞ such that, for every

x ∈ Rs,[66]

C1 ∥x∥a ≤ ∥x∥b ≤ C2 ∥x∥a (2.11)

In the context of the probability space (Rs,L(Rs),P), for the probability measure P :

L(Rs) → [0, 1] to be “absolutely continuous” may be characterized by the existence of a

function pdf : Rs → [0,∞) [defined almost everywhere (a.e.) in Rs] such that for every

A ∈ L(Rs), P(A) may be computed in terms of the Lebesgue integral, as given by

P(A) =
∫

x∈A
pdf (x) dx (2.12)

It is assumed that X(t) and R(t) are absolutely continuous for any time t; that is, probability

measures of X(t) and R(t) are zero-valued on sets of zero measure in their respective

sample spaces.[67] Consequently, probability density functions (pdfs) for X(t) and R(t)
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exist almost everywhere (a.e.) in their respective sample spaces, and probability measures

on X(t) and R(t) can be computed as integrals of their pdfs.[35]

Given µ ∈ Rs, Σ ∈ Rs×s, Σ > 0, the notation X ∼ N (µ, Σ) entails that X is a

non-degenerate, normal RV, and that, for x in Rs, it follows that pdfX(x) is given by

pdfX (x) = [(2π)s detΣ]
−1/2

exp

(
−1

2
D2

X (x)

)
(2.13)

where the Mahalanobis distance of x (with respect to X), denoted by DX(x), is defined

as[68]

DX(x)
.
=
√

(x− µ)TΣ−1(x− µ) (2.14)

For d ∈ (0,∞), the d-Mahalanobis contour and volume of X , denoted by Ld (X) and

Vd (X), are defined as the sets

Ld (X)
.
= {x ∈ Rs : DX (x) = d} (2.15)

Vd (X)
.
= {x ∈ Rs : DX (x) ≤ d} (2.16)

Clearly, Ld (X) is the boundary of Vd (X). A known analytical result is that[46]

p (X ∈ Vd (X)) = cdfχ2
s

(
d2
)

(2.17)

Consider the constant p3σ
.
= 1− cdfχ2

1
(32) ≈ 1− 0.9973 = 0.0027. Via Eq. 2.17, for

X ∼ N (µ, σ2) for some µ in R and σ > 0, p3σ coincides with the probability that X takes

on a value that is further than 3σ away from the mean µ.
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2.4 Definition of collision events

2.4.1 Phenomenological notion of collision events

A collision between two agents is defined to occur whenever their respective physical,

nonempty volumes in dR-dimensional space have a nonempty intersection, i.e., in a colli-

sion event, two agents may occupy portions of the same volume of space at the same time.

The notion of a hard-body radius (HBR; or characteristic length) is used to simplify the

definition of collision events, and consequently, the computation of probabilistic collision

risk indicators.

Definition 1 (s-ball and (s − 1)-sphere [69, 34]). Let r > 0. The ball (with respect to the

a-norm in Rs) of radius r, centered at x ∈ Rs, denoted by Bs|a
r (x), is defined as the set

Bs|a
r (x)

.
= {y ∈ Rs : ∥x− y∥a < r} (2.18)

The closed ball (with respect to the a-norm in Rs) of radius r, centered at x ∈ Rs, denoted

by Bs|a
r (x), is defined as the set

Bs|a
r (x)

.
= {y ∈ Rs : ∥x− y∥a ≤ r} (2.19)

The sphere (with respect to the a-norm) of radius r, centered at x ∈ Rs, denoted by

S(s−1)|a
r (x), is defined as the set

S(s−1)|a
r (x)

.
= {y ∈ Rs : ∥x− y∥a = r} (2.20)

Note: for the L2 and L∞ vector norms, a is denoted as “Eu” and “∞”, respectively. ♢

Notation 2 (Characteristic length). Let the “body of agent i”, Bi, be defined as the set

Bi
.
=
{
x ∈ RdR : x is in the body of agent i

}
(2.21)
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Then, the ith characteristic length, li ∈ (0,∞), is defined as

li
.
= sup

x∈Bi

∥x− ri∥2 (2.22)

Note: the body of agent i is circumscribed within BdR|Eu
li

(ri), i.e., Bi ⊆ BdR|Eu
li

(ri). ♢

Definition 3 (HBR simplification). The body of agent i, Bi, satisfies Bi = BdR|Eu
li

(ri) by

assumption.

Note: The (HBR) simplification is illustrated in Figure 2.1. ♢
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Figure 2.1: Agents under the HBR simplification: a) not colliding, and b) colliding. Note:
these circles represent Euclidean balls in RdR that circumscribe agent bodies, not position
pdf’s.

Let i and j refer to two agents in proximity. Through the HBR simplification, li encodes

a no-contact zone for agent i. Specifically, agent i does not collide with any other agent j

(i ̸= j) if no point belonging to the body of agent j becomes closer to the ith center of mass

than an isotropic distance li. Thus, in order to avoid a collision with agent i, it is sufficient

for agent j to be at least an isotropic distance li away from agent i, and vice versa. Using

this insight, the i-j collision event is now formally defined in terms of the Euclidean norm.

Definition 4 (Collision event). Assume the HBR simplification holds (see Definition 3).

Then, a collision event between agents i and j occurs when there is a nonempty intersection
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between the “volumes spanned” by agent i [BdR|Eu
li

(ri)] and agent j [BdR|Eu
lj

(
rj
)
], i.e., a

collision occurs whenever

BdR|Eu
li

(ri) ∩ BdR|Eu
lj

(
rj
)
̸= ∅ ♢ (2.23)

Since the Euclidean norm is rotation-invariant for any dR, stating the HBR simplifica-

tion in terms of the Euclidean norm allows for formulating the defined i-j collision event

without regard to relative object geometry (and hence, avoiding a definition of collision

events that depends on relative attitude).

A simpler way to infer that a collision is occurring is by observing that, whenever the

ith and jth (Euclidean ball-) volumes intersect, the Euclidean, isotropic distance between

the respective centers of mass is less than the sum of their respective hard-body radii, as

seen in Figure 2.1. This characterization may also be utilized to infer when a collision

event might be occurring.

2.4.2 Collision events with respect to arbitrary norms

Let li,j denote the i-j joint HBR; i.e., li,j
.
= li + lj (see the Nomenclature). Although

collision events in this dissertation are defined with respect to the Euclidean norm in RdR

(for the reasons aforementioned), there may be operational or computational reasons to

employ other norms in RdR for this purpose. For example, in [39] (Eq. 13), a collision

constraint is violated if ri,j =
[
xi,j yi,j zi,j

]T
satisfies

|xi,j| < li,j
∧
|yi,j| < li,j

∧
|zi,j| < li,j (2.24)

This condition is equivalent to defining a collision in terms of the L∞ norm; that is,

Eq. 2.24 holds ⇐⇒
∥∥ri,j

∥∥
∞ < li,j (2.25)
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Therefore, this dissertation also considers collision events that are defined with respect to

norms in RdR other than the Euclidean norm.

Notation 5 (a-norm intersection volumes). For li,j(t) > 0, the i-j intersection volume

(under the a-norm in RdR) at time t, denoted by Vi,j (t; li,j(t), a), is defined as the set

Vi,j (t; li,j(t), a)
.
= BdR|a

li,j(t)

(
0dR×1

)
=
{

r ∈ RdR : ∥r∥a < li,j(t)
}

(2.26)

where 0s×1 denotes the zero-valued vector in Rs. Note: for any a-norm in RdR , any of its

open balls is an open set in RdR .[66] Therefore, Vi,j (t; li,j(t), a) is an open set; hence, it is

a measurable subset of RdR . ♢

In other words, Vi,j (t; li,j(t), a) is the open ball (with respect to the a-norm in RdR)

centered at the origin of relative position space (i.e., at 0dR×1) with radius equal to the

joint-HBR li,j(t).

Proposition 6 (a-norm collision condition equivalencies). Let ri, rj ∈ RdR , and let li(t),

lj(t) > 0. Let ∥·∥a be a norm in RdR . Then, the following statements are equivalent:

1. BdR|a
li(t)

(ri) ∩ BdR|a
lj(t)

(
rj
)
̸= ∅

2.
∥∥ri − rj

∥∥
a
< li,j(t)

3.
(
ri − rj

)
∈ Vi,j (t; li,j(t), a)

Note: this result holds in Rs for any s ∈ N. ♢

While the intersection of two a-norm balls in absolute position space (which represent

the physical extent of two agents) is not itself generally an a-norm ball, Proposition 6

implies that the region in relative position space which represents the instantaneous a-norm

collision event is an a-norm ball – specifically, the a-norm ball whose center is the center

of mass of either agent, and whose radius is equal to the joint-HBR.
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Because all finite-dimensional vector norms are equivalent (in the sense of Eq. 2.11;

see [66]), inclusion relationships (among collision events defined via different norms in

RdR) may always be found. For example, since for r ∈ RdR ,

0 ≤ ∥r∥∞ ≤ ∥r∥Eu ≤
√
dR ∥r∥∞ <∞ (2.27)

which implies that, for r ∈ RdR , c > 0,

BdR|∞
c/
√

dR
(r) ⊆ BdR|Eu

c (r) ⊆ BdR|∞
c (r) (2.28)

it follows that, for li,j(t) > 0,

Vi,j

(
t;
li,j(t)√
dR
, ∞

)
⊆ Vi,j (t; li,j(t), Eu) ⊆ Vi,j (t; li,j(t), ∞) (2.29)

The inclusion relationships listed in Eq. 2.29 are illustrated in Figure 2.2 for the R3 case

(i.e., if dR = 3).

Figure 2.2: Comparison between instantaneous collision regions based on L2 and L∞

norms.
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2.5 Probabilistic collision risk indicators

Within Subsections 2.4.1 and 2.4.2, collision events have been topologically defined with-

out any notion of the positions of colliding agents being random variables at the time of

collision. Thus, if the relative positions of agents are known deterministically, the question

of whether or not agents are colliding – in the sense that the conditions in Proposition 6 are

met, which may or may not imply a physical collision – can be answered as either true or

false, but not both.

However, the primary aim of this dissertation is to examine collision events when the

relative position between agents is not deterministically known. In such cases, whether or

not an object is colliding at any given time with another object is a question that can only

be strictly answered in a probabilistic sense. Thus, inter-agent relative position and relative

state vectors are henceforth treated as random variables.

2.5.1 Instantaneous probability of collision (IPC)

Let gP : RnX → RdR be a function that projects points in relative state space into points

in relative position space. Let Ci,j (t; li,j(t), a) denote the set of points in relative state

space whose projection onto relative position space lies inside the instantaneous i-j a-norm

intersection volume, Vi,j (t; li,j(t), a). Hence, by definition, Ci,j (t; li,j(t), a) is the inverse

image of Vi,j (t; li,j(t), a) under gP ; that is,

Ci,j (t; li,j(t), a)
.
= {x ∈ RnX : gP (x) ∈ Vi,j (t; li,j(t), a)}

= g−1
P (Vi,j (t; li,j(t), a)) (2.30)

Without any assumption on the surjectivity of gP , Ci,j (t; li,j(t), a) would only generally

satisfy the condition gP (Ci,j (t; li,j(t), a)) ⊆ Vi,j (t; li,j(t), a).[66] Therefore, in this dis-

sertation, gP is assumed to be surjective (that is, gP is an onto function), which implies that
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the direct image of Ci,j (t; li,j(t), a) under gP , denoted by gP (Ci,j (t; li,j(t), a)), satisfies

gP (Ci,j (t; li,j(t), a)) = Vi,j (t; li,j(t), a) (2.31)

Additionally, gP is assumed to be continuous. It should be noted that, since Vi,j (t; li,j(t), a)

is an open subset of RdR (see Notation 5), continuity of gP is sufficient for Ci,j (t; li,j(t), a)

to be an open subset of RnX (with respect to the Euclidean norm; see Section 2.3). Be-

cause open sets are measurable,[34] Ci,j (t; li,j(t), a) is a measurable subset of RnX . For

the specific case of a relative orbital dynamic state expressed in Hill-frame coordinates,[5]

gP : R6 → R3 is given by

gP (x) =
[
I3 , 03×3

]
x (2.32)

for any x in R6. Note: for this example, gP is both surjective and continuous.

Although the instantaneous collision set in relative position space Vi,j (t; li,j(t), a) is

an open a-norm ball (see Notation 5), and even though the set of relative state points

whose projections onto relative position space denote an a-norm collision condition [i.e.,

Ci,j (t; li,j(t), a)] is an open set [specifically, the pre-image (under the continuous function

gP ) of an open a-norm ball], the Ci,j (t; li,j(t), a) set is not generally an open ball with

respect to any norm in relative state space. Under the assumption of continuity of gP , it

is only known that Ci,j (t; li,j(t), a) is an open set in relative state space, which implies

that this set may be expressed as a union of open balls (in particular, with respect to the

Euclidean norm in RnX; cf. Section 2.3).

It must be stressed that, because Vi,j (t; li,j(t), a) and Ci,j (t; li,j(t), a) are subsets of

different spaces (i.e., relative position and relative state, respectively), openness of each

set is determined with respect to norms defined within the corresponding superset space

of each set. This is significant because a-norms in relative position space (upon which

instantaneous collision conditions are defined) may or may not have counterparts in relative

state space.
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Definition 7 (Instantaneous probability of collision under a-norm (a-IPC)). The instanta-

neous probability of collision between agents i and j at time t (under the a-norm), de-

noted by IPCi,j (t; li,j(t), a), is defined as the probability of the event that agents i and j

are colliding at time t (as indicated under the a-norm). Under a-norm collision condition

equivalencies (see Proposition 6), IPCi,j (t; li,j(t), a) may be expressed as

IPCi,j (t; li,j(t), a) = p
(
Ri,j(t) ∈ Vi,j (t; li,j(t), a)

)
= p

(∥∥Ri,j(t)
∥∥
a
< li,j(t)

)
(2.33)

IPCi,j (t; li,j(t), a) = p
(
Xi,j(t) ∈ Ci,j (t; li,j(t), a)

)
= p

(∥∥gP (Xi,j(t)
)∥∥

a
< li,j(t)

)
(2.34)

If Ri,j(t) and Xi,j(t) are absolutely continuous random variables, IPCi,j (t; li,j(t), a) may

be computed as an integral of the pdf of either Ri,j(t) or Xi,j(t), as given by

IPCi,j (t; li,j(t), a) =

∫
r∈Vi,j(t; li,j(t), a)

pdfRi,j(t)
(r) dr (2.35)

IPCi,j (t; li,j(t), a) =

∫
x∈Ci,j(t; li,j(t), a)

pdfXi,j(t)
(x) dx (2.36)

where dr and dx denote the Lebesgue measure in RdR and RnX , respectively. ♢

Relative position-based a-IPC computation (see Eq. 2.35) is illustrated with a two-

dimensional example where the relative position is normally distributed, as shown in Fig-

ure 3.1, where the d-contours represent contours of constant Mahalanobis distance.[46]

Although the collision regions Vi,j and Ci,j are specified as time-invariant for the current

computational test cases, it is helpful to define these regions as time-dependent for the sake

of generality of the a-IPC formulation.
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2.5.2 Joint-time probability of collision (Pc)

Remark 8 (Assumptions on relative dynamics). Let t0, tf ∈ R such that t0 < tf . Let

f : [t0, tf ] × RnX → RnX be the differential equation that defines the relative dynamic

system given by

ẋ(t) = f (t, x(t)) (2.37)

for t ∈ [t0, tf ], x(t) ∈ RnX . For this dynamic system, let solutions for the initial condition

x(t0) = x0 exist and be unique for every x0 ∈ RnX , and let solutions be given by the

function Ft0 : [t0, tf ]× RnX → RnX such that

x(t) = Ft0 (t, x0) (2.38)

for t ∈ [t0, tf ], x0 ∈ RnX . ♢

For deterministic dynamic systems, examples of sufficient conditions for Remark 8 to

hold include: 1) f is piecewise continuous in t, and f is Lipschitz in x; or 2) f is piecewise

continuous in t, and f is locally Lipschitz in x, and for every initial condition within some

compact set W , solutions to the system lie in W .[70] For stochastic dynamic systems,

similar sufficient conditions exist, such as f being bounded in t for fixed x, and f being

Lipschitz in x.[71]

Definition 9 (Joint-time collision set under a-norm (a-JTC)). Let Remark 8 hold. Let the

i-j joint HBR be strictly positive during its time-history; i.e., let li,j : [t0, tf ]→ (0,∞). Fix

t ∈ [t0, tf ]. Let Ft,t0 : RnX → RnX be defined as

Ft,t0(x0)
.
= Ft0 (t, x0) (2.39)

for x0 ∈ RnX . Then, the joint-time i-j collision set (under the a-norm), denoted by
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JTCi,j ([t0, tf ]; li,j(·), a), is given by

JTCi,j ([t0, tf ]; li,j(·), a) =
⋃

t∈[t0,tf ]

[Ft,t0 ]
−1 [Ci,j (t; li,j(t), a)] ♢ (2.40)

The joint-time a-collision set under the a-norm (a-JTC) may be interpreted as a set of

initial conditions such that, after propagation to some time t, their projections onto relative

position space lie in the a-collision region at time t. In other words, the a-JTC is a set

of initial conditions such that there exists an a-norm collision condition after propagation

to some time t in [t0, tf ]. The a-JTC set depends on the joint-HBR time history over the

[t0, tf ] interval, and not just at any specific time t in [t0, tf ]; this is reflected by the notation

li,j(·) in JTCi,j ([t0, tf ]; li,j(·), a).

Even though the instantaneous a-norm collision condition encoded in Vi,j (t; li,j(t), a)

is based on open a-norm balls (see Notation 5), because the a-JTC set is a union of

sets [specifically, pre-images (over the flow function Ft,t0) of pre-images (over the pro-

jection function gP ) of the Vi,j (t; li,j(t), a) sets] which are generally not open balls in

relative state space, the a-JTC set is generally not an open ball in relative state space. Be-

cause the JTCi,j ([t0, tf ]; li,j(·), a) set is defined via an uncountable union of sets, it is

unclear whether the JTCi,j ([t0, tf ]; li,j(·), a) set is measurable, even if each individual

(Ft,t0)
−1 (Ci,j (t; li,j(t), a)) set is measurable.

Figure 2.3 illustrates the a-JTC set for the case of a relative state pdf with compact sup-

port (i.e., which is zero-valued outside a compact set) for the case of two discrete timesteps

without regard for the times in between. In this example, the a-JTC set can be conceptu-

ally understood as those regions of the initial relative state pdf (on the left) that indicate

collision at either timestep.

Definition 10 (Probability of a-norm collision (a-Pc)). Let Remark 8 hold. Let li,j :

[t0, tf ] → (0,∞). Assume that JTCi,j ([t0, tf ]; li,j(·), a) (see Definition 9) is a measur-

able subset of RnX . Then, the [t0, tf ]-probability of a-norm collision between agents i and
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Figure 2.3: Evolution of instantaneous collision sets (in relative state space) for the case of
two timesteps, focusing on whether collision at one timestep indicates collision at another
timestep. Note: the a-JTC set is the region in relative state space at time t0 (left) which
indicates collision at time t0 (bright orange region) and at time t1 (green region).

j, denoted by Pci,j ([t0, tf ]; li,j(·), a), is defined as the probability of the event that agents

i and j collide (as indicated under the a-norm in RdR) at any time t in [t0, tf ]. Under a-

norm collision condition equivalencies (see Proposition 6), Pci,j ([t0, tf ]; li,j(·), a) may be

expressed as

Pci,j ([t0, tf ]; li,j(·), a) = p
(
Xi,j(t0) ∈ JTCi,j ([t0, tf ]; li,j(·), a)

)
(2.41)

If Xi,j(t0) is an absolutely continuous random variable, Pci,j ([t0, tf ]; li,j(·), a) may be

computed as an integral of the pdf of Xi,j(t0), as given by

Pci,j ([t0, tf ]; li,j(·), a) =
∫

x∈JTCi,j([t0,tf ]; li,j(·), a)

pdfXi,j(t0)
(x) dx ♢ (2.42)

Unlike the a-IPC, which can be computed solely in terms of regions in relative posi-

tion space, the a-Pc may only be defined in terms of regions in relative state space. This

holds even though the instantaneous a-norm collision condition is a criterion based only

on instantaneous relative position information. In general, an a-norm collision event at one

timestep may or may not indicate an a-norm collision at a future timestep, as this propaga-

45



tion depends not only on the specific region of relative state space that defines the a-norm

collision event, but also on the relative dynamic process f and the timestep length. Sim-

ilarly to the a-JTC set, the a-Pc depends on the joint-HBR time history over the [t0, tf ]

interval, and not just at any specific time t in [t0, tf ]; this is reflected by the notation li,j(·)

in Pci,j ([t0, tf ]; li,j(·), a).

2.5.3 A note on the probability dilution of probabilistic collision risk indicators

The question of whether it is adequate to employ probabilistic collision risk indicators that

are based on stochastic distributions which reflect an epistemic representation of uncer-

tainty has been previously addressed in the literature. A discussion of this topic is under-

taken in Chapter 5, including remarks on the probability dilution phenomenon displayed

by the probability of collision between spacecraft in a relative orbital dynamic context.[72]

2.6 Distance-based collision risk indicators

2.6.1 Expected value of relative position

The expected value is one of the most basic statistical parameters in the characterization of

probability distributions. In particular, one of the goals of spacecraft state estimation is to

estimate the expected value of the spacecraft dynamic state, as well as the dispersion about

the expected value, assuming certain dynamic propagation and noise models. Hence, it is

natural to account for expected relative position information when ascertaining whether the

collision condition in relative position space (see Proposition 6) has been violated. Figure

2.4, for a two-dimensional example where the relative position is normally distributed,

illustrates the use of the Euclidean norm of relative position in ascertaining collision safety.

For an extended discussion on the expected values of general random variables, the

reader is encouraged to consult Ref. [73], Appendix A.
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Figure 2.4: Conceptual illustration of expected value of relative position for a system with
normally distributed (two-dimensional) relative position.

2.6.2 Minimum distance to covariance contour

For X ∼ N (µ, σ2) for some µ in R and σ > 0, colloquially, a 3−σ set (in this case,

the points {µ ± 3σ}) is considered a boundary between extreme events and non-extreme

events. That is, events between µ − 3σ and µ + 3σ are typically not considered extreme,

and events outside of that interval are colloquially considered extreme. In particular, the

value of the constant p3σ, defined as

p3σ
.
= 1− cdfχ2

1

(
32
)
≈ 1− 0.9973 = 0.0027 (2.43)

coincides with the probability that X takes on a value that is further than 3σ away from the

mean µ. Ideally, probabilistic collision risk would have low values, in a way that allows

for collision events to also be deemed as extreme events. Therefore, it is desirable for any

proposed separation indicators to represent extreme events in some sense as well.
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Based on analogous extensions of the univariate normal 3−σ concept to higher di-

mensions, “miss distance”-like indicators may be devised with the goal of more properly

accounting for relative position uncertainty than is achieved by the Euclidean norm of ex-

pected relative position, specifically, in ways that have a consistent relationship with prob-

abilistic collision risk indicators.

2.6.2.1 Minimum distance to a “geometric” 3−σ contour

The minimum distance from the origin to a “geometric” 3−σ contour, which is denoted

by sepgeo|i,j(t), is the Euclidean norm of the point closest to the origin within a covariance

contour (of the relative position pdf) at a Mahalanobis distance (MHD) of 3 away from

the mean.[46] This contour is a “3−σ” boundary in the following sense: events that are

further than 3 standard deviations away from the mean occur past this boundary away from

the mean. Hence, the current separation measure is the smallest distance from the origin

to any point on this boundary between extreme and non-extreme events. In this disser-

tation, the prior relative state statistics are normally distributed, and since CW dynamics

are linear, the distribution retains normality over time. Since the relative position pdf is

three-dimensional, 97.07% of cases are within MHD = 3 from the mean of the pdf.

2.6.2.2 Minimum distance to a “equivalent” 3−σ contour

The minimum distance from the origin to an “equivalent” 3−σ contour, which is denoted by

sepeq|i,j(t), is the Euclidean norm of the point closest to the origin within a covariance con-

tour (of the relative position pdf) at a Mahalanobis distance (MHD) such that 99.73% cases

are within the corresponding MHD. Since the relative position pdf is three-dimensional,

MHD = 3.7625 in this case. This contour is a “3−σ” boundary in the following sense: the

probability of events occurring past this boundary away from the mean is p3σ. Therefore,

this “miss distance”-like indicator is the shortest distance from the origin to any point on

this boundary between extreme and non-extreme events.
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The “geometric” and “equivalent” 3−σ contours, as well as points in such contours that

are closest to the origin, are illustrated in Figure 2.5.

Figure 2.5: Instantaneous relative position pdf, representative Low-Earth Orbit (LEO) rel-
ative orbit in Hill frame, covariance contours: “geometric” 3−σ and “equivalent” 3−σ.

2.6.2.3 Formal definition of covariance contours represented by Methodologies 1 and 2

Definition 11 (Methodologies 1 and 2). The measure of separation between agents i and

j denoted by Methodologies 1 and 2 (m1 and m2, respectively), sepm
i,j , m ∈ {m1,m2},

is defined as sepm
i,j (t)

.
= ∥r∗m∥2, where r∗m is a solution to the constrained optimization

problem (COP)

min
r∈RdR

rT r

s.t. r ∈ Ldm

(
Ri,j(t)

)
⊊ RdR

(2.44)

The MHD of Methodology 1 is dm1 = 3, while dm2 satisfies cdfχ2
3

(
d2m2

)
= cdfχ2

1
(32) ≈

99.73%. Thus, dm2 ≈ 3.7625. Note: it can be shown that a solution exists to the COP

posed in Eq. 2.44. ♢
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2.7 Hybrid collision risk indicators

2.7.1 99.73% minimum distance

2.7.1.1 99.73% minimum distance (ρ3σ) – conceptual description

This 99.73% minimum distance, denoted by ρ3σ, is the effective hard-body radius (HBR)

such that the IPC is equal to IPCi,j(t) = p3σ. Alternatively, ρ3σ can be interpreted as the

p3σ-percentile in the cumulative distribution function (cdf) of the inter-agent distance, i.e.,

the cdf of the Euclidean norm of the relative position. Probabilistically, ρ3σ coincides with

colloquial understanding of a “3−σ” event. That is, ρ3σ is a true 3−σ boundary because

100p3σ% of events have a distance from the origin lower than ρ3σ, whereas 100(1− p3σ)%

of events have a distance from the origin higher than ρ3σ.

The 99.73% minimum distance introduces the concept of the distance cumulative distri-

bution function (cdf), which is induced through the transformation defined by the Euclidean

norm of relative position.[67] That is, conceptually, a new cdf is created by taking the Eu-

clidean norm of the relative position of every point in the relative state distribution, and then

sorting the values from such set according to the norms found. Because of the point where

ρ3σ fits in the distance cdf, i.e., a boundary between colloquially extreme and non-extreme

cases, ρ3σ can be thought of as a “probabilistic” worst case miss distance.

The 99.73% minimum distance measure (i.e., ρ3σ) is illustrated in Figure 2.6.

2.7.1.2 99.73% minimum distance (ρ3σ) – formal definition

Definition 12 (Methodology 3). The measure of separation between agents i and j denoted

by Methodology 3, sepm3
i,j , is defined as sepm3

i,j (t)
.
= ρ3σ, where, for R .

=
∥∥Ri,j(t)

∥∥
2

(i.e.,

for R denoting the Euclidean norm of the relative position),

ρ3σ
.
= min {r ∈ [0,∞) : cdfR(r) = p3σ} (2.45)
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Figure 2.6: Instantaneous cdf of the Euclidean norm of relative position, representative
Low-Earth Orbit (LEO) relative orbit: (top) complete cdf; (bottom) closeup of cdf left-tail,
focusing on the 99.73% minimum distance (ρ3σ).

Since cdfR(·) is non-decreasing, when cdfR(·) is strictly increasing, ρ3σ uniquely satisfies

cdfR(ρ3σ) = p3σ. Note: for a given li,j(t), it follows that IPCi,j(t) = cdfR (li,j(t)). ♢

2.8 Computational test cases

Computational test cases in this dissertation are assumed to be subject to Clohessy-Wiltshire

(CW) relative orbital dynamics. Appendix A includes an overview of CW dynamics and

geometry, as well as a description of the assumed probability distribution of the relative

dynamic state for each computational test case.
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CHAPTER 3

FOUNDATIONAL WORK IN SPACECRAFT FORMATION COLLISION RISK

(PART 1) – EXISTENCE OF PROBABILITY DENSITY FUNCTION (PDF) FOR

EUCLIDEAN NORM OF FINITE-DIMENSIONAL RANDOM VECTOR

In the context of an absolutely continuous random vector [that

is, a random vector with a probability density function (pdf)], this

Chapter shows that the Euclidean norm of such a random vector is

also an absolutely continuous random variable. Such a result justi-

fies studying the effects of hard-body radius (HBR) local changes

on the Euclidean-norm-based instantaneous probability of colli-

sion (IPC), and vice-versa.

3.1 Introduction

Collision risk management is an inherent operational function of spacecraft missions, and

it involves collision risk quantification, interpretation and decision-making, and reduc-

tion.[29] First, collision risk is quantified through some indicator, either a separation metric

or a measure of the likelihood of this adverse event.[27, 28] Second, the outcome of this in-

dicator should inform, via a predetermined rule, whether corrective actions are warranted.

Third, if necessary, collision avoidance must achieve the reduction of quantifiable risk to a

tolerable level.[13] Thus, the choice and computation of suitable collision risk indicators is

a central concern to any space mission concept of operations.

In practice, the relative position between space objects cannot be deterministically

known, so examining whether or not an object is colliding at any given time with an-

other object is a question that can only be strictly answered in a probabilistic sense.[42]

Hence, within the space flight mechanics community, there has been extensive examina-
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tion of probability measures of the distribution of the relative state between two agents to

be employed as collision risk quantifiers, with particular focus on two such measures: the

Pc, which is the probability of collision over a finite time interval, and the IPC, which is

the instantaneous probability of collision.[31, 43, 44] Typically, these measures are exam-

ined through the assumption of approximating each object by a ball with radius set to the

object’s hard-body radius (HBR).[74, 32, 75] This assumption allows defining collision

events solely in terms of relative translational states, which simplifies the computation of

collision probabilities by avoiding a relative attitude formulation; this would be computa-

tionally challenging, and not implementable if object geometry and attitude information

were not available.[56]

Both the Pc and IPC are instances of the direct collision probability problem, which,

under the HBR assumption, typically entails computing a collision probability measure

for a fixed HBR. This is contrasted with the inverse collision probability problem, which

entails finding the HBR for which the corresponding collision probability achieves a fixed,

predetermined value. This has been studied by Chan for the inverse-Pc HBR problem,[31]

and by Núñez Garzón and Lightsey for the inverse-IPC HBR problem.[27, 28]

This Chapter focuses on the direct IPC problem and the inverse-IPC HBR problem;

hence, only instantaneous relative position information is needed. Implicitly, these prob-

lems treat the Euclidean norm of the relative position (R) as a random variable (RV) in

its own right. This is not obvious for the direct IPC problem, as it only involves comput-

ing a measure over a ball centered at the origin of relative position space, and thus is well

defined.[33] However, it is necessary to treat R as its own RV when studying direct IPC

sensitivity, i.e., when examining how changes in HBR affect IPC, or when considering in-

verse IPC sensitivity, i.e., when observing the effects on HBR from changes in fixed-value

IPC.[33]

In both cases, such sensitivities can be formulated in terms of changes to the cumulative

distribution function (cdf) of R, which, in the limit of small changes, involve derivatives of
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the cdf of R. It would be useful if such a derivative were equal to the probability density

function (pdf) of R. However, this would be true if and only if the cdf of R is an absolutely

continuous function, i.e., if the derivative of the cdf of R exists almost everywhere (a.e.)

and is integrable, and if the cdf of R is equal to the integral of this derivative.[34] Absolute

continuity of the cdf ofR in this sense, i.e., satisfying the fundamental theorem of calculus,

is a stronger condition than continuity, as there exist continuous random variables (i.e., ran-

dom variables with a continuous cdf) whose cdf is not equal to the integral of its derivative,

e.g., the Cantor function, or the devil’s staircase.[76] In measure-theoretic terms, the issue

is whether R satisfies the following conditions, which are equivalent through the Radon-

Nikodym theorem: a) probability measures in R are absolutely continuous (i.e., they are

zero-valued in sets of zero measure); and b) there exists a density function (unique a.e.)

such that probability measures in R are equal to the integral of this density function.[35]

Hence, the question of whether R is an absolutely continuous random variable (i.e.,

whether the pdf of R exists) is crucial for spacecraft collision risk management, as the

latter presupposes the former. If the instantaneous relative position has a non-degenerate,

normal (i.e., Gaussian) distribution, it can be shown that R is the square root of a strictly

convex combination of scaled, non-central chi-square random variates;[36] hence, R is

absolutely continuous. However, there is a growing body of evidence that points to the

general unsuitability of normal pdfs to describe relative state information in space flight

mechanics, e.g., for uncertainty propagation, filtering, data association, orbit determination,

and the direct collision probability problem.[37, 77, 78, 79, 80, 81, 82] Since these non-

normal uncertainty descriptions may depict relative states more accurately, employing them

in collision risk management is a natural choice, so the existence of the pdf of R must be

guaranteed under these conditions in order to buttress this generalization.

The foregoing discussion of the existence of the pdf of R may also have limited ap-

plication to Pc-related problems since, under the short-encounter assumptions, a Pc is

mathematically equivalent to a two-dimensional IPC computed on a plane normal to the
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relative velocity vector at the instant of closest approach between objects.[28] For instance,

Alfano performed an HBR-sensitivity analysis for the direct and inverse Pc problems under

the short encounter assumptions.[56]

This Chapter proves that, for a finite-dimensional, absolutely continuous random vari-

able, the Euclidean norm of this random vector is also absolutely continuous. This result

is shown by identifying a suitable mapping from spherical to Cartesian coordinates, and

demonstrating where this mapping is invertible. Then, it can be shown, via the inverse of

the mapping at hand, that a finite-dimensional random vector with a pdf is transformed into

another finite-dimensional random vector with a pdf, from which the Euclidean norm of

the original random vector is obtained through marginalization. By applying this result to

a relative position vector with a pdf, the desired conclusion follows.

3.2 Background

This Chapter relies heavily on several concepts from measure and probability theory whose

exposition and discussion are beyond the scope of this doctoral dissertation. Some of these

topics include the following:

1. The term “measure” refers to the Lebesgue measure in Rs.

2. Properties that hold almost everywhere (a.e.) refer to properties that apply every-

where in a set, except possibly within a set of measure zero.

3. The term “integral” refers to the Lebesgue integral of Lebesgue-measurable func-

tions.

4. To state that a measure is absolutely continuous with respect to the Lebesgue measure

means the following: that the measure at hand is zero-valued on any set of zero

measure.

5. For a measure to have a density function with respect to the Lebesgue measure means

55



the following: that such a measure can be computed as an integral of this density

function with respect to the Lebesgue measure, and that such a density function exists

and is unique a.e.

6. The following statements are equivalent:

(a) A measure is absolutely continuous (with respect to the Lebesgue measure).

(b) A measure has a density function with respect to the Lebesgue measure.

Note: Statement (a) implies statement (b) via properties of Lebesgue integrals, and

statement (b) implies statement (a) via the Radon-Nikodym theorem.

7. For a random variable X , the notation “X is an absolutely continuous random vari-

able” (or, equivalently, “X is absolutely continuous”) implies that the probability

measure associated with X is absolutely continuous with respect to the Lebesgue

measure, which itself implies that X has a probability density function (pdf) in the

sense of Item 5, i.e., which can be used to compute the probability measure associ-

ated with X via integration.

Table 3.1 gives reference suggestions for the reader to become familiar with such topics.

Table 3.1: Reference suggestions for topics in measure and probability theory.

Concept Reference
Lebesgue measure [34], Chapter 2
Measurable functions, and

[34], Chapter 3
a.e. properties
Lebesgue integral [34], Chapter 4
Density functions [35], Chapter 3
Absolute continuity vs.

[35], Chapter 6
existence of density functions
Random variables [35], Chapter 4
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3.3 Theory

In this Section, it will be proven that finite-dimensional random vectors with a pdf, when

mapped through the Euclidean norm, produce random variables that also have a pdf. This

will be accomplished by presenting a continuously differentiable mapping from spherical

to Cartesian coordinates in finite dimensions, and by identifying a suitable subset where

this mapping is invertible. Then, the inverse of this mapping will be used to produce a

representation of the original random vector as another random vector in spherical coordi-

nates. The result is then obtained by extending the definition of the mapped random vector

to the entire space of spherical coordinates, and finally, by obtaining the Euclidean norm of

the original random vector through marginalization.

3.3.1 Invertibility of mapping from spherical to Cartesian coordinates

Fix s ∈ N. LetDEu be the Cartesian product defined byDEu = [0, 2π)× [0, π]s−2× [0,∞).

Consider the mapping gEu : DEu → Rs given by

gEu(w) = [x1, . . . , xs]
T (3.1)

for every w ∈ DEu such that

w = [θ1, θ2, . . . , θs−1, r]
T (3.2)
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where θ1 ∈ [0, 2π), θj ∈ [0, π] for j ∈ {2, . . . , s − 1} and r ∈ [0,∞), such that the

components of gEu(w) satisfy

x1 = r sin(θ1) sin(θ2) . . . sin(θs−1)

x2 = r cos(θ1) sin(θ2) . . . sin(θs−1)

x3 = r cos(θ2) sin(θ3) . . . sin(θs−1)

...

xs−1 = r cos(θs−2) sin(θs−1)

xs = r cos(θs−1)

(3.3)

Hence, gEu maps the spherical coordinate representation of points in Rs to their Cartesian

counterparts.[83] Additionally, it should be noted that, given x = gEu(w) for w ∈ DEu, the

Euclidean norm of x satisfies ∥x∥2 = r =
[
01×(s−1), 1

]
w.

The determinant det(Js) of the Jacobian matrix of gEu (Js), or simply the Jacobian of

gEu (Js), is given by

Js = det(Js) = det

(
∂gEu
∂w

)
= (−1)s−1rs−1

s−1∏
j=2

[sin(θj)]
(j−1) (3.4)

for w ∈ DEu as parameterized previously.[83] The mapping gEu from spherical to Carte-

sian coordinates was chosen because the expression for its Jacobian is concise and will be

helpful to make the proof more succinct later on.

It should be noted that gEu is continuously differentiable in DEu, since all its partial

derivatives exist and are continuous inDEu (as each is the product of continuous functions).

Since Js = 0 when either r = 0 or θj ∈ {0, π} for j ∈ {2, . . . , s−1}, gEu is not an invertible

mapping into Rs. Lemma 13 presents a set where gEu is invertible.

Lemma 13 (Restricted invertibility of gEu). For w ∈ D∗
Eu ⊆ DEu, let g∗Eu : D∗

Eu → S∗
Eu
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satisfy

g∗Eu(w) = gEu(w) (3.5)

where D∗
Eu = Θ1 × (Θ2)

s−2 × (0,∞) and S∗
Eu = Rs \HEu, where

Θ1 =
(
0,
π

2

)
∪
(π
2
, π
)
∪
(
π,

3π

2

)
∪
(
3π

2
, 2π

)
(3.6)

Θ2 =
(
0,
π

2

)
∪
(π
2
, π
)

(3.7)

HEu = {x ∈ Rs : ∃k ∈ {1, . . . , s} such that [x]k = 0} (3.8)

Then, gEu is invertible, and there exists a function f ∗
Eu : S∗

Eu → D∗
Eu such that f ∗

Eu =

(g∗Eu)
−1, and which is also an invertible, continuously differentiable mapping. ♢

Proof. Take w ∈ D∗
Eu. Then, r ̸= 0, θ1 /∈ {0, π

2
, π, 3π

2
}, and θj /∈ {0, π

2
, π} for j in

{2, . . . , s−1}. This implies, for j in {1, . . . , s−1}, that cos(θj), sin(θj) ̸= 0. Since, for k in

{1, . . . , s}, [gEu(w)]k is a product of r and cos(θj), sin(θj) for j in {1, . . . , s−1}, it follows

that x = gEu(w) is a point in Rs with all non-zero components. That is, gEu(w) ∈ S∗
Eu,

where

S∗
Eu = {x ∈ Rs : [x]k ̸= 0 for all k ∈ {1, . . . , s}) (3.9)

Clearly, S∗
Eu = Rs \HEu, where

HEu = {x ∈ Rs : ∃k ∈ {1, . . . , s} such that [x]k = 0} (3.10)

Therefore, the direct image of D∗
Eu under gEu, gEu(D∗

Eu), satisfies gEu(D∗
Eu) ⊆ S∗

Eu.

Take x ∈ S∗
Eu. Then, [x]k ̸= 0 for all k ∈ {1, . . . , s}. Hence,

r = ∥x∥2 ≥
∣∣[x]k∣∣ > 0 (3.11)
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for k ∈ {1, . . . , s}, so r ̸= 0. Consider

[x]1
r

= sin(θ1) sin(θ2) . . . sin(θs−1) ̸= 0 (3.12)

Then, θj /∈ {0, π} for j in {1, . . . , s− 1}. Consider

[x]2
r

= cos(θ1) sin(θ2) . . . sin(θs−1) ̸= 0 (3.13)

Then, θ1 /∈ {π2 ,
3π
2
}. Consider, for j in {3, . . . , s− 1},

[x]j
r

= cos(θj−1) sin(θj) . . . sin(θs−1) ̸= 0 (3.14)

Then, θj ̸= π
2

for j in {2, . . . , s− 2}. Finally, consider

[x]s
r

= cos(θs−1) ̸= 0 (3.15)

Then, θs−1 ̸= π
2
. It follows that r ̸= 0, θ1 /∈ {0, π

2
, π, 3π

2
}, and θj /∈ {0, π

2
, π} for j

in {2, . . . , s − 1}. Hence, there exists a representation of x in gEu coordinates such that

x = gEu(w) for some w in D∗
Eu. Thus, x ∈ gEu(D∗

Eu), which implies that S∗
Eu ⊆ gEu(D

∗
Eu).

It follows that S∗
Eu = gEu(D

∗
Eu).

The set D∗
Eu is open, since it is a Cartesian product of open sets. Additionally, for

w ∈ D∗
Eu, Js ̸= 0, which implies that the Jacobian matrix of gEu is invertible (via the char-

acterization of invertible matrices) everywhere in D∗
Eu. Therefore, via the inverse function

theorem, for eachw ∈ D∗
Eu, there exists an inverse mapping fEu into an open neighborhood

of w in D∗
Eu, and fEu is continuously differentiable in this open neighborhood.[84]

Let f ∗
Eu : S∗

Eu → D∗
Eu denote the restriction of fEu to the S∗

Eu domain. It can be

shown that f ∗
Eu(S

∗
Eu) = D∗

Eu. This fact implies that f ∗
Eu(g

∗
Eu(D

∗
Eu)) = D∗

Eu, and that

g∗Eu(f
∗
Eu(S

∗
Eu)) = S∗

Eu. Hence, f ∗
Eu satisfies f ∗

Eu = (g∗Eu)
−1, i.e., f ∗

Eu is the inverse of g∗Eu in
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its domain. Furthermore, f ∗
Eu is continuously differentiable.

Considering the D∗
Eu and S∗

Eu sets discussed in Lemma 13, then, Lemma 14 indicates

the measure of the relative complements DEu \D∗
Eu and Rs \ S∗

Eu.

Lemma 14 (Measure outside restricted invertibility of gEu). LetD∗
Eu and SEu

∗ be as defined

in Lemma 13. Then, DEu \D∗
Eu and Rs \ S∗

Eu have zero measure. ♢

Proof. Take j in {1, . . . , s}. Take a in R, and restrict it such that

a =


b ∈ [0, 2π) if j = 1

b ∈ [0, π] if j ∈ {2, . . . , s− 1}

b ∈ [0,∞) if j = s

(3.16)

Let Ba,j be defined as

Ba,j =
{
w ∈ DEu : [w]j = a

}
(3.17)

Specifically, B0,j is a subset of the proper subspace {w ∈ Rs : [w]j = 0} in Rs. Any

proper subspace in Rs has zero measure; hence, by monotonicity of measures, B0,j has

zero measure as well. Let ya,j ∈ Rs satisfy

[
ya,j
]
k
=


a if k = j

0 if k ̸= j

(3.18)

Then, it is clear that Ba,j = B0,j + ya,j; that is,

Ba,j =
{
w′ ∈ DEu : [w′]j = a

}
=
{
w′ ∈ DEu : w′ = w + ya,j, w ∈ B0,j

}
= B0,j + ya,j

(3.19)

Since the Lebesgue measure is translation invariant, Ba,j has zero measure as well. The set
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DEu \D∗
Eu can be expressed as

DEu \D∗
Eu = B 3π

2
,1 ∪

[
s−1⋃
j=1

(
B0,j ∪Bπ

2
,j ∪Bπ,j

)]
∪B0,s (3.20)

Since DEu \ D∗
Eu is the finite union of sets of zero measure, DEu \ D∗

Eu has zero measure

as well.

Take j in {1, . . . , s}. Let Aj be the proper subspace of Rs defined by

Aj = {x ∈ Rs : [x]j = 0} (3.21)

Hence, Aj has zero measure. The set Rs \ S∗
Eu can be expressed as

Rs \ S∗
Eu =

s⋃
j=1

Aj (3.22)

Since Rs \ S∗
Eu is the finite union of sets of zero measure, Rs \ S∗

Eu has zero measure as

well.

3.3.2 Absolute continuity of Euclidean norm of absolutely continuous random vector

Lemma 13 shows the existence, albeit restricted, of a continuously differentiable, invertible

mapping from Cartesian to spherical coordinates (namely, f ∗
Eu). When a random variable

with a pdf is mapped through f ∗
Eu, via the change of variables formula,[35] the invertibility

property of f ∗
Eu guarantees existence of a pdf for the mapped random variable, whose do-

main can then be extended to include the entire space of spherical coordinates via Lemma

14. Finally, the pdf of the Euclidean norm of the original random vector can be extracted

through marginalization.

Proposition 15 (Pdf existence for random vector in spherical coordinates). Let X be a

random variable in Rs. Let Y be the expression of X in spherical coordinates (in the sense

of Subsection 3.3.1). Then, the following statements are equivalent:
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(a) X is absolutely continuous.

(b) Y is absolutely continuous. ♢

Proof. (a) =⇒ (b). Let X be an absolutely continuous random variable in Rs, which

implies that pdfX exists a.e. in Rs. Let X∗ be a restriction of X to S∗
Eu = Rs \HEu, where

HEu is as defined in Lemma 13. Since HEu has zero measure in Rs, pdfX exists a.e. in S∗
Eu

as well. Hence,X∗ is an absolutely continuous random variable in S∗
Eu, and pdfX∗ = pdfX

in S∗
Eu.

Let Y = f ∗
Eu(X

∗). Via Lemma 13, f ∗
Eu is invertible; additionally, the Jacobian of its

inverse, g∗Eu, never vanishes in D∗
Eu, as can be verified through Eq. 3.4. Via the change-

of-variables formula,[35] Y is an absolutely continuous random variable in S∗
Eu, i.e., its

pdf exists a.e. in D∗
Eu (as defined in Lemma 13), and probability measures on Y may be

computed as integrals of this pdf. Now, it remains to be seen if the a.e. existence of the pdf

of Y can be extended to all of DEu.

However, via Lemma 14, DEu \D∗
Eu has zero measure in Rs. Hence, setting

pdfY (y) = 0 ∀y ∈ DEu \D∗
Eu (3.23)

does not change the a.e. existence of pdfY , nor does it change any measures in Y as defined

in D∗
Eu. Hence, it is concluded that Y is an absolutely continuous random variable in DEu.

(b) =⇒ (a). Let Y be an absolutely continuous random variable in DEu. The proof is

similar to that for (a) =⇒ (b), while restricting Y (as Y ∗) to be defined in D∗
Eu, defining

X = g∗Eu(Y
∗), and extending the definition of X from Rs \ HEu to all of Rs, via Lemma

13, Lemma 14, and the change-of-variables formula.[35]

Although it is likely that Proposition 15 would also hold for other spherical coordinate

transformations into Rs other than gEu, such a result is not implied by this Chapter.
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Corollary 16 (Pdf existence for Euclidean norm of random vector with pdf). Let X be an

absolutely continuous random variable in Rs. Define X .
= ∥X∥2 =

(
XTX

)1/2
. Then, X

is an absolutely continuous random variable as well. ♢

Proof. Let X be an absolutely continuous random variable in Rs. Let Y be the expression

of X in spherical coordinates (in the sense of Subsection 3.3.1).

Via Proposition 15, Y is an absolutely continuous random variable in DEu. Defining

X = ∥X∥2 and Θ =
[
Is−1, 0(s−1)×1

]
Y , then Y may be expressed as Y =

[
ΘT , X

]T
. It

follows that X is an absolutely continuous random variable in [0,∞), and its pdf may be

obtained through marginalization of Θ from Y .

3.4 Applications

The focus of this section is on practical implications of the theoretical results presented

in the Theory section. First, it is shown that for norms of finite-dimensional, absolutely

continuous random variables, their cumulative distribution functions (cdfs) are absolutely

continuous functions, i.e., they satisfy the Fundamental Theorem of Calculus for Lebesgue

integrals. Second, when applying these results to a random vector that represents the in-

stantaneous relative position between two objects, it follows that the assumption of abso-

lutely continuity of the relative position is necessary and sufficient for sensitivity analyses

of the instantaneous probability of collision (IPC) to be grounded in a Lebesgue integral-

derivative sense.

3.4.1 Properties of cdf of Euclidean norm of absolutely continuous random vector

Let X be an absolutely continuous random variable in Rs. Let X be the Euclidean norm of

X , and let pX : L([0,∞)) → [0, 1] be the probability measure associated with X , where

L([0,∞)) is the set of all measurable subsets of [0,∞). Then, via Corollary 16, there exists
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a function pdfX : [0,∞)→ [0,∞) such that, for A ∈ L([0,∞)),

pX(A) =

∫
A

pdfX (x) dx (3.24)

and where dλ denotes the Lebesgue measure in [0,∞). Then, the cumulative distribution

function (cdf) of X , cdfX : R→ [0, 1], satisfies, for a ∈ R,

cdfX(a) = pX ((−∞, a]) =
∫ a

−∞
pdfX (x) dx (3.25)

Since the expression on the right-hand side is a Lebesgue integral, it follows through the

Fundamental Theorem of Calculus for Lebesgue integrals that cdfX is an absolutely con-

tinuous function.[34] That is, the derivative of cdfX exists a.e. and is equal to pdfX a.e.,

pdfX is integrable, and cdfX is equal to the integral of its derivative.

These observations have the very practical implication that pdfX may be estimated

through differentiation of cdfX – if such information were available. However, if X is only

known to be absolutely continuous and no further information about pdfX is available, then,

only the integrability and a.e. existence of pdfX can be guaranteed, which is all that can be

gleaned from the Fundamental Theorem of Calculus in the Lebesgue integral sense. That

is, it cannot be concluded (without further information) that pdfX is continuous a.e., which

is a necessary condition for the Fundamental Theorem of Calculus for Riemann integrals;

if this condition is met, then the integral in Eq. 3.25 would be a Riemann integral.

3.4.2 Sensitivity of Euclidean norm of absolutely continuous relative position random

vector

Let R be a random variable in RdR that represents the instantaneous relative position be-

tween two agents in one-, two- or three-dimensions (i.e., dR ∈ {1, 2, 3}) at some time t.

Let li,j(t) > 0 represent the instantaneous joint hard-body radius (HBR), i.e., the minimum

separation distance required to avoid a collision between the agents. Then, the instanta-
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neous probability of collision (with respect to the Euclidean norm) at time t, IPCi,j(t), is

defined as

IPCi,j(t) = IPCi,j (t; li,j(t),Eu) = pR

(
BdR|Eu

li,j(t)

(
0dR×1

))
= pR ({∥R∥2 < li,j(t)}) (3.26)

Since R is absolutely continuous, IPCi,j(t) may be computed as an integral of the pdf of

R, as given by

IPCi,j(t) =

∫
{∥R∥2<li,j(t)}

pdfR (r) dr (3.27)

and where dr indicates the Lebesgue measure in RdR . Eq. 3.27 is illustrated with two-

dimensional example where the relative position is normally distributed, as shown in Figure

3.1, where the d-contours represent contours of constant Mahalanobis distance,[46] where

the i, j subscripts are added to emphasize that Figure 3.1 illustrates the relative position

between two arbitrary agents i and j, and where Vi,j = Vi,j (t; li,j(t), a).

Let R denote the Euclidean norm of R. Via Corollary 16, R itself has a pdf; hence,

IPCi,j(t) can be computed in terms of the pdf of R as given by

IPCi,j(t) =

∫
{R<li,j(t)}

pdfR (r) dr = pR ({R < li,j(t)}) (3.28)

Since R is absolutely continuous, the set {R = li,j(t)} (which has zero measure) also has

zero probability in R. Hence,

IPCi,j(t) = pR ({R ≤ li,j(t)}) = cdfR(li,j(t)) (3.29)

The duality presented by Eqns. 3.28 and 3.29 lays the foundation for sensitivity anal-

yses of IPCi,j(t). That is, changes to IPCi,j(t) can be formulated in terms of changes

in cdfR, which in the limit of small changes (i.e.., derivatives of cdfR) can be quantified
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Figure 3.1: Conceptual (Euclidean) IPC computation through integration of relative posi-
tion pdf for a system with normally distributed (two-dimensional) relative position.

through pdfR, which exists and is unique a.e., and which is integrable. Therefore, the ab-

solute continuity of R is a necessary and sufficient condition for sensitivity analyses of the

IPCi,j(t) to be sound in a Lebesgue integral-derivative sense. As discussed in Subsection

3.4.1, more restrictions in pdfR are needed in order for the sensitivity analyses to also be

sound in a Riemann integral-derivative sense (namely, for pdfR to be continuous a.e.).

3.5 Conclusion

In this Chapter, several results regarding finite-dimensional random vectors are presented.

First, a random vector in finite-dimensional Cartesian coordinates has a probability density

function (pdf) if and only if a certain spherical coordinate representation of the original

random vector also has a pdf. Second, by implication, for any random vector in finite-

dimensions with a pdf, it follows that the Euclidean norm of such random vector also has

a pdf. These results are applied to the problem of computing the instantaneous probability

of collision (IPC) between two arbitrary objects. In particular, sensitivity analyses of the
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Euclidean norm-based IPC can be formulated in terms of changes to the cumulative distri-

bution function (cdf) of the Euclidean norm of the relative position, which, in the limit of

small changes, can be quantified through the pdf of the Euclidean norm of relative posi-

tion, which is shown to exist and be unique almost everywhere (a.e.; that is, except possibly

within a set of zero measure), to be integrable, and to be equal a.e. to the derivative of the

cdf of the Euclidean norm of relative position. These findings show that the assumption

of absolute continuity of the relative position between objects is a necessary and sufficient

condition for sensitivity analyses of the Euclidean norm-based IPC to be meaningful in a

Lebesgue integral-derivative sense. However, this Chapter does not present conditions for

the pdf of the Euclidean norm of the relative position to be continuous a.e. Hence, this

Chapter provides no conditions for sensitivity analyses of the Euclidean norm-based IPC

to also be meaningful in a Riemann integral-derivative sense.
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CHAPTER 4

FOUNDATIONAL WORK IN SPACECRAFT FORMATION COLLISION RISK

(PART 2) – WELL-DEFINEDNESS AND COMPUTABILITY OF JOINT-TIME

STOCHASTIC COLLISION RISK MEASURES

Sufficient conditions are established for the measurability of

JTC sets and the computability of Pc measures whose underlying

instantaneous collision events (in relative position space) are de-

fined through balls with respect to arbitrary norms (specifically,

in R3). Then, the applicability of these sufficient conditions in a

spaceflight mechanics context is discussed. Finally, the extent to

which it might be probabilistically equivalent to define collision

events via closed or open balls is examined.

4.1 Introduction

General results concerning stochastic collision risk measures (where collision events are

defined through balls with respect to some a-norm in RdR) are presented.

4.2 Measurability of a-JTC sets and computability of a-Pc measures

Let the countable a-JTC set, denoted by J̃TCi,j ([t0, tf ]; li,j(·), a), be defined as

J̃TCi,j ([t0, tf ]; li,j(·), a) =
⋃

c∈Q∩[0,1]

[
FhT (c),t0

]−1
[Ci,j (hT (c); li,j (hT (c)) , a)] (4.1)

where Ft,t0 : RnX → RnX is as defined in Eq. 2.39, and where, for c in [0, 1], hT : [0, 1]→

[t0, tf ] is defined as

hT (c) = t0 + (tf − t0)c (4.2)
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The countable a-JTC set is defined via the union of initial conditions in relative state space

(at time t0) that meet an a-norm collision condition at any time t in [t0, tf ] which is linearly

mapped from the set of rational numbers between 0 and 1. In other words, every rational

fraction between 0 and 1 (of which there only exist countably infinitely many) is mapped

via hT to obtain times t between [t0, tf ], and the collection of all relative state space initial

conditions (at time t0) that cause a-norm collision conditions at such times t is collected in

the countable a-JTC set.

Correspondingly, the countable a-Pc measure, denoted by P̃ ci,j ([t0, tf ]; li,j(·), a), is

defined as

P̃ ci,j ([t0, tf ]; li,j(·), a) = p
(

Xi,j(t0) ∈ J̃TCi,j ([t0, tf ]; li,j(·), a)
)

(4.3)

Proposition 17 (Measurability of a-JTC). Let Remark 8 hold. Let li,j : [t0, tf ] → (0,∞).

Let ∥·∥a be any norm in RdR . Assume the function Ft0(t, x) (see Eq. 2.38) is continuous in t

and x. Then, the JTCi,j ([t0, tf ]; li,j(·), a) set (see Definition 9) is an open set (and hence,

it is a measurable subset of RnX). Consequently, the Pci,j ([t0, tf ]; li,j(·), a) measure is

well-defined.

Assume the joint-HBR time history, li,j : [t0, tf ] → (0,∞), is continuous. Then, the

JTCi,j ([t0, tf ]; li,j(·), a) set can be computed as a countable union of sets; specifically, as

given by

JTCi,j ([t0, tf ]; li,j(·), a) = J̃TCi,j ([t0, tf ]; li,j(·), a) (4.4)

Consequently, under these assumptions, the a-Pc and the countable a-Pc are equivalent;

that is,

Pci,j ([t0, tf ]; li,j(·), a) = P̃ ci,j ([t0, tf ]; li,j(·), a) ♢ (4.5)

Proof. See the proof of Proposition 61, which is listed in Chapter E, Section E.1. This

Proposition is a consequence of the continuity of li,j(·) and Ft,t0 , of Proposition 17, and of

the Lebesgue Dominated Convergence Theorem (DCT) (as applied to integrals with respect
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to the abstract measure P).[85]

Proposition 17 is a foundational result in the study of joint-time a-norm collision prob-

abilities, from both theoretical and practical standpoints. First, Proposition 17 shows that,

under certain assumptions on the relative dynamic process f , that the a-JTC set is measur-

able, and therefore, a-Pc measures are defined. This implies that it is sensible to study the

properties of a-Pc measures as defined via any a-norm in RdR (at the very least under the

current assumptions, as well as with any relaxation that may be shown thereafter).

Second, for continuously varying HBR time histories li,j : [t0, tf ] → (0,∞), Proposi-

tion 17 gives justification for discrete-time approximations to the a-JTC set, specifically,

by characterizing the a-JTC set as given by

JTCi,j ([t0, tf ]; li,j(·), a) =
⋃
N∈N

JTCN
i,j ([t0, tf ]; li,j(·), a) (4.6)

where the JTCN
i,j ([t0, tf ]; li,j(·), a) set is an equal-timestep discretization of the a-JTC set,

as given by

JTCN
i,j ([t0, tf ]; li,j(·), a) =

N⋃
k=0

BN,k (4.7)

BN,k =
[
FhT (c),t0

]−1
[Ci,j (hT (c); li,j (hT (c)) , a)] (4.8)

for c = k/N , k ∈ {0, . . . , N}. In other words, under the assumptions of Proposition 17,

the a-JTC set is equivalent to the union of every discrete, equal-timestep approximation to

the a-JTC set. Even though there may be other characterizations of the a-JTC set besides

the one stated in Eq. 4.6, such a characterization implies that the actual a-JTC set may

be reproduced by aggregating the successive refinements of an equal-timestep a-JTC set

approximation; such approximations arise naturally, e.g., by performing GN&C tasks on a

predetermined temporal frequency, as commanded by a flight computer.

Note: the BN,k sets are generally not open balls in initial relative state space (with re-
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spect to the Euclidean norm; cf. Section 2.3), even though they are pre-images (over the

flow function Ft,t0) of pre-images (over the projection function gP ) of the Vi,j (t; li,j(t), a)

sets, which are open balls in relative position space (with respect to the a-norm); cf. Sub-

subsection 2.5.2. However, under the current assumptions on gP and Ft,t0 , the BN,k sets

are open sets in initial relative state space.

In turn, the N -discrete timestep approximation to the a-Pc (also known as the finite

a-Pc), denoted by PcNi,j ([t0, tf ]; li,j(·), a), may be defined as

PcNi,j ([t0, tf ]; li,j(·), a) = p
(
Xi,j(t0) ∈ JTCN

i,j ([t0, tf ]; li,j(·), a)
)

(4.9)

Proposition 18 (Convergence of discrete-timestep a-JTC/a-Pc approximations). Let Re-

mark 8 hold. Let ∥·∥a be any norm in RdR . Assume the function Ft0(t, x) (see Eq. 2.38)

is continuous in t and x. Assume the joint HBR time history, li,j : [t0, tf ] → (0,∞), is

continuous. Let A, DN denote the sets

A = JTCi,j ([t0, tf ]; li,j(·), a) (4.10)

DN = JTCN
i,j ([t0, tf ]; li,j(·), a) (4.11)

for N ∈ N. Let P denote the probability measure associated with Xi,j(t0). Then,

lim
N→∞

P(A \DN) = 0 (4.12)

lim
N→∞

P(DN) = P(A) (4.13)

In terms of the current notation, the preceding equations may be expressed as

lim
N→∞

p
(
Xi,j(t0) ∈ [JTCi,j ([t0, tf ]; li,j(·), a)] \

[
JTCN

i,j ([t0, tf ]; li,j(·), a)
])

= 0 (4.14)

lim
N→∞

PcNi,j ([t0, tf ]; li,j(·), a) = Pci,j ([t0, tf ]; li,j(·), a) ♢ (4.15)
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Proof. See the proof of Proposition 62, which is listed in Chapter E, Section E.2.

Discretizations of the a-JTC may be employed to construct discrete-time approxima-

tions to the a-Pc that are computable via numerical methods, e.g., direct integration, sam-

pling, or geometric approximations of the a-JTC. This practice is supported by Proposition

18 in two ways. First, via Eq. 4.12, in the limit of vanishingly small timesteps, discrete-time

a-JTC set approximations are able to approximate the true a-JTC set arbitrarily well [from

the perspective of the probability measure associated with the random variable Xi,j(t0)].

Specifically, the complement of the a-JTC set relative to the finite a-JTC approximation

set (i.e., the set of points in the a-JTC set that are not also included in the finite a-JTC ap-

proximation set) has zero probabilistic size in the limit. Second, via Eq. 4.13, in the limit

of vanishingly small timesteps, discrete-time a-Pc approximations are able to approximate

real a-Pc values arbitrarily well – and hence, such a-Pc approximations can be considered

to be accurate estimators of the real a-Pc for small enough timesteps.

Therefore, Proposition 17 is a crucial result for the interpretation, accuracy, and valid-

ity of numerical approaches to a-Pc computation. Proposition 17 is a stronger statement

than the analogous result presented in Ref. [38] because in that work, the Pc measures

considered have collision events defined only with respect to the Euclidean norm (in RdR),

and because only time-invariant Vi,j regions are considered.

4.3 Applicability of a-JTC and a-Pc results in spaceflight mechanics

It has been assumed that Ri,j(t) and Xi,j(t) have pdfs for t ∈ [t0, tf ]. Besides the as-

sumption of Ri,j(t0) and Xi,j(t0) having pdfs (which has already been imposed), existence

of pdfs for Ri,j(t) and Xi,j(t) relies on the implicit assumption that Ft,t0 : RnX → RnX

(known in the literature as the flow function of the dynamic process f ,[86] see Remark 8)

meets the following criteria:[35]

1. Ft,t0 is smooth (i.e., continuously differentiable),
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2. Ft,t0 is injective (i.e, one-to-one), and

3. Ft,t0 has a non-vanishing Jacobian

These assumptions are applicable in several cases of spacecraft relative motion. For

example, whenever spacecraft relative dynamics may be modeled as a linear system (e.g.,

Clohessy-Wiltshire (CW),[5] Tschauner-Hempel (TH),[87] Inhallan et al.,[88] and Gim et

al.;[89] for a review of linear models of SFF motion, see [90]), then Ft,t0 meets conditions

1, 2, and 3 automatically.

More generally, in the context of a flow function ϕt : RnX → RnX , t ∈ [t0, tf ] (with

vector field g : [t0, tf ] × RnX → RnX which satisfies ϕ̇t(x) = g(t, x) for x ∈ RnX), if g

is differentiable and has locally bounded derivative g′ (which implies that g is locally Lip-

schitz[91]), then the Picard-Lindelöf theorem implies that ϕt(x) exists and is unique.[92]

Since g′ being locally bounded implies that the solution of the reverse flow ϕ−t also exists

and is unique, local boundedness of g′ is sufficient for ϕt to be invertible (and hence, for 2.

ϕt to be one-to-one, and for 3. ϕt to have non-vanishing Jacobian). Additionally, if g has

continuous derivatives up to order k, so does ϕt.[86] Clearly, if g is smooth (that is, if g′ is

continuous), then 1. ϕt is smooth, and g′ is locally bounded,[66] which implies that: 2. ϕt

is one-to-one, and 3. ϕt has non-vanishing Jacobian.

In the context of the Restricted Three-Body Problem (RTBP) these conditions are of-

ten met for some agent i with vector field fi : [t0, tf ] × RnX → RnX satisfying ẋi(t) =

fi (t, xi(t)). First, for the RTBP, fi is often directly assumed to be smooth.[93] Second,

more generally, for typical RTBP vector fields fi,[94, 95] fi meets bounded differentia-

bility conditions, except: a) at points where the spacecraft is exactly colliding with either

gravitational mass – where (f ′
i) is not defined; and b) at near-binary-collision regions (i.e.,

at points in the immediate vicinity of spacecraft collision with either gravitational mass) –

where (f ′
i) is not bounded. Many RTBP trajectory families of interest avoid near-binary-

collision regions altogether.[96] When it is of interest to study RTBP trajectories in near-

binary-collision regions,[97, 98, 99] schemes based on the Levi-Civita regularization are
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employed to ensure existence, uniqueness, and smoothness of trajectory solutions in these

regions.[100]

Hence, in a wide range of RTBP cases, and for the case of linear relative orbital dynam-

ics (as well as other cases of interest not addressed here), and unless Xi(t) = Xj(t) with

probability 1 (which is a trivial case), Xi,j(t) has a pdf – and therefore, so does Ri,j(t).

4.4 Equivalence of a-Pc with respect to open vs. closed a-norm collision regions

Consider the following sets in RdR:

a-UNSAFEi,j(t)
.
=
{

r ∈ RdR : ∥r∥a < li,j(t)
}
= BdR|a

li,j(t)

(
0dR×1

)
(4.16)

a-M.SAFEi,j(t)
.
=
{

r ∈ RdR : ∥r∥a = li,j(t)
}
= S(dR−1)|a

li,j(t)

(
0dR×1

)
(4.17)

a-SAFEi,j(t)
.
=
{

r ∈ RdR : ∥r∥a > li,j(t)
}
=
[
BdR|a

li,j(t)

(
0dR×1

)]C
(4.18)

Hence, Ca = {a-UNSAFEi,j(t), a-M.SAFEi,j(t), a-SAFEi,j(t)} is a partition of RdR; i.e.,

any point ri,j in RdR belongs to exactly one of these sets. This partition Ca corresponds

exactly to any possible classification of points ri,j in RdR that arise from the instantaneous

a-collision condition:

1. ri,j meets an (instantaneous) a-collision condition ⇐⇒ ri,j ∈ a-UNSAFEi,j(t)

2. ri,j is (instantaneously) a-collision-safe ⇐⇒ ri,j ∈ a-SAFEi,j(t)

3. ri,j is (instantaneously) neither a-collision-safe nor a-collision-unsafe ⇐⇒ ri,j ∈

a-M.SAFEi,j(t)

The S(dR−1)|a
li,j(t)

(
0dR×1

)
set is not included as part of either the a-SAFEi,j(t) set or the

a-UNSAFEi,j(t) set because the former region is the boundary of the two latter regions.

Thus, by definition, any open ball centered at a point in S(dR−1)|a
li,j(t)

(
0dR×1

)
will contain a-

safe and a-unsafe points.[66] Hence, it is not meaningful to consider S(dR−1)|a
li,j(t)

(
0dR×1

)
as

either a-safe or a-unsafe; instead, it may be regarded as a marginally a-safe region.
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Because the S(dR−1)|a
li,j(t)

(
0dR×1

)
set is the boundary of both the a-SAFEi,j(t) set and the

a-UNSAFEi,j(t) set, study of the marginally a-safe region a-M.SAFEi,j(t) is a useful en-

deavor in SFF COLRM, for example, by providing a starting point for identifying the cor-

responding boundary of deterministic relative orbital dynamic state values (whether Carte-

sian, or expressed via relative geometric parameters or relative orbital elements) whose

ensuing spatial trajectories in RdR may transition from being a-safe to being a-unsafe.

Additionally, S(dR−1)|a
li,j(t)

(
0dR×1

)
has zero measure in RdR . If the instantaneous rela-

tive position Ri,j(t) has a stochastic description through a probability density function

(pdf), which would entail that probabilities of events in that space may be computed as

integrals of the pdf,[35] the zero measure of S(dR−1)|a
li,j(t)

(
0dR×1

)
implies that there is zero

Ri,j(t)-probability mass contained within that set.[67] In other words, under these assump-

tions, the probability measure associated with Ri,j(t) is absolutely continuous with respect

to the Lebesgue measure in relative position space. Hence, from a stochastic (instanta-

neous) perspective, excluding S(dR−1)|a
li,j(t)

(
0dR×1

)
from the definition of the a-SAFEi,j(t) and

a-UNSAFEi,j(t) sets does not affect them in any practical way.

These observations remain true in a stochastic (joint-time) sense for a large class of

spacecraft collision risk management applications.

Remark 19. Let the closed a-intersection volume, denoted by V i,j (t; li,j(t), a), be defined

as

V i,j (t; li,j(t), a)
.
= BdR|a

li,j(t)

(
0dR×1

)
=
{

r ∈ RdR : ∥r∥a ≤ li,j(t)
}

(4.19)

Then, the definition of certain “open” objects (denoted without an overbar) can be made

into the definition of their corresponding “closed” object counterparts (denoted with an

overbar) by mutatis mutandis, specifically:

• Ci,j (t; li,j(t), a), and IPCi,j (t; li,j(t), a): by replacing “Vi,j” with “V i,j” (in Eqns.

2.30, and 2.33, respectively)

• IPCi,j (t; li,j(t), a), JTCi,j ([t0, tf ]; li,j(·), a), J̃TCi,j ([t0, tf ]; li,j(·), a), and
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JTC
N

i,j ([t0, tf ]; li,j(·), a): by replacing “Ci,j” with “Ci,j” (in Eqns. 2.34, 2.40, 4.1,

and 4.7-4.8, respectively)

• Pci,j ([t0, tf ]; li,j(·), a), P̃ ci,j ([t0, tf ]; li,j(·), a), Pc
N

i,j ([t0, tf ]; li,j(·), a): by replac-

ing “JTC” with “JTC” (in Eqns. 2.41, 4.3, and 4.9 respectively)

Note: the closed a-JTC sets are related to their open a-JTC counterparts via the following

unions of sets (not necessarily disjoint) in RnX:

JTCi,j ([t0, tf ]; li,j(·), a) = JTCi,j ([t0, tf ]; li,j(·), a) ∪ A1 (4.20)

J̃TCi,j ([t0, tf ]; li,j(·), a) = J̃TCi,j ([t0, tf ]; li,j(·), a) ∪ A2 (4.21)

JTC
N

i,j ([t0, tf ]; li,j(·), a) = JTCN
i,j ([t0, tf ]; li,j(·), a) ∪ A3 (4.22)

where the sets A1, A2, and A3 in RnX are given by

A1 =
⋃

t∈[t0,tf ]

[Ft,t0 ]
−1
[
g−1
P

(
S(dR−1)|a
li,j(t)

(
0dR×1

))]
(4.23)

A2 =
⋃

c∈Q∩[0,1]

[
FhT (c),t0

]−1
[
g−1
P

(
S(dR−1)|a
li,j(hT (c))

(
0dR×1

))]
(4.24)

A3 =
N⋃
k=0

[
FhT ( k

N ),t0

]−1
[
g−1
P

(
S(dR−1)|a
li,j(hT ( k

N ))

(
0dR×1

))]
(4.25)

While A2 and A3 are measurable sets in RnX , it is not clear whether A1 is a measurable set

in RnX . Hence, while the countable and finite closed a-JTC sets are measurable in RnX , the

closed a-JTC set, JTCi,j ([t0, tf ]; li,j(·), a), may or not be measurable in RnX . ♢

Proposition 20 (Equivalence between open and closed a-Pc measures (countable and fi-

nite)). Let Xi,j(t) have a pdf for t ∈ [t0, tf ]. Then, the open and closed countable a-Pc

measures, as well as the open and closed finite a-Pc measures, are respectively equivalent.
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That is,

P̃ ci,j ([t0, tf ]; li,j(·), a) = P̃ ci,j ([t0, tf ]; li,j(·), a) (4.26)

Pc
N

i,j ([t0, tf ]; li,j(·), a) = PcNi,j ([t0, tf ]; li,j(·), a) (4.27)

In particular, for t ∈ [t0, tf ],

IPCi,j (t; li,j(t), a) = IPCi,j (t; li,j(t), a) ♢ (4.28)

Proof. Let P denote the probability measure of Xi,j(t0). By monotonicity and countable

subadditivity, Eq. 4.21 implies that

0 ≤ P
(
J̃TCi,j ([t0, tf ]; li,j(·), a)

)
− P

(
J̃TCi,j ([t0, tf ]; li,j(·), a)

)
≤ P (A2) (4.29)

By countable subadditivity (on Eq. 4.24),

0 ≤ P (A2) ≤
∑

c∈Q∩[0,1]

P
([
FhT (c),t0

]−1
[
g−1
P

(
S(dR−1)|a
li,j(hT (c))

(
0dR×1

))])
=

∑
c∈Q∩[0,1]

p
(

Xi,j (hT (c)) ∈ g−1
P

[
S(dR−1)|a
li,j(hT (c))

(
0dR×1

)])
=

∑
c∈Q∩[0,1]

p
(

Ri,j (hT (c)) ∈ S(dR−1)|a
li,j(hT (c))

(
0dR×1

)) (4.30)

Any (dR − 1)-sphere (with respect to the a-norm) is a set of zero measure in RdR . Note:

Ri,j(t) is an absolutely continuous random variable [that is, sets of zero measure have zero

probability in Ri,j(t)]. Since, Eq. 4.30 denotes a countable sum, it follows that P (A2) = 0.

Hence, Eq. 4.29 implies that

P̃ ci,j ([t0, tf ]; li,j(·), a) = P̃ ci,j ([t0, tf ]; li,j(·), a) (4.31)
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A similar argument is used to prove Eq. 4.27. Finally, Eq. 4.28 follows from applying

either Eq. 4.26 or Eq. 4.27 over the degenerate interval [t, t] for t in [t0, tf ].

In other words, Proposition 20, implies that, under the condition that Xi,j(t) has a pdf

for t ∈ [t0, tf ], then whether instantaneous a-norm collisions are defined via either open

or closed a-norm balls has no effect on the value of countable and finite a-Pc measures.

Since, A1 is defined via an uncountable union of measurable sets, it is unclear whether A1

is measurable; therefore, it is unclear whether the closed a-JTC set is measurable, or what

the relationship of the closed a-Pc (if defined) is to the open a-Pc value (besides the former

being bounded below by the latter). However, if the closed a-JTC set can be characterized

via the countable closed a-JTC set as can be done for the open a-JTC set (see Eq. 4.4),

which must be true in any practical applications (cf. the discussion of the implications of

Proposition 17), it follows that, via Proposition 20, defining instantaneous a-norm collision

events via either closed or open a-norm balls in relative position space is stochastically

equivalent in an instantaneous and joint-time sense for most practical purposes.

4.5 Conclusion

In this Chapter, it is shown that joint-time probabilities of collision between a pair of agents

in a spacecraft formation are both well-defined and computable if the underlying instanta-

neous collision condition is defined through a ball with respect to some norm in relative

position space, and under certain assumptions on the flow function, which are often met in

spaceflight mechanics applications.
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CHAPTER 5

ADEQUACY OF SFF PROBABILISTIC COLLISION RISK INDICATORS

The probability dilution phenomenon generally displayed by

probabilistic spacecraft collision risk indicators based on epis-

temic representations of relative state uncertainty has motivated

debate in the literature concerning the suitability of employing

these indicators for the purposes of spacecraft collision risk as-

sessment. This Chapter provides a brief overview of these con-

cerns in the context of this dissertation. Asymptotic and tran-

sient probability dilution behaviors are illustrated for probabilistic

SFF collision risk indicators in the context of simplified, reduced-

dimensionality relative dynamic state examples. The applicabil-

ity of epistemic-probabilistic SFF collision risk indicators for SFF

collision risk assessment purposes is argued from the perspective

of how such indicators may interpreted as statistical estimators

of deterministic SFF collision indicators. Finally, although this

dissertation does not formally define, characterize, or implement

statistical inference models that employ miss distance-based like-

lihood functions for collision safety-related hypothesis testing,

such models are briefly discussed.

5.1 Overview of the probability dilution of SFF probabilistic collision risk indicators

In the current SFF COLRM framework, the IPC and Pc SFF collision risk indicators are

based on the treatment of the initial relative state as a random variable with a pdf, and with

subsequent assumptions that ensure that the propagated relative state and its associated

80



functions (such as the instantaneous relative position) may also be regarded as random

variables with a pdf. (For further discussion, see Sections 2.3 and 4.3.) Then, the IPC

and Pc are the defined as probability measures arising from the instantaneous or joint-time

violation of minimum norm constraints in relative position space with respect to some norm

in relative position space. (For IPC/Pc formal definitions, see Section 2.5.)

Because IPCi,j(t) and Pci,j[t0, tf ] are measures based on probability distributions that

reflect epistemic uncertainty, it follows that IPCi,j(t) and Pci,j[t0, tf ] may be regarded as

epistemic probabilities as well. As discussed in [28], a criticism of quantifying collision

risk in spaceflight mechanics via epistemic probabilities is the concept of probability dilu-

tion, which posits that, for a fixed inter-agent geometry and keep-out distance, increasing

uncertainty about relative state knowledge eventually decreases collision probability;[45]

this is an inevitable consequence of the probability mass being spread more sparsely over

its sample space (i.e., relative state space) due to increased uncertainty.[72] Furthermore,

because relative state covariances are open-loop divergent in relative orbital dynamics (at

least to within CW dynamics), any probability measure over a bounded set in relative state

space will inexorably become diluted over time in this sense.

These observations raise three important research questions. First, which initial uncer-

tainty profiles and restrictions on the propagation horizon might be needed in order to make

statistically significant inferences of collision risk (e.g., through epistemic collision proba-

bility measures)? Second, is it appropriate in any way to use epistemic collision probability

measures as indicators of collision risk, either by themselves or in combination with other

criteria? And third, are there more suitable probabilistic collision risk indicators (for SFF

COLRM purposes) than epistemic collision probability measures? Although these ques-

tions are the subject of past and active research efforts in the community,[101, 102, 103,

104, 56, 105, 106] such questions lie outside of the scope of this dissertation.

However, epistemic probability measures are used in this work for several reasons.

First, this dissertation defines, characterizes, quantifies, and compares SFF collision risk
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criteria that have distinct philosophical meaning and physical interpretation (namely, prob-

ability, separation, or both), but since they are all based on the same underlying epistemic

uncertainty, separation and hybrid SFF collision risk indicators will be epistemic as well.

Second, even though epistemic probabilities might not be the most suitable SFF collision

risk indicators, they are a good starting point for collision risk assessment because of how a

collision event is topologically defined, and how a probability may be assigned to measure

such an event -– hence, computing epistemic collision probabilities is widely practiced in

spaceflight mechanics.[105] Third, although it is expected that lower uncertainties might

generally lead to more statistically significant inferences of collision risk, fundamentally,

assessment of risk must be performed with respect to some uncertainty description, and

it makes sense to employ a representation that arises from the outcome of relative state

estimation – that is, an epistemic representation of uncertainty.

5.2 On the usability of the IPC for SFF COLRM

The IPC construct has been introduced in the literature by Chan, under the assumption of a

normally distributed relative position pdf.[31] It is noteworthy that, even though the initial

relative velocity uncertainty affects the relative position uncertainty through propagation,

the relative velocity uncertainty itself does not directly affect the formulation of IPCi,j(t);

that is, in Eq. 2.35, there are no terms inside the integrand that depend on relative velocity,

and apart from possible marginalization, integration is not performed with respect to rel-

ative velocity. Such terms would appear in analytical formulations of the “probability of

collision” (Pc), i.e., the probability that two agents might collide at any time within a time

period [t0, t0 + T ] for some T > 0.[44] The IPC is advocated as complementary to the Pc

notion. First, by definition, the IPC is less than or equal to the Pc, so any values of the for-

mer become lower bounds for the latter, as shown by Alfano.[43] Second, if the IPC is null

or insignificant over an interval, by implication, changes to the Pc must be null or insignif-

icant as well. Third, in SFF, frequent state knowledge updates are needed. However, since
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the estimation process entails than an initial state pdf is superseded by an updated pdf, the

Pc can only be computed between state knowledge updates, as it would not be meaningful

to relate portions of the initial state pdf (which, during its validity period, might indicate

collision events) to portions of the updated state pdf. In the limit of vanishing time between

knowledge updates, a constantly restarting Pc and the IPC would be in agreement.

5.3 Conceptual illustration of IPC/Pc dilution (one-dimensional relative position)

The IPC probability dilution phenomenon is illustrated in this Section in the context of a

simplified, low-dimensionality model. Let Ri,j ∼ N (µ, σ2), where µ ∈ R, σ > 0. Hence,

IPCi,j(t) = p (|Ri,j(t)| < li,j) (5.1)

After some manipulation, and letting Z ∼ N (0, 1), Eq. 5.1 may be explicitly expressed as

IPCi,j(t) = cdfZ

(
1− µ/li,j
σ/li,j

)
− cdfZ

(
−1− µ/li,j
σ/li,j

)
(5.2)

Fig. 5.1 illustrates Eq. 5.2.

In this context, let µ be interpreted as a current best estimate of inter-agent relative

position, and let σ > 0 be interpreted as encoding relative position confidence information

(specifically, with lower σ values representing greater confidence on the µ estimate). As

shown in Fig. 5.1 and Eq. 5.2, when σ → 0, IPCi,j → K ′
i,j , where

K ′
i,j =


1 if

∣∣∣ µ
li,j

∣∣∣ < 1

0.5 if
∣∣∣ µ
li,j

∣∣∣ = 1

0 if
∣∣∣ µ
li,j

∣∣∣ > 1

(5.3)

However, for the unique, deterministic relative position ri,j , its corresponding deterministic
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Figure 5.1: IPC as a function of first- and second-order statistics of a one-dimensional (1D)
normally distributed relative position.

collision indicator Ki,j is given by

Ki,j =


1 if |ri,j| < li,j

cmarginal if |ri,j| = li,j

0 if |ri,j| > li,j

(5.4)

where cmarginal is a user-defined constant in [0, 1] for two reasons. First, whether or not

a deterministic collision is indicated for |ri,j| = li,j depends on the interpretation of the

practitioner. Second, since the set {±li,j} is a set of zero Lebesgue measure in R, for any

stochastic description of the relative position via a pdf, the event set {x ∈ R : |x| = li,j}

has zero probability mass; therefore, the value of cmarginal is not practically relevant for SFF

collision risk assessments. In the view of this dissertation, the event set {x ∈ R : |x| = li,j}

represents a marginally collision-safe condition (i.e., such a condition is neither collision-

safe nor collision-unsafe; cf. Section 4.4). Hence, in this Chapter, cmarginal = 0.5.

Therefore, in the limit of full confidence in a relative position knowledge estimate, the

IPCi,j may be interpreted as an estimator of the deterministic i, j collision indicator Ki,j .
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On the other hand, Fig. 5.1 also illustrates the probability dilution phenomenon as it

pertains to the IPC. First, for any µ ̸= 0 and IPC values p′ ∈ (0, 1), the same IPCi,j = p′

value is obtained for two scalar values σL, σU > 0 of σ such that 0 < σL < σU . In other

words, for a fixed µ, the IPCi,j has the same value for a high and a low variance.

Second, via Eq. 5.2 it can be seen that for a fixed µ ∈ R, the IPC has strictly monoton-

ically decreasing values with decreasing confidence in relative position knowledge; in the

limit of no confidence in relative position knowledge, the IPC estimator is zero-valued, i.e.,

lim
σ→∞

IPCi,j (t;σ) = 0 (5.5)

The foregoing insights concerning IPC probability dilution in the aforementioned sim-

plified model apply more generally to IPC measures based on two-dimensional (2D) rel-

ative position information (cf. Section 5.4), as well as to the joint-time probability of

collision (Pc) for short-term encounters,[72, 56] from the perspectives of: a) achieving

the same IPC/Pc values for different relative state-based covariance magnitudes, and b)

resulting in zero-valued IPC/Pc measures in the limit of increased covariance magnitude.

It has been proposed that the seemingly paradoxical IPC/Pc behavior observed should

entail the general discontinuance of the application of IPC/Pc constructs in spacecraft con-

junction assessment contexts [45] – and hence, in an SFF COLRM context also. However,

it is the view of this dissertation that: 1) IPC/Pc measures have applicability in spaceflight

mechanics because their high-confidence behaviors are consistent with their interpretation

as estimators of deterministic (yet unknown) instantaneous/joint-time collision indicators;

and 2) IPC/Pc probability dilution arises from changes in the variability of the underlying

relative state measurement observation data, and not from inherent probability paradoxes.

[106]
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5.4 Asymptotic and transient IPC/Pc probability dilution behavior (two-dimensional

relative position)

5.4.1 Asymptotic IPC probability dilution behavior (2D)

Let the Rc
i,j(t) = [X, Y ] denote a non-degenerate normal random variable in R2 with dis-

tribution

Rc
i,j(t) ∼ N (µ, Σc) (5.6)

where µ = [µX , µY ] ∈ R2, Σc = BcΣB
T
c , where Σ is a positive-definite covariance matrix,

given by

Σ =

 σ2
X ρσXσY

ρσXσY σ2
Y

 (5.7)

where σX , σY > 0, −1 < ρ < 1. (Note: Ri,j(t) = R1
i,j(t).) In this context, for c ≥ 1, Bc

represents a scaling matrix such that

B1 = I2 =

1 0

0 1

 (5.8)

and where the magnitude of Σc under some norm is expected to grow in some sense for

c > 1. Common patterns of covariance growth include the following: along x-axis, along

y-axis, and isotropic growth. (These patterns are illustrated in Fig. 5.2.)

Covariance growth along the x-coordinate only is given by

Bx
c =

c 0

0 1

 (5.9)
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Figure 5.2: Covariance growth for a two-dimensional (2D) normally distributed relative
position (anti-correlated x- and y-axis Ri,j-variances).

whereas covariance growth along the y-coordinate only is given by

By
c =

1 0

0 c

 (5.10)
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Finally, isotropic covariance growth is given by

Biso
c =

c 0

0 c

 (5.11)

Via the definition of Mahalanobis contours (see Eq. 6.10), isotropic covariance growth

entails a uniform scaling of covariance contours in all directions, as shown by

Ld

(
Rc

i,j(t)
)
=

{
x ∈ R2 :

√
(x− µ)T Σc

−1 (x− µ) = d

}
=

{
x ∈ R2 :

√
(x− µ)T 1

c2
Σ−1 (x− µ) = d

}

=

{
x ∈ R2 :

√
(x− µ)T Σ−1 (x− µ) = dc

}
= Ldc

(
Ri,j(t)

)
(5.12)

Isotropic covariance growth implies a quadratic scaling of the covariance magnitude as

quantified by any matrix norm ∥·∥M in R2×2, i.e.,

∥Σc∥M =
∥∥BcΣB

T
c

∥∥
M

=
∣∣c2∣∣ ∥Σ∥M (5.13)

(This observation is a consequence of the homogeneity property of ∥·∥M .)

Let IPCi,j(t; c) denote the IPC based on Rc
i,j(t). Under the current framework, it can

be shown easily that

lim
c→∞

IPCi,j (t; c) = 0 (5.14)

The following argument holds for x-axis and isotropic growth directly, and for y-axis

growth via mutatis mutandis (specifically, by replacing x with y).

The event {r ∈ R2 : ∥r∥2 < li,j} is a subset of the event
{
[x, y]T ∈ R2 : |x| < li,j

}
.

Letting Rc
i,j(t) be expressed as Rc

i,j(t) =
[
[Rc

i,j]X(t), [R
c
i,j]Y (t)

]
, it follows from the mono-
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tonicity of probability measures that

IPCi,j(t; c) = p
(∥∥Rc

i,j(t)
∥∥
2
< li,j

)
≤ p

(∣∣[Rc
i,j]X(t)

∣∣ < li,j
)

(5.15)

Letting Z ∼ N (0, 1) and after some manipulation, it follows that IPCi,j(t; c) is bounded

above in terms of the cdf of Z as given by

IPCi,j(t; c) ≤ cdfZ

(
1− µX/li,j
(cσX)/li,j

)
− cdfZ

(
−1− µX/li,j
(cσX)/li,j

)
(5.16)

Hence, by the non-negativity of probability measures, it follows that IPC measures based

on balls with respect to the Euclidean norm are subject to probability dilution in the sense

of Eq. 5.17 under the x-axis, y-axis, and isotropic covariance growth patterns.

lim
c→∞

IPCi,j(t; c) = 0 (5.17)

Although asymptotic IPC probability dilution was only demonstrated for simple covari-

ance growth patterns (cf. Figure 5.2), the foregoing analysis applies also to uncountably

many covariance growth patterns, namely, for patterns that fit the following description: for

continuous functions fx, fy : [1,∞)→ [1,∞)× [1,∞) such that there exists an orthonor-

mal matrix U in R2, and a strictly increasing sequence {ck}k∈N of scalars in [1,∞) such

that the sequence {σk}k∈N defined (for k ∈ N) by

σ2
k =

[
1 0

]
U

fx(ck) 0

0 fy(ck)

Σ

fx(ck) 0

0 fy(ck)

UT

1
0

 (5.18)

is also a strictly increasing sequence. Practically, this condition implies that the IPC prob-

ability dilution results of this Subsection are applicable to any covariance growth pattern

such that there exists some unit vector along which there is consistent variance growth.
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5.4.2 Transient IPC probability dilution behavior (uncorrelated 2D relative position covariance)

Within this Subsection, the transient behavior of IPC probability dilution is examined in

the context of non-degenerate normal 2D relative position distributions for the case of un-

correlatedness between x-axis and y-axis relative position variances (i.e., by setting ρ = 0

in Eq. 5.7), as illustrated in Fig. 5.3.

Figure 5.3: Covariance growth for a two-dimensional (2D) normally distributed relative
position (uncorrelated x- and y-axis Ri,j-variances).

For simplicity, changes in σX and σY are addressed directly (i.e., without intermediate

scaling constants).

The expected value of the of the relative position, µ, is assumed to be located along
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the x-axis, i.e., µY = 0 (cf. Eq. 5.6). Hence, changes in σX may be understood as un-

certainty changes in the direction of the expected relative position and the collision region

(denoted as the Vi,j-“radial” direction), and σY changes may be interpreted as uncertainty

changes in the direction perpendicular to the expected relative position (referred to as the

Vi,j-“orthogonal” direction). Uncertainty growth along the Vi,j-radial and Vi,j-orthogonal

directions is illustrated in Figs. 5.4 and 5.5.

Figure 5.4: Vi,j-radial variance growth for a two-dimensional (2D) normally distributed
relative position (uncorrelated x- and y-axis Ri,j-variances).

The transient IPC probability dilution behavior under the current simplified model is

studied by computing IPC values for σX , σY ∈ (0, 16li,j] and µX ∈ [0, 10li,j]. (Practically,

σX , σY ∈ [0.01li,j, 16li,j].) Such IPC values have been computed in MATLAB R2018b

through brute force quadrature via the integral2 function.[107] These results are sum-

marized in Fig. 5.6.

First, low-covariance-magnitude IPC behavior (i.e., for σX , σY → 0) is discussed.
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Figure 5.5: Vi,j-orthogonal variance growth for a two-dimensional (2D) normally dis-
tributed relative position (uncorrelated x- and y-axis Ri,j-variances).

Numerical IPC results show that when σX , σY → 0, IPCi,j → K ′
i,j , where

K ′
i,j =


1 if ∥µ∥2 < li,j

0.5 if ∥µ∥2 = li,j

0 if ∥µ∥2 > li,j

(5.19)

These low-Ri,j-covariance-magnitude IPC results are consistent with the 1D relative position-

based IPC interpretation as an estimate of the deterministic i, j-collision indicator. Specif-

ically, since low σX , σY values entail a low magnitude of the relative position covariance,

which corresponds to high confidence in µ as an estimator of the deterministic relative po-

sition (ri,j), it follows that: ∥µ∥2 < li,j corresponds to an expected collision, ∥µ∥2 > li,j

corresponds to a collision not being expected, and ∥µ∥2 = li,j corresponds to the transition

between a collision-safe and a collision-unsafe condition. Hence, in the limit of low rela-
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Figure 5.6: IPC as a function of statistical moments of two-dimensional (2D) normally
distributed relative position (uncorrelated x- and y-axis Ri,j-variances, relative position
expectation along x-axis).

tive position covariance magnitude, the current simplified IPC model is a valid estimator of

the deterministic i, j-collision indicator, Ki,j , which is given by Eq. 5.20.

Ki,j =


1 if

∥∥ri,j
∥∥
2
< li,j

cmarginal if
∥∥ri,j

∥∥
2
= li,j

0 if
∥∥ri,j

∥∥
2
> li,j

(5.20)

(Note: in this Chapter, cmarginal = 0.5; cf. Section 5.3.)

Second, the IPC probability dilution behavior for the case of high Ri,j covariance mag-

nitude (i.e., for σX , σY → ∞) is discussed. For ∥µ∥2 < li,j , increasing either σX and σY

leads to IPC reduction-only probability dilution. The explanation for this behavior is that,

while most of the Ri,j-probability mass is contained within Vi,j for low Ri,j covariance

magnitude, increasing the Ri,j covariance magnitude causes the Ri,j-probability mass to
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become more sparsely spread over R2 (and hence, consistently away from Vi,j).

For ∥µ∥2 > li,j , increasing σX causes IPC growth first and then IPC reduction, whereas

σY causes IPC reduction; hence, IPC probability dilution is anisotropic for this expected

relative position case. The explanation for the observed IPC decay anisotropy in response

to Ri,j covariance growth is evident from Figs. 5.4 and 5.5: for ∥µ∥2 > li,j , Ri,j vari-

ance growth in the Vi,j-radial direction introduces Ri,j-probability mass into Vi,j before

such probability mass becomes inexorably diluted, whereas Ri,j variance growth in the

Vi,j-orthogonal direction only dilutes the Ri,j-probability mass already contained in Vi,j .

Although Ri,j covariance magnitude is the primary factor in ascertaining transient IPC

probability dilution behavior, the Euclidean norm of expected relative position (∥µ∥2) sets

an upper bound for the IPC values that may be observed over a wide range of relevant

Ri,j moment statistics, as summarized in Fig 5.7. This behavior is consistent with the

interpretation of the IPC as an estimator of the deterministic i, j collision indicator Ki,j

(see Eq. 5.20), where the IPC converges to Ki,j almost everywhere for ∥µ∥2 ∈ [0,∞) (see

Eq. 5.19) in the limit of low Ri,j covariance magnitude.

5.4.3 Transient IPC probability dilution behavior (effects of 2D relative position expectation

nuisance and correlated covariance)

Within this Subsection, the effects of Ri,j expectation nuisance and covariance correla-

tion on transient IPC probability dilution are studied. For the short term Pc problem, the

nuisance parameter λ encodes relative position unit vector direction information, as well

as relative position rate information.[106] Since this Section is only concerned with IPC

probability dilution, relative position rate information is ignored.

Given that the current simplified Ri,j model is two-dimensional, relative position ex-

pectation nuisance information may be encoded by the angle λ, which represents a right-

handed rotation (i.e., a z-axis rotation) of the x-axis-aligned expected relative position (µ).

Hence, the nuisance parameter λ affects the relative position distribution (under the current
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Figure 5.7: Maximum IPC as a function of the Euclidean norm of the expected value of
two-dimensional (2D) normally distributed relative position (uncorrelated x- and y-axis
Ri,j-variances, relative position expectation along x-axis).

simplified model) as given by R′
i,j ∼ N (µ′

λ, Σ), where

µ′
λ =

cosλ − sinλ

sinλ cosλ

µ (5.21)

where µ = [µX , 0]
T for some µX in R, and where Σ is as given by Eq. 5.7.

Let R′
i,j have uncorrelated x- and y-axis variances (i.e., let ρ = 0 in Eq. 5.7). Then, due

to the isotropy of the Euclidean norm, the R′
i,j-based IPC, IPC′

i,j is equivalent to the IPC

based on a modified relative position under nuisance (R′′
i,j), whose distribution is given by

R′′
i,j ∼ N (µ, Σ′′

λ), where

Σ′′
λ =

 (σX,λ)
2 ρλσX,λσY,λ

ρλσX,λσY,λ (σY,λ)
2

 (5.22)
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σX,λ =
√
σ2
X cos2 λ+ σ2

Y sin2 λ (5.23)

σY,λ =
√
σ2
X sin2 λ+ σ2

Y cos2 λ (5.24)

ρλ =
(σ2

Y − σ2
X) sin(2λ)√

[(σ2
Y − σ2

X) sin(2λ)]
2
+ 4σ2

Xσ
2
Y

(5.25)

In other words, via Eq. 5.25, the nuisance parameter λ introduces Ri,j-covariance corre-

lation to the Ri,j distribution which was formulated as uncorrelated in Subsection 5.4.1.

Therefore, without loss of generality, the effects of the µ-affecting nuisance parameter λ

on transient IPC probability dilution are subsumed into the effects of Ri,j-covariance cor-

relation on transient IPC probability dilution.

As illustrated in Fig 5.8, the same anisotropy in the transient IPC probability dilu-

tion behavior which has previously been observed for uncorrelated Ri,j-covariances is

also expected for correlated Ri,j-covariances because, even for the case of correlated Ri,j-

covariances, IPC decay-after-growth dilution is only possible if there is Ri,j-variance growth

in the Vi,j-radial direction. In particular, it can be shown that for fixed µ, increasing Ri,j-

variance in the Vi,j-orthogonal direction by a factor of c2 > 1 is equivalent (from a Eu-

clidean norm-based IPC perspective) to reducing the extent of the Vi,j region in the y-axis

direction, specifically, by replacing the collision region Vi,j [an (li,j):(li,j) open circular

disk] with an (li,j):
(

li,j
c

)
open elliptical disk. Hence, increasing Ri,j-variance in the Vi,j-

orthogonal direction causes monotonic IPC reduction (which is strictly monotonic if the

support of the pdf of Ri,j is R2).

The foregoing observations also imply that, for a correlated Ri,j-covariance, Ri,j-variance

growth along either Ri,j-covariance principal axis is also expected to cause IPC decay-after-

growth dilution for the following reason: Ri,j-variance growth along either Ri,j-covariance

principal axis (for a correlated Ri,j-covariance) also induces Ri,j-variance growth along the

Vi,j-radial direction.

Therefore, for a non-degenerate normal relative position (Ri,j) distribution, letting µ
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Figure 5.8: Vi,j-orthogonal variance growth for a two-dimensional (2D) normally dis-
tributed relative position (correlated x- and y-axis Ri,j-variances).

denote the expected value of Ri,j , transient IPC probability dilution behavior may be sum-

marized as follows: IPC decay-only dilution occurs either when a collision is expected (as

indicated by µ), or when 1) a collision is not µ-expected, and 2) when there is no Ri,j-

variance growth along the Vi,j-radial direction; and IPC decay-after-growth dilution occurs

when 1) a collision is not µ-indicated, and 2) when there is Ri,j-variance growth along the

Vi,j-radial direction.

5.4.4 Applicability of IPC probability dilution (2D) to short-term Pc probability dilution

The short-term Pc formulation is mathematically equivalent to a specific realization of the

IPCi,j paradigm laid out in this Section – specifically, the short-term Pc is a probability

measure (over a Euclidean ball) of the projection of the relative position onto the conjunc-

tion plane at the instant of closest approach between two space objects.[23, 28, 106]

Therefore, short-term Pc measures are subject to asymptotic probability dilution be-
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havior in the sense of Eq. 5.17.[72] Furthermore, short-term Pc measures are subject to

anisotropy in transient Pc probability dilution behavior which is analogous to the anisotropy

in transient IPC probability dilution behavior discussed in Subsections 5.4.2 and 5.4.3.

5.5 On miss distance-based statistical inference models for SFF COLRM

It has been proposed that statistical inference models that test hypotheses on inter-agent

separation or miss distance (specifically, the violation of minimum inter-agent Euclidean

distance constraints) are preferable and more informative for spacecraft collision risk as-

sessment purposes than IPC/Pc constructs,[105, 106] which may be regarded as models for

statistical inference on deterministic collision risk indicators themselves,[104] as discussed

in Sections 5.3 and 5.4. Miss distance-based statistical inference models utilize likelihood

functions based on relative state observation data, as well as methods for calibrating such

likelihood functions (e.g., Bayesian inference,[108] or modified likelihood roots [106]) in

order to obtain estimates of inter-agent miss distance upon which collision safety-related

hypotheses may be tested.

The outcome of miss distance-based statistical inference (i.e., significance probabil-

ities with an interpretation akin to that of IPC/Pc constructs [106]) may be employed

in the development of actionable thresholds for deciding whether to execute spacecraft

collision avoidance maneuvers, for example: by minimizing the expected cost of ma-

neuver execution,[106, 108] or by employing the Wald Sequential Probability Ratio Test

(WSPRT).[109, 110] These techniques have been employed in spacecraft collision assess-

ment scenarios,[111, 112, 113, 114] although the ability to find reliable a priori statistics

on miss distance (upon which to construct statistical models for collision safety hypothesis

testing) is restricted except in limited contexts.[104]

Nevertheless, study of the formulation, applicability, or implementation of miss distance-

based statistical inference models for SFF COLRM purposes is outside of the scope of this

dissertation.
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5.6 Summary

An overview of objections to employing probabilistic SFF collision risk indicators (derived

from epistemic uncertainty representations) is provided. Such objections arise primarily

from the probability dilution phenomenon, which is generally displayed by these indicators.

Hence, asymptotic and transient IPC probability dilution behavior is studied in a simpli-

fied, reduced-dimensionality context. The applicability of this study extends to short-term

Pc measures because of the equivalence of their mathematical formulation to that utilized

by the aforementioned IPC study.

The legitimacy of employing probabilistic SFF collision risk indicators is argued from

the relative covariance low-magnitude limiting behavior displayed by these indicators, un-

der which deterministic SFF collision indicators are adequately approximated by proba-

bilistic SFF collision risk indicators.

Nevertheless, although not employed in this dissertation, because statistical inference

models for spacecraft collision safety-related that employ miss distance-based likelihood

functions may improve the quality and extent of safety-related insights over those provided

by IPC/Pc constructs, such statistical inference models are briefly discussed.
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CHAPTER 6

SPACECRAFT FORMATION COLLISION RISK QUANTIFICATION (PART 1) –

STOCHASTIC CONVERGENCE OF SOBOL-BASED MAHALANOBIS SHELL

SAMPLING (MSS) COLLISION PROBABILITY COMPUTATION

Sample-based computation of the joint-time probability of

collision (Pc) motivates developing the Mahalanobis Shell Sam-

pling (MSS) algorithm, which samples non-degenerate normal

random variables, enabling rare event simulation without unduly

penalizing sample size. The MSS method has unbiased estimators

in sample mean and covariance, and it may achieve arbitrary pre-

cision when approximating probability measures. For Clohessy-

Wiltshire relative orbital dynamics, computational MSS exponen-

tial rates of error convergence (in the mean-square-error (MSE)

sense) are shown to improve by one order of magnitude (for sam-

ple mean and covariance) over Monte Carlo; when reproducing

the instantaneous probability of collision (IPC), MSS has a com-

parable MSE convergence rate performance to Monte Carlo.

6.1 Introduction

The problem of spacecraft formation flying (SFF) collision risk management (COLRM)

differs from the standard obstacle avoidance problem in robotics because of the instability

of relative orbital dynamics, the lack of spatial restraints in spacecraft motion (in essence,

six degrees of freedom), and the limitations in sensing accuracy and onboard resources.[30]

These facts imply the need to quantify uncertain indicators of collision risk, to make de-

cisions based on acceptable risk thresholds, and to plan appropriate corrective actions to
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reduce quantifiable collision risk accordingly.[29, 27, 28, 13] Hence, the process of SFF

COLRM (i.e., collision risk quantification, interpretation and decision-making, and reduc-

tion) hinges not only on the choice of suitable collision risk indicators, but also on their

efficient computation.[12]

Since the relative position between space objects cannot be deterministically known,

whether two such objects are colliding is a question that may only be ascertained prob-

abilistically.[42] Hence, probability measures associated with the likelihood of collision

events have been explored considerably in SFF research, with the purpose of employing

these measures as probabilistic indicators of collision risk, with particular focus on the

Pc, which is the probability of collision over a finite time interval, and the instantaneous

probability of collision (IPC). [31, 43, 44]

This Chapter focuses on the computation of probabilistic collision risk indicators via

quasi-random sampling. One consequence of the probability dilution phenomenon in rela-

tive orbital dynamics is that, operationally, certain practitioners in the spacecraft conjunc-

tion assessment community adopt a threshold of significance for Pc values of 1×10−7 (that

is, Pc values above this threshold are considered significant, and vice versa).[45, 29] Via

the construct of projection instantaneous probabilities of collision, it could be argued that

this threshold of significance may also be valid for IPC values in an SFF COLRM context

[28] – and hence, this threshold may be regarded as valid for Pc values in this context as

well.

Thus, for sampling algorithms employed to estimate SFF probabilistic collision risk

indicators, it would be beneficial to produce samples that allow for accurately reproduc-

ing low-valued probability measures – which implies the need to account for probabilistic

outliers consistently.[46, 47] In particular, it would be helpful if such algorithms achieve

this result in a systematic fashion, and without requiring unmanageably large sample sizes.

However, the Monte Carlo method does not meet these criteria because, in order to repro-

duce low probability values, this method is expected to require samples whose sizes have an
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inversely proportional relationship to the probability values in question.[28] Additionally,

there are no deterministic guarantees that a specific fixed-size Monte Carlo sample real-

ization will contain any elements within an arbitrary Mahalanobis distance of the sample

mean.

Therefore, the main goal of this Chapter is twofold: first, to develop a sample algorithm

suitable for probabilistic collision risk computation, which may be achieved in three steps:

1) through a judicious choice of boundary between significant and ignorable sample points,

2) by stratifying the significant sample space, and 3) by sampling within each stratum in

an efficient, space-filling manner; and second, to validate practical use of such sampling

algorithm by characterization of its computational convergence properties. Because there

may exist multiple probability measures of interest in the same sample space (e.g., any IPC

or Pc), it is that such outcome samples would reflect the original distribution as accurately

as possible. Hence, a secondary goal of this Chapter is to develop unbiased estimators

for sample mean and covariance, which may be used not only to validate the quality of

specific realizations of finite samples, but also as building blocks in the development of

sample-based filtering schemes for spacecraft relative navigation. This result would create

natural efficiencies in the integration of SFF guidance, navigation, and control (GN&C) and

COLRM tasks, as collision risk quantification requires an uncertain description of relative

dynamic state knowledge, which operationally would be based on the outcome of relative

state estimation.

This Chapter is organized as follows. First, this Chapter will motivate the use of sam-

pling algorithms for approximating the probability of joint-time events, i.e., events that

involve the application of a single logical condition over a finite time interval (such as

the Pc) after propagating an initial distribution through a dynamic process. Under certain

conditions, it will be shown that estimating the probability of joint-time events implies

the need for computing probabilities over a number of sets that is a combinatorial func-

tion of the number of timesteps into which the time interval is subdivided. Second, the
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Mahalanobis Shell Sampling (MSS) algorithm is developed to geometrically sample from

non-degenerate multivariate, normal distributions in a way that allows for obtaining an

arbitrary amount of sample points that may regarded as probabilistic outliers without un-

duly penalizing sample size, for the purpose of reproducing the probability of rare events

(specifically, those involving probability distribution tails). Third, MSS estimators for the

sample mean and covariance are presented which are unbiased over invertible linear trans-

formations, and MSS estimators for probability measures (over measurable subsets) are

presented which have asymptotically unbiased convergence. In particular, MSS probability

measure estimators are applied to samples in relative dynamic state space for approximat-

ing probabilistic collision risk indicators. Fourth, a computational investigation of MSS

stochastic convergence properties is undertaken for reproducing the sample mean, covari-

ance, and IPC, in order to validate application of the MSS method in an SFF collision risk

quantification example. Together, these contributions make the MSS algorithm an attractive

methodology in the contexts of SFF COLRM and SFF GN&C.

6.2 Background

6.2.1 Notation adjustments for this Chapter

The Notation and Nomenclature used in this Chapter, as well as the deterministic defini-

tion of collision events (derived from relative-attitude abstraction, and induced by arbitrary

a-norm balls in relative position space), and the definition of stochastic collision risk mea-

sures (in both an instantaneous and joint-time sense), are addressed in Chapter 2.

Such general Notation and Nomenclature are made more specific for this Chapter as

follows. First, the balls and spheres used are only those with respect to the Euclidean

norm; additionally, only open balls are employed. (See Definition 1.) Hence, implicitly

a = 2 or a = Eu; consequently, the a-norm symbol is omitted throughout this Chapter.

(See Section 2.2.) Note: when the dimension of elements in Bs
r (x) is implicit, it is referred

to as Br (x) for simplicity. Additionally, the symbol “S(s−1)” denotes S(s−1)
1

(
0s×1

)
, i.e.,
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the unit (s − 1)-sphere centered at the origin. From the aforementioned, it follows that

collision sets and probabilities are induced from instantaneous collision conditions based

on open balls with respect to the Euclidean norm in relative position space.

Second, the formulation for collision sets and stochastic collision risk measures, whether

instantaneous or joint-time, are based on time-invariant joint-hard body radii. In other

words, within this Chapter, formulations of instantaneous collision sets and the IPC, as

well as JTC set and the Pc measure, implicitly assume that the corresponding joint HBR is

constant throughout the propagation horizon.

The foregoing assumptions are reflected in the notation adjustments concerning the

following sets and probabilities:

• Instantaneous collision set in relative position space, denoted as Vi,j (see Notation 5)

• Instantaneous collision set in relative state space, denoted as Ci,j (see Eq. 2.30)

• Instantaneous probability of collision, IPCi,j(t) (see Definition 7)

• Joint-time collision set, JTCi,j[t0, tf ] (see Definition 9)

• Joint-time probability of collision, Pci,j[t0, tf ] (see Definition 10)

6.2.2 Motivation for a sampling algorithm for Pc computation

Proposition 21 (Measurability of JTC[38]). Let Remark 8 hold. Assume the function

Ft0(t, x) (see Eq. 2.38) is continuous in t and x. Then, the JTCi,j[t0, tf ] set (see Defi-

nition 9) is an open set (and hence, it is a measurable subset of RnX). Furthermore, the

JTCi,j[t0, tf ] set can be computed as a countable union of sets, as given by

JTCi,j[t0, tf ] =
⋃

c∈Q∩[0,1]

[
FhT (c),t0

]−1
[Ci,j(hT (c))] (6.1)
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where Ft,t0 : RnX → RnX is as defined in Eq. 2.39, and hT : [0, 1]→ [t0, tf ] is defined as

hT (c) = t0 + (tf − t0)c (6.2)

for c in [0, 1]. ♢

Proof. This result follows from Proposition 17, by letting the a-norm be given by the Eu-

clidean norm (i.e., a = Eu, or a = 2), and by letting the joint-HBR time history be constant.

That is, li,j : [t0, tf ]→ (0,∞) is given by

li,j(t) = L

for some scalar constant L > 0, for t ∈ [t0, tf ].

Proposition 21 gives justification for a discrete-time approximation to the JTC, specifi-

cally, as given by

JTCi,j[t0, tf ] =
⋃
N∈N

JTCN
i,j[t0, tf ] (6.3)

where the set JTCN
i,j[t0, tf ] is an equal-step discretization of JTCi,j[t0, tf ] given by

JTCN
i,j[t0, tf ] =

N⋃
k=0

BN,k (6.4)

BN,k =
[
FhT ( k

N ),t0

]−1
[
Ci,j

(
hT

(
k

N

))]
(6.5)

for k ∈ {0, . . . , N}. It should be noted that, for such a k,

IPCi,j

(
hT

(
k

N

))
= p

(
Xi,j(t) ∈ Ci,j

(
hT

(
k

N

)))
= p

(
Xi,j(t0) ∈

[
FhT ( k

N ),t0

]−1
[
Ci,j

(
hT

(
k

N

))])
= p

(
Xi,j(t0) ∈ BN,k

)
(6.6)
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It follows that the N -discrete timestep approximation to the Pc, denoted by PcNi,j[t0, tf ],

may be computed as

PcNi,j[t0, tf ] = p
(
Xi,j(t0) ∈ JTCN

i,j[t0, tf ]
)

=
N∑
k=0

IPCi,j

(
hT

(
k

N

))
+

N∑
k=1

(−1)k
(N+1
k+1)∑
l=1

p

Xi,j(t0) ∈
⋂

n∈Υ(l|N,k)

BN,n−1

 (6.7)

where Υ(l|N, k) is the lth combination of
(
N+1
k+1

)
. For example, for N = 3, after temporar-

ily denoting p
(
Xi,j(t0) ∈ BN,k

)
as p (BN,k), the expression in Eq. 6.7 becomes

PcNi,j[t0, tf ] =

[
IPCi,j (t0) + IPCi,j

(
2t0 + tf

3

)
+ IPCi,j

(
t0 + 2tf

3

)
+ IPCi,j (tf )

]
− [p (BN,0 ∩BN,1) + p (BN,0 ∩BN,2) + p (BN,0 ∩BN,3)

+ p (BN,1 ∩BN,2) + p (BN,1 ∩BN,3) + p (BN,2 ∩BN,3)]

+ [p (BN,0 ∩BN,1 ∩BN,2) + p (BN,0 ∩BN,1 ∩BN,3)

+p (BN,0 ∩BN,2 ∩BN,3) + p (BN,1 ∩BN,2 ∩BN,3)]

− p (BN,0 ∩BN,1 ∩BN,2 ∩BN,3) (6.8)

This example illustrates that, even for a finite-timestep Pc approximation, whose com-

putation scheme relies on propagation of relative state statistics over an equal-step dis-

cretization of the propagation horizon, the number of distinct sets whose probability must

be computed (for an unbiased estimate) is a combinatorial function of the number of

timesteps. This process is illustrated for the case of two timesteps in Figure 6.1, which

follows the same example listed on Figure 2.3, specifically, focusing on the regions of the

support of the initial relative state pdf which indicate collision at either timestep, as well as

the corresponding probability measures associated with each subset.

These observations motivate use of sampling schemes, from relative orbital dynamic

state probability distributions, with application to finite-timestep Pc computation. For a
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Figure 6.1: Computation of finite-step approximation to the Pc, two timesteps (N = 1).

fixed timestep length, and for a given logical condition, sampling schemes enable sequen-

tial computation of joint-time probabilities via the following process: a) performing logical

checks via sequential OR operations on each element of the sample as it is propagated over

time, and b) approximating the corresponding probability of the joint-time logical condi-

tion as a function of the weights of those points which have been flagged at any previous

timestep. Hence, for PcNi,j[t0, tf ] approximations, employing sampling schemes is prefer-

able to direct numerical integration, because the former method only requires sequentially

checking a single logical condition over time, while the latter method requires ascertain-

ing the locations of combinatorially-many regions in initial relative state space, as well as

computing the corresponding probability masses within each region. Furthermore, sample

schemes allow adjusting timestep length arbitrarily, which allows for easily increasing the

resolution of joint-time probabilities.

6.2.3 Review of Monte Carlo Stochastic Convergence Properties

A review of the definition of Monte Carlo (MC) sample estimators of random variable

mean and covariance, of MC finite and asymptotic error properties for these estimators,

and of probability measure estimators, is discussed in Appendix B. This review is under-

taken in order to provide a theoretical baseline upon which to quantitatively compare the
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performance of the MSS algorithm.

6.3 Theory

In the context of random variables with non-degenerate, normal distributions, the Maha-

lanobis Shell Sampling (MSS) algorithm is designed to produce weighted samples that have

a spatially and statistically “uniform” distribution within compact, simply connected sets

whose boundaries consist of points with constant Mahalanobis distance. The purpose of

this process is to “directly” sample points which may be regarded as probabilistic outliers.

This allows for studying the properties of rare events (that is, events with low probability)

without unduly penalizing sample size.

6.3.1 Probabilistic results on Mahalanobis shells

Within this subsection, let X ∼ N (µ, Σ), where µ ∈ Rs, Σ ∈ Rs×s, Σ > 0. The

Mahalanobis distance in X , DX : Rs → [0,∞), is defined as[68, 115, 116]

DX(x)
.
=

√
(x− µ)T Σ−1 (x− µ) (6.9)

for x ∈ Rs. Note: it is meaningful to define the Mahalanobis distance for general prob-

ability distributions, and this is often done to evaluate the presence of outlier points for

empirical, sample distributions of arbitrary phenomena.[115, 116, 117, 118] However, use

of the Mahalanobis distance in this work is restricted to non-degenerate normal distribu-

tions.

Let 0 ≤ d < ∞. Then, the d-Mahalanobis contour and volume of X , Ld (X) and

Vd (X), respectively, are the sets defined as

Ld (X) = {x ∈ Rs : DX(x) = d} (6.10)

Vd (X) = {x ∈ Rs : DX(x) ≤ d} (6.11)
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Figure 6.2 illustrates the notions of Mahalanobis contour and volume for a non-degenerate,

normally distributed (finite-dimensional) random variable X . The d-Mahalanobis volumes

Vd (X) are hypervolumes (specifically, hyperellipsoids) while the d-Mahalanobis contours

Ld (X) are hypersurfaces (specifically, hyperellipses) in s-dimensions.mahalanobis_contour_volume_v7 
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Figure 6.2: d-Mahalanobis volume and contour: a) Vd and b) Ld, respectively.

Let 0 ≤ d1 < d2 <∞. Then, the d1, d2-Mahalanobis shell of X , V d2
d1

(X), is defined as

V d2
d1

(X) = {x ∈ Rs : d1 ≤ DX (x) ≤ d2} (6.12)

In the context of multivariate normal probability distributions, it is a known theoretical

result that[46]

pX
(
V d2
d1

(X)
)
= p

(
X ∈ V d2

d1
(X)

)
= cdfχ2

s

(
(d2)

2)− cdfχ2
s

(
(d1)

2) ≥ 0 (6.13)

For nondegenerate, normal random variables, as illustrated in Figure 6.3, probability

measures over s-hypervolumes whose boundaries are (s − 1)-hypersurfaces of constant

Mahalanobis distances (say, d1 and d2) can be found analytically as functions that depend

only on d1 and d2 (through chi-square cdfs), regardless of the statistics and dimension of

the random variable.
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Figure 6.3: Probability measures of normally distributed random variables over s-
hypervolumes whose boundaries are (s − 1)-hypersurfaces (of constant d-Mahalanobis
distance).

6.3.2 Introducing the Mahalanobis Shell Sampling (MSS) algorithm

Eq. 6.13 is the theoretical basis for the MSS algorithm, which considers a collection of

evenly spaced Mahalanobis shells
{
V dl
dl−1

(X)
}

, l ∈ SNsh
, where Nsh ∈ N, dmax > 0, and

dl = dmax

(
l

Nsh

)
for l ∈ {0, . . . , Nsh} (6.14)

From a measure-theoretic perspective, these shells are non-overlapping in the sense that,

for l ∈ S(Nsh−1),

V
dl+1

dl
(X) ∩ V dl

dl−1
(X) = Ldl (X) (6.15)

and, since non-degenerate normal random variables in Rs have probability measures that

are absolutely continuous with respect to the Lebesgue measure in Rs, the fact that any

d-Mahalanobis contour has zero measure in Rs implies that

pX

(
V

dl+1

dl
(X) ∩ V dl

dl−1
(X)

)
= pX (Ldl (X)) = 0 (6.16)
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Then, as shown in Algorithm 1, for l ∈ SNsh
, a uniform, i.i.d. sample of the unit (s − 1)-

sphere, S(s−1), is transformed into a sample of Ldl+1/2
(X), which is then distributed more

uniformly over V dl
dl−1

(X) through use of a uniform, i.i.d. sample of the unit interval [0, 1]

that is also independent of the S(s−1) sample. Then, the collective weight of each shell is

assigned in accordance with Eq. 6.13, and weights within each shell are evenly distributed

amongst its respective points.

Input: Nsh, Nss, s ∈ N; 0 < dmax <∞
Output: MSS sample

{
x̃l,q
}

, MSS sample weights {wl,q}, {Wl}; l ∈ SNsh
,

q ∈ SNss

Data: µ ∈ Rs, Σ ∈ Rs×s > 0; assumption that X ∼ N (µ, Σ)
1 Nsamples ← NshNss

2 {zk}k∈{1,...,Nsamples} ← output of unit (s− 1)-sphere uniform, i.i.d. sampling
algorithm

3 {uk}k∈{1,...,Nsamples} ← output of uniform, i.i.d. sample on [0, 1] that is independent
from {zk}k∈{1,...,Nsamples}

4 δd ← dmax/Nsh

5 U,Q ∈ Rs×s ← such that Σ = UQUT // output of singular value

decomposition

6 Σ1/2 ← UQ1/2UT

7 for l← 1 to Nsh do
8 dl ← (l − 1)δd
9 Wl ← cdfχ2

s
((dl + δd)

2)− cdfχ2
s
((dl)

2) // probability mass in lth

(s-dimensional) Mahalanobis shell

10 for q ← 1 to Nss do
11 k ← (l − 1)Nss + q

12 x̃l,q ← µ+ (dl + ukδd)
[
Σ1/2

]
zk // point in lth Mahalanobis shell

13 wl,q ← Wl/Nss // same weight for points in the same

Mahalanobis shell

14 return
{
x̃l,q
}
, {wl,q} , {Wl}; l ∈ SNsh

, q ∈ SNss

Algorithm 1: Generation of MSS sample, general s-dimensional, non-degenerate
normal random vector.

The cutoff Mahalanobis distance, 0 < dmax <∞, is used to determine the probabilistic

extent of the points that are preemptively excluded from an MSS sample. Noting that

Nsh⋃
l=1

V dl
dl−1

(X) = Vdmax (X) (6.17)
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then, the constant pexc ∈ (0, 1) is defined as

pexc = pX

(
[Vdmax (X)]C

)
= 1− pX (Vdmax (X)) = 1− cdfχ2

s

(
(dmax)

2) (6.18)

and it represents the collective probability of all the points that are precluded from entering

an MSS sample. Hence, a suitable value of dmax depends on the dimension s and the needs

of the user at hand. Table 6.1 shows values of pexc as function of some representative

dimensions and values of dmax.

Table 6.1: Representative values of pexc as a function of dimension (s) and cutoff Maha-
lanobis distance (dmax).

pexc s = 1 s = 3 s = 6 s = 12
dmax = 1 0.3173 0.8013 0.9856 1.0000
dmax = 3 0.0027 0.0293 0.1736 0.7029
dmax = 4 6.3342× 10−5 0.0011 0.0138 0.1912
dmax = 7 2.5596× 10−12 1.3045× 10−10 7.4559× 10−9 2.0917× 10−6

6.3.3 Theoretical guarantees of the MSS algorithm

In this Subsection, unbiased estimators for the sample mean, covariance, and probability

measures that may be obtained through an MSS sample are presented. Such unbiased

estimators require introducing the following constants:

S1 =

Nsh∑
l=1

Wl = cdfχ2
s

(
(dmax)

2) (6.19)

S2 =

Nsh∑
l=1

W 2
l (6.20)

S3 =
1

s

(
dmax

Nsh

)2 Nsh∑
l=1

Wl

(
l − 1

2

)2

(6.21)

S4 =
1

s

(
dmax

Nsh

)2 Nsh∑
l=1

W 2
l

(
l − 1

2

)2

(6.22)

D1 =
1

12s

(
dmax

Nsh

)2

(6.23)
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Proposition 22 (Unbiased MSS estimators in sample mean, covariance, and probability).

Let s, Nsh, Nss ∈ N, and let 0 < dmax <∞. Let X ∼ N (µ, Σ), where µ ∈ Rs, Σ ∈ Rs×s,

Σ > 0. Let
{
x̃l,q
}

, l ∈ SNsh
, q ∈ SNss be an MSS sample drawn in accordance with

Algorithm 1, with sample weights {wl,q} and {Wl}. Let the constants H and G be defined

as

H =
1

S1

=
1

cdfχ2
s

(
(dmax)

2) (6.24)

G =

[
1 +

H2S2

Nss

]
S3 −

2 (HS4)

Nss

+D1

(
S1 −

HS2

Nss

)
(6.25)

Let µ̂MSS and Σ̂MSS be defined as

µ̂MSS = H

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

x̃l,q (6.26)

Σ̂MSS =
1

G

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

(
x̃l,q − µ̂MSS

) (
x̃l,q − µ̂MSS

)T (6.27)

Then, µ̂MSS and Σ̂MSS are unbiased estimators of µ and Σ; that is,

E [µ̂MSS] = µ (6.28)

E
[
Σ̂MSS

]
= Σ (6.29)

Furthermore, let E ⊆ Rs be a measurable subset of Rs, and let fE : Rs → {0, 1} be the

characteristic function of E. Let pE = pX (E) = p (X ∈ E). Let p̂E,MSS be defined as

p̂E,MSS =

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

fE
(
x̃l,q
)

(6.30)

Assume E ⊆ Vdmax (X). Then, in the limit, p̂E,MSS is an unbiased estimator of pE; that is,

lim
Nsh→∞

E [p̂E,MSS] = pE (6.31)
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If E ⊈ Vdmax (X), then, the error between pE and E [p̂E,MSS], in the limit, is bounded above

by ∣∣pE − lim
Nsh→∞

E [p̂E,MSS]
∣∣ = pE − lim

Nsh→∞
E [p̂E,MSS] ≤ pexc ♢ (6.32)

Proof. This result is an aggregation of the results listed in Propositions 72 and 72 (for unbi-

ased MSS sample mean and covariance estimators, respectively), as well as in Proposition

70 (for asymptotically unbiased MSS estimators of probability measures). Such intermedi-

ate results are described in Chapter F.

It must be noted that the sample mean and covariance estimators proposed in Propo-

sition 22 hold under invertible linear transformations; hence, they are applicable to initial

distributions that are propagated through linear dynamics. However, these estimators are

not generally applicable as estimators for sample mean and covariance after propagation

through arbitrary nonlinear processes. This is the subject of future work.

In general, it cannot be guaranteed that an arbitrary measurable subset (e.g., E ⊆ Rs) of

interest will be contained in Vdmax (X), especially if the MSS sample points in question are

propagated through arbitrary dynamic processes. However, Proposition 22 implies that if

pexc is “sufficiently” low, then, in the limit, p̂E,MSS is approximately an unbiased estimator

for pE . That is, for “sufficiently” high dmax,

lim
Nsh→∞

E [p̂E,MSS] ≈ pE (6.33)

Computational formulae for these unbiased MSS sample estimators are presented sub-

sequently. Let µ̂l and Σ̂l denote the sample mean and covariance (see Eqns. B.3 and B.4)

of the MSS sample points in the lth shell, i.e.,
{
x̃l,q
}

, q ∈ SNss . Then, the µ̂MSS estimator

may be computed as the sample mean of {al}, l ∈ SNsh
, where

al = (NshHWl) µ̂l (6.34)
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Additionally, the Σ̂MSS estimator may be computed as

Σ̂MSS = (−1)
(
S1

G

)
(µ̂MSS) (µ̂MSS)

T +

(
1

G

) Nsh∑
l=1

Wl

([
1− 1

Nss

]
Σ̂l + (µ̂l) (µ̂l)

T

)
(6.35)

Finally, the p̂E,MSS estimator may be computed as the sample mean of {bl}, l ∈ SNsh
, where

bl = (NshWl) µ̂E,l (6.36)

and where µ̂E,l denotes the sample mean of the fE-transformed MSS sample points in the

lth shell; that is,
{
fE
(
x̃l,q
)}

, q ∈ SNss .

6.3.4 MSS application to collision probability computation

The MSS algorithm may be applied to collision probability computation as illustrated in

Figure 6.4, which shows a notional picture of a relative state space, with the relative position

on one axis and relative position rate on the other axis, as well as an MSS sample of a

normally distributed instantaneous relative state distribution on this relative state space. For

the case of IPC computation, the entire MSS sample is passed through the characteristic

function of the instantaneous collision set, which identifies MSS particles that indicate an

instantaneous collision event.

For the case of Pc computation, an MSS sample is made of the initial distribution of a

relative dynamic state, and after propagating the MSS sample through an arbitrary dynamic

process, the instantaneous collision condition is checked sequentially for each particle,

and the JTC set is approximated via logical OR operations (on the instantaneous collision

condition) applied to each sample particle. In both cases, these collision probabilities are

computed by adding the MSS weights that meet the respective collision condition, whether

instantaneous or joint-time, as listed in Eq. 6.30.
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Figure 6.4: Conceptual application of MSS to IPC computation for a system with one-
dimensional relative position and normally distributed (two-dimensional) relative state.

6.3.5 Application of scrambled Sobol nets for MSS sequence generation

The MSS algorithm requires the use of random, independent, uniformly distributed sam-

ples on the unit (s − 1)-sphere, S(s−1), and on the unit interval, [0, 1]. In this Chapter,

computational investigations of MSS asymptotic convergence in the MSE sense are un-

dertaken by utilizing linearly scrambled Sobol sequences on the unit hypercube, which

are then transformed into samples of the unit hypersphere via the Lambert area-preserving

transform.[119]

6.3.5.1 Overview of Sobol low-discrepancy sequence generation

The Sobol method is an instance of low-discrepancy sequence generation methods, which

aim to produce a finite point set in the unit s-hypercube ([0, 1]s) that minimizes the dis-

crepancy function of the point set, which measures the quality of the spacing between

points.[120] By so doing, low-discrepancy sequences, also known as quasi-random num-

ber sequences (qrns), produce points are uniformly spaced in [0, 1]s (in a spatial sense), and

whose application as quadrature rules for the estimation of integrals over [0, 1]s (also known

116



as quasi Monte Carlo (QMC) quadrature rules) have beneficial error properties compared

to Monte Carlo because the former fill the unit hypercube in a much more regular way than

the latter.[73]

Let Pn = {yk}, k ∈ Sn denote any point set in [0, 1]s. A foundational result of the

study of low discrepancy sequences is the Hoksma-Hlawka inequality, which states that,

for a function f : [0, 1]s → R with bounded variation V (f) in the sense of Hardy and

Krause, for the integral If given by

If =

∫
[0,1]s

f(y) dy (6.37)

and, if the corresponding point set estimate for the integral If , Îf , is given by

Îf =
1

n

n∑
k=1

f(yk) (6.38)

then, the Îf−error satisfies

Îf−error =
∣∣∣Îf − If ∣∣∣ ≤ V (f)D∗(Pn) (6.39)

where D∗(Pn) is the star discrepancy of the point set Pn.[121, 122] On one hand, the

bounded variation V (f) is independent of the point set Pn; on the other hand, the star

discrepancy D∗(Pn) does not depend on the function f to be integrated. Hence, the goal

of low discrepancy sequence generation is to minimize D∗(Pn), and the asymptotic rate of

deterministic convergence of the Îf−error is the same as that of D∗(Pn).[73]

Definition 23 ((t,m, s)-nets and (t, s)-sequences [120]). Let b be a positive integer greater

than or equal to 2. Let q1, . . . , qs ∈ N, and let q = q1 + · · · + qs. A point set Pn in [0, 1]s

with n = bm points is (q1, . . . , qs)-equidistributed in base b if every cell (or elementary

117



interval) of the form

J(r1, . . . , rs) =
s∏

j=1

[
rj
bqj
,
rj + 1

bqj

)
for 0 ≤ rj < bqj , rj integer, j ∈ {1, . . . , s}, contains bm−q points from Pn.

Then, the point set Pn is a (t,m, s)-net in base b if it is (q1, . . . , qn)-equidistributed

in base b whenever q ≤ m − t for some integer t ≥ 0. A (t, s)-sequence is a sequence

{yk}k∈N of points in [0, 1]s for which every b-ary finite subsequence of the form {yk},

k ∈ {lbm + 1, . . . , (l + 1)bm} (with m ≥ t and some integer l ≥ 0) is a (t,m, s)-net in

base b. The smallest value for which Pn is a (t,m, s)-net is called the t-value of Pn, and

similarly for (t, s)-sequences. ♢

The Sobol qrns method employs XOR bitwise, modulo 2 arithmetic to produce direc-

tion numbers, which are used to generate (t, s)-sequences via recurrence relations, and

these direction numbers are chosen such that the corresponding sequences satisfy certain

uniformity features known as Property A and Property A’.[123] For functions f of bounded

variation in the sense of Hardy and Krause, Sobol (t,m, s)-nets achieve Îf−error =

O
(
n−1 [log n](s−1)

)
, and Sobol (t, s)-sequences achieve Îf−error = O (n−1 [log n]s).[121,

122] Hence, in practical applications, it is helpful to choose the number of Sobol sample

elements to be a power of 2, as better discrepancy performance can be expected, and if

initial sequence elements are to be skipped (e.g., to avoid performance degradation due to

poor choice of direction numbers), it is advisable for the number of points to be skipped to

be the largest power of 2 smaller than the number of sample elements.[124]

6.3.5.2 Introduction to scrambled Sobol sequences

One of the major drawbacks of low-discrepancy sequences, which are deterministic, is that

sample elements may not be regarded as statistically independent; hence, in general, via

application of low-discrepancy sequences to integration in the unit hypercube, unbiased in-

tegration cannot be guaranteed, and variance estimation cannot be undertaken.[73] The aim
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of randomized quasi-Monte Carlo methods (RQMC) is to introduce randomness into low-

discrepancy sequences so as to achieve a) unbiased integration, and variance estimation;

and b) preserving low-discrepancy properties.[125]

The gold standard for RQMC methods is nested random scrambling, also referred

to as Owen scrambling, which, when employing (t,m, s)-nets to integrate a function f ,

achieves Îf−RMSE = O
(
n−1/2

)
if f is square integrable (even if f is not of bounded

variation), and which achieves Îf−RMSE = O
(
n− 3

2 [log n]
(s−1)

2

)
if f is continuously dif-

ferentiable.[120, 125] For the case of square integrable functions, Owen scrambling RMSE

performance is comparable to Monte Carlo, which suggests that, asymptotically, employing

the former is no worse than the latter. However, for continuously differentiable functions,

employing Owen scrambling results in considerable convergence improvements compared

to Monte Carlo.

Nevertheless, Owen scrambling is computationally demanding; hence, approximations

to Owen scrambling such as random linear scrambling have been developed. It has been

shown that random linear scrambling achieves unbiased integration, and it retains Owen

scrambling-like RMSE convergence rates for square integrable and continuously differ-

entiable functions.[126] In this Chapter, random linear scrambling of Sobol (t,m, s)-nets

is implemented in MATLAB R2020b as follows.[127] First, a sobolset object is cre-

ated, and random linear scrambling is set via the ‘MatousekAffineOwen’ setting of

the scramble function. Then, scrambled Sobol sequence elements are generated via the

net function (with appropriate exclusion of initial elements in the sequence) as described

in Hong et al.’s work.[128]

6.3.5.3 Application of scrambled Sobol qrns to MSS

Scrambled Sobol nets are employed to make MSS samples within Vdmax (X) ⊆ Rs in the

following way. First, a single scrambled Sobol net is sampled in [0, 1]s. Second, the original

net is marginalized to the first (s − 1) dimensions, which renders a scrambled Sobol net
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in [0, 1](s−1); via the Lambert equal-area transform, this set is mapped into a sample of the

(s − 1)-unit hypersphere, S(s−1), which can then be regarded as statistically uniform on

S(s−1). Third, the sth dimension of the original sample, which is statistically uncorrelated

from the other (s − 1)-dimensions of the original sample, is itself a statistically uniform

sample on [0, 1]. The outcome of this process yields statistically uniform, uncorrelated

samples in [0, 1] and S(s−1), which are then employed via Algorithm 1 to generate MSS

samples.

6.4 Implementation – Test methodology for MSS stochastic convergence properties

This Chapter is a computational investigation of whether, for the MSS algorithm, the

µ̂−MSE and Σ̂−MSE asymptotic convergence rate in mean, covariance, and IPC may

be modeled as

(µ̂−MSE) (n) = (Cµ)n
−u (6.40)(

Σ̂−MSE
)
(n) = (CΣ)n

−u (6.41)

and whether u > 1. If both are true, then the MSS algorithm may be regarded as more

computationally efficient, asymptotically, than Monte Carlo – in settings where MSS may

be applicable. For further discussion on the stochastic convergence properties of the Monte

Carlo method, the reader is referred to Appendix B.

6.4.1 Clohessy-Wiltshire (CW) vector and matrix norm

Appendix D introduces the Clohessy-Wiltshire (CW) vector and matrix norms for vectors

in R6 and matrix norms R6×6. These norms are developed in order to assign a magnitude

to the first and second order statistics of the CW relative dynamic state via a normalization

that allows for meaningful combinations of relative position and relative position rate in

consistent, normalized unitless values. Additionally, Appendix D discusses the equivalence
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of convergence criteria in terms of the CW vector and matrix norms as compared to the

Euclidean vector and Frobenius matrix norms, respectively.

6.4.2 Estimating sample MSE

As mentioned in Section A.2, the mean and covariance of R, Ṙ, and X may be obtained

analytically as per such Section; hence, it is assumed that the true values of these statistics

are known for the purposes of MSE error analysis. For the rest of this chapter, the “i, j”

subscript is omitted.

Let BC(t) be a Bernoulli random variable with value BC(t) = 1 if the instantaneous

collision event [i.e., Vi,j(t), or Ci,j(t)] is satisfied. That is, BC(t) is defined as

BC(t) =


1 if ∥R(t)∥2 < li,j

0 otherwise
(6.42)

Thus, the probability mass function of BC(t), pmfBC(t) : R→ {0, 1} is given by

pmfBC(t)(x) =


IPC(t) if x = 1

1− IPC(t) if x = 0

0 otherwise

(6.43)

Hence, the IPC(t) can be thought of as the expected value of BC(t); that is,

E [BC(t)] = IPC(t) (6.44)

The true IPC(t) value is approximated as the outcome of a three-dimensional numerical

quadrature scheme based on the instantaneous relative position statistics, implemented us-

ing the integral3 function in MATLAB R2020b.[129] Because BC(t) is a Bernoulli
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random variable, the variance of BC(t) is analytically given by

Var (BC(t)) = [IPC(t)] [1− IPC(t)] (6.45)

Thus, the variance of BC is not examined further in this Chapter.

For n in N, for an i.i.d. sample {Xk}k∈Sn
, the sample estimators of µ and Σ may be

obtained as

µ̂ = fsample (X1, . . . , Xn) (6.46)

Σ̂ = gsample (X1, . . . , Xn) (6.47)

Since the goal is to estimate the MSE, the drawing of a sample of X is repeated Nrep times,

where Nrep ∈ N; that is, for all j ∈ SNrep , a sample
{
Xj

k

}
k∈Sn

is drawn. Sample estimates

of the µ̂−MSE and Σ̂−MSE, denoted by µ̂−M̂SE and Σ̂−M̂SE, are obtained as follows.

For all j ∈ SNrep ,

µ̂j = fsample

(
Xj

1, . . . , X
j
n

)
(6.48)

Σ̂j = gsample

(
Xj

1, . . . , X
j
n

)
(6.49)

Then, for R, Ṙ, and BC ,

µ̂−M̂SE =
1

Nrep

Nrep∑
j=1

∥∥µ̂j − µ
∥∥2
2

(6.50)

Σ̂−M̂SE =
1

Nrep

Nrep∑
j=1

∥∥∥Σ̂j − Σ
∥∥∥2
F

(6.51)
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and, for X,

µ̂−M̂SE =
1

Nrep

Nrep∑
j=1

∥∥µ̂j − µ
∥∥2
CW

(6.52)

Σ̂−M̂SE =
1

Nrep

Nrep∑
j=1

∥∥∥Σ̂j − Σ
∥∥∥2
CW,F

(6.53)

It can be verified that µ̂−M̂SE and Σ̂−M̂SE are unbiased estimators for µ̂−MSE and

Σ̂−MSE; that is,

E
[
µ̂−M̂SE

]
= µ̂−MSE (6.54)

E
[
Σ̂−M̂SE

]
= Σ̂−MSE (6.55)

In this Chapter, the approximation will be made that

µ̂−MSE ≈ µ̂−M̂SE (6.56)

Σ̂−MSE ≈ Σ̂−M̂SE (6.57)

and regression analysis on such MSE errors will be performed upon the basis of this ap-

proximation.

6.4.3 Regression analysis

6.4.3.1 Setting up regression analysis

The purpose of this Chapter is to study asymptotic MSE convergence for certain sampling

methods. Since the Monte Carlo MSE can be modeled as a power function fit of the form

(MSE) (n) = Cn−u (6.58)
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then, multiple linear regression is performed using the following hypothesis model

y = β0 − β1x+ ε (6.59)

In this context, x denotes the prediction variable, y denotes the response variable, ε denotes

the error of the fit, and (β0, β1) represent the model parameters given by

x = log10(n) (6.60)

y = log10(MSE) (6.61)

β0 = log10(C) (6.62)

β1 = u (6.63)

Let [x], [y], and [ε] denote the collection of prediction and response variable and error

observations, as given by

[x]T =

 1 . . . 1

x1 . . . xNn

 (6.64)

[y]T =

[
y1 . . . yNn

]
(6.65)

[ε]T =

[
ε1 . . . εNn

]
(6.66)

Thus, the relationship between prediction and response variables is given by

[y] = [x] β + ε (6.67)

where βT = [β0, β1]. Then, the least squares error estimate of β, β̂, is given by

β̂ =
(
[x]T [x]

)−1

[x]T [y] (6.68)
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and the least squares model fit is given by

ŷ = β̂0 − β̂1x (6.69)

6.4.3.2 Goodness of fit

The goodness of fit of the model listed in Eq. 6.69 is characterized via the coefficient of

determination, R2
fit, defined as

R2
fit = 1− SSEfit

SSTfit

(6.70)

SSEfit =
Nn∑
i=1

(yi − ŷi)2 (6.71)

SSTfit =
Nn∑
i=1

(yi − ȳ)2 (6.72)

ȳ =
1

Nn

Nn∑
i=1

yi (6.73)

and by confidence intervals of the fit parameters. The covariance of β, Σβ , is given by

Σβ = (MSEfit)
(
[x]T [x]

)−1

=

 σ2
β0

ρ(β0,β1)σβ0σβ1

ρ(β0,β1)σβ0σβ1 σ2
β1

 (6.74)

where the mean square error of the regression fit (denoted as MSEfit in order to distinguish

it from the sample statistic estimator MSE which is the subject of this Chapter) is given by

MSEfit =
1

Nn − 2
SSEfit (6.75)

The denominator in the previous expression is (Nn − 2) and not Nn because the model is

constrained by two degrees of freedom (i.e., the model has two parameters in the regres-

sion).

Figure 6.5 shows an example of a 4−σ joint confidence region (CR) in (β0, β1) param-
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Figure 6.5: 4−σ confidence region on fit parameter space, regression on IPC at Time =
1.222 orbit periods, Monte Carlo sample from CW relative state, Example 3D.001.

eter space (which is the region inside the 4−σ contour based on Σβ and centered at β̂),

specifically for the regression on the IPC at time t2 = 1.222 orbit periods as obtained from

Monte Carlo-sampling the entire relative state. Implicit in this construction is the assump-

tion that the error distribution of β about β̂ is normal, i.e., that β ∼ N
(
β̂, Σβ

)
. As may

be gleaned from Figure 6.5, there is a significant degree of linear correlation between the

dispersions of β0 and β1; in particular, ρ(β0,β1) = 0.9741 for this regression case. How-

ever, such high correlations are common for all regression cases observed. Hence, when

marginalizing such a confidence region, the confidence intervals (CIs) obtained in β0 and

β1 are conservative because of the high correlation observed.
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6.5 Results and discussion

6.5.1 Test case and sample parameters for MSS stochastic convergence study

6.5.1.1 Test case for MSS stochastic convergence study

The test case chosen for study of MSS stochastic convergence properties is Example 3D.001,

which is subject to CW dynamics, and whose IPC waveform is illustrated in Fig. 6.6. (Note:

all test cases in this dissertation are described in Section A.2.)

Figure 6.6: Sample, true, and [x]H-[y]H projection IPC waveforms, Example 3D.001.

Example 3D.001 assumes a joint hard-body radii of li,j = 32 m. This figure is based

on an estimate of Hubble Space Telescope’s hard body radius of li = 16 m.[130] For

the purposes of this Chapter, having such a large joint hard-body radius allows obtaining

higher (and thus, more significant) IPCs. Convergence properties are tested for the three

timesteps in Example 3D.001 with IPC local maxima, listed in Table 6.2. Truth values for

mean and covariance are propagated analytically, that is, using the analytically propagated

relative state statistics listed in Eqns. A.22-A.23, while IPC values are obtained through

multi-dimensional brute-force quadrature in MATLAB R2020b,[129] specifically, via the

integral3 function by integrating the instantaneous relative position pdf, which is ob-
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tained through the marginalization listed in Eq. A.24. Stochastic convergence results in

MSS sample mean and covariance would also directly apply to other MSS samples with

the same covariance matrix because, per the assumption of normality of the relative state

distribution, relative state sample points for all cases are statistically equal to within a con-

stant shift (namely, the assumed expected value).

Table 6.2: Peak IPC times, Example 3D.001.

Peak time units t1 t2 t3
Hours 1.0797 1.8946 2.6805
Chief Orbit Periods 0.6965 1.2222 1.7292

6.5.1.2 Sample parameters for MSS stochastic convergence study

For a fixed dmax, and for an underlying qrns sampling algorithm, the main tunable param-

eters in an MSS sample are the number of samples per shell Nss, and the number of shells,

Nsh. Choice of these parameters for MSS stochastic convergence analysis is motivated by

insights into convergence rates in scrambled Sobol net-based unit hypercube integration,

where, through computational experiments, it can be seen that beneficial convergence rates

are only achieved with full nets (that is, with sample sizes equal to 2n1 for some integer

n1), and that convergence rate degradation can be experienced without full nets.[125]

In this Chapter, Nsh is fixed, and regression analysis on stochastic MSS convergence

properties is performed by increasing Nss in [2n1 , 2n2 ] for integers n1 and n2, and n1 <

n2, distinguishing between ‘complete’ nets (i.e., those that only allow Nss = 2n3 for

integers n3 such that n1 ≤ n3 ≤ n2), and ‘incomplete’ nets (i.e., those that allow for

any integer Nss between 2n1 and 2n2). (Details on n1, n2, and n3 are given in Table 6.3.)

This process is repeated for Nsh ∈ {512, 700, 1024}, and for dmax = 7. It is expected

thatNsh andNss choices whose correspondingNsamples = NshNss imply drawing full Sobol

nets (namely, Nsh ∈ {512, 1024} with ‘complete’ Nss) would display better conver-

gence rates compared to Nsh and Nss choices without full Sobol nets (e.g., Nsh = 700
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Table 6.3: Choice of Nss sequence size for regression analysis.

Nss type n1 n2 Choice of n3

‘complete’ 6 12
All integers

between n1 and n2

‘incomplete’ 6 12
100 equally spaced points between

n1 and n2 (with rounding)

with ‘incomplete’ Nss). Additionally, the number of initial sample elements skipped

is equal to the greatest integer power of 2 less than or equal to the number of samples.

6.5.2 Validation of Monte Carlo MSE convergence rate

A computational investigation on the Monte Carlo exponential rate of stochastic conver-

gence in the MSE sense, uMC, was undertaken. Samples were drawn in MATLAB R2020b,

through the mvnrnd function,[127] and applying the Mersenne Twister pseudo-random

number generator. Each sample had 3.2× 108 elements; such sample sizes were chosen to

ensure that samples are able to reproduce events with probabilities greater than 1 × 10−7,

which is considered a practical threshold for IPC significance, as discussed in Ref. [28].

The results of this analysis are shown in Fig. 6.7.

It was found that, when used to reproduce sample mean, covariance, and IPC via sam-

ples of R, Ṙ, and X (when applicable), for all timesteps chosen, the 4−σ CI on uMC forms

a tight bound around u = 1. This computational result validates the analytical conclusion

that uMC = 1 precisely. Therefore, uMC = 1 becomes a baseline for sampling error perfor-

mance comparison in the following way. In order to quantify improvements over the Monte

Carlo method, if another sampling method also fits the hypothesis of an exponential rate

of stochastic MSE convergence (see Eq. 6.59), then it is a legitimate approach to compare

whether the proposed sampling method achieves u > uMC = 1.
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Figure 6.7: Monte Carlo asymptotic MSE-coefficient of determination results (Nrep =
1000), Example 3D.001.

6.5.3 MSS results, adequacy of error fit model

This Subsection addresses the adequacy of modeling MSS sample statistic error evolution

(as a function of sample size) in the MSE sense as a power function fit, such as is listed in

Eq. 6.59. This is measured via the coefficient of determination of the model fit, R2
fit, when

considering sample mean, covariance, and IPC, and the results are shown in Fig. 6.8 for R

samples, in Fig. 6.9 for Ṙ samples, in Fig. 6.10 for X samples.

It is found that, except for the µ̂−MSE in R and Ṙ MSS samples, all other MSS sample

statistic model fits exhibit R2
fit > 0.99. It is also found that all MSS sample statistic model

fits studied (namely, µ̂−MSE, Σ̂−MSE, and ÎPC−MSE) exhibit R2
fit > 0.955. These

results suggest that it is adequate to approximate the MSS error evolution in the MSE sense

(as a function of sample size) as a power function fit for different originating samples and

statistics of interest, although this is an imperfect relationship. These results hold regardless

ofNsh, peak IPC times, andNss types (see Table 6.3). In particular, in view of these results,

it is meaningful to investigate whether the exponential rate of stochastic convergence in the
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Figure 6.8: MSS asymptotic MSE-fit coefficient-of-determination (R2
fit) results (Nrep =

100), dmax = 7, CW relative position, Example 3D.001: blue) ‘complete’ Nss, and
orange) ‘incomplete’ Nss.

Figure 6.9: MSS asymptotic MSE-fit coefficient-of-determination (R2
fit) results (Nrep =

100), dmax = 7, CW relative position rate, Example 3D.001: blue) ‘complete’ Nss, and
orange) ‘incomplete’ Nss.

MSE sense, uMSS, satisfies uMSS > uMC = 1, and to use these results to draw conclusions

regarding MSS asymptotic convergence performance compared to Monte Carlo’s.
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Figure 6.10: MSS asymptotic MSE-fit coefficient-of-determination (R2
fit) results (Nrep =

100), dmax = 7, CW relative state, Example 3D.001: blue) ‘complete’Nss, and orange)
‘incomplete’ Nss.

6.5.4 Computational results on MSS stochastic convergence properties

The MSS asymptotic convergence rate results are listed in Fig. 6.11 for R samples, in Fig.

6.12 for Ṙ samples, in Fig. 6.13 for X samples, in terms of 4−σ confidence intervals on

the MSS exponential rate of stochastic convergence, uMSS.

6.5.4.1 MSS asymptotic convergence rate results, sample mean and covariance

For the µ̂−MSE and Σ̂−MSE, all MSS samples displayed better convergence rates than

Monte Carlo because, to within 4−σ confidence, all uMSS values are greater than 1.

At face value, for the µ̂R−MSE and µ̂Ṙ−MSE, ‘complete’ nets seem to have

improved convergence performance compared to ‘incomplete’ nets, but when con-

sidering the full confidence intervals, it is not possible to ascertain whether this is true.

For all other statistics considered in this subsubsection (namely, µ̂X−MSE, ΣR−MSE,

ΣṘ−MSE, and ΣX−MSE), there is similar expected performance between ‘complete’

and ‘incomplete’ nets, with the main difference concerning the variance of the MSS
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Figure 6.11: MSS asymptotic MSE-fit convergence rate (a) results (Nrep = 100),
dmax = 7, CW relative position, Example 3D.001: blue) ‘complete’ Nss, and orange)
‘incomplete’ Nss.

Figure 6.12: MSS asymptotic MSE-fit convergence rate (a) results (Nrep = 100), dmax =
7, CW relative position rate, Example 3D.001: blue) ‘complete’ Nss, and orange)
‘incomplete’ Nss.

convergence rate, uMSS, which translates to differences in the size of the uMSS confidence

intervals.
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Figure 6.13: MSS asymptotic MSE-fit convergence rate (a) results (Nrep = 100),
dmax = 7, CW relative state, Example 3D.001: blue) ‘complete’ Nss, and orange)
‘incomplete’ Nss.

The lower uMSS variance observed in ‘incomplete’ nets implies that there is higher

certainty of the uMSS performance for ‘incomplete’ nets than for ‘complete’ nets;

that is, for ‘incomplete’ nets, there is a higher degree of confidence in the conver-

gence rate, whose performance stabilizes around uMSS = 2 for samples in R3 reproducing

9-dimensional objects (namely, ΣR−MSE, and ΣṘ−MSE), and for samples in R6 repro-

ducing 6- and 36-dimensional objects (µ̂X−MSE, and ΣX−MSE, respectively).

One plausible interpretation for the higher variance observed in ‘complete’ nets is

that the higher variance might be an indication that there is the potential for unrealized

performance gains, which may not be detected within this study for one of the following

reasons. First, as an issue of reproducibility, a higher Nrep might be needed for adequate

convergence of MSE estimators, M̂SE, to the true MSE values. Second, MSS sample sizes

employed in the regression may not be large enough to observe adequate performance im-

provements. One compelling reason for this interpretation is that, while expected uMSS

values for ‘complete’ nets are closer to 3 in µ̂R−MSE and µ̂Ṙ−MSE, the true con-
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vergence rate could be anywhere in [2, 4]; however, when employing ‘incomplete’

nets, the expected µ̂R−MSE and µ̂Ṙ−MSE performance is lower, yet there is lower vari-

ance. This behavior resembles the computational difference in performance between Sobol

(t,m, s)-nets and Sobol (t, s)-sequences; in particular, analytically, Sobol (t,m, s)-nets

have better performance than Sobol (t, s)-sequences, whereas computationally, the latter

exhibit more consistent, yet lesser, performance. Hence, although this regression does in-

dicate stochastic asymptotic convergence, more data points corresponding to larger sample

sizes may be needed to ascertain the asymptotic rate of convergence more precisely.

On the other hand, it is possible that there may not be additional uMSS performance

gains in ‘complete’ sequences beyond what is exhibited by ‘incomplete’ nets be-

cause the uniformity properties of Sobol sequences may not be preserved under the map-

ping from the unit hypercube to the unit hypersphere, as well as with the scaling, rotation,

and translation operations associated with transforming the standard normal distribution

into the specific relative state distributions at hand. Hence, it would be helpful to explore

the effects of different hypercube-to-hypersphere mapping algorithms on reproducing the

standard normal distribution via an MSS sample, and then examining if any further changes

need to be made in order to preserve Sobol uniformity and space filling properties as much

as possible under scaling, rotation, and translation operations.

Although these results are inconclusive in terms of whether it is preferable to em-

ploy ‘complete’ or ‘incomplete’Nss sizes, these results nevertheless indicate that,

when reproducing first and second order moments of a normal distribution, the MSS algo-

rithm has an exponential rate of stochastic convergence (in the MSE sense) that improves

by at least one order of magnitude on Monte Carlo. These results also indicate a statisti-

cal lack of bias, which has two powerful implications. First, because having statistically

unbiased samples is necessary for trusting the meaning or interpretation of sample-based

estimators for probability measures, these results validate the use of MSS estimators for

probability measure approximation. Second, these results motivate future MSS applica-
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tion as the underlying sampling algorithm in a particle-based filtering methodology with

applications to spacecraft relative navigation.

6.5.4.2 MSS asymptotic convergence rate results, sample IPC

This subsubsection addresses the results on MSS convergence performance when repro-

ducing the IPC, as obtained through regression on the ÎPC−MSE, which are shown in Fig.

6.11 for R samples, and in Fig. 6.13 for X samples.

Within 4−σ confidence, the MSS convergence rate is no better or worse than u =

1. Hence, it is appropriate to approximate the MSS rate of ÎPC−MSE convergence as

uMSS = 1, which renders MSS performance in reproducing the IPC to be no worse than

that of Monte Carlo.

There are multiple reasons why MSS ÎPC−MSE convergence performance does not

achieve the levels observed in MSS µ̂−MSE and Σ̂−MSE regression. First, even though

µ̂MSS, Σ̂MSS, and p̂E,MSS are all constructed in the traditional form of weighted sample

mean, covariance, and probability measure estimators, it can be shown that, without prior

adjustment, the expected values of µ̂MSS and Σ̂MSS are scalar multiples of µ and Σ, re-

spectively, which can then be used to obtain the proper scaling factors needed to construct

unbiased estimators within a finite number of shells, Nsh. However, this cannot be done for

p̂E,MSS. This can be explained in a couple of ways. For µ̂MSS, through a symmetry argu-

ment, the sample mean µ̂l of points in the lth Mahalanobis shell (i.e.,
{
x̃l,q
}

, q ∈ SNss) is an

unbiased estimator for µ; the resulting lack of bias is maintained after aggregating the esti-

mators, and the weights represent that estimators from shells with higher probability mass

are trusted more highly. For Σ̂MSS, unlike for µ̂MSS, the sample estimator Σ̂l of the covari-

ance of the points in the lth Mahalanobis shell is not an unbiased estimator for Σ. However,

E
[
Σ̂l

]
is a scalar multiple of Σ, and the exact factor that relates E

[
Σ̂l

]
and Σ may be

found though the first and second order statistical properties of uniform distributions in

S(s−1) and [0, 1], along with the assumption of independence between these distributions.
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More abstractly, it is possible to do this because the form of the µ̂MSS and Σ̂MSS estimators

is suited to producing scalar multiples of the expected values of interest, and the domain

of integration is fixed within each shell. In other words, a scale factor adjustment to µ̂MSS

and Σ̂MSS is available because, via the form of the estimators, the expectation to which the

estimators should evaluate to is known.

On the other hand, such adjustments cannot be made for p̂E,MSS for several reasons.

First, for an arbitrary measurable subset E, the true probability pE = pX (E) is unknown.

Second, in general, E is not a union of Mahalanobis shells. Hence, even though for each

lth shell, the extent of the region of E inside the lth shell (E ∩ V dl
dl−1

(X), for X ∈ {R,X})

can be ascertained precisely, since the weights within each shell are averaged, there is

inherent error between the true probability mass pX
(
E ∩ V dl

dl−1
(X)

)
and the fraction of

the probability pX
(
V dl
dl−1

(X)
)

corresponding to the number of points in the lth shell that

meet the definition of the E event. Therefore, even though p̂E,MSS correctly identifies (via

sample points) which regions of the pdf of X satisfy the E event, discrepancies in pE

approximations arising from the discretization of the weights within each shell can only be

ameliorated through successive refinement of Vdmax (X) through increasing the number of

shells.

These observations are consistent with previous MSS performance results in repro-

ducing the IPC in lower-dimensional systems: for a fixed Nsh, increasing the number of

samples per shell (Nss) leads to probability measure convergence to within a fixed error

threshold level that can only be reduced further with increasing Nsh.[46] Hence, in addi-

tion to error from IPC numerical estimates (assumed as truth values), the Nsh-dependent

lower error threshold is another source of discrepancy when reproducing the IPC via MSS.

However, these results are consistent with the following interpretation of the conver-

gence of sequences in some metric space. For a fixed ε > 0, and when choosing dmax such

that pexc < ε/2, there exists an integer ηsh such that for every integer Nsh which satisfies
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ηsh ≥ Nsh, if Vi,j ⊆ Vdmax (R) or if Ci,j ⊆ Vdmax (X), it follows that

ÎPCMSS−RMSE =

√
E
[(

IPC− ÎPCMSS

)2]
<
ε

2

Via Jensen’s inequality, and through properties of expected values, it follows that

∣∣∣IPC− E
[
ÎPCMSS

]∣∣∣ ≤ E
[∣∣∣IPC− ÎPCMSS

∣∣∣] ≤√E
[(

IPC− ÎPCMSS

)2]
<
ε

2

which implies, if Vi,j ⊈ Vdmax (R) or if Ci,j ⊈ Vdmax (X), that

∣∣∣IPC− E
[
ÎPCMSS

]∣∣∣ < ε

Hence, IPC convergence in the MSE sense, which has been demonstrated computationally

in this subsubsection, is a much stronger result than convergence as stated in Proposition

22. Therefore, the results of this subsubsection on MSS IPC error properties, together with

the results on µ̂MSS and Σ̂MSS convergence, are a computational validation of the MSS

estimator properties asserted in Proposition 22, namely, that MSS IPC estimators can be

made arbitrarily precise in a stochastic sense.

More generally, for an arbitrary measurable subset E, although the results in this sub-

subsection do not imply that true unbiased MSS probability measure estimators p̂E,MSS may

be constructed, these results nevertheless validate the statement that such MSS probabil-

ity measure estimators can be made arbitrarily precise in a stochastic sense, as asserted in

Proposition 22. Although a computational investigation was not undertaken in this Chap-

ter to study MSS estimators of the joint-time probability of collision, Pc, Proposition 22,

(together with IPC MSS convergence results) justifies application of the MSS algorithm to

estimate the Pc, as well as other probability measures. These conclusions validate use of

the MSS algorithm in spacecraft collision risk assessment applications.
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6.6 Conclusion

In this Chapter, a theoretical basis is presented for the Mahalanobis Shell Sampling (MSS)

algorithm, which is designed to produce statistically random weighted samples of non-

degenerate, multivariate normal distributions, in such a way that probabilistic outliers can

be generated effficiently, i.e., without unduly penalizing sample size. This is achieved by

employing uniformly distributed, independent samples in the (s − 1)-unit hypersphere,

S(s−1), and the unit interval, [0, 1], and then utilizing the first- and second-order statistics

of normal distributions of interest in order to transform these point sets into probabilis-

tically uniform sample points within Mahalanobis shells, which are regions bounded by

hypersurfaces of constant Mahalanobis distance.

The first contribution of this Chapter is to present unbiased MSS estimators for the

sample mean and covariance of a distribution of interest, as well as asymptotically unbiased

MSS estimators for the probability measure of arbitrary measurable subsets in Rs, including

error bounds that are dependent of the truncation of the integration domain.

The second contribution of this Chapter is a methodology for application of randomized

quasi-Monte Carlo (RQMC) techniques for the generation of uniformly distributed, inde-

pendent samples in S(s−1) and [0, 1]. Linearly scrambled Sobol nets in the unit hypercube,

[0, 1]s, are chosen because they retain the space-filling properties of deterministic Sobol

nets, while introducing randomness into the samples in a way that allows for unbiased inte-

gral estimators, as well as integral variance estimation. Then, a technique is presented for

transforming a single RQMC [0, 1]s sample into samples of S(s−1) and [0, 1].

The third contribution of this Chapter is a computational study on the quantification of

MSS stochastic convergence properties; namely, the exponential rate of asymptotic conver-

gence in the mean square error (MSE) sense, uMSS. This contribution may be subdivided

into four parts.

First, in order to produce a meaningful baseline for uMSS comparison, the Monte Carlo
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rate of convergence in the MSE sense, uMC, was validated to within 4−σ confidence to be

given by uMC = 1 when reproducing the sample mean, covariance, and the IPC via Monte

Carlo samples of the CW relative orbital dynamic state – specifically, the CW relative po-

sition, relative position rate, and relative state. This finding is in accordance with analytical

properties of the Monte Carlo method.

Second, it is found that MSS error convergence in the MSE sense can be adequately

modeled as a power function of the form (MSE) (n) = Cn−uMSS when reproducing the

sample mean, covariance, and IPC via MSS samples based on the CW relative position,

relative position rate, and relative state. This is necessary for meaningful comparisons

between MSS and Monte Carlo stochastic convergence rates.

Third, it was found, when estimating sample mean and covariance, that the MSS al-

gorithm achieves convergence in the order of O(n−2) in the MSE sense, which improves

upon the corresponding Monte Carlo convergence rate by an order of magnitude.

Fourth, it was found, for a fixed number of shells, Nsh, that MSS estimators of the IPC

achieve convergence in the order of O(n−1) in the MSE sense, which is comparable to

Monte Carlo. Even though MSS IPC estimators are not unbiased due to sample weight

averaging within each Mahalanobis shell, these results nevertheless validate the main the-

oretical result presented in this Chapter, namely, that MSS probability measure estimators

can achieve arbitrary precision in a stochastic sense, which is consistent with prior work in

IPC reproduction in lower-dimensional systems.

Therefore, through its geometric underpinnings, its theoretical guarantees of stochastic

convergence, and its computational convergence rate performance, the MSS algorithm is

an attractive sampling paradigm for a wide range of practical applications. First, the MSS

method may be employed in a spacecraft relative navigation context as an underlying sam-

pling algorithm within a particle-based filtering methodology. Second, the MSS method

may be applied to spacecraft collision risk assessment, not just thtough MSS-based IPC

computation, but also through computation of the joint-time time probability of collision,
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Pc; even though MSS convergence properties when estimating the Pc have not been stud-

ied in this Chapter, the theoretical MSS convergence guarantees for arbitrary measurable

subsets are applicable to the region of relative state space that defines the Pc. Third, more

generally, through its geometric and probabilistic properties, the MSS algorithm would be

a helpful computational tool in the field of rare event simulation.
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CHAPTER 7

SPACECRAFT FORMATION COLLISION RISK QUANTIFICATION (PART 2) –

DISTANCE-BASED SFF COLLISION RISK INDICATORS

This Chapter describes the theoretical properties of the prob-

lem of finding extremal Euclidean distances from the origin of an

reference frame in Rs to the points in the d-Mahanalobis contour

of a non-degenerate normal random variable in Rs. These prop-

erties include a solution existence result, as well as bounds for

such extremal Euclidean distances. Along with an area-preserving

transformation from the unit 2-square to the unit 2-sphere, these

theoretical properties are leveraged in order to pose an equiva-

lent problem with reduced dimensionality and a simply connected

search region, while also addressing singularities of the search re-

gions which are caused by dimensionality-reducing transforma-

tions. The effectiveness of the modifications to this constrained

optimization problem is examined in a pertinent relative orbital

dynamic context.

7.1 Introduction

This Chapter addresses the minimum Euclidean distance from the origin to a “geometric”

3−σ contour, denoted by sepgeo|i,j(t), as well as the minimum distance from the origin to an

“equivalent” 3−σ contour, denoted by sepeq|i,j(t), which are formally defined in Subsection

2.6.2. This discussion includes a proof of the existence of the solution to the problems that

define these indicators, upper and lower bounds on these solutions, as well as a unit square-

based search methodology for the computation of these indicators, including mitigation

142



strategies for improving the search when it becomes ill-conditioned after long propagation

horizons.

Although not included in this chapter, this dissertation also addresses several topics re-

lated to the computation of the 99.73% minimum distance, denoted by ρ3σ. First, ρ3σ is

formally defined in Definition 12, and ρ3σ is characterized in Subsubsection 9.3.4.1 as as a

quantile of the distribution the Euclidean norm of instantaneous relative position. Second,

numerical and Monte Carlo sample computation methodologies for ρ3σ are presented in

Subsections 9.4.1 and 9.4.2, respectively. Third, a hybrid numerical-sample based method-

ology is introduced in Subsection 9.4.3 for the computation of the probability density func-

tion (pdf) of the Euclidean norm of the relative position evaluated at the ρ3σ value, which is

required for sensitivity studies of the ρ3σ collision risk indicator (cf. Subsubsection 9.3.4.2).

Note: for implementation details on employing a large Monte Carlo sample framework for

ρ3σ computation, the reader is encouraged to consult Appx. C.

7.2 Notation adjustments for this Chapter

Throughout this Chapter, balls and spheres are implicitly defined with respect to the Eu-

clidean norm only. When the dimension of elements in Bs
r (x) is implicit, it is referred to as

Br (x) for simplicity. Additionally, the symbol “S(s−1)” denotes S(s−1)
1

(
0s×1

)
, i.e., the unit

(s − 1)-sphere (with respect to the Euclidean norm) centered at the origin of Rs. Finally,

the i, j subscripts are omitted from the notation of the instantaneous relative position Ri,j .

7.3 Minimum Euclidean distance from origin to Mahalanobis contour – Theory

This section addresses the general problem of finding points on a d-Mahalanobis contour of

a non-degenerate normal random variable X in Rs [denoted by Ld (X)] which are furthest

and closest from the origin in Rs as quantified by the Euclidean distance. The existence

of such extremal points, as well as bounds for the Euclidean norms of their solution, are

discussed.

143



Lemma 24 (Relating the unit sphere and Mahalanobis contour). LetX ∼ N (µ, Σ), where

µ ∈ Rs, and Σ ∈ Rs×s, Σ > 0. Let d ∈ (0,∞). Let the mapping fd,X : S(s−1) → Rs be

defined by the rule

fd,X (z) = µ+ dΣ1/2z (7.1)

for z in S(s−1). Then,

Ld (X) = fd,X
(
S(s−1)

)
♢ (7.2)

Proof. Let the preceding assumptions and notation hold. Since Σ > 0, this implies that

Σ1/2 > 0 and Σ−1/2 > 0 as well.[64] Thus, fd,X is well defined. Let gd,X : Ld (X) → Rs

be defined by the rule

gd,X (x) =
1

d
Σ−1/2 (x− µ) (7.3)

Thus, gd,X is also well defined. It will be proven that fd,X
(
S(s−1)

)
= Ld (X).

1. fd,X
(
S(s−1)

)
⊆ Ld (X)

Take x ∈ fd,X
(
S(s−1)

)
. Then, there exists z ∈ S(s−1) such that

x = fd,X (z) = µ+ dΣ1/2z

Note: ∥z∥2 = 1, so zT z = 1. Thus,

D2
X (x) = (x− µ)T Σ−1 (x− µ)

=
(
dΣ1/2z

)T
Σ−1

(
dΣ1/2z

)
= d2zTΣ1/2Σ−1Σ1/2z

= d2zT z = d2 (7.4)

Therefore, x ∈ Ld (X), which proves that fd,X
(
S(s−1)

)
⊆ Ld (X).

2. Ld (X) ⊆ fd,X
(
S(s−1)

)
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Take x ∈ Ld (X). Then,

(x− µ)T Σ−1 (x− µ) = d2

Let z .
= gd,X (x) = 1

d
Σ−1/2 (x− µ). Then,

zT z =
1

d2
(x− µ)T Σ−1 (x− µ) = d2

d2
= 1 (7.5)

Thus, z ∈ S(s−1). Take y .
= fd,X (z) = µ+ dΣ1/2z. By definition, y ∈ fd,X

(
S(s−1)

)
.

However, z = 1
d
Σ−1/2 (y − µ). It follows that y = x. Therefore, x ∈ fd,X

(
S(s−1)

)
,

which proves that Ld (X) ⊆ fd,X
(
S(s−1)

)
.

It follows from statements 1 and 2 that Ld (X) = fd,X
(
S(s−1)

)
.

Proposition 25. Let X ∼ N (µ, Σ), where µ ∈ Rs, and Σ ∈ Rs×s, Σ > 0. Let d ∈ (0,∞).

Then, a solution exists to the COP defined by Eqn. 7.6, i.e.

min
x∈Rs

xTx

s.t. x ∈ Ld (X) ⊊ Rs

(7.6)

Additionally, a solution exists to the COP defined by Eqn. 7.7, i.e.

max
x∈Rs

xTx

s.t. x ∈ Ld (X) ⊊ Rs ♢
(7.7)

Proof. The unit (s− 1)-sphere, S(s−1), is a closed set, and it is also bounded. Through the

Heine-Borel Theorem, S(s−1) is a compact set in Rs.[34]

The function fd,X is continuous. Via Lemma 24, Ld (X) = fd,X
(
S(s−1)

)
. Therefore,
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fd,X
(
S(s−1)

)
is also compact. Let the function h : Rs → [0,∞) be defined by the rule

h (x) = xTx (7.8)

for x ∈ Rs. Since h is a continuous function, it follows that B .
= h (Ld (X)) ⊆ R is a

compact set in R. Because B is a compact set in R, minimum and maximum values on B

exist.[66] Let

a = min (B) (7.9)

b = max (B) (7.10)

Since there exist x∗, y∗ ∈ Ld (X) so that

a = h (x∗) (7.11)

b = h (y∗) (7.12)

it follows that x∗ and y∗ are solutions to the constrained optimization problems defined by

Eqns. 7.6 and 7.7, respectively.

Proposition 26 (Solution bounds for distance extrema from origin toLd). LetX ∼ N (µ, Σ),

where µ ∈ Rs, and Σ ∈ Rs×s, Σ > 0. Let d ∈ (0,∞). Let x∗ be a solution to the COP

posed in Eq. 7.6. Let βU , βL ∈ [0,∞) be defined by

βU
.
= ∥µ∥2 + d

√
max (eig (Σ)) (7.13)

βL
.
= max

{
0, d

√
min (eig (Σ))− ∥µ∥2 , ∥µ∥2 − d

√
max (eig (Σ))

}
(7.14)

where eig (Σ) is the set of eigenvalues of Σ. Then, βU and βL provide bounds for ∥x∗∥2 as
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given by Eq. 7.15.

0 ≤ βL ≤ inf
x∈Ld(X)

∥x∥2 ≤ ∥x
∗∥2 ≤ sup

x∈Ld(X)

∥x∥2 ≤ βU <∞ ♢ (7.15)

Proof. Take µ ∈ Rs, and Σ ∈ Rs×s, Σ > 0. Let W ∼ N
(
0s×1, Σ

)
. Via Proposition 25,

there exist q, q′ ∈ Ld (W ) so that

0 ≤ ∥q∥2 ≤ ∥w∥2 ≤ ∥q
′∥2 <∞ (7.16)

for all w in Ld (W ). The first part of the proof will show that ∥q∥2 = d
√
min (eig (Σ)) and

that ∥q′∥2 = d
√

max (eig (Σ)).

Let U,S,V ∈ Rs×s comprise the singular value decomposition (SVD) matrices of Σ.

Since Σ > 0, U = V, U is orthogonal, and S > 0 also. Thus, Σ = USUT , and

Σ1/2 = US1/2UT (7.17)

Since S > 0 is diagonal, the entries on its diagonal are its eigenvalues, so S can be expressed

without loss of generality as

S =


ξ1

. . .

ξs

 (7.18)

where 0 < ξ1 ≤ · · · ≤ ξs < ∞. Let vj (j ∈ {1, . . . , s}) be the eigenvectors of Σ, i.e., the

column vectors of U. Thus,

Σ1/2vj = ξ
1/2
j vj (7.19)

for all j ∈ {1, . . . , s}. Let a1 be the unit vector of Σ corresponding to the eigenvalue ξ1,

i.e.,

Σ1/2a1 = ξ
1/2
1 a1 (7.20)
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Let b ∈ S(s−1), i.e., b is any unit vector in Rs. It will be proven that

ξ
1/2
1 =

∥∥Σ1/2a1

∥∥
2
≤
∥∥Σ1/2b

∥∥
2

(7.21)

Since the columns of U form an orthonormal basis for Rs, there exist b1, . . . , bs ∈ R such

that

b =
s∑

j=1

bjvj (7.22)

and
∑

j b
2
j = 1. Then,

∥∥Σ1/2b
∥∥2
2
=
(
Σ1/2b

)T (
Σ1/2b

)
=

(
s∑

i=1

biΣ
1/2vi

)T ( s∑
j=1

bjΣ
1/2vj

)

=

(
s∑

i=1

bi
√
ξivi

)T ( s∑
j=1

bj
√
ξjvj

)
=

s∑
i=1

s∑
j=1

(bi
√
ξi)(bj

√
ξj)vT

i vj (7.23)

The vj vectors are orthonormal; i.e.,

vT
i vj =


1, if i = j

0, otherwise
(7.24)

Also, 0 < ξ1 ≤ ξi for all i in {1, . . . , s}. Therefore,

∥∥Σ1/2b
∥∥2
2
=

s∑
i=1

(bi
√
ξi)(bi

√
ξi) =

s∑
i=1

b2i ξi

≥
s∑

i=1

b2i ξ1 = ξ1

s∑
i=1

b2i = ξ1 =
∥∥Σ1/2a1

∥∥2
2

(7.25)

which proves that √
ξ1 =

∥∥Σ1/2a1

∥∥
2
≤
∥∥Σ1/2b

∥∥
2

(7.26)

for every b ∈ S(s−1), i.e., if b is any unit vector in Rs.
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Take w ∈ Ld (W ). Via Lemma 24, there exists c ∈ S(s−1) so that w = dΣ1/2c. Also,

via Lemma 24, there exists w1 ∈ Ld (W ) such that w1 = dΣ1/2a1. Therefore,

√
ξ1 =

∥∥∥∥1dw1

∥∥∥∥
2

=
∥∥Σ1/2a1

∥∥
2
≤
∥∥Σ1/2c

∥∥
2
=

∥∥∥∥1dw
∥∥∥∥
2

(7.27)

for all w in Ld (W ). Since q ∈ Ld (W ), it follows from Eq. 7.27 that

∥w1∥2 ≤ ∥q∥2 (7.28)

However, because of how q is characterized in Eq. 7.16, since w1 ∈ Ld (W ), then

∥q∥2 ≤ ∥w1∥2 (7.29)

It follows that

∥q∥2 = ∥w1∥2 = d
√
ξ1 (7.30)

A similar argument can be construed for q′, employing ξs instead. Therefore,

∥q∥2 = d
√
min (eig (Σ)) (7.31)

∥q′∥2 = d
√

max (eig (Σ)) (7.32)

which concludes the first part of this proof.

The second part of this proof is to obtain an upper bound for ∥x∗∥2. Take x ∈ Ld (X).

Then, by definition, there exists w ∈ Ld (W ) so that x = µ + w. Additionally, there exist

y, y′ ∈ Ld (X) such that y = µ + q and y′ = µ + q′. Let y and y′ satisfy these conditions.

This observation allows restating the conditions posed in Eq. 7.16 as given by

0 ≤ ∥y − µ∥2 ≤ ∥x− µ∥2 ≤ ∥y
′ − µ∥2 <∞ (7.33)
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for all x in Ld (X), as illustrated in Fig. 7.1. It is helpful to note that
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Figure 7.1: Illustration of bounds of Ld (X) (in two-dimensional case) about its expected
value.

∥y − µ∥2 = d
√
ξ1 (7.34)

∥y′ − µ∥2 = d
√
ξs. (7.35)

Through the triangle inequality on the Euclidean norm in Rs, it follows that

∥x∥2 = ∥(x− µ) + µ∥2 ≤ ∥x− µ∥2 + ∥µ∥2

≤ ∥y′ − µ∥2 + ∥µ∥2 = d
√
ξs + ∥µ∥2 =: βU (7.36)

Hence, βU is a real-valued, positive constant that only depends on the first- and second-

order statistics of X , i.e., on µ and Σ. Thus, βU is an upper bound on ∥x∥2 for all x in

Ld (X) – which, in particular, includes ∥x∗∥2. Since βU is a real number, it follows that

0 ≤ ∥x∥2 ≤ sup
x∈Ld(X)

∥x∥2 ≤ βU <∞ (7.37)

for all x in Ld (X).

The third and final part of this proof is to obtain lower bounds for ∥x∗∥2. First, it can be
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seen again, through application of the triangle inequality on the Euclidean norm in Rs, that

∥x− µ∥2 = ∥x+ (−µ)∥2 ≤ ∥x∥2 + ∥µ∥2 (7.38)

Thus

d
√
ξ1 − ∥µ∥2 = ∥y − µ∥2 − ∥µ∥2 ≤ ∥x− µ∥2 − ∥µ∥2 ≤ ∥x∥2 (7.39)

Let βL,1
.
= d
√
min (eig (Σ))− ∥µ∥2. Then, βL,1 ≤ ∥x∥2 for all x in Ld (X).

Next, through further application of the triangle inequality on the Euclidean norm in

Rs, it can be seen that

∥µ∥2 = ∥(µ− x) + x∥2 ≤ ∥µ− x∥2 + ∥x∥2 = ∥x− µ∥2 + ∥x∥2 (7.40)

Thus,

∥µ∥2 − d
√
ξs = ∥µ∥2 − ∥y

′ − µ∥2 ≤ ∥µ∥2 − ∥x− µ∥2 ≤ ∥x∥2 (7.41)

Let βL,2
.
= ∥µ∥2 − d

√
max (eig (Σ)). Then, βL,2 ≤ ∥x∥2 for all x in Ld (X).

Finally, 0 ≤ ∥x∥2 for all x in Ld (X). This observation follows from the non-negativity

of the Euclidean norm in Rs.

Let βL
.
= max {0, βL,1, βL,2}. Hence, βL ≤ ∥x∥2 for all x in Ld (X); i.e., βL is a lower

bound for ∥x∥2. Therefore,

0 ≤ βL ≤ inf
x∈Ld(X)

∥x∥2 ≤ ∥x∥2 <∞ (7.42)

for all x in Ld (X). Combining Eqns. 7.37 and 7.42, it follows that

0 ≤ βL ≤ inf
x∈Ld(X)

∥x∥2 ≤ ∥x∥2 ≤ sup
x∈Ld(X)

∥x∥2 ≤ βU <∞ (7.43)

for all x in Ld (X). Since Eq. 7.43 applies to ∥x∗∥2 in particular, the result follows.
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Corollary 27. Let amin, amax ∈ R. Let βL and βU be bounds for the COP defined in Eq.

7.6, as stated in Proposition 26. Then, the COP posed in Eq. 7.44, i.e.,

min
x∈Rs

f (x) = amin +
amax − amin

β2
U − β2

L

(
∥x∥22 − β

2
L

)
s.t. x ∈ Ld (X) ⊊ Rs

(7.44)

is an equivalent, scaled version of the original COP, i.e., both COPs have equivalent solu-

tions. ♢

7.4 Minimum Euclidean distance from origin to Mahalanobis contour – Computa-

tional algorithm in R3

For a non-degenerate normal random variableX in Rs, Lemma 24 shows that Ld (X) ⊊ Rs

and the unit (s−1)-sphere are isomorphic. Additionally, it is is known that the unit 2-square

and the unit 2-sphere are also isomorphic to within boundary singularities. These facts, as

well as the results found in the preceding subsection, are employed to develop a tech-

nique for obtaining the minimum Euclidean distance from the origin to Ld (R) for a non-

degenerate normal random variable R in R3. That is, this section introduces a technique for

obtaining a solution to the COP posed in Eq. 2.44, through which the distance-based SFF

collision risk indicators represented by Methodologies 1 and 2 are defined. Specifically,

the Ld (R) constraint and the aforementioned isomorphisms allow the search space to be

the unit 2-square instead of Ld (R), which simplifies the search process, as illustrated in

Fig. 7.2.

Conceptually, this process is similar to the generation of an MSS sample, with a few

differences. First, an MSS sample may be generated in Rs for any s ∈ N, whereas the cur-

rent computational algorithm is restricted for application in R3. Second, an MSS sample is

composed by the union of samples in Ldl (X) (for multiple dl values), and each Ldl (X) is

randomized so as to be more uniformly distributed in over its corresponding Mahalanobis
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shell V dl
dl−1

(X). On the other hand, the current computational algorithm focuses on a sam-

ple of Ld (R) for a single d value.-r600 pictures, font size 12, change Ld title, arrows in one direction (big Rij normal RV) (uncompressed) (change 1/28/2023: change frame F to \mathcal{J}) 
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Figure 7.2: Process of finding initial conditions in Methodologies 1 & 2 in R3: a) sample
of unit 2-square, b) sample of unit 2-sphere, and c) sample of d-Mahalanobis contour, Ld.

1. Finding initial conditions:

First, a sample of evenly distributed points in the unit square is obtained through quasi-

random number sequence (qrns) generation methods. Some widely employed qrns tech-

niques for unit hypercube sampling include the Sobol, Niederreiter, Halton, Faure, and

Hammersley sequences.[131, 132, 133, 121, 134] For more further background on specific

qrns-based uniform unit-hypercube sampling constructions and computational implemen-

tations, the reader is encouraged to consult Ref. [135], Chaps. 2, 5; Ref. [120], Chaps. 5-6;

Ref. [136], Chaps. 3-4; and Ref. [73], Ch. 2. In this dissertation (specifically, in Section

8.4), the Roberts method for unit hypercube sampling is employing to obtain a unit square

sample for finding a suitable initial conditon for the search.[137]

Second, this uniform sample of the unit 2-square is mapped (or “lifted”) into a sample

of the unit 2-sphere. In this dissertation, the area-preserving Lambert transform is used for

this mapping, which ensures that the sample of the unit 2-sphere is also uniform, even in

higher dimensions.[119]
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Then, through inspection, the initial point in the unit 2-sphere, z0 can be found as

z0 = argmin
z∈S̃(Nsmall)

∥r (z)∥22 (7.45)

where S̃ (Nsmall) is a sample of the unit 2-sphere with sample size Nsmall where

r (z) .= fd,R (z) = µ+ dΣ1/2z (7.46)

where R ∼ N (µ, Σ), where µ ∈ R3,Σ ∈ R3×3,Σ > 0. Thus, r (z0) is the sample point

in Ld (R) whose Euclidean norm is closest to the Euclidean norm of the optimal point(s),

∥r∗∥2. Because r∗ may not be unique, it is helpful to store several z0 initial guesses.

It is recommended that Nsmall may satisfy Nsmall ≪ NMC, i.e., Nsmall should be signif-

icantly smaller than sample sizes required to accurately reproduce the probability of rare

events; cf. Subsection 8.4.1. At this stage, only an initial guess is needed.

2. Reformulating search in Ld (R) as search in unit 2-square:

Since the sample of Ld (R) is nearly uniform, z0 is expected to be close to z∗ under some

metric. However, even with the isomorphism between Ld (R) and the unit 2-sphere posed

in Lemma 24, modifying the objective function in Eq. 2.44 so that a solution is found

on the unit 2-sphere still yields a three-dimensional search space with a nonlinear equality

constraint (namely, unity inner product).

Nevertheless, the aforementioned equality constraint, along with a coordinate transfor-

mation, can be used to reformulate the search on the unit 2-sphere as a search in the unit

2-square. This technique is advantageous for the following reasons: a) it reduces the di-

mension of the search space from 3 to 2, b) it replaces equality constraints with inequality

constraints, and c) it yields a search space that is simply connected.

The Lambert area-preserving transform in R3, denoted by TS2 : [0, 1)× [0, 1]→ S2, is
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given by

TS2


y1
y2


 =


√
1− (1− 2y2)2 cos(2πy1)√
1− (1− 2y2)2 sin(2πy1)

1− 2y2

 (7.47)

for all [y1, y2]T in [0, 1)× [0, 1]. In this Chapter, the Lambert transform is used for the map-

ping from the unit 2-square to the unit 2-sphere. The Lambert transform is suitable for this

purpose because it maps uniformly distributed samples in [0, 1) × [0, 1] to uniformly dis-

tributed samples in S2.[119] The Lambert transform is further discussed in Subsubsection

9.3.1.2.

3. Addressing issues with search in unit 2-square space:

It is a known fact that dimension-reducing isomorphisms between the unit 2-square and

the unit 2-sphere introduce singularities to the formulation. This remains the case when

the Lambert transform in R3 is employed; specifically, the direct Lambert transform is not

unique for y2 = ±1. Therefore, the inverse Lambert transform is singular in the neighbor-

hood of z = ±[0, 0, 1]T . Figs. 7.3 and 7.4 summarize the conceptual issues that arise when

applying the foregoing Lambert transform-based methodology to minimization problems

subject to dimension-reducing constraints.

The first issue, shown in Fig. 7.3, is that small search regions in S2 near ±[0, 0, 1]T

do not correspond to small search regions in the unit square. More precisely, pre-images

[through (TS2)
−1] of open neighborhoods (relative to S2) centered at±[0, 0, 1]T , while con-

verging to a single value of of y2, can include elements with any value of y1 ∈ [0, 1).

Thus, the search space in S2 in the neighborhood of ±[0, 0, 1]T becomes artificially en-

larged through the distortion introduced by the (TS2)
−1 mapping. This shows that Lambert

transform-based unit 2-square optimization is unsuitable for initial conditions in S2 in the

neighborhood of ±[0, 0, 1]T .

The second issue, shown in Fig. 7.4a, is that small, simply connected search regions in
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2/4/2023: Problem of min distance to Ld, pre-image singularities in Lambert transform 

Lambert transform, Problem 1, v3 (based on v2, compressed) 
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Figure 7.3: Distortions introduced by the Lambert transform to pre-images of open balls
(relative to S2) centered at ±[0, 0, 1]T : a) unit 2-square space, b) unit 2-sphere space.

S2 near [1, 0, 0]T do not result in simply connected pre-images in the unit square [through

(TS2)
−1]. On the contrary, such pre-images consist of two disjoint regions in the unit square

whose y1 values are at opposite ends of the interval [0, 1). If the initial condition is in one

of these regions while the optimal point is in the other region, it would be difficult to

reach the optimal point with a search that is based on this initial condition. Thus, Lambert

transform-based unit 2-square optimization is also unsuitable for initial conditions in S2 in

the neighborhood of [1, 0, 0]T .Lambert transform, Problem 2, v3 (based on v2, compressed) 

 

  

𝐶 = 𝔹𝑟 ൭
1
0
0

൩൱ ∩ 𝕊2
 

ሺ𝑇𝕊2ሻ−1ሺ𝐶ሻ 

𝐷 = 𝔹𝑟 ൭
−1
0
0

൩൱ ∩ 𝕊2 

ሺ𝑇𝕊2ሻ−1ሺ𝐷ሻ 

𝑎ሻ  𝑏ሻ  

Figure 7.4: Distortions introduced by the Lambert transform to pre-images of open balls
(relative to S2) centered at ±[1, 0, 0]T : a) unit 2-square space, b) unit 2-sphere space.

The aforementioned caveats may be avoided by defining a coordinate transformation

ΞJ ′,J that allows representing z0, which is implicitly represented in the coordinates of a
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frame J , in the coordinates of a frame J ′ in which z′0 = [−1, 0, 0]T . The unit 2-square

representation of z′0, y′
0, is given by y′

0 = [0.5, 0.5]T . The benefit of doing so is that small,

simply connected search regions in S2 near [−1, 0, 0]T correspond to small, simply con-

nected pre-images in the unit square near y′
0 = [0.5, 0.5]T , as shown in Fig. 7.4b. Thus,

doing a search in y′ unit square coordinates would address the boundary distortions as

desired. The ΞJ ′,J DCM is given by

ΞJ ′,J
.
= A323(θ0,−λ0, π) = A3(π)A2(−λ0)A3(θ0) (7.48)

where

θ0 = atan2([0, 1, 0] z0, [1, 0, 0] z0) (7.49)

and

λ0 = arcsin([0, 0, 1] z0) (7.50)

For the explicit forms of the A2 and A3 matrices, see Eqns. 2.4 and 2.5, respectively. It is

clear that z0 and z′0 are related through ΞJ ′,J as

ΞJ ′,J z0 =


−1

0

0

 =: z′0 (7.51)

4. Summary of search technique:

Let the functions fLd(R) : [0, 1]× [0, 1)→ [amin, amax] and gLd(R) : [0, 1]× [0, 1)→ R3 be

defined as

fLd(R)(y′) = amin +
amax − amin

β2
U − β2

L

(∥∥gLd(R) (y′)
∥∥2
2
− β2

L

)
(7.52)

gLd(R) (y′) = (ΞJ ′,J ) [fd,R (ΞJ ,J ′ [TS2(y′)])] (7.53)

for every y′ ∈ [0, 1]× [0, 1), where R ∼ N (µ, Σ), where µ ∈ R3,Σ ∈ R3×3,Σ > 0; where
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ΞJ ′,J is defined in terms of z0 as given by Eqns. 7.45, 7.48, 7.49, and 7.50; where βL and

βU are defined in terms of d, µ, and Σ as stated in Proposition 26; and where amin and amax

are scaling constants in R. Via Eq. 7.1, gLd(R) (y′) may be explicitly expressed as

gLd(R) (y′) = (ΞJ ′,J )µ+ d (ΞJ ′,J ) Σ
1/2 (ΞJ ,J ′) [TS2(y′)] (7.54)

Using the foregoing definitions, the problem of finding the minimum distance from the

origin of 3D relative position space to the d-Mahalanobis contour Ld (R), previously posed

in Proposition 25, is equivalent to the scaled COP posed in Corollary 27 after modifications

that account for the Lambert transform and the ΞJ ′,J coordinate transformation, as posed

in Eq. 7.55:

min
y′∈[0,1)×[0,1]

fLd(R) (y′) (7.55)

It is suggested to set amin = −1 and amax = 1.

7.5 Simulation Cases, Results and Discussion

The foregoing methodology for the computation of the minimum distance from the origin

to points in Ld (R) is employed in the context of Examples 3D.001–026, which are subject

to CW dynamics, and which are listed in Section A.2. The outcome of this application is

utilized in the computational study undertaken in Chapter 8, which compares the consis-

tency of the correlation relationship between dissimilar types of collision risk indicators.

Such results are expounded in Subsection 8.4.3.

7.6 Minimum Euclidean distance from origin to Mahalanobis contour – Effective-

ness of R3 algorithm

As shown in Fig. 7.5, it is possible for the COP posed in Eq. 7.55 to have a strictly

convex domain in the neighborhood of the initial condition and the optimal, which yields a
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straightforward search for the unique global optimal. However, more generally, this COP

does not have guarantees of convexity, and multiple, disjoint local minima regions can be

observed in general, as seen in Fig. 7.6a. Furthermore, numerical ill-conditioning can be

expected in the neighborhood of local optima, as seen in Fig. 7.6b.
Example 2, ot = 1, Methodology 2, unit square optimization 

 

  

𝑎𝑎)  

𝑏𝑏)  

Figure 7.5: Objective function, min. distance from Ld

(
Ri,j

)
to origin, unit 2-square space

(Eq. 7.55), strictly convex neighborhood around unique global optimal: a) unit 2-square,
and b) closeup.

Example 2, ot = 1798, Methodology 2, unit square optimization 
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Figure 7.6: Objective function, min. distance from Ld

(
Ri,j

)
to origin, unit 2-square space

(Eq. 7.55), ill-conditioned neighborhood around global optimal: a) unit 2-square, and b)
closeup.
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The useful outcome of solving the COP posed in Eq. 7.55 is the Euclidan norm of

the global optimal point, ∥r∗∥2, not the global optimal point r∗ itself. However, because

two mappings must occur before (y′)∗ is translated to r∗ (through the Lambert transform

TS2 and the fd,R function, respectively), small distortions to (y′)∗ may result in significant

distortions to r∗. Thus, it is recommended to perform the search for the global optimal (y′)∗

with more than one initial guess z0.

It is important to note that ill-conditioning in the unit 2-square search space after prop-

agation is a consequence of the divergence of the covariance matrix in the [y]H-axis that is

observed in open loop CW dynamics (i.e., CW dynamics without filtering), as illustrated

in Fig. 7.7, which shows the same Monte Carlo sample prior distribution shown in Fig. 8.3

after propagating it for 0.67 orbits.

Thus, because relative state knowledge diverges in CW dynamics, it becomes meaning-

less after some time. This fact highlights an important philosophical nuance of collision

risk assessments. Even though filtering would bound error divergence in a real-time ap-

plication, collision risk assessments employ unfiltered dynamics because they are assess-

ments, at the present time, of collision risk between the present and a specified future time.

For further discussion, the reader is encouraged to consult Chapter 5.

Therefore, it is necessary to employ a receding horizon methodology for for collision

risk management in any relative orbital dynamic scenario (e.g., CW dynamics), including

SFF implementations. First, instantaneously, SFF collision risk must be quantified within a

future time window where relative state knowledge is meaningful based on present relative

state statistics. Second, a rule must be implemented to decide whether remedial maneuvers

must be undertaken based quantifiable SFF collision risk. Third, SFF collision risk reduc-

tion maneuvers must be planned and executed as needed. Lastly, the SFF COLRM process

must be replicated in future timesteps. For further discussion, the reader is encouraged to

consult Section 1.3.
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Figure 7.7: Monte Carlo sample relative position distribution (marginalization of sample
relative state distribution) after 0.67 orbits.

7.7 Summary

The problem of finding the minimum Euclidean distance from the origin of Rs to the d-

Mahalanobis contour of a non-degenerate normal random variable X in Rs [Ld (X)] is

discussed in this Chapter as follows. First, the Ld (X) set and the unit (s − 1)-sphere

[S(s−1)] are shown to be isomorphic by demonstrating the existence of an invertible map

fd,X that characterizes the Ld (X) set as the direct image of S(s−1) under fd,X , and which

also characterizes S(s−1) as the inverse image of Ld (X) under fd,X . Second, it is proven

that there exist solutions to the problem of finding the minimum Euclidean distance from

the origin in Rs to points in Ld (X). Third, theoretical upper and lower bounds for this

problem are obtained in terms of scalar functions of the expected value and covariance of

X; such bounds may be used to rescale the objective function that defines this problem to

have predictable values.

The foregoing theoretical background is leveraged in order to develop a computa-
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tional methodology to find the minimum Euclidean distance from the origin of R3 to the

d-Mahalanobis contour of a non-degenerate normally distributed relative position Ri,j(t)

[Ld

(
Ri,j(t)

)
]. Specifically, an isomorphism between the unit (s− 1)-hypersphere and the

unit (s− 1)-hypercube (in particular, the Lambert area-preserving transform) is employed

in order to reduce the search dimension from 3 to 2, and to perform an optimal search on

a convex, simply-connected neighborhood of the unit-square representation of a best ini-

tial guess. Application of this computational methodology in the context of ill-conditioned

search conditions (caused by relative orbital dynamic state covariance divergence over long

propagation horizons) is shown to be sensible.

Hence, the methodology for the computation of the minimum Euclidean distance from

Ld

(
Ri,j(t)

)
to the origin in R3, which is described this Chapter, is utilized for distance-

based SFF collision risk indicator computation in this dissertation – specifically, for the

study of the correlation relationship between dissimilar types of collision risk indicators,

as undertaken in Chapter 8.
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CHAPTER 8

SPACECRAFT FORMATION COLLISION RISK INTERPRETATION AND

DECISION MAKING (PART 1) – RELATING COLLISION PROBABILITY AND

SEPARATION INDICATORS IN SPACECRAFT FORMATION COLLISION

RISK ANALYSIS

Active spacecraft formation flying collision avoidance schemes

monitor collision risk through indicators such as miss distance and

collision probability. This paper compares instantaneous collision

probability measures based on planar projections to their three-

dimensional counterparts. In this analysis, it is found that the for-

mer overestimate the latter. Additionally, this Chapter compares

the consistency of risk assessments based on miss distance and

instantaneous collision probability in closed Clohessy-Wiltshire

(CW) trajectories. Certain statistics of relative position are well

suited for collision risk assessments because their local minima

and collision probability local maxima are anticorrelated. These

results are a step toward connecting both types of indicators into

a cohesive mathematical framework relating to collision risk.

8.1 Introduction

The existing literature in SFF collision avoidance (COLA) can be broadly divided into two

categories: passive and active methods. Passive SFF COLA methods focus on passively

safe formation designs. Using the terminology of Clohessy-Wiltshire (CW) relative orbital

dynamics, [138, 139, 5] most of these passive SFF COLA methods account for the diver-

gence of along-track uncertainty of the relative position of deputies with respect to chiefs by
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causing sufficient separation in the radial/cross-track plane.[140, 60] These methodologies

can be applied to spacecraft formation design, deployment, navigation and reconfiguration,

without the need for COLA-dedicated maneuvers.[141, 142, 143, 144] Other passive SFF

COLA methods include separation in the “sky-plane” (i.e., in the along-track/cross-track

plane),[63] energy matching,[145] and minimum range variation safety ellipses.[146]

With active SFF COLA methods, collision risk is managed through predicting future

motion of agents, determining whether the collision risk is acceptable, and if it is not,

planning and executing COLA-dedicated maneuvers. Passive and active SFF COLA meth-

ods are not mutually exclusive, however, as active SFF COLA methods may presuppose

passively safe formation orbits as baselines. However, the distinction is made because it

is possible to have formations that only implement SFF COLA passively, i.e., only with

regular, autonomous station-keeping maneuvers every few orbits, as demonstrated by the

TanDEM-X and PRISMA missions, for example.[147, 141, 148, 142]

Active SFF COLA methods can be categorized by their collision risk indicators, i.e.,

by the measures or metrics used to conceptualize and mitigate risk. Once collision risk

becomes unacceptable per such indicator, a correction signal is generally obtained by solv-

ing an optimal control problem, in which the risk is accounted for by setting appropriate

constraints.

The first active SFF COLA method category comprises distance-based COLA method-

ologies, i.e., techniques that employ agent separation (e.g., the Euclidean distance between

agents, or Cartesian components of relative position, etc.) to measure collision risk. Some

miss distance-based COLA methods propose avoiding collision by setting appropriate in-

equality constraints directly in terms of the miss distance (or components of relative posi-

tion).[39, 48, 149, 150, 151, 51, 152, 49, 50] Other miss distance-based COLA methods

propose employing relative distance-based heuristics (e.g., artificial potential functions) to

avoid collisions, applying the principles of swarm intelligence and distributed agent control

theory.[25, 153, 26, 154, 53, 52] A subset of distance-based active SFF COLA techniques
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account for state uncertainty directly in the formulation of the avoidance maneuvers by

defining geometric collision regions (e.g., “covariance” contours, or reachable sets) that

represent uncertainty envelopes.[49, 50, 53]

The second active SFF COLA method category comprises stochastic (or probabilistic)

COLA methods, i.e., techniques whereby collision risk between pairs of agents is measured

through the probability of the event that the relative position between agents is within a set

that can be understood as a “collision region”. This presupposes that the relative position

is described by a probability distribution, which can be obtained as the outcome of relative

state estimation.[13, 54, 55] Then, collision is avoided by designing a control signal that

brings the probability of collision below an acceptable threshold. Some miss distance-based

active SFF COLA methods check collision probability,[51, 52] while most stochastic active

SFF COLA methods also check for miss distance.[54]

This Chapter focuses on collision risk indicators for active SFF COLA methods. Specif-

ically, the correlation relationship between miss distance and probability of collision is ex-

plored in order to understand whether these indicators provide consistent representations of

collision risk. This contribution is beneficial for the following reasons. In collision mon-

itoring schemes where both collision risk indicators are used, the interpretation of risk as

portrayed by one indicator may be enhanced by consideration of the other indicator. In the

more common case where only one collision risk indicator is used, this contribution may

help understand the safety and performance tradeoffs of such a choice.

It is possible that the miss distance and collision probability indicators may provide con-

flicting information. In this case, understanding the relationship between these indicators

can help evaluate which indicator may be a more accurate portrayal of collision risk, and

based on the more suitable indicator, it can be decided whether the perceived risk should

elicit a COLA maneuver. Additionally, if one type of indicator is a universally more accu-

rate representation of collision risk than the other type of indicator, then the latter may be

discarded or treated as a supplementary indicator. Overall, understanding the correlation
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relationship between miss distance and probability of collision is a step toward unifying

both types of active SFF COLA methods into a single, coherent mathematical framework

relating to collision risk.

8.2 Background

8.2.1 Notation adjustments for this Chapter

The Notation and Nomenclature used in this Chapter, as well as the deterministic defini-

tion of collision events (derived from relative-attitude abstraction, and induced by arbitrary

a-norm balls in relative position space), and the definition of stochastic collision risk mea-

sures (in both an instantaneous and joint-time sense), are addressed in Chapter 2.

Such general Notation and Nomenclature are made more specific for this Chapter as

follows. First, the balls and spheres used are only those with respect to the Euclidean

norm; additionally, only open balls are employed. (See Definition 1.) Hence, implicitly

a = 2 or a = Eu; consequently, the a-norm symbol is omitted throughout this Chapter.

(See Section 2.2.) From the aforementioned, it follows that collision sets and probabilities

are induced from instantaneous collision conditions based on open balls with respect to the

Euclidean norm in relative position space.

Second, the formulation for collision sets and stochastic collision risk measures, whether

instantaneous or joint-time, are based on time-invariant joint-hard body radii. In other

words, within this Chapter, formulations of instantaneous collision sets and the IPC, as

well as JTC set and the Pc measure, implicitly assume that the corresponding joint HBR is

constant throughout the propagation horizon.

The foregoing assumptions are reflected in the notation adjustments concerning the

following sets and probabilities:

• Instantaneous collision set in relative position space, denoted as Vi,j (see Notation 5)

• Instantaneous probability of collision, IPCi,j(t) (see Definition 7)
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• Joint-time probability of collision, Pci,j[t0, tf ] (see Definition 10)

8.2.2 Epistemic interpretation of collision probabilities

The question of whether it is adequate to employ probabilistic collision risk indicators that

are based on stochastic distributions which reflect an epistemic representation of uncer-

tainty has been previously addressed in the literature. A discussion of this topic is under-

taken in Chapter 5, including remarks on the probability dilution phenomenon displayed

by the probability of collision between spacecraft in a relative orbital dynamic context.[72]

8.2.3 Projection IPCs

The previous formulation of the instantaneous probability of collision (IPC) is general in

the sense that it is applicable to dynamic systems where the relative position is defined

in one-, two-, or three-dimensional Euclidean space. However, for the remainder of this

Chapter, it is assumed that the true relative motion occurs in three-dimensional (3D) Eu-

clidean space. Hence, the term “true IPC” is used to refer to IPCs in the sense of Definition

7, i.e., where the IPC is computed over a 3D collision region using the 3D relative position

pdf.

Projecting 3D relative motion onto certain two-dimensional (2D) planes is a practice

that arises naturally in spaceflight mechanics. For example, in CW dynamics, relative mo-

tion in the radial/along-track plane is decoupled from motion in the cross-track direction;[5]

hence, it is common to W radial/along-track motion separately from cross-track motion in

CW dynamics. Therefore, it is meaningful to also consider instantaneous projections of

the relative motion onto arbitrary planes that cross the origin, and to examine whether a

collision might be occurring as perceived in any such projection plane. This subsection

introduces and formalizes the notions of collision events and probabilities of collision as

perceived in projection planes.

Within this subsection, suppose that position RV R and instances r are expressed in the
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coordinates of some reference frame J , and that the DCM from frame J to a projection

frame W , ΞW,J , is given.

Remark 28 (Projection position pdfs). Suppose a position random variable R in R3 is

absolutely continuous. Then, the pdf of the projection of the position onto the W̃ plane,

pdf [R̃]
W̃

, is obtained through marginalization as

pdf [R̃]
W̃

(
[r̃]W̃

)
=

∫ +∞

−∞
pdf [R]W

([r]W ) d[y]W (8.1)

where [r̃]W̃ = Mp[r]W , and

pdf [R]W
([r]W ) = pdf [R]J

(
ΞT
W,J [r]W

)
(8.2)

When [R]J ∼ N
(
[µ]J , Σ[R]J

)
for some [µ]J ∈ R3 and Σ[R]J ∈ R3×3, Σ[R]J > 0, it

follows that[73]

[R̃]W̃ ∼ N
(
MpΞW,J [µ]J , MpΞW,JΣ[R]JΞ

T
W,J MT

p

)
(8.3)

Note: because a relative position vector is a linear combination of two position vectors, this

remark also applies to relative position pdfs. For more information on marginalizations of

normal pdfs, see the work of Kroese et al.[73] ♢

If [ri]J is known deterministically, then BW̃
i denotes the W̃ -projection of Bi, i.e., the

set of all projections of points in Bi onto the W̃ -plane; that is,

BW̃
i

.
=
{
[r̃]W̃ ∈ R2 : [r̃]W̃ = MpΞW,J [r]J , [r]J ∈ Bi

}
(8.4)

Since, for r in R3, ∥Mpr∥2 ≤ ∥r∥2, it follows from the definition of li that BW̃
i is circum-

scribed within B2|Eu
li

(
[r̃i]W̃

)
, i.e., BW̃

i ⊆ B2|Eu
li

(
[r̃i]W̃

)
in general.

Definition 29 (Projection HBR simplification). By assumption, BW̃
i = B2

li

(
[r̃i]W̃

)
. ♢
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In the rest of this Chapter, the projection HBR simplification, listed in Definition 29, is

assumed to hold.

Definition 30 (Projection collision event). The W̃ -projection i-j collision event occurs

whenever the disks spanned by agents i and j have a nonempty intersection in the W̃ -

projection plane, i.e.,

B2|Eu
li

(
[r̃i]W̃

)
∩ B2|Eu

lj

(
[r̃j]W̃

)
̸= ∅ ♢ (8.5)

Definition 31 (Projection intersection sets). The W̃ -projection intersection disk V W̃
i,j in R2

is defined as

V W̃
i,j

.
= B2|Eu

li,j

(
02×1

)
(8.6)

and it is the region of W̃ -projected relative position space in which the W̃ -projection col-

lision event occurs. Similarly, the W̃ -projection intersection cylinder V W
i,j in R3 is defined

as

V W
i,j

.
=
{
[r]W ∈ R3 : ∥Mp[r]W∥2 < li,j

}
(8.7)

i.e., it is the set of all points in R3 whose W̃ -projections in R2 satisfy the W̃ -projection

collision event. ♢

Proposition 32 (Projection collision condition equivalencies). Under the projection HBR

simplification (see Definition 29), the following statements are equivalent:

1. B2|Eu
li

(Mp[ri]W ) ∩ B2|Eu
lj

(
Mp[rj]W

)
̸= ∅

2.
∥∥Mp[ri,j]W

∥∥
2
< li,j

3. Mp[ri,j]W ∈ V W̃
i,j

4. [ri,j]W ∈ V W
i,j ♢

169



Clearly, V W
i,j is a strict superset of Vi,j , i.e., Vi,j ⊊ V W

i,j . This entails that a true collision

event implies a W̃ -projection collision event regardless of the W̃ -plane of choice, but the

converse does not hold.

Definition 33 (Projection IPCs). The W̃ -projection instantaneous probability of collision

between agents i and j at time t, denoted by IPCW̃
i,j (t), is defined as the probability of “the

event that the W̃ -projections of the bodies of agents i and j are intersecting at time t”.

Under the projection HBR simplification (see Def. 29), IPCW̃
i,j (t) may be expressed as

IPCW̃
i,j (t) = p

(∥∥Mp[Ri,j]W (t)
∥∥
2
< li,j

)
= p

(
[Ri,j]W (t) ∈ V W

i,j

)
(8.8)

If Ri,j(t) is absolutely continuous and it is expressed in W -frame coordinates, via Proposi-

tion 32, IPCW̃
i,j (t) may be equivalently expressed in terms of V W̃

i,j and the pdf of [R̃i,j]W̃ (t);

then, IPCW̃
i,j (t) may be computed as either of these integrals:

IPCW̃
i,j (t) =

∫
[r]W∈V W

i,j

pdf [Ri,j ]W (t) ([r]W ) d[r]W =

∫
[r̃]

W̃
∈V W̃

i,j

pdf [R̃i,j ]W̃ (t)

(
[r̃]W̃

)
d[r̃]W̃ ♢

(8.9)

8.2.4 CW simulation cases

This Chapter focuses on Examples 3D.001–026, which are subject to CW dynamics, and

are listed in Section A.2.

The initial relative state expectation parameters, along with the initial relative state co-

variance, are chosen so as to observe significant, nontrivial IPCs during a two-orbit prop-

agation horizon, which is needed in order to meaningfully compare IPC signals to miss

distance time-histories (or waveforms) during such a time window. Furthermore, the fo-

cus of the Results and Discussion section is on initial relative state expectations where the

[x]H and [z]H motion are out of phase (cases 3D.003−026); this property corresponds to

a specific passive SFF COLA methodology, namely, e-i vector separation.[60] Although
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all cases have expected trajectories that are collision-free, the expected trajectories in Ex-

amples 3D.003−026 provide more separation between CW chief and CW deputy during

closest approach than Examples 3D.001−002.

Finally, all cases assume joint hard-body radii of li,j = 32 m. This figure is based on an

estimate of Hubble Space Telescope’s hard body radius of li = 16 m.[130] For the purposes

of this Chapter, having such a large joint hard-body radius allows obtaining higher (and

thus, more significant) IPCs. Additionally, conclusions are applicable to smaller spacecraft

pairs that, by having additional buffer distance for increased safety, effectively have larger

joint hard-body radii.

8.3 Theory

8.3.1 Theoretical results on projection IPCs

Since planar projections of relative motion are a valid analytical tool in spaceflight mechan-

ics, their application to SFF COLA is plausible, as highlighted by the passive SFF COLA

methodology of causing sufficient separation in the radial/cross-track plane.[60] Other SFF

COLA methods neglect cross-track motion completely, i.e., only considering motion in the

radial/along-track plane.[13, 53] Hence, it is meaningful to define IPCs on the projection

of SFF relative motion onto planes that are useful in analysis. Thus, before comparing

IPC and miss distance time-histories (or waveforms), it is worthwhile to understand the

connection between true IPCs and projection IPCs on any plane.

Conceptually, true IPCs and projection IPCs are distinct, as illustrated in Figure 8.1

Thus, if “IPCs” are to be used as criteria for triggering COLA processes, choosing either

true or projection IPCs for this purpose might produce different outcomes. In particular, it

is helpful to understand what distortions in conjunction assessments might be introduced

when “greater than or equal” COLA trigger thresholds are implemented; that is, if planning

and/or execution of COLA maneuvers occurs whenever some IPC (true or projected) goes

above a fixed constant. In this context, such a constant could be interpreted as a proxy for
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the maximum collision risk that can be tolerated.

8.3.1.1 Projection IPCs overestimate true IPCs

Theorem 34 (Projection IPCs overestimate true IPCs). Suppose that Ri,j(t) is absolutely

continuous. Let W describe a projection frame, i.e., a Cartesian reference frame in R3 in

the sense of Remark 28. Then, every W̃ -projection IPC is an overestimate of the true IPC,

i.e.,

0 ≤ IPCi,j(t) ≤ IPCW̃
i,j(t) ≤ 1 (8.10)

for any choice of projection frame W . Additionally, if supp
(
pdfRi,j(t)

)
= R3 (i.e., if, for

r in R3, pdfRi,j(t)
(r) ̸= 0), then every W̃ -projection IPC is a strict overestimate of the true

IPC, i.e.,

0 < IPCi,j(t) < IPCW̃
i,j(t) ≤ 1 (8.11)

for any choice of projection frame W . Note: this second result applies, in particular, when

the distribution of Ri,j(t) is nondegenerate normal. ♢

Proof. In Subsection 8.2.3, it was noted that Vi,j ⊊ V W
i,j , so Vi,j ⊆ V W

i,j . Hence, the first

result follows from

0 ≤ IPCi,j(t) = p
(
Ri,j(t) ∈ Vi,j

)
≤ p

(
Ri,j(t) ∈ V W

i,j

)
= IPCW̃

i,j(t) ≤ 1 (8.12)

Since Vi,j ⊆ V W
i,j , forB .

= V W
i,j \Vi,j , it follows from the proper difference rule that ∆ .

=

p
(
Ri,j(t) ∈ B

)
satisfies ∆ = p

(
Ri,j(t) ∈ V W

i,j

)
− p

(
Ri,j(t) ∈ Vi,j

)
≥ 0. At this point, let

supp
(
pdfRi,j(t)

)
= R3; this implies that, for any [r]W in R3, pdf [Ri,j ]W (t) ([r]W ) > 0. Thus,

it is enough to show that the set B has positive measure for ∆ to be positive.

Let λ (·) denote the Lebesgue measure of sets in R3.[34] Since both Vi,j and V W
i,j are

open sets, they are measurable. By expressing

V W
i,j =

{
[r]W ∈ R3 : ([x]W )2 + ([z]W )2 < l2i,j

}
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Figure 8.1: Conceptual distinction between true IPC and W̃ -projection IPC measures for a
3D relative position pdf (expressed in the coordinates of an arbitrary frame J ).

it is clear that V W
i,j has infinite measure, while the measure of

Vi,j =
{
[r]W ∈ R3 : ([x]W )2 + ([y]W )2 + ([z]W )2 < l2i,j

}
is finite. By Caratheodory’s criterion, it follows that

λ (B) = λ
(
V W
i,j

)
− λ (Vi,j) =∞−

4

3
π (li,j)

3 =∞ > 0

Hence, both Vi,j and B have positive measure. Therefore,
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∆ =

∫
[r]W∈B

pdf [Ri,j ]W (t) ([r]W ) d[r]W > 0 (8.13)

which proves that IPCW̃
i,j(t) = IPCi,j(t) + ∆ > IPCi,j(t). The last result follows from

noting that any non-degenerate normal RV X in R3 satisfies supp
(
pdfX

)
= R3.

Since projection IPCs are overestimates of true IPCs, using projection IPCs as COLA

trigger criteria leads to considering collision risk greater than as would be indicated by true

IPCs, which would be analogous to having probabilistic false positives. Customarily, a

constraint after collision avoidance maneuvers is that the IPC be brought under a certain

threshold (e.g., 1 × 10−7) after a maneuver is conducted. Hence, using projection IPCs as

post-maneuver constraint satisfaction criteria could lead to further correction efforts than

warranted to sufficiently avoid collision risk. Accounting for scarce onboard resources,

these observations show that using projection IPCs as collision safety criteria (i.e., either

as COLA trigger criteria or as post-maneuver constraint satisfaction criteria) would result

in additional COLA maneuvers and a shorter mission lifetime than would be warranted

with the chosen risk threshold. This criticism applies only to projection IPCs and not to

the Pc, as there are conjunction cases when it is valid to approximate the Pc in a way

that is mathematically equivalent to a projection IPC, e.g., when the “short encounter”

assumptions are met.[31]

Corollary 35. The W̃ -projection IPCs in the following W̃ -projection planes are overesti-

mates of the true IPC:

• Every coordinate plane W̃ -projection IPC, i.e., for any arbitrary reference frame J ,

the [x]J -[y]J , [x]J -[z]J , and [y]J -[z]J coordinate planes.

• Any plane whose normal vector is:

– The expected value of the relative position pdf (also called a radial projection).

– The expected value of the relative position rate pdf.
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Note: some of these projection IPCs are illustrated in Figure 8.1. ♢

8.3.1.2 Invariance of Euclidean norm-based projection IPCs

Under the assumption that instantaneous collision conditions in relative position are based

on the Euclidean norm, it could be shown that W̃ -projection IPCs are unique functions of

the W̃ -projection plane normal, which is clearly the [y]W axis.

Lemma 36 (Invariance of Euclidean norm-based W̃ -projection IPCs). Let W describe a

projection frame in the sense of Remark 28, and suppose that the W is defined through

a 3 − 1 − 2 Euler angle sequence with respect to an arbitrary reference frame I ,[65] for

example, as

ΞW,J = A312 (−Az,El, γ) (8.14)

as shown in Figure 8.2. Then, the W̃ -projection IPC is invariant under the last rotation of

that sequence, i.e., it is invariant under arbitrary roll angles γ ∈ [0, 2π]. In other words,

if any two projection frames W1 and W2 are defined through this sequence, and if these

frames satisfy

Az1 = Az2 (8.15)

El1 = El2 (8.16)

then, it follows that

IPCW̃1
i,j (t) = IPCW̃2

i,j (t) (8.17)

for all γ1, γ2 in [0, 2π). Note: this result also applies to other ΞW,J direction cosine matrices

defined through Euler angle sequences with a “2” as the last rotation of the sequence, i.e.,

with the 1− 3− 2, 2− 1− 2, and 2− 3− 2 Euler angle sequences. ♢

Proof. Suppose that the coordinate transformation matrices ΞWk,J , k ∈ {1, 2} are con-

structed through 3 − 1 − 2 Euler angle sequences with respect to an arbitrary reference
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30 January 2023: change projection IPC invariance lemma base frame notation 
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Figure 8.2: Geometry of W -projection frame with ΞW,J = A312 (−Az,El, γ) parametriza-
tion: a) Az,El geometry, b) γ geometry in W̃ -projection plane. Note: the AER frame is
parametrized with γ = 0.

frame J such that the there exist angles (Azk,Elk, γk) which satisfy

ΞWk,J = A312 (−Azk,Elk, γk) (8.18)

for k ∈ {1, 2}. Furthermore, assume that

Az1 = Az2 =: Az (8.19)

El1 = El2 =: El (8.20)

Consider r in R3. The goal is to show, under the current assumptions, that ΞW1,W2 [r]W2 ∈

V W1
i,j if and only if [r]W2 ∈ V W2

i,j .
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In this case,

ΞW1,W2 = ΞW1,JΞJ ,W2 = ΞW1,JΞ
T
W2,J =

[A2 (γ1)A1 (El1)A3 (−Az1)] [A2 (γ2)A1 (El2)A3 (−Az2)]T

= A2 (γ1)A1 (El)A3 (−Az)A−1
3 (−Az)A−1

1 (El)A2 (−γ2)

= A2 (γ1 − γ2) (8.21)

Thus,

ΞW1,W2 = A2 (γ1 − γ2) =


c 0 −s

0 1 0

s 0 c

 (8.22)

where

c
.
= cos (γ1 − γ2) (8.23)

s
.
= sin (γ1 − γ2) (8.24)

Therefore,

ΞW1,W2 [r]W2 =


c [x]W2

− s [z]W2

[y]W2

s [x]W2
+ c [z]W2

 (8.25)

and

MpΞW1,W2 [r]W2 =

c [x]W2
− s [z]W2

s [x]W2
+ c [z]W2

 (8.26)

1. Let ΞW1,W2 [r]W2 ∈ V W1
i,j . Then,

u
.
= ∥MpΞW1,W2 [r]W2∥Eu < li,j (8.27)
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Hence,

u2 =

c2
(
[x]W2

)2
+s2

(
[z]W2

)2−2cs [x]W2
[z]W2

+s2
(
[x]W2

)2
+c2

(
[z]W2

)2
+2cs [x]W2

[z]W2

=
(
[x]W2

)2
+
(
[z]W2

)2
=: ∥Mp[r]W2∥

2 (8.28)

It follows that ∥Mp[r]W2∥Eu < li,j , which shows that [r]W2 ∈ V W2
i,j .

2. Let [r]W2 ∈ V W2
i,j . Thus, ΞW2,W1 [r]W1 ∈ V W2

i,j . By reversing the order of the indices

in the previous statement, Item 1, it follows that

[r]W1
∈ V W1

i,j
(8.29)

Therefore, ΞW1,W2 [r]W2 ∈ V W1
i,j .

The previous two statements, Items 1 and 2, show that ΞW1,W2 [r]W2 ∈ V W1
i,j if and only if

[r]W2 ∈ V W2
i,j . Therefore,

IPCW̃1
i,j (t) := p

(
Ri,j(t) ∈ V W1

i,j

)
= p

(
Ri,j(t) ∈ V W2

i,j

)
=: IPCW̃2

i,j (t) (8.30)

which was to be demonstrated.

Lemma 36 is significant because it shows that Euclidean norm-based W̃ -projection

IPCs are unique functions of the W̃ -projection plane normal, which is clearly the [y]W

axis, as shown in Fig. 8.2. In other words, the orientation of the orthonormal basis vectors

in the W̃ -projection plane (i.e., the [x]W and [z]W direction unit vectors) is immaterial to

the value of Euclidean norm-based W̃ -projection IPCs.
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8.3.2 Validation of projection IPC theoretical results

In this Chapter, general results are demonstrated regarding projection IPCs, one of which

shows how projection IPCs always overestimate true IPCs regardless of projection plane

choice, as illustrated in Figure 8.1, and as proven in Theorem 34. This theoretical finding

is validated by Monte Carlo (MC) analysis. In this Chapter, such MC simulation assumes

CW relative orbital dynamics in Low Earth Orbit (LEO). Numerical IPC waveforms (true

and projected) are compared to the Monte Carlo-based IPC waveforms. Performing such a

Monte Carlo simulation is challenging if the debris conjunction assessment and risk analy-

sis (CARA) community requirement that Pc values above 1× 10−7 are considered signifi-

cant were to be adopted for SFF collision risk assessment based on IPC values.[29, 73] An

example of Monte Carlo sample relative position distribution is illustrated in Figure 8.3.

Several relevant spacecraft proximity cases are studied: without cross-track motion, and

with cross-track motion (in- and out-of-phase with radial motion, and more general cases).

Figure 8.3: Relative position sample distribution (marginalization of relative state sample
distribution), Example 3D.005, time = 0 orbits (3.2 × 108 particles in sample).

Through the preceding Monte Carlo analysis, it is found that not only does the Monte

Carlo IPC waveform converge to the true IPC waveform (as computed through brute force

quadrature), but that the true IPC is significantly different from every projection IPC con-
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sidered, i.e., those with projection planes normal to relative position and relative position

rate (see Figure 8.4), and CW coordinate planes (see Figure 8.5). Even though there is

some meaningful correlation between the true IPC waveform and some of the projection

IPCs (i.e., for projection planes normal to relative position rate, and for the radial/along-

track plane), this correlation is not consistent across cases, and the difference in magnitude

could lead to different risk assessment conclusions depending on IPC risk thresholds.[29]

Furthermore, the projection IPC exceeds the true IPC in every case, regardless of the pro-

jection plane, as indicated by Theorem 34.

Figure 8.4: True IPC, projection IPCs, and Monte Carlo IPC, Example 3D.005 (projection
IPCs are on planes normal to dynamics vectors).

8.3.3 Motivating distance measures for correlation with true IPC

The notion of consistency of collision risk assessments from dissimilar collision risk indi-

cators requires exploring the correlation between such indicators. Specifically, with the col-

lision risk indicators considered in this Chapter, consistency in collision risk assessments

would ideally entail that local extrema of true IPC and local extrema of miss distance

be anticorrelated. In other words, with consistent collision risk indicators, the true IPC
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Figure 8.5: True IPC, projection IPCs, and Monte Carlo IPC, Example 3D.005 (projection
IPCs are on coordinate planes).

waveform would ideally indicate greatest collision risk while the miss distance waveform

indicates closest approach on the one hand; on the other hand, the former would ideally

indicate lowest collision risk while the latter indicates furthest approach.

However, as shown by the example in Figures 8.4 and 8.5, the condition of collision

risk indicator consistency is not generally met when comparing the Euclidean norm of ex-

pected relative position and true IPC waveforms. In this case, over a two-orbit horizon,

these waveforms are mostly positively correlated. That is, primarily, the true IPC indicates

lowest collision risk when the Euclidean norm of expected relative position indicates clos-

est approach, and the true IPC indicates highest collision risk when the Euclidean norm of

expected relative position indicates furthest approach. Evidently, these insights are incon-

sistent (as understood in this Chapter), and using one collision risk indicator over another

would lead to diametrically opposite conclusions. Even though this inconsistent indicator

waveform behavior does not always occur, it is common in many of the cases considered.

Hence, the Euclidean norm of expected relative position is not a miss distance waveform

that can be reliably used as a qualitative substitute for (or predictor of) true IPC extrema.
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This finding prompts the search for other statistics of the relative position distribution that

can be interpreted as miss distance and that, together with the true IPC, produce consistent

collision risk assessments.

For X ∼ N (µ, σ2) for some µ in R and σ > 0, colloquially, a 3−σ set (in this case,

the points {µ ± 3σ}) is considered a boundary between extreme events and non-extreme

events. That is, events between µ − 3σ and µ + 3σ are typically not considered extreme,

and events outside of that interval are colloquially considered extreme. Given that the IPCs

considered in this Chapter have such low values, collisions can also be deemed as extreme

events. Therefore, it is desirable for any proposed separation measures to represent extreme

events in some sense as well.

Based on analogous extensions of the univariate normal 3−σ concept, the following

methodologies define “miss distance”-like measures which are hypothesized to have the

correct relationship to the true IPC:

1. Methodology 1: minimum distance to a “geometric” 3−σ contour, discussed in Sub-

subsection 2.6.2.1, and denoted by sepgeo|i,j(t).

2. Methodology 2: minimum distance to an “equivalent” 3−σ contour, discussed in

Subsubsection 2.6.2.2, and denoted by sepeq|i,j(t).

3. Methodology 3: 99.73% minimum distance, discussed in Subsubsection 2.7.1.1, and

denoted by ρ3σ.

Methodologies 1-2 and 3 are formally defined and discussed in Subsections 2.6.2 and

2.7.1, respectively. The “geometric” and “equivalent” 3−σ contours, as well as points

in such contours that are closest to the origin, are illustrated in Figure 2.5. The 99.73%

minimum distance measure (i.e., ρ3σ) is illustrated in Figure 2.6.

Miss distance measures akin to Methodologies 1 and 2 have been proposed in the lit-

erature as collision risk indicators. Wang et al. propose a heuristic SFF COLA scheme

whereby the relative position pdf is centered at the chief spacecraft instead of at the deputy
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spacecraft; then, an artificial potential function (APF) is implemented to trigger COLA

actions by the deputy when its position relative to the chief crosses below a safety MHD

centered at the chief’s location.[53] Conceptually, the contours proposed by Wang et al.

differ from those defined by Methodologies 1 and 2 only by the specific MHD chosen to

define those contours, and by defining the center of the relative position pdf differently.

Methodology 3 has two valid interpretations. First, ρ3σ can be interpreted as the solution

of a root-finding problem, where a variable HBR is changed until its corresponding IPC

matches p3σ. Second, ρ3σ can be interpreted as a percentile in a cumulative distribution

function (cdf), specifically, the cdf of the Euclidean norm of the instantaneous relative

position.

8.3.4 Definition of collision correlation index

The conceptual notion of collision indicator waveform correlation used in this Chapter is

formalized through the collision correlation index, introduced in Definition 37.

Definition 37 (Collision correlation index). The i-j collision correlation index over the

[t0, t0 + T ] interval, Γi,j , is the normalized and unbiasedL2-inner product between IPCi,j(t)

and some separation measure between agents i and j at time t, sepi,j (t), t ∈ [t0, t0 + T ].

That is, Γi,j : V × V → [−1, 1] is defined by the mapping

Γi,j

(
IPCi,j, sepi,j

)
=

〈
y (IPCi,j) , y

(
sepi,j

)〉
∥y (IPCi,j)∥L2

∥∥y (sepi,j

)∥∥
L2

(8.31)

where IPCi,j : [t0, t0 + T ]→ [0, 1] is as presented in Definition 7, where sepi,j : [t0, t0 + T ]→

[0,∞) is some measure of separation between agents i and j at time t, t ∈ [t0, t0 + T ], and

where y : V → V is given by

y (f) = f − Av(f), f ∈ V (8.32)

where V .
= L2 [t0, t0 + T ] is the L2-inner product space of Lebesgue measurable func-
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tions in [t0, t0 + T ],[66] and where the L2-norm, ∥·∥L2 , is defined in terms of the L2-inner

product, ⟨·, ·⟩, as ∥·∥L2 =
√
⟨·, ·⟩, and where Av is the time-average function.

When V is restricted to the space of real-valued, bounded, continuous almost every-

where (a.e.) functions in [t0, t0 + T ], then the L2-inner product ⟨·, ·⟩ : V × V → R can be

computed in terms of the Riemann integral[66]

⟨x, z⟩ =
∫ t0+T

t0

x (t) z(t) dt; x, z ∈ V (8.33)

and Av : V → R can be also be computed in terms of the Riemann integral as

Av(x) =
1

T

∫ t0+T

t0

x (t) dt; x ∈ V (8.34)

Note: in the signal processing community,[155] the collision correlation index Γi,j can be

interpreted as the cross-correlation coefficient of x1 (·) and x2 (·), ρx1,x2 , i.e.,

Γi,j (x1, x2) = ρx1,x2 =
⟨x1 (·) , x2 (·)⟩√

Ex1Ex2

(8.35)

where x1 (·) is the unbiased IPCi,j signal, x2 (·) is the unbiased sepi,j signal, and where the

energy of the signal x (·), Ex, is given by Ex
.
= ⟨x (·) , x (·)⟩ = ∥x (·)∥2E . ♢

The collision correlation index Γi,j compares two waveforms directly and outputs a

value between −1 and 1 that indicates the extent of linear correlation (or anti-correlation)

between the waveforms (after bias removal). Thus, the notion of consistency entails that

the IPC and miss distance waveforms, when passed through the Γi,j operator, should give

a value as close to −1 as possible.

8.4 Results and discussion

This section addresses findings in several areas of this Chapter. First, MC sample-based

IPC convergence to the true IPC is discussed. Second, results on the correlation relationship
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between the true IPC and several separation measures are examined. Third, the consistency

between probabilistic indicators and the 99.73% minimum distance is explored.

8.4.1 Implementation notes

Numerical IPCs are computed through multi-dimensional brute-force quadrature in MAT-

LAB R2020b,[129] using the analytically propagated relative state statistics listed in Eqns.

A.22-A.23 The true IPC is computed via the integral3 function by integrating the in-

stantaneous relative position pdf, which is obtained through the marginalization listed in

Eq. A.24 Similarly, projection IPCs are computed via the integral2 function by in-

tegrating the instantaneous relative position pdf, as projected onto the respective planes

of choice, obtained through the marginalization listed in Remark 28. (Normal pdfs are

constructed through their associated statistics via Eq. 2.13.) In both cases, relative and

absolute error tolerances are set to 1× 10−6 and 1× 10−10, respectively, which achieve rel-

ative and absolute errors (approximately) to within 6 and 10 significant digits, respectively.

(The integral2/3 schemes may achieve either criteria, but they do not always meet

both criteria.) Additionally, integration region limits are expressed in terms of Cartesian

coordinates, namely, z = ±
√
l2i,j − x2 − y2, y = ±

√
l2i,j − x2, and x = ±li,j .

Conjecture 38. Suppose that a Monte Carlo (MC) sample is made of a non-degenerate

multivariate normal distribution. Suppose that events with a probability of preq or lower

can be ignored. Then, it is expected that significant events (i.e., events with probability

greater than or equal to preq) can be captured with a sample size NMC that satisfies

NMC ≥ 30

⌈
1

preq

⌉
(8.36)

Note: the reasoning which grounds this Conjecture is discussed in Section C.3. ♢

Within NASA CARA practice,[29] potential conjunction events with Pc values of less

than 1× 10−7 are considered insignificant. For two agents in a potential conjunction event,
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such Pc’s may often be approximated by an integral (over a disk region) of a 2D normal

pdf, obtained by projecting a 3D normal relative position pdf (at the instant of closest

approach between the agents) onto the plane perpendicular to the relative velocity vector.

Hence, these Pc approximations are mathematically equivalent to a projection IPC. Thus,

mirroring NASA CARA practice, it is assumed that potential conjunction events with IPCs

less than 1 × 10−7 are insignificant. Under the assumption of Conjecture 38, it follows

that preq = 1× 10−7, which implies that the MC sample size, NMC, should satisfy NMC ≥

3.0 × 108. The sample size is chosen as NMC = 3.2 × 108, which is sufficiently large

according to Conjecture 38.

The large MC sample size requirement is the main driving factor for the technique

implemented for sample generation and data reduction. The MC sample handling technique

has three broad steps: sample generation, intermediate data reduction, and aggregation

of intermediate results into sample-level results. The specific MC sample management

technique employed in this dissertation is described further in Section C.4.

Upper and lower bounds for the solution of the COP posed in Eq. 2.44 may be found in

terms of the Euclidean norm of the expected relative position, the minimum and maximum

eigenvalues of the relative position covariance, and the MHD d that defines the Ld

(
Ri,j

)
of choice. These bounds are listed in Proposition 26. Using these bounds, the COP can be

normalized so as to have predictable objective function extrema bounds (cf. Corollary 27),

e.g., −1 and 1. Since Ld

(
Ri,j

)
and the unit 2-sphere are isomorphic, an initial guess for

the COP may be found by making a uniform sample of the unit 2-sphere, then transforming

it into a sample of Ld

(
Ri,j

)
, and then starting the search using the best-performing sample

element, as shown in Eq. 7.45. Similarly, as illustrated in Fig. 8.6, the nonlinear equality

constraint in the COP can be used to reformulate the initial search (in R3) into a search

in unit-square space, by implementing a mapping from the unit 2-square to the unit 2-

sphere (e.g., the area-preserving Lambert Transform [119]), and from the unit 2-sphere

into Ld

(
Ri,j

)
(through the relative position statistics)., as posed in Eq. 7.55. In order to
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avoid singularities, the coordinates in the unit 2-sphere are transformed so as to locate the

initial search point in the center of the unit square, which gives regularity to the search

and does not affect the final result (cf. Eq. 7.51). Using this parametrization, the outcome

of Methodologies 1 and 2 is computed in MATLAB R2020b through the fminsearch

function,[129] with both objective function and solution error tolerances set to 1 × 10−4

(where both tolerances are met before finishing the search).
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Figure 8.6: Relationship between a) unit square, b) unit 2-sphere, and c) Ld

(
Ri,j

)
.

8.4.2 Validation of MC sample and projection IPC theoretical results

Figure 8.7 shows that the cross-correlation coefficient (introduced in Definition 37) be-

tween sample and true IPC waveforms is approximately 1 for all dynamic cases listed in

Table A.2. In the limit that this cross-correlation coefficient is 1, and in the limit of con-

tinuous timesteps, this result would imply that the sample and true IPC waveforms are

equal almost everywhere — to within a scaling constant. It is therefore necessary to check

whether the norms of the sample and true IPC waveforms are equal (or reasonably close) —

if so, then the Monte Carlo samples at hand are able to faithfully reproduce IPC waveforms,

and are therefore adequate for the purposes of this Chapter.

Figure 8.8 shows the sample-to-true IPC waveform norm ratio for all dynamic cases

listed in Table A.2, which shows that, for all cases, the sample IPC waveform norm is
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Figure 8.7: Cross-correlation coefficient between sample and true IPC waveforms (over 2
orbit periods), Monte Carlo results (all cases).

within 0.84% of the true IPC waveform norm. This fact, along with the cross-correlation

coefficient between these waveforms, shows that the sample IPC approximates the true IPC

adequately, i.e., such waveforms coincide with low discrepancy.

Figure 8.8: Sample-to-true IPC waveform L2-norm ratios (over 2 orbit periods), Monte
Carlo results (all cases).

Together, Figures 8.7 and 8.8 not only demonstrate the validity of the Monte Carlo
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samples employed in this Chapter, but they also validate the theoretical results presented in

Theorem 34 and Corollary 35 in the sense that sample IPCs coincide with true IPCs and not

with projection IPCs. This notion is further reinforced with the cross-correlation coefficient

between sample and projection IPCs, for both biased and unbiased waveforms, as shown

in Figures 8.9 and 8.10, respectively. These figures demonstrate that, for a wide range of

initial CW conditions, there is no consistent connection between sample and projection

IPCs — unlike the connection between sample and true IPCs.

Figure 8.9: Cross-correlation coefficient between sample and projection IPC waveforms
(over 2 orbit periods), Monte Carlo results (all cases, biased waveforms).

Out of all dynamic cases and projections considered, there is only near agreement (to

within a constant) between the sample and [x]H , [y]H-projection IPC waveforms in Case

3D.001, i.e., with no [z]H motion. However, there are two issues with the adequacy of

this projection approximation. The first issue is that, as seen in Fig. 8.11, the [x]H , [y]H-

projection IPC overestimates the sample (and true) IPC — by a factor of 2.61. In this

scenario, the expected relative trajectories are identical, and the origin of the respective

collision regions is the same; the only distinction is that integrals for this projection IPC

are taken over a 2D disk (as is the case for any projection IPC), whereas integrals for the
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Figure 8.10: Cross-correlation coefficient between sample and true IPC waveforms (over 2
orbit periods), Monte Carlo results (all cases, unbiased waveforms).

sample IPC are taken over a 3D ball, as illustrated in Fig. 8.1. Since no other CW projection

has relative motion that approximates the true relative motion better, it follows that every

other CW projection case also fails to have projection IPCs that satisfactorily approximate

the true IPC. The second issue is that, as discussed in the Introduction section, passive

SFF COLA schemes that implement e-i vector separation are popular in applications; these

schemes roughly correspond to [x]H and [z]H motion being out of phase, which implies

nontrivial [z]H motion. Thus, even if [x]H , [y]H-projection IPCs were adequate for the

case of no [z]H motion, [x]H , [y]H-projection IPCs would not be adequate when e-i vector

separation is implemented. Therefore, Figures 8.7-8.10 and Figure 8.11 demonstrate that

there are no general CW dynamics cases where any projection IPC waveform adequately

approximates a true IPC waveform.

8.4.3 Correlating miss distance and true IPC

In this Chapter, true IPC and “miss distance”-like measures represented by Methodologies

1, 2 and 3 are compared in order to examine the consistency of collision risk assessments
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Figure 8.11: Sample, true, and [x]H-[y]H projection IPC waveforms, Example 3D.001.

obtained by these comparisons. For the case of no [z]H motion (see Figure 8.12) and for the

case of [x]H and [z]H motion in phase (see Figure 8.13), such comparisons are illustrated

through the true IPC and miss distance waveforms themselves; for the case of [x]H and

[z]H motion out of phase, the comparison is made through the collision correlation index

introduced in Definition 37.

Figure 8.12: Comparison of IPC and “miss distance”-like waveforms, Methodologies 1, 2,
and 3, Example 3D.001 (no [z]H motion).

It is found that there is no general correlation between the unbiased waveforms of the
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Figure 8.13: Comparison of IPC and “miss distance”-like waveforms, Methodologies 1, 2,
and 3, Example 3D.002 ([x]H and [z]H motion in phase).

Figure 8.14: Collision correlation index between sample IPC and “miss distance” wave-
forms: Methodologies 1-3, and Euclidean norm of expected relative position ([x]H , [z]H
motion out of phase).

IPC and the Euclidean norm of expected relative position, since local extrema of the former

and the latter are positively correlated as frequently as they are negatively correlated, and

often, there is no correlation between the two waveforms. (It should be noted that, for a

fixed time, the Euclidean norm of expected relative position is a constant, i.e., it is the Eu-
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clidean norm of a constant, namely, the expected value of the relative position; on the other

hand, because the relative position is a random variable, the Euclidean norm of the relative

position is itself a random variable.) This result is significant because it renders collision

risk assessments based on the Euclidean norm of expected relative position inconsistent

when compared to the true IPC. This entails that employing the norm of expected relative

position as a collision risk indicator may lead to conclusions that would contradict both

intuition and probabilistic approaches to measure collision risk.

In contrast, Methodologies 1–3, together with the true IPC, exhibit either negative or

null collision correlation indices over several cases of out-of-phase radial/cross-track mo-

tion, and this is observed more strongly for ρ3σ than for Methodologies 1 and 2. Thus,

Methodology 3, together with the true IPC, produces the most consistent collision risk as-

sessment under the collision correlation index criterion. This does not mean that Method-

ologies 1 or 2 provide incorrect or meaningless information. In fact, analogues of the

Ldm1

(
Ri,j(t)

)
set and the Ldm2

(
Ri,j(t)

)
set have been proposed as confidence regions in

absolute position space for each agent [specifically, Ld (Ri(t)) and Ld

(
Rj(t)

)
for some

meaningful d > 0], where absence of intersection between such confidence ellipsoids may

be interpreted as lack of plausibility of collision, with a certain degree of confidence, in

light of the position statistics.[45] In relative position space, Methodologies 1 and 2, can

be complementary to confidence ellipsoid information. For example, with a vanishingly

small joint HBR, if DRi,j(t)
(
¯
03×1) > 3 (i.e., if the MHD of the origin in relative position

space is greater than 3), Methodology 1 would quantify the closeness (in km) of the rela-

tive position statistics to violation of the criteria for collision implausibility associated with

Ldm1

(
Ri,j(t)

)
, instead of just having a binary indicator of whether the criteria has been

violated or not. Rather, Figures 8.12-8.14 indicate that the degree of correspondence be-

tween IPC and ρ3σ changes is greater than between IPC and Methodology 1 or 2 changes,

which indicates that the IPC and ρ3σ are more qualitatively interchangeable than the IPC

and Methodology 1 or 2. Hence, of all the statistical descriptions of agent separation con-
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sidered, ρ3σ is the most intuitively related to the IPC as per the discussion in the Theory

section.

Although ρ3σ (together with the true IPC) produces correlation indices that are consis-

tently closer to −1 than any other distance measure, this relationship is distinct from—and

does not closely approximate —linear dependence. In fact, the anti-correlation between

the unbiased waveforms of the IPC and ρ3σ is much weaker than the correlation between

certain projection IPCs and true IPCs. Yet, the conclusion is that projection IPCs are inade-

quate for approximating true IPCs, while ρ3σ is considered to be an adequate proxy for the

true IPC. The reason for this interpretation is that, not only are distance measures and true

IPCs conceptually and physically distinct, but employing one criterion over the other as an

indicator of collision risk already leads to distinct active SFF COLA philosophies, as dis-

cussed in the Introduction section. Thus, the significant aspect of the relationship between

ρ3σ and true IPCs is that, despite their conceptual distinction, they are still related to each

other in a way that is consistent with intuition, and even though their anti-correlation is not

as strong as it could be, their anti-correlation is still stronger for ρ3σ than for other distance

measures over a wide range of CW dynamic cases and hard-body radii. Figure 8.15 shows

the collision correlation index between the (brute force quadrature) IPC and Monte Carlo

ρ3σ (or sample 99.73% min. distance), with variations of the underlying joint HBR that

defines the IPC. (The reference signal is the yellow waveform, i.e., with a joint HBR of 32

m as previously assumed.) It is found that, even after varying the joint HBR, the relation-

ship between the IPC and ρ3σ remains qualitatively the same – that is, local maxima of the

unbiased IPC and local minima of the unbiased ρ3σ waveforms are correlated. Although

the “consistency” between IPC and ρ3σ becomes stronger with a larger joint HBR, it is still

observed for smaller joint hard-body radii, increasing the applicability of these conclusions

for spacecraft classes ranging from small satellites to the International Space Station.

Therefore, it is deduced that ρ3σ (together with IPC) is more likely to produce consis-

tent collision risk assessments (as understood in this Chapter) than other distance measures.
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Figure 8.15: Collision correlation index between true IPC and sample ρ3σ waveforms (all
cases).

Moreover, it can also be concluded that ρ3σ is a better predictor of true IPC (and vice versa)

than the other distance measures considered, which is a helpful heuristic in applications

where only one method of active SFF COLA is implemented. These conclusions align

with previous work on use of fixed confidence intervals (in the space of the Euclidean

norm of relative position) as collision risk indicators, where it has been proposed that em-

ploying lower linear distance interval estimates of confidence bounds with fixed confidence

levels is no worse in terms of missed detection/false alarm rates than employing collision

probabilities because of how the former and the latter coincide because of the probabilistic

interpretation of the confidence bounds employed.[105]

8.4.4 Comparing the 99.73% minimum distance to the Pc

Since the true IPC and ρ3σ (i.e., the 99.73% minimum distance) produce consistent colli-

sion risk assessments, it is helpful to examine how these two collision risk indicators relate

to the Pc, which is the focus of much of the literature in the field of spacecraft collision risk

assessment. Unlike for the IPC, no comparison is made for the Monte Carlo Pc estimate
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to a baseline numerical estimate based on an analytical formulation. Although such a for-

mulation exists (as presented by Coppola[44]), it is not exact because it assumes that each

region of the pdf that crosses into the collision region can only do so once, which cannot

be guaranteed in general. When comparing these three indicators for the cases considered,

it is found that these indicators are consistent and complementary, as they all indicate con-

sistent aspects of the same collision assessment. That is, at the same time, the true IPC

has local maxima, the Pc indicates increased risk of collision, and the 99.73% minimum

distance indicates “closest approach” between the chief and deputy spacecraft, as depicted

in Figure 8.16 for Example 3D.002. (Other examples exhibit similar behavior.)

Figure 8.16: Comparison of IPC, Pc, and 99.73% minimum distance waveforms, Example
3D.002.

The extent of these insights is qualitatively only, since many effects have not been

studied in detail. For instance, the effects of joint hard-body radius, orbit period, process

noise, and propagation horizon have not been considered. Ultimately, it is not possible to

draw general conclusions from these qualitative results because the Pc has a sub-additive

relationship with the IPC, since a particle which indicates collisions at times t1 and t2 con-

tributes to both IPC(t1) and IPC(t2), but will only contribute once to Pc[t1, t2]. However,
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this also implies that whenever the IPC is null, the Pc does not change, which does con-

tribute to the fact that significant peaks in IPC may contribute to sustained increases in Pc,

as observed in these results. Since such a link may be established between IPC and Pc, and

given the relationship exhibited by the IPC and ρ3σ, the results presented herein indicate

that the relationship between all three indicators warrants further examination.

If a more general consistency among the true IPC, Pc and 99.73% minimum distance

waveforms were established, it would be a significant result for the SFF COLA commu-

nity. Such a connection would imply that, by employing these collision risk indicators in

unison, it might be possible to obtain consistent collision risk assessments, which would

be valuable in the distinct yet complementary goals of SFF mission safety and operational

performance. Additionally, by unifying the two main collision risk indicators found in

the literature, a step toward bridging their corresponding SFF COLA philosophies into a

unified framework may be achieved.

8.5 Conclusion

In this Chapter, several paradigms are addressed regarding collision risk assessment prac-

tices in the context of spacecraft formation flying (SFF) collision avoidance (COLA). The

first contribution pertains to the true and projection instantaneous probabilities of collision

(IPCs), which are defined using topological notions and employing the hard body radius

assumption. It is proven that for continuous relative position probability density func-

tions (pdfs), any choice of projection IPC always overestimates the true IPC. This result

is validated through Monte Carlo (MC) simulation in an environment subject to Clohessy-

Wiltshire (CW) dynamics for a wide range of initial conditions. This result implies that

using projection IPCs instead of true IPCs in collision risk assessment results in proba-

bilistic false positives in the detection of high collision risk events, which is detrimental

to agents in spacecraft formations with limited, non-renewable onboard propellant. There-

fore, it is concluded that employing projection IPCs for collision risk assessment in the
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context of SFF COLA is an inefficient practice.

The second contribution examines the consistency of collision risk assessments based

on separation measures and true IPCs. This analysis explores the question of whether or

not separation measures and true IPC waveforms are related in accordance with intuition;

namely, whether minimum separation is correlated with highest collision probability, and

maximum separation is correlated with lowest collision probability. The notion of con-

sistency is quantified through the collision correlation index introduced in Definition 37.

Based on MC simulation results over a wide range of CW initial conditions, it is found that

there are three separation measures (Euclidean norm of expected relative position, distance

from the origin to a “geometric” 3−σ contour, and distance from the origin to an “equiv-

alent” 3−σ contour) that, together with the true IPC, do not produce consistent collision

risk assessments. In fact, it was found that using one waveform as a collision risk indicator

over another could lead to opposite conclusions.

By comparison, it was found that a certain separation measure (namely, the 99.73%

minimum distance, i.e., the 100(1− 0.9973 . . . )-percentile in the distance distribution), to-

gether with the true IPC, produces consistent assessments over a wide range of CW initial

conditions in the sense that the collision correlation index is always negative, although not

to the point of indicating linear dependence. Therefore, waveforms of the separation mea-

sure defined by the 99.73% minimum distance are, in some sense, qualitative substitutes for

true IPC waveforms. In principle, if the relative position has a pdf that, after propagation,

can still be numerically integrated, then the 99.73% minimum distance could be computed

numerically, which would prevent estimating it through a computationally costly sampling

method. Thus, the 99.73% minimum distance could, in principle, be employed in real-time

applications where collision risk assessments are based on separation measures. These re-

sults give insight into the tradeoffs of choosing one of the two main philosophies of high

collision risk event detection (miss distance-based and IPC-based detection) over the other.
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CHAPTER 9

SPACECRAFT FORMATION COLLISION RISK INTERPRETATION AND

DECISION MAKING (PART 2) – SENSITIVITY OF SEPARATION INDICATORS

IN SPACECRAFT FORMATION COLLISION RISK ANALYSIS

The 99.73% minimum distance, denoted as ρ3σ, is the 0.27%-

percentile in the distribution of the Euclidean norm of the instan-

taneous relative position between two agents. Previously, ρ3σ has

been proposed as a probabilistic collision risk boundary for space-

craft formation flight under the assumption of Clohessy-Wiltshire

(CW) relative orbital dynamics. In this case, agents with a isotropic

keep-out-zone distance requirement greater than ρ3σ have an in-

stantaneous probability of collision (IPC) of at least 0.27%. This

Chapter of the doctoral dissertation validates the foregoing inter-

pretation of ρ3σ by showing that small changes to the target prob-

ability of ρ3σ also result in small changes to ρ3σ itself.

9.1 Introduction

Approaches to SFF collision avoidance (COLA) can be broadly classified into two groups:

passive and active.[27, 28] Passive SFF COLA methods focus on designing and keeping

orbits that are passively safe (approximately), without directly addressing internal collision

risk in an ongoing basis.[60, 145, 146] Conversely, active SFF COLA methods propose

conducting internal collision risk quantification and assessment on a recurring basis, as

well as planning and executing corrective actions when necessary.

Active SFF COLA methods are characterized by their collision risk indicators, which

are used to quantify collision risk; these indicators are employed in developing threshold
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criteria through which it can be decided whether collision risk warrants corrective maneu-

vers. The first indicator type, distance-based, employs some statistical description of the

physical separation between two agents as measured by, for example, the Euclidean dis-

tance or Cartesian components of relative position.[39, 152, 25, 52] The second indicator

type, probability-based, quantifies collision risk as the probability measure of the relative

position over a region in which the collision event is understood to occur.[46, 27, 28, 13,

156, 55] Generally, collision risk is mitigated by setting constraints in an optimal control

problem in terms of these indicators. Because distance-based and probability-based indica-

tors have distinct physical interpretations, active SFF COLA methods are philosophically

and practically distinct depending on the choice of collision risk indicator. For an extended

discussion on distance-based and probability-based collision risk indicators and their rela-

tionship, the reader is encouraged to refer to the work of Núñez Garzón and Lightsey.[27,

28]

For an individual agent, its hard-body radius (HBR) is a safety parameter that describes

the minimum safe isotropic distance from its center of mass to any objects outside itself.

[27, 28, 38] Consequently, the joint hard-body radius for two agents, which is the sum of

their individual hard-body radii, may be understood as a minimum safe isotropic separation

distance between such agents. [32, 56, 24, 31] Hence, a collision between two agents may

be defined to occur when the Euclidean distance between their centers of mass is less than

their joint HBR. Then, the instantaneous probability of collision (IPC) between two agents

is the probability of the instantaneous collision event; this measure is based on a stochastic

description of the instantaneous relative geometry between such agents.[12]

If p3σ is defined as a constant with an approximate value of 0.27%, then the 99.73%

minimum distance value, also known as ρ3σ, is the Euclidean distance away from the ori-

gin of the frame describing the relative position between two agents such that 100(1− p3σ)

percent of randomly drawn points (according to the instantaneous relative position dis-

tribution) have a Euclidean distance from the origin greater than ρ3σ. In the context of
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Clohessy-Wiltshire (CW) relative orbital dynamics,[138, 139] ρ3σ has been proposed as an

inter-agent Euclidean separation indicator with two benefits.[27, 28] First, through its defi-

nition, ρ3σ has the following probabilistic risk interpretation: [27, 28] ρ3σ is the joint HBR

such that the corresponding IPC is equal to p3σ. Second, with a fixed joint HBR, the cor-

responding IPC time-waveform has a correlation relationship with the ρ3σ time-waveform

such that, roughly, local minima of IPC correspond with local maxima of ρ3σ, and vice

versa. That is, roughly, ρ3σ indicates closest inter-agent Euclidean distance in the same

conditions that the IPC indicates highest collision risk, and ρ3σ indicates furthest inter-

agent Euclidean distance while the IPC indicates lowest collision risk. Therefore, ρ3σ and

the IPC are correlated to each other in a way that is consistent with intuition.

In the following way, ρ3σ can be interpreted as a probabilistic risk boundary: if the

joint HBR for two agents were equal to ρ3σ, then the instantaneous probability of collision

between the agents would be equal to p3σ. Hence, if the true joint HBR is less than ρ3σ,

the instantaneous collision probability is less than p3σ; conversely, if the true joint HBR

is greater than ρ3σ, the instantaneous collision probability is greater than p3σ. As a result,

ρ3σ conceptually bridges the gap between probabilistic and distance-based approaches to

collision risk quantification.

In order to validate the foregoing interpretation of ρ3σ, it is important to understand the

effects on ρ3σ caused by variations in its target probability, i.e., the value of the cumula-

tive distribution function (associated with the Euclidean norm of the instantaneous relative

position) which is obtained at the ρ3σ value, which should be equal to p3σ by definition.

However, because of errors inherent to numerical methods, it is expected that there would

be a discrepancy between the prescribed p3σ value and the computed radial probability

measure of the relative position evaluated at the true ρ3σ. Such discrepancies may affect

both the meaning of ρ3σ and its computation. First, finding a ρ3σ candidate that achieves a

target probability that approximates (but is not exactly equal to) p3σ is equivalent to solving

for ρ3σ with a target probability different from p3σ. Hence, if small variations in target
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probability result in changes to ρ3σ that are small compared to the magnitude of ρ3σ, then it

makes sense to assert that a collision risk of approximately p3σ is incurred when the inter-

agent keep-out Euclidean distance is approximately ρ3σ. Second, if small changes in target

probability cause small changes in ρ3σ, the outcome of an estimator of ρ3σ could be trusted

to hold the same interpretation as the exact ρ3σ value. Therefore, the goal of this Chapter

is to examine the sensitivity of ρ3σ to small variations in its target probability. If such an

investigation validates the foregoing interpretation of ρ3σ, especially over extended prop-

agation horizons, it would justify application of the ρ3σ construct in spacecraft formation

collision risk analysis.

This Chapter is organized as follows. First, the Euclidean norm of the instantaneous

relative position (which is a random variable) is itself characterized as a random variable.

This allows for the computation of radial probability measures, as well as for the inter-

pretation of ρ3σ as a quantile of the distribution of the Euclidean norm of instantaneous

relative position. These theoretical findings lay the foundation for the sensitivity analysis

of ρ3σ, which is shown to depend on the probability density function (pdf) of the Euclidean

norm of instantaneous relative position, as evaluated at the ρ3σ value. Second, this Chap-

ter details the precise techniques employed for numerical and sample computation of ρ3σ,

which, in turn, are applied to computing the sensitivity of ρ3σ with respect to changes in

p3σ. Third, in the context of simulating pertinent relative orbital dynamic scenarios sub-

ject to CW dynamics, it is shown that small changes in the target probability p3σ induce

proportionally small changes to the ρ3σ value. It follows that the percentile interpretation

of ρ3σ holds under small variations to p3σ. This fact implies that it is correct to interpret

ρ3σ as encoding a collision risk boundary in relative position space with probabilistic inter-

pretation; additionally, this interpretation holds under statistical estimator errors to within

some acceptable user tolerance. Therefore, these results validate implementation of the ρ3σ

construct in the practice of spacecraft formation flying as both a metric and measure in the

quantification and management of collision risk.
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9.2 Background

9.2.1 Notation adjustments for this Chapter

The Notation and Nomenclature used in this Chapter, as well as the deterministic defini-

tion of collision events (derived from relative-attitude abstraction, and induced by arbitrary

a-norm balls in relative position space), and the definition of stochastic collision risk mea-

sures (in both an instantaneous and joint-time sense), are addressed in Chapter 2.

Such general Notation and Nomenclature are made more specific for this Chapter as

follows. First, the balls and spheres used are only those with respect to the Euclidean

norm; additionally, only open balls are employed. (See Definition 1.) Hence, implicitly

a = 2 or a = Eu; consequently, the a-norm symbol is omitted throughout this Chapter.

(See Section 2.2.) Additionally, the symbol “S(s−1)” denotes S(s−1)
1

(
0s×1

)
, i.e., the unit

(s − 1)-sphere centered at the origin. From the aforementioned, it follows that collision

sets and probabilities are induced from instantaneous collision conditions based on open

balls with respect to the Euclidean norm in relative position space.

Throughout the remainder of this Chapter, for simplicity, the instantaneous relative state

Xi,j(t) and relative position Ri,j(t) are denoted as X and R, respectively. Furthermore, only

three-dimensional (3D) relative positions are considered.

9.3 Theory

9.3.1 Introducing radial probability measures

9.3.1.1 Radial probability measures – definition.

This Chapter draws heavily on the concept of radial probability measures of the relative

position R; that is, in measures hR : [0,∞)→ [0, 1] of the form

hR(ρ) = p (R ∈ Vρ) (9.1)
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where, for ρ ≥ 0,

Vρ
.
=
{

r ∈ R3 : ∥r∥2 ≤ ρ
}
= B3|Eu

ρ

(
03×1

)
∪ S2|Eu

ρ

(
03×1

)
(9.2)

Because the relative position random variable R is assumed to be absolutely continuous,

the measure hR can be computed as the integral

hR(ρ) =

∫
r∈Vρ

pdfR (r) dr (9.3)

where pdfR(·) exists a.e. in R3 and is non-negative where defined; cf. Section 2.3.

Because the set S2|Eu
ρ

(
03×1

)
= {r ∈ R3 : ∥r∥2 = ρ} has zero measure in R3, it follows

that

hR(ρ) =

∫
∥r∥2≤ρ

pdfR (r) dr =

∫
∥r∥2<ρ

pdfR (r) dr (9.4)

Therefore, by definition, IPCi,j(t) is simply the radial probability measure of R evaluated

at the joint hard-body radius li,j . That is,

hR(li,j(t)) =

∫
∥r∥2<li,j

pdfR (r) dr =: IPCi,j(t) (9.5)

9.3.1.2 Euclidean norm of the relative position – definition.

The Euclidean norm of the relative position, or R, is defined as R .
= ∥R∥2 =

(
RTR

)1/2.
Thus, R can be understood as the true isotropic inter-agent distance, which, due to uncer-

tainty, cannot be known exactly.

Proposition 39. Let X be an absolutely continuous random variable in Rs. Define X .
=

∥X∥2 =
(
XTX

)1/2
. Then, X is an absolutely continuous random variable as well. ♢

Proof. See Corollary 16.

Because R is assumed to be absolutely continuous, via Proposition 39, it follows that
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R is absolutely continuous. Therefore, pdfR exists a.e. in [0,∞), and cdfR is an absolutely

continuous function. Furthermore, hR is an absolutely continuous function as well, which

can be seeing by noting that

hR(ρ) = p (∥R∥2 ≤ ρ) = p (R ≤ ρ) =: cdfR(ρ) (9.6)

If pdfR is known, hR(r) for r ≥ 0 can be computed as

hR(r) =

∫ r

0

∫ 2π

0

∫ π

0

pdfR (r(ρ, θ, ϕ)) ρ2 sinϕ dϕ dθ dρ (9.7)

where r (ρ, θ, ϕ) is a traditional spherical coordinate representation of r as given by

rT (ρ, θ, ϕ) = ρ

[
cos θ sinϕ sin θ sinϕ cosϕ

]
(9.8)

where ρ ≥ 0, 0 ≤ θ < 2π, and 0 ≤ ϕ ≤ π. It follows that pdfR(r) can be computed as an

integral of pdfR as given by

pdfR(r) =
dhR(ρ)

dρ

∣∣∣
ρ=r

= r2
∫ 2π

0

∫ π

0

pdfR (r(r, θ, ϕ)) sinϕ dϕ dθ (9.9)

Alternatively, the Lambert area-preserving transform, previously introduced in Eq. 7.47,

may be used to create a spherical coordinate representation of r.[119] Although it may be

generally employed as an area-preserving mapping between the unit hypercube the unit

hypershepre in Rs, the Lambert transform is specifically implemented in this Chapter as

an area-preserving mapping between the unit 2-square and the (Euclidean) unit 2-sphere in

R3. Hence, the Lambert transform is denoted as TS2 : [0, 1) × [0, 1] → S2, and it is given

by

TS2


y1
y2


 =


√

1− (1− 2y2)2 cos(2πy1)√
1− (1− 2y2)2 sin(2πy1)

1− 2y2

 (9.10)

205



for all [y1, y2]T in [0, 1) × [0, 1]. Using the Lambert transform, the computation of hR(r)

becomes

hR(r) = 4π

∫ r

0

∫ 1

0

∫ 1

0

pdfR (r(ρ, y1, y2)) ρ2 dy2 dy1 dρ (9.11)

and the computation of pdfR(r) becomes

pdfR(r) = 4πr2
∫ 1

0

∫ 1

0

pdfR (r(r, y1, y2)) dy2 dy1 (9.12)

where ρ ≥ 0, 0 ≤ y1 < 1, and 0 ≤ y2 ≤ 1, and where

r(ρ, y1, y2) = ρ TS2
(
[y1, y2]

T
)

(9.13)

The spherical coordinate-based integral methods presented in this subsubsection for

computing radial probability measures (in Eqns. 9.7 and 9.11) and the pdf of R (in Eqns.

9.9 and 9.12) are not only intuitive, but also general in the sense that they are applicable

regardless of the distribution of R – as long as its pdf is accessible and well-defined.

9.3.2 Radial probability measures for non-singular, normal relative position

Within this subsection, let R have a non-singular, multivariate normal distribution (MVN),

i.e., R ∼ N (µ, Σ), where µ ∈ R3, Σ ∈ R3×3, Σ > 0. Then, for r ∈ R3, pdfR (r) is given

by

pdfR (r) =
(
(2π)3 detΣ

)−1/2
exp

[
−1

2
(r− µ)T Σ−1 (r− µ)

]
(9.14)

9.3.2.1 Euclidean norm of non-singular, normal relative position – integral computation.

When R is non-singular normal, computing hR(r) and pdfR (r) in terms of traditional

spherical coordinates can be accomplished by modifying Eqns. 9.7 and 9.9 into

hR(r) =

∫ r

0

∫ 2π

0

∫ π

0

g1 (ρ, θ, ϕ) dϕ dθ dρ (9.15)
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and

pdfR(r) =

∫ 2π

0

∫ π

0

g1 (r, θ, ϕ) dϕ dθ (9.16)

where r (ρ, θ, ϕ) is as given by Eq. 9.8, and where

g1 (ρ, θ, ϕ) =

[
det(Σ−1)

(2π)3

]1/2
exp

[
−1

2
(r (ρ, θ, ϕ)− µ)T Σ−1 (r (ρ, θ, ϕ)− µ)

]
ρ2 sinϕ

(9.17)

Similarly, hR(r) and pdfR (r) can be computed in terms of Lambert equal-area spheri-

cal coordinates by adjusting Eqns. 9.11 and 9.12 as given by

hR(r) =

∫ r

0

∫ 1

0

∫ 1

0

g2 (ρ, y1, y2) dy2 dy1 dρ (9.18)

and

pdfR(r) =

∫ 1

0

∫ 1

0

g2 (r, y1, y2) dy2 dy1 (9.19)

where r(ρ, y1, y2) = ρ TS2
(
[y1, y2]

T
)

, and where

g2 (ρ, y1, y2) =

[
2

π
det(Σ−1)

]1/2
exp

[
−1

2
(r (ρ, y1, y2)− µ)T Σ−1 (r (ρ, y1, y2)− µ)

]
ρ2

(9.20)

9.3.3 Radial probability measures – approximations

9.3.3.1 Radial probability measures – Monte Carlo integration.

An integral I of a measurable function g : Ω → R of an absolutely continuous random

variable X over its sample space Ω ⊆ Rs can be understood as the expectation of g(X);

that is,

I [g] =

∫
x∈Ω

g(x) pdfX (x) dx =: E [g(X)] (9.21)
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assuming that pdfX (·) exists. If {xk}k∈{1,...,N} is a statistically random sample of X with

sample size N ∈ N (that is, the elements of the sample are independent and identically

distributed (i.i.d.), with the same distribution asX), then I [g] can be approximated through

the expectation estimator given by[157]

ÎN [g] =
1

N

N∑
k=1

g(xk) (9.22)

This technique is the most simple version of Monte Carlo-based integration, and it has

the following advantages.[158] First, through application of the expectation operator to

Eq. 9.22, and noting that E [g(xk)] = E [g(X)] for all k ∈ {1, . . . , N}, it follows that

E
[
ÎN [g]

]
= I [g]. Consequently, via the strong law of large numbers, ÎN [g] converges to

I [g] almost surely,[120] i.e., p
(
ÎN [g]→ I [g]

)
= 1,[73] or

p
(
lim

N→∞
ÎN [g] = I [g]

)
= 1 (9.23)

Second, through the Central Limit Theorem (CLT), it can be shown that for large N , the

approximation root-mean-square-error (RMSE) magnitude
∣∣∣I [f ]− ÎN [f ]

∣∣∣ is proportional

to N−1/2 (assuming an unbiased estimator), so increasing sample size generally improves

the accuracy of the approximated integral.[157] Although this convergence rate is very

slow, it does remain asO(N−1/2) regardless of the dimension of elements in a Monte Carlo

sample; hence, Monte Carlo integration is a consistently viable tool for approximating

integrals in high-dimensional spaces. The Monte Carlo (MC) estimator presented in Eq.

9.22 is crude or naı̈ve because it does not implement variance reduction techniques such as

importance sampling, antithetic variates or control variates.[120, 159]

A crude MC estimator ĥR,N(·) for the radial probability measure hR(·) is given by

ĥR,N(r) =
1

N

N∑
k=1

fhR,r(rk) (9.24)
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where {rk}k∈{1,...,N} is a Monte Carlo sample of R, and where fhR,r : R3 → {0, 1} is an

indicator function,[73] which is based on the definition of radial probability measures, and

thus satisfies

fhR,r(r) =


1, ∥r∥2 ≤ r

0, otherwise
(9.25)

for r in R3 and r > 0.

9.3.4 Characterizing the 99.73% minimum distance (ρ3σ)

9.3.4.1 99.73% minimum distance (ρ3σ) – definition.

Let the constant p3σ be defined as

p3σ
.
= 1− cdfχ2

1

(
32
)
≈ 1− 0.9973 = 0.0027 (9.26)

As previously noted, the 99.73% minimum distance, or ρ3σ, is the distance away from the

origin so that 100(1−p3σ) percent of relative position cases have Euclidean distances from

the origin that are greater than ρ3σ. In other words, ρ3σ can be defined as

ρ3σ
.
= min {r ∈ [0,∞) : cdfR(r) = p3σ} (9.27)

It will be shown ρ3σ is a quantile of the distribution of R.

Definition 40 (Quantiles and quantile function [160, 161]). Take q ∈ (0, 1). For a uni-

variate, real-valued RV X with cdf denoted by FX , a quantile x ∈ R of order q of the

distribution of X satisfies FX(x) ≥ q and

p (X < x) = lim
ε→0+

FX(x− ε) ≤ q (9.28)

The quantile function of X , F−1
X : (0, 1) → R is a generalized inverse of FX , i.e.,
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it satisfies F−1
X (q)

.
= inf Sq, where Sq = {x ∈ R : FX(x) ≥ q}, where inf(·) denotes the

infimum operator. Since cdfs are right continuous, Sq is closed on the left, i.e., inf Sq ∈

Sq.[35] Therefore, F−1
X (q) is given by

F−1
X (q) = min {x ∈ R : FX(x) ≥ q} (9.29)

and it exists for q ∈ (0, 1). Therefore, F−1
X (q) is the minimum quantile of order q of the

distribution of X .

If X is continuous, its cdf is continuous, so it has no jump discontinuities. In this case,

F−1
X (q) is given by

F−1
X (q) = min {x ∈ R : FX(x) = q} (9.30)

Finally, if FX is strictly increasing, then F−1
X is the true inverse of FX . ♢

In the context of real-valued random variables, absolutely continuous RVs (i.e., RVs that

have pdfs) are also continuous RVs (i.e., RVs with continuous cdfs), although the converse

is not true (see the Cantor function, a classical counterexample: it has a continuous cdf, as

well as a zero a.e. derivative; hence, the cdf is not equal to the integral of its derivative).[35]

Since R is absolutely continuous (per the assumption of absolute continuity of R, and via

Proposition 39), cdfR is a continuous function by implication. Therefore, via Definition

40, ρ3σ is the minimum p3σ-quantile of R; furthermore, ρ3σ exists and is unique.

It should be noted that there may be p3σ-quantiles of R other than ρ3σ. For example, it

is possible that pdfR(r) = 0 a.e. for r ∈ (ρ3σ, ρ3σ + ε) for some ε > 0; in that case, for any

such r, cdfR(r) = p3σ. However, it is useful to define ρ3σ = cdf−1
R (p3σ) because, as an out-

put of the quantile function, ρ3σ is the smallest p3σ-quantile of R, which is consistent with

its interpretation as a collision risk boundary. Additionally, if cdfR is strictly increasing in

the neighborhood of p3σ, then ρ3σ is the unique p3σ-quantile of R.
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9.3.4.2 99.73% minimum distance (ρ3σ) – sensitivity analysis.

For a univariate random variable X , the derivative of the quantile function of X is given by

d

dy
cdf−1

X (y)
∣∣∣
y=u

= lim
ε→0

cdf−1
X (u+ ε)− cdf−1

X (u)

ε
(9.31)

for 0 < u < 1. When X is absolutely continuous (i.e., when its pdf exists; see the Notation

subsection), Parzen has shown that the derivative of the quantile function of X satisfies the

relation

pdfX
(
cdf−1

X (u)
) [ d

dy
cdf−1

X (y)
∣∣∣
y=u

]
= 1 (9.32)

for 0 < u < 1.[161] When applied to R, and noting that ρ3σ satisfies cdf−1
R (p3σ) = ρ3σ, it

follows that
d

dy
cdf−1

R (y)
∣∣∣
y=p3σ

=
1

pdfR(ρ3σ)
(9.33)

Since ρ3σ = cdf−1
R (p3σ) = ρ3σ(p3σ), the derivative of quantile function of R evaluated at

p3σ can be interpreted as the derivative of ρ3σ with respect to its target probability, p3σ.

Therefore,
dρ3σ
dp3σ

=
1

pdfR(ρ3σ)
(9.34)

Hence, the effects on ρ3σ caused by small changes in p3σ may be quantified via Eq. 9.34.

It should be noted that this sensitivity analysis could be extended to apply to cases where

pdfR(ρ3σ) is undefined. One example of this is when pdfR(ρ
−
3σ) and pdfR(ρ

+
3σ) both exist

and are finite, yet do not share the same value; in this case, the derivative of cdfR evaluated

at ρ3σ [i.e., pdfR(ρ3σ)] does not exist. Another example is when pdfR(ρ
+
3σ) = 0; in this

case, there are multiple p3σ-quantiles of R, and ρ3σ is the smallest one. Since any ρ < ρ3σ

satisfies hR(ρ) < p3σ, it follows that cdfR(ρ) is strictly increasing for ρ that approaches ρ3σ

from the left. Therefore, pdfR(ρ
−
3σ) > 0, which also implies that pdfR(ρ3σ) does not exist.

In both of the aforementioned examples, the sensitivity analysis could be carried out

by replacing pdfR(ρ3σ) in Eq. 9.34 with pdfR(ρ
−
3σ) instead, given that it is not only well
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defined, but because it carries the same interpretation as pdfR(ρ3σ), i.e., how much p3σ

would be reduced with a small reduction in ρ3σ. Clearly, when hR(ρ) is strictly increasing

in the neighborhood of ρ3σ, it follows that pdfR(ρ3σ) exists and is equal to pdfR(ρ
−
3σ), so

pdfR(ρ
−
3σ) could be used without loss of generality.

9.4 Methodology

9.4.1 99.73% minimum distance (ρ3σ) – numerical computation methodology

The approach undertaken here for the numerical computation of ρ3σ is through nested nu-

merical solution of ordinary differential equations (ODEs), as seen though the combination

of Figures 9.1 and 9.2. This is accomplished by using MATLAB’s ode113 function, which

is an ODE solver best suited for high accuracy numerical solution of non-stiff ODEs.[162]
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Cov R   

Monte Carlo 

sample 

R ∼ 𝒩  𝜇, Σ   𝑁 

 r𝑘 2
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NO 
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𝜌𝑚𝑎𝑥 = 𝑟 

Figure 9.1: Numerical computation of the pdf of the Euclidean norm of the relative position
using nested implementation of the ode113 solver.

The notation of the ode113 function, as well as for the other MATLAB ODE solvers,

assumes that the variables to be integrated have computable time derivatives, and that it is

the desire of the user to solve for the time histories of such variables over a closed interval

of time. In the present paradigm, however, instead of integrating with respect to time, use

of the ode113 solver is adapted in order to integrate a function with respect to degrees of

freedom that represent spatial coordinates.
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Figure 9.2: Numerical computation of radial probability measures and the 99.73% mini-
mum distance (ρ3σ) using nested implementation of the ode113 solver.

It should be noted that y1 and y2 are the coordinates of the Lambert equal-area unit

square parametrization of the unit 2-sphere. Then, as shown in Fig. 9.1, for a given ρ ∈

(0,∞), pdfR(ρ) = dhR/dρ is computed through ode113 as the integral of d2hR/dρ dy1

over the sample space of Y1 [i.e., [0, 1)], which, in turn, is computed through ode113 as

the integral of d3hR/dρ dy1 dy2 over the sample space of Y2 (i.e., [0, 1]).

By definition, the definite integral of pdfR(·) over the interval [0, r] for r ≥ 0 is the

radial probability measure hR(r). Hence, ρ3σ can be interpreted as the solution of the

constrained optimization problem

ρ3σ = min
r∈(0,∞)

r (9.35)

where r ∈ (0,∞) is subject to the integral equation constraint given by

p3σ =

∫ r

0

pdfR(ρ) dρ =: hR(r) (9.36)
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However, because hR(·) is non-decreasing, numerical computation of ρ3σ can be accom-

plished as follows. First, a small value of r ∈ (0,∞) is chosen, and hR(r) is computed.

Second, if hR(r) < p3σ, then r is increased until hR(r
∗) = p3σ, as posed in Eq. 9.36.

When this condition is first met, the value of r∗ will also satisfy the condition posed in

Eq. 9.35; consequently, ρ3σ = r∗ in this case. Hence, optimization is avoided by using the

non-decreasing property of hR(·).

The foregoing methodology for the numerical computation of ρ3σ is implemented in

the ode113 solver (integrating over ρ coordinates, as seen in Fig. 9.2) through use of the

events setting, which employs root-finding in order to check for one or multiple univari-

ate equality constraints. In this case, the events setting is used to approximately identify

the first r∗ such that hR(r
∗)−p3σ = 0, and integration is stopped when this condition is first

met. Overall, there are three levels of ode113-based numerical integration: the highest

level (i.e., in ρ), the mid level (i.e., in y1), and the lowest level (i.e., in y2); additionally, the

logic for solving for ρ3σ is implemented at the ρ-level.

9.4.2 99.73% minimum distance (ρ3σ) – sample computation methodology

Given the statistical guarantees of crude MC estimators as previously discussed, such es-

timators may be used to construct approximations to univariate probability distributions

via the empirical cdf; in turn, the empirical cdf may be used to formulate quantile es-

timators.[120] Therefore, Monte Carlo sampling is chosen for validating the foregoing

ode113-based approach for numerical computation of ρ3σ.

The methodology is illustrated in Fig. 9.3, and it begins by drawing a Monte Carlo of

the relative position between two agents, R, based on instantaneous statistics of the dis-

tribution. Subsequently, the Euclidean norm of each element in the sample is computed,

which induces a MC sample of R; this sample is then sorted, which yields the order statis-

tics of the sample of R, i.e., r(1) ≤ · · · ≤ r(N), where N is the sample size. Then, ρ̂3σ is

obtained through a linear interpolation estimator,[160] which is described as follows:
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Figure 9.3: Sample computation of the 99.73% minimum distance (ρ3σ) through Monte
Carlo simulation based on instantaneous relative position statistics.

1. Compute k = ⌊(N − 1)p3σ + 1⌋, where ⌊·⌋ is the floor operator.

2. Compute τ = ((N − 1)p3σ + 1)− k.

3. Obtain ρ̂3σ as given by

ρ̂3σ = (1− τ)r(k) + (τ)r(k+1) (9.37)

In MATLAB, this sample quantile estimator is implemented through the prctile

function.[163] It should be noted that, even though the notation of Fig. 9.3 assumes that

the relative position has a multivariate normal distribution (whose samples can be drawn

in MATLAB using the mvnrnd function [163]), the general process of quantile compu-
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tation presented herein is applicable to Monte Carlo samples drawn from any absolutely

continuous relative position distribution.

9.4.3 99.73% minimum distance (ρ3σ) – derivative computation methodology

As previously stated, this Chapter aims to investigate the regularity of ρ3σ, i.e., whether

small changes of the defining parameter of ρ3σ (namely, p3σ) result in commensurately

small changes to ρ3σ itself. Such effective changes to p3σ would naturally arise from nu-

merical errors in checking whether hR(ρ3σ) = p3σ. In particular, with some given initial

uncertainty description, if such regularity were exhibited over extended time horizons, this

would be helpful for the purposes of predicting the risk of future collisions via ρ3σ, as it

would give validity to ρ3σ over propagated horizons. Since the formulation of ρ3σ is in-

stantaneous (i.e., it depends on the uncertainty at a single time t only), ascertaining ρ3σ(t)

regularity over extended horizons entails the following basic steps: propagating relative

state statistics to a given time, extracting relative position information, computing ρ3σ, per-

forming regularity calculations, and then repeating the process at a subsequent time.

The ode113-based ρ3σ computation methodology was developed so as to directly

mimic the iterated integral formulation of hR(·) listed in Eq. 9.11, which itself follows

directly from its definition through a coordinate transformation; hence, this methodology

allows for estimates of ρ3σ that conceptually retain its interpretation. However, it is not

feasible to implement this methodology accurately in practice over extended time hori-

zons. For example, with a ρ-level step size of 1 m, and a ρ3σ of 1 km, the total spatial

volume increase with each step size in the vicinity of ρ3σ is 1.26 × 107 times larger than

1 m3. Thus, unless the pdf of R has zero mean and is spherically symmetric, capturing

probability masses in such radial shells accurately requires increasingly small angular step

sizes (in y1 and y2). The likelihood of round-off errors introduced to the computation, as

well as the general computational expense, are exacerbated when increasingly small step

sizes are needed for an acceptable resolution in ρ3σ itself – especially if, after extended
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horizons, uncertainty diverges in some (but not all) directions (which does occur in CW

dynamics with MVN prior distribution). However, in order to quantify the sensitivity of

ρ3σ to small changes in p3σ, which can be accomplished via dρ3σ/dp3σ, Eq. 9.34 implies

that ρ3σ must be first calculated, and then pdfR (ρ3σ) must be evaluated.

Therefore, in this Chapter, a hybrid approach is adopted for estimating dρ3σ/dp3σ. First,

ρ3σ is approximated through the crude MC estimator ρ̂3σ as shown in Fig. 9.3; the validity

of this assumption is explored in the Results and Discussion section. Second, the pdf ofR is

evaluated at ρ̂3σ using the ode113-based approach shown in Fig. 9.1. Finally, dρ3σ/dp3σ

is approximated as

dρ3σ
dp3σ

≈ 1

pdfR (ρ̂3σ)
(9.38)

9.5 Results and discussion

9.5.1 Simulation parameters and CW dynamic cases

This Chapter focuses on Examples 3D.001–026, which are subject to CW dynamics, and

which are described in Section A.2.

The choice of orbit altitude for these simulation cases (ā = 6800 km), and of initial rel-

ative state expectation and covariance parameters (see Tables A.2 and A.1, respectively),

are driven by previous work, which suggests that, for those specific parameters, ρ3σ and the

IPC (for a joint HBR li,j of 32 m) are related to each other in a way that is consistent with

intuition.[27, 28] That is, over a horizon of two orbit periods, ρ3σ indicates smallest separa-

tion while the IPC indicates highest collision risk, and the ρ3σ indicates largest separation

while the IPC indicates lowest collision risk; this behavior is not consistently observed with

other separation indicators studied. Hence, such parameters are used in order to validate

the foregoing interpretation of ρ3σ as a true probabilistic risk boundary in relative position

space.
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Finally, the Monte Carlo sample size is chosen as 3.2 × 108 particles. For an MVN

distribution, it is conjectured that such a sample size should be able to capture the probabil-

ity of significant events where the significance threshold is set at 10−7.[27, 28] Under this

assumption, this sample size affords agreement of the p3σ-quantile of R to within approxi-

mately 4.4 significant digits in p3σ.

9.5.2 99.73% minimum distance (ρ3σ) – sample validation results

The first result in this Chapter, summarized in Figs. 9.4 and 9.5, demonstrates the agree-

ment between numerical and sample approaches to the computation of ρ3σ. Even though

this is only corroborated for Example 3D.001, these results are representative of other ex-

amples as well because of their shared methodology.

For Example 3D.001, Fig. 9.4 shows that the numerical and sample ρ3σ waveforms

agree to within 9.15 cm over 0.0729 chief orbit periods (or 6.78 minutes, which corre-

sponds to 106 timesteps). At worst, the discrepancies observed represent no more than

0.0098% difference relative to the computed magnitude of ρ3σ. Therefore, to within low

discrepancy, the numerical and sample ρ3σ waveforms converge to each other over the re-

stricted horizon [0, tc], where tc denotes the cutoff propagation time for the numerical ρ3σ

waveform. This kind of agreement is adequate for the computation of ρ3σ sensitivity, as

effects on dρ3σ/dp3σ (from errors in ρ3σ) are proportional to the derivative of pdfR (i.e.,

a second derivative of probabilities in R, which is a higher order effect). It remains to be

ascertained whether ρ3σ itself is estimated sufficiently accurately.

Definition 41 (Uniform norm (or sup-norm), and bounded continuous function spaces[34]).

Let X be a metric space. The uniform norm of a function f : X → R is

∥f∥u = sup
x∈X
|f(x)| (9.39)
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Let Cb(X) denote the space of continuous, bounded, real-valued functions in X . That is,

Cb(X) = {f : f : X → R, f is continuous, ∥f∥u <∞} ♢ (9.40)

Let Cb ([0, 2P ]) denote the space of continuous and bounded functions (under the sup-

norm) defined in the interval [0, 2P ], where P denotes the chief orbit period. Then, Figure

9.5 shows that ρ̂3σ ∈ Cb ([0, 2P ]). Since both numerical and sample approaches can be

made arbitrarily accurate, it is possible to create sequences of ρ3σ waveform estimators

that are Cauchy (i.e., sequences whose elements become arbitrarily close to one another).

Since Cb ([0, 2P ]) is a complete function space (i.e., a space in which Cauchy sequences

converge to an element of said space),[34, 66] the numerical and sample ρ3σ waveforms

each converge to an element ofCb ([0, 2P ]), and since both methods converge to each other,

it follows that both methods converge to the same function f ∈ Cb ([0, 2P ]) (which could

be interpreted as the true ρ3σ waveform) — at least when limiting the domain to [0, tc].

Within this restricted horizon, this establishes that the sample approach is representative of

the numerical approach (so the former is an acceptable substitute for the latter), and that the

sample approach converges to the true ρ3σ. Given the general MC convergence guarantees

aforementioned, it is concluded that the sample methodology is an acceptable estimator for

ρ3σ over the full horizon [0, 2P ].

9.5.3 99.73% minimum distance (ρ3σ) – sensitivity analysis results

For Example 3D.001, Figure 9.6 shows the time history of the derivative of ρ3σ with respect

to its target probability p3σ, dρ3σ/dp3σ (in units of [km/probability unit]), as approximated

via Eq. 9.38, i.e., as computed via the hybrid numerical/sample approach described in

the Methodology section. For this example, it is found that dρ3σ/dp3σ is continuous over

time. Let δp = 0.01%. If the target probability p3σ were to change by as much as δp

(which would be a significant change since δp/p3σ ≈ 3.7%), a first order estimate of the
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Figure 9.4: Example 3D.001, ρ3σ waveform results: (upper) numerical and sample results;
(lower) absolute difference between numerical and sample results.

Figure 9.5: Example 3D.001, sample ρ3σ waveform results over full horizon.

corresponding change in dρ3σ, δρ3σ, would yield that δρ3σ = 5.1 m at worst over [0, 2P ].

This is a small change compared to ρ3σ, considering that ρ3σ is in the order of hundreds to

thousands of meters over [0, 2P ].

For Example 3D.001, Figure 9.7 shows the first order approximation of the relative

sensitivity of ρ3σ to a change δp in p3σ; that is, it shows δρ3σ/ρ3σ. For this example, it

is found that a relative change in target probability of 3.7% causes, at worst, a change in

ρ3σ of up to 1.88%. This shows that, within the confines of Example 3D.001, ρ3σ exhibits
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Figure 9.6: Example 3D.001, derivative of ρ3σ with respect to its target probability p3σ,
dρ3σ/dp3σ, full horizon time-history.

regularity, i.e., small changes in p3σ also result in small changes to ρ3σ.

Figure 9.7: Example 3D.001, relative sensitivity of ρ3σ to a change δp = 0.01% in target
probability p3σ

The regularity of ρ3σ is observed more generally in other relative orbit regimes. As

displayed in Figure 9.8, given a 3.7% variation in p3σ, the maximum relative change in ρ3σ

is less than 1.9% for relative orbits with no cross-track motion (Example 3D.001), with

along-track and cross-track motion in phase (Example 3D.002), and with along-track and

cross-track motion out of phase (Examples 3D.003–026).
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Figure 9.8: Examples 3D.001-026, maximum relative sensitivity of ρ3σ to a change δp =
0.01% in target probability p3σ.

Whether these relative (and actual) sensitivities are acceptable depends on the specific

operational scenario at hand. For example, for a minimum ρ3σ of 125 m, in a scenario

where the tolerance for instantaneous collision risk is p3σ and the inter-spacecraft keep-out

distance (i.e., joint HBR) is 50 m, a 5.1 m error in the ρ3σ estimate would not be problem-

atic, but it would be for a keep-out distance of 120 m. Rather, these results imply that, to

within commensurate tolerances, it is valid to interpret ρ3σ as a probabilistic risk boundary

in the first place, with the understanding that errors in its computation must be accounted

for in practice.

These results demonstrate that, for the dynamic examples considered in this Chapter,

that ρ3σ is regular with respect to p3σ, i.e., small changes in p3σ cause small changes in

ρ3σ. This validates the interpretation of ρ3σ as a probabilistic risk boundary in relative

position space under the assumptions made (CW dynamics, and the specific relative state

uncertainties chosen). Considering that the 1-σ error rms (in the relative position) grows

to as much as over 25 km over the propagation horizon considered (for all cases, since

they have the same relative state covariance), the regularity displayed by ρ3σ is especially

noteworthy.
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9.6 Conclusion

In this Chapter, when the relative position between two objects is a random variable, the

Euclidean norm of the relative position is characterized as a univariate random variable in

its own right. The 99.73% minimum distance, or ρ3σ, is interpreted as the p3σ-quantile of

the distribution of the Euclidean norm of relative position, where p3σ is a constant with

approximate value of 0.27%. It has been proposed that ρ3σ should be interpreted as a

probabilistic collision risk boundary in relative position space in the sense that, for actual,

isotropic keep-out zones smaller than ρ3σ, the instantaneous probability of collision (IPC)

between two objects is less than p3σ, and for isotropic keep-out zones larger than ρ3σ,

the IPC is less than p3σ. Under the assumption of Clohessy-Wiltshrire (CW) dynamics

over several regimes of relative orbits in Low-Earth Orbit, it is found that ρ3σ exhibits

regularity with respect to p3σ. That is, small changes in p3σ produce changes in ρ3σ that are

commensurately small as well. Therefore, under these assumptions, the regularity of ρ3σ

validates the aforementioned interpretation of p3σ as a probabilistic collision risk boundary

in relative position space.

These findings motivate further exploration of the ρ3σ construct. It would be helpful to

establish whether ρ3σ exhibits similar regularity under different relative orbit representa-

tions (e.g., relative orbit elements), under different dynamic models (e.g., including higher

order gravity effects, as well as atmospheric drag), and under different assumptions re-

garding the nature of the uncertainty (e.g., non-normality of relative state distributions). If

ρ3σ exhibits regularity under more general conditions such as those listed, the foregoing

interpretation of ρ3σ would also hold in such conditions, which would afford greater appli-

cability to this construct. Additionally, utilizing ρ3σ as a constraint in chance-constrained

optimal control problems should be explored in the context of applications to spacecraft

formation station-keeping and collision avoidance.
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CHAPTER 10

CYLINDRICAL ORTHOGONAL NORM-BASED STOCHASTIC COLLISION

RISK MEASURES IN SPACECRAFT FORMATION FLYING

The cylindrical orthogonal collision region (COCR) is intro-

duced for the approximate satisfaction of spherical, three-dimensional

avoidance constraints (S3ACs) used in spacecraft formation fly-

ing (SFF). The COCR construct affords safety sufficiency and re-

duced constraint satisfaction conservatism over other commonly

employed regions, while it may allow for improved efficiency of

collision-safe trajectory computation. The COCR is determinis-

tically well-defined; instantaneous and joint-time stochastic mea-

sures of collision risk based on the COCR are well-defined and

computable; probabilistic collision risk conservatism introduced

by the COCR is characterized as consistent with volumetric con-

servatism. These results, which are validated computationally in

pertinent relative orbital cases, demonstrate the feasibility of SFF

collision risk management applications which perform COCR-

based S3AC satisfaction.

10.1 Introduction

Because collision risk management (COLRM) relates to the survivability and continued

operation of spacecraft formation missions, COLRM is a requirement for the success of

any spacecraft formation flying (SFF) mission. The process of SFF COLRM consists of

the following steps: collision risk quantification, collision risk interpretation and decision-
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making, and collision risk reduction. This process depends on both the choice and efficient

computation of suitable collision risk indicators.[12] The formulation of SFF collision risk

indicators depends on two factors: the operational definition of collision events (ODCE),

and state uncertainty. First, the choice of ODCE is reflective of: i) how collision events are

physically understood, and ii) simplifying assumptions that help make tractable the task of

determining whether a collision event takes place. Second, SFF collision risk indicators

account for both the ODCE and state uncertainty in order to provide a picture of the risk of

occurrence of collision events (as understood operationally).[38]

In this Chapter, collision events between any two agents within a spacecraft formation

are defined as the violation of a minimum distance constraint with respect to the Euclidean

norm. That is, each agent is approximated by a Euclidean ball [a solid spherical ball in three

dimensions (3D); a solidly filled circular region in two dimensions (2D)] with radius set

to the agent’s hard-body radius (HBR), and collision events are defined as the non-empty

intersection of such circumscribing balls.[27, 28, 38] The spherical-HBR collision event

paradigm is commonly employed in the spaceflight mechanics community, both from the

perspective of stochastic collision risk estimation,[32, 56, 24, 31] and in collision avoidance

tasks – both directly,[57, 49, 151, 51, 146] and with adjustments pertaining to the in-plane

2:1 ellipse geometry which arises from linearizing spacecraft relative motion.[53, 152, 164]

The spherical-HBR assumption is understood not only to allow for a formulation of colli-

sion events that is relative attitude- and relative geometry-abstract,[24] but also to provide

a phenomenological justification for this abstraction – namely, by observing the isotropic

(specifically, the rotation invariant) nature of the Euclidean norm.[65] In the context of rel-

ative attitude-abstract COLRM formulations, collision regions other than those induced by

the spherical-HBR assumption are thus regarded as conservative approximations of (and

hence, supersets of) “true”, spherical collision regions. Employing such alternate collision

regions may be considered advantageous to the extent that they may simplify maneuver

planning and constraint satisfaction verification.
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In the context of the constrained spacecraft relative trajectory planning problem, com-

plying with spherical-HBR 3D avoidance constraints (S3ACs) is challenging because the

corresponding relative state constraints to be satisfied are nonlinear and nonconvex.[165,

152] Generally, indirect solutions to this kind of problem are highly sensitive to initial

guesses, and direct solutions via nonlinear programming (NLP) are not guaranteed to exist,

and even if they do, it is not possible to know a priori whether computing such solutions

may be accomplished in finite time.[166] Approaches based on mixed-integer linear pro-

gramming (MILP),[39] which satisfy linearizations of the original nonlinear constraints

in an OR-logic manner (that is, satisfying at least one constraint a time) may be consid-

ered for the purpose of approximating the 3D spherical collision region.[152] However,

3D spherical collision regions are not amenable in principle to being avoided exactly via

MILP because, for every point on the boundary of these regions, there exists a distinct

constraint corresponding to a tangential plane which locally separates the safe region from

the avoidance region, therefore resulting in an uncountable number of relative state-space

hyperplane constraints to be satisfied for every timestep. Even when only a finite number

of constraints is allowed for S3AC satisfaction via MILP, doing so while achieving any

reasonable degree of accuracy requires a prohibitively large number of auxiliary decision

variables,[164] rendering such an application impractical. Other approaches seek to reduce

the number of constraints to exactly one linear constraint at a time;[152] such approaches

rely on restrictive assumptions about the physics of the problem and of the solution itself, as

well as on trial and error,[164] so approaches like this are often not practical or applicable

in a general sense.

Hence, several methodologies for solving the relative trajectory planning problem aim

to achieve S3AC satisfaction approximately for the purpose of reducing the dimensionality

of the problem for computational efficiency while also retaining the sufficiency of safety

conditions, which inherently introduces conservatism to the constraint satisfaction crite-

ria. Such methodologies include, among others: methods based on direct linearization,
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also known as sequential convexification;[167, 164, 168] model predictive control (MPC)

frameworks, which may handle spherical constraints via rotating hyperplanes,[169, 170,

171] or dual hyperplanes;[172, 173] and artificial potential function-based control frame-

works.[174, 175, 176, 177, 178] These methodologies are not mutually exclusive; for ex-

ample, certain MPC frameworks are applied in tandem with direct linearization.[165, 179,

40, 180, 181] Therefore, the literature in spacecraft relative trajectory planning indicates,

on the one hand, a goal to satisfy spherical collision avoidance constraints as closely as pos-

sible, and on the other hand, acceptance of approximate constraint satisfaction – as long as

the safety of ensuing solutions is not compromised, and to the extent that the corresponding

computational efficiency is enhanced.

This Chapter is motivated by the abundance of sources in the literature that advocate

for achieving 3D collision safety by meeting a 2D circular collision constraint on a pla-

nar projection of 3D relative motion. Such methods entail avoiding a solidly filled circu-

lar region in the relative orbital coordinate planes – specifically, in the in-plane (i.e., the

radial/along-track plane),[13, 182, 58, 53, 59] or in the cross-plane (i.e., the radial/cross-

track plane),[140, 60, 61, 62] or in the sky-plane (i.e., the along-track/cross-track plane).[63]

Parameterizations of relative orbital motion via geometric parameters, or via relative orbital

elements, are often employed to derive initial solution guesses for correction maneuvers

semi-analytically, and the resulting collision avoidance frameworks are attractive because:

1) if effective, these 2D methods ensure sufficient 3D collision safety; and 2) generally,

to satisfy two-dimensional constraints only is a less computationally taxing task than sat-

isfying constraints that are inherently three-dimensional. However, because 2D circular

collision regions correspond to 3D infinite cylindrical regions, instantaneous probabilities

of collision based on planar (2D) projections of relative motion are always overestimates

over instantaneous probabilities of collision based on full 3D geometries.[27, 28] This fact

on instantaneous stochastic collision risk analysis has consequential implications for the

lifetime of spacecraft formation missions – namely, that implementing 2D collision risk
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management frameworks based on the satisfaction of a single circular keep-out constraint

may cause unnecessary maneuvers and a reduction in mission lifetime without resulting in

additional overall safety guarantees (e.g., the minimum inter-agent distance is not guaran-

teed to improve).

The goal of this research is to motivate the relaxation of two-dimensional circular con-

straint satisfaction on coordinate planes of some reference frame (i.e., the XY, XZ, and YZ

planes of such a frame), specifically, by putting these constraints together via an inclusive-

OR logic – that is, by satisfying at least one of these three constraints at any one time.

In other words, this Chapter seeks to incentivize achieving S3AC satisfaction by defining

three cylinders in mutually orthogonal planes, and instead of choosing to avoid a specific

cylinder, to evade at least one of them. The potential benefit of implementing such a cylin-

drical orthogonal collision region in the context of a SFF COLRM framework is twofold:

first, the proposed practice may allow for taking advantage of existing methods of approx-

imate S3AC satisfaction (specifically, those that flow from solutions that evade 2D circles)

in order to ease computational cost; and second, the prospective method may enable com-

bining these approximate, 2D circle-avoiding solutions in a way that would reduce S3AC

satisfaction conservatism.

This Chapter encourages the implementation of a cylindrical orthogonal collision risk

management framework by addressing concerns regarding the feasibility of such an appli-

cation which immediately arise from the construction of the cylindrical orthogonal collision

region (COCR). Such concerns may be grouped into three categories: basic region prop-

erties, well-definedness and computability of risk measures, and quantitative properties of

risk measures. First, is the COCR well defined? What are the properties of COCR and

cylindrical orthogonal-like spaces? Is there any quantitative advantage gained by encoding

collision safety via the COCR? Second, from the perspective of collision risk manage-

ment, are stochastic measures of collision risk defined, either instantaneously or over time

periods? If defined, are these measures computable in a practical sense? Third, if these
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measures are defined and computable, how do they quantitatively compare to other mea-

sures utilized in the literature, both theoretically and computationally? Favorable answers

to these questions justify practical implementation of a collision risk management frame-

work based on the COCR.

This Chapter is organized as follows. First, the cylindrical orthogonal norm (c.o.-norm)

is defined in three-dimensional Euclidean space. The COCR is characterized as a ball with

respect to the c.o.-norm, which demonstrates the measurability of the COCR. This fact, in

turn, is used to establish that the COCR is well defined, and to compare the COCR volumet-

rically to other collision regions advocated in the literature, showing a close relationship to

a spherical 3D collision region. Second, sufficient conditions are stated such that joint-time

collision probabilities (defined with respect to the COCR) are: 1) well defined, and 2) prac-

tically computable. The applicability of the corresponding assumptions in the context of

spaceflight mechanics is discussed. Third, quantitative results pertaining stochastic colli-

sion risk measures, such as event inclusion relationships and probability value inequalities,

are presented. Fourth, the theoretical results asserted are validated through large sample

Monte Carlo simulation. Together, these contributions demonstrate that the cylindrical or-

thogonal collision region is an effective building block in the development of SFF COLRM

frameworks.

As a point of clarification, this Chapter of the dissertation does not advocate for replac-

ing Euclidean balls as the primary method in spaceflight mechanics for encoding collision

regions in relative position space. Rather, under the premise that it is computationally

advantageous to compute collision safe trajectories that satisfy three mutually orthogonal

planar circular collision constraints, this Chapter examines the region that is guaranteed to

be avoided if such avoidance constraints are met (i.e., the COCR). Then, this Chapter moti-

vates future collision avoidance work which may hinge on the avoidance of three mutually

orthogonal planar circular collision constraints on the basis of the close volumetric agree-

ment between Euclidean-ball-based collision regions and the COCR (and consequently,
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the close agreement between the corresponding stochastic collision risk measures that arise

from these collision regions).

10.2 Background

The Notation and Nomenclature used in this Chapter, as well as the deterministic defini-

tion of collision events (derived from relative-attitude abstraction, and induced by arbitrary

a-norm balls in relative position space), and the definition of stochastic collision risk mea-

sures (in both joint-time and instantaneous senses), are addressed in Chapter 2.

10.3 Theory

The theoretical contributions of this Chapter to SFF COLRM include the following. First,

general results concerning stochastic collision risk measures (where collision events are

defined through balls with respect to some a-norm in RdR) are presented. First, conceptual

results concerning the formulation, interpretation, and usability of cylindrical orthogonal

collision regions in an SFF COLRM context are listed. General results concerning stochas-

tic collision risk measures (where collision events are defined through balls with respect

to some a-norm in RdR), which are found in Chapter 4, are leveraged in order to ascer-

tain the well-definedness and usability of COCR-based stochastic collision risk measures.

Second, quantitative results on the linear and volumetric conservatism of cylindrical or-

thogonal collision regions, including bounds for stochastic collision risk measures based

on such regions, are reported.

10.3.1 Cylindrical Orthogonal (c.o.) collision safety – conceptual results

Here, the cylindrical orthogonal collision region is motivated and constructed. Subse-

quently, the cylindrical orthogonal vector norm is defined, and a connection is made be-

tween cylindrical orthogonal collision regions and open balls with respect to the cylindri-

cal orthogonal vector norm; implications of this connection are also discussed. Note: the
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remainder of this Chapter is concerned with collision events in three-dimensional relative

position space only; that is, henceforth, dR = 3.

10.3.1.1 Cylindrical-orthogonal collision region (COCR) construction

Let W̃ ∈ {XY,XZ,XY }. Consider the sets

AXY =
{
[x, y, z]T ∈ R3 :

√
x2 + y2 ≥ li,j

}
(10.1)

AXZ =
{
[x, y, z]T ∈ R3 :

√
x2 + z2 ≥ li,j

}
(10.2)

AY Z =
{
[x, y, z]T ∈ R3 :

√
y2 + z2 ≥ li,j

}
(10.3)

Then, the AW̃ set encodes the collision safe and marginally-safe regions in R3 that cor-

respond to a 2D circular constraint on the W̃ -plane projection of points in R3. It follows

that any point r = [x, y, z]T belonging to any of these three sets automatically satifsfies

an S3AC at least marginally, because meeting any of the conditions i)
√
x2 + y2 ≥ li,j(t),

ii)
√
x2 + z2 ≥ li,j(t), or iii)

√
y2 + z2 ≥ li,j(t), implies that ∥r∥2 =

√
x2 + y2 + z2 ≥

li,j(t). Consider the set

Aco = [AXY ∪ AXZ ∪ AY Z ]
C (10.4)

Therefore, the Aco set is the region (in relative position space) which is avoided when at

least one of the three sufficient collision safety conditions encoded by AW̃ is met. Con-

versely, noting that

Aco = [AXY ]
C ∩ [AXZ ]

C ∩ [AY Z ]
C (10.5)

it follows that Aco is the region in R3 where there is a simultaneous violation of all three

safety criteria encoded by AW̃ . Therefore, the Aco may be interpreted as a cylindrical

orthogonal collision region (COCR).

Let r ∈ 2-UNSAFEi,j(t) = B3|2
li,j(t)

(
03×1

)
. Hence, ∥r∥2 =

√
x2 + y2 + z2 < li,j(t). It
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follows that

√
x2 + y2 < li,j(t)

∧ √
x2 + z2 < li,j(t)

∧ √
y2 + z2 < li,j(t) (10.6)

which, in turn, implies that r ∈ Aco. Hence, Aco encodes a conservative approximation to

S3AC violation. Figure 10.1 shows the construction of the Aco set.

Figure 10.1: Construction of the cylindrical orthogonal collision region (COCR; i.e., the
Aco set) in R3.

10.3.1.2 Cylindrical-orthogonal (c.o.) vector norm – definition and basic properties

Definition 42 introduces the cylindrical orthogonal norm (c.o.-norm) in R3, which may

be understood as the maximum two-dimensional Euclidean vector norm as perceived in

any of the coordinate planes in whatever implicit, underlying reference frame is assumed.

Proposition 43 establishes the norm properties of the c.o.-norm. Note: the symbol for the

c.o.-norm is a = co.

Definition 42 (Cylindrical orthogonal norm). For r = [x, y, z]T ∈ R3, the cylindrical

232



orthogonal vector norm, denoted by ∥·∥co, is defined as

∥r∥co = max
{√

x2 + y2,
√
x2 + z2,

√
y2 + z2

}
♢ (10.7)

Proposition 43 (Norm properties of cylindrical orthogonal norm). The cylindrical orthog-

onal norm, ∥·∥co, is a norm in R3. That is, for all x, y in R3 and for all scalars c, the

following properties hold:

1. Nonnegativity: 0 ≤ ∥x∥co <∞

2. Homogeneity: ∥c x∥co = |c| ∥x∥co

3. The Triangle Inequality: ∥x + y∥co ≤ ∥x∥co + ∥y∥co

4. Uniqueness: ∥x∥co = 0 if and only if x = 03×1 ♢

Proof. Omitted.

Fact 44 reflects a helpful observation: that the COCR has an underlying norm structure

with respect to the c.o.-norm, as illustrated in Figure 10.2.

Fact 44. The cylindrical orthogonal collision region (COCR), denoted by Aco, is an open

ball with respect to the cylindrical orthogonal vector norm, specifically, as given by

Aco = B3|co
li,j(t)

(
03×1

)
♢ (10.8)

Proof. Let r = [x, y, z]T ∈ Aco. Then,

√
x2 + y2 < li,j(t)

∧ √
x2 + z2 < li,j(t)

∧ √
y2 + z2 < li,j(t) (10.9)

By properties of the supremum operator, ∥r∥co satisfies

∥r∥co = max
{√

x2 + y2,
√
x2 + z2,

√
y2 + z2

}
< li,j(t) (10.10)
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Hence, Aco ⊆ B3|co
li,j(t)

(
03×1

)
. To show the converse, assume r = [x, y, z]T ∈ B3|co

li,j(t)

(
03×1

)
.

Then, Eq. 10.10 holds, which implies Eq. 10.9. Therefore, B3|co
li,j(t)

(
03×1

)
⊆ Aco.

Figure 10.2: Comparison between instantaneous collision regions based on cylindrical-
orthogonal and L∞ norms.

Fact 44 also implies that the following instantaneous collision set entities refer to the

one and the same region:

Aco = co-UNSAFEi,j(t) = Vi,j (t; li,j(t), co) = B3|co
li,j(t)

(
03×1

)
(10.11)

Proposition 45 establishes the topological properties of three-dimensional Euclidean

space via sets that are open with respect to the c.o.-norm.

Proposition 45 (Openness of c.o.-open sets). A set A ⊆ R3 is open (with respect to the

c.o.-norm) if and only if A is open. In particular, let r ∈ R3, c > 0. Then, the open ball

(with respect to the c.o.-norm) centered at r with radius c, denoted by B3|co
c (r), is an open

set in R3. ♢

Proof. The ∥·∥co and ∥·∥2 norms are both norms in R3; therefore, they are equivalent.[66]

Hence, a set A ⊆ R3 is open with respect to the ∥·∥co norm if and only if A is open with
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respect to the ∥·∥2 norm,[66] upon which the underlying topology of R3 is assumed to be

constructed. In particular, by definition, B3|co
c (r) is an open set with respect to the ∥·∥co

norm.

The norm structure of the COCR (specifically, its equivalence to an open ball with

respect to some norm) is significant because of what it indicates about its suitability in an

SFF COLRM context.

Remark 46 (Practical implications of COCR openness). As per Proposition 45 and Eq.

10.11, the COCR is an open set. This fact has many implications, some of which are:

(1) Basic implications

(1.a) The COCR is a measurable subset in R3. That is, Aco ∈ L(R3) – see Subsection

2.3.

(1.b) Because the COCR is measurable, a volume can be assigned to it – specifically,

via its Lebesgue measure in R3.

(2) Deterministic SFF COLRM

(2.a) Because the COCR is an open ball (with respect to some norm in R3), it follows

that the COCR is a convex set in R3.

(2.b) Because the COCR is convex, avoiding it poses a non-convex constraint in R3.

Hence, the avoidance constraint induced by the COCR is, in principle, no dif-

ferent than avoiding any region defined through other norms advocated in the

literature, such as the box or spherical collision regions.

(3) Stochastic SFF COLRM

(3.a) Because the COCR is measurable, IPC measures in R3 based on the COCR are

automatically defined.
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(3.b) Because the c.o.-norm is a norm in R3, Propositions 17 and 18 imply, under

some reasonable assumptions, that Pc measures (in initial relative state space)

based on the COCR are well-defined and computable. ♢

Hence, per Remark 46, the c.o.-norm construct is, in principle, a helpful candidate

for SFF COLRM applications because it may be employed to describe three-dimensional

regions which correspond to sufficient conditions for collision safety. Additionally, with

respect to c.o.-norm-based regions, it is meaningful: a) to compute trajectories that are

collision-safe, and b) to quantify stochastic measures of collision risk.

10.3.2 Cylindrical Orthogonal (c.o.) collision safety – quantitative results

This Chapter presents the following quantitative results pertaining to COCR-based set and

measure entities. First, norm equivalence between the c.o.-norm and the Euclidean and box

norms is used to ascertain of linear and volumetric conservatism that the COCR introduces.

Second, upper and lower bounds for probability measures based on c.o.-balls are listed

with application to IPC values based on the COCR. Third, set inclusion relationships for

the COCR-based JTC set, as well as upper and lower bounds for the COCR-based Pc

measure, are presented.

10.3.2.1 Spherical and box collision regions vs. COCR – linear and volumetric compar-

ison

This subsubsection compares, linearly and volumetrically, the COCR to spherical and box

collision regions which are commonly employed in the literature in the context of SFF

COLRM applications.

Proposition 47 quantifies equivalence constants between the c.o.-norm and the L2 and

L∞ norms in the sense of Eq. 2.11. Hence, for points in R3, this result indicates lower and

upper bounds for their c.o.-norm values in terms of their L2 and L∞ norms.
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Proposition 47 (Equivalence between c.o.-norm and the L2 and L∞ norms). Since the

∥·∥co, ∥·∥2, and ∥·∥∞ norms are norms in R3, they are equivalent.[66] In particular, for

every r in R3,

1. 0 ≤
(√

2
3

)
∥r∥2 ≤ ∥r∥co ≤ ∥r∥2 <∞

2. 0 ≤ ∥r∥∞ ≤ ∥r∥co ≤
(√

2
)
∥r∥∞ <∞

These equivalence constants are optimal. That is, for every ε > 0,

3. There exists r in R3 such that
(√

2
3
+ ε
)
∥r∥2 > ∥r∥co

4. There exists r in R3 such that (1 + ε) ∥r∥co > ∥r∥2

5. There exists r in R3 such that (1 + ε) ∥r∥∞ > ∥r∥co

6. There exists r in R3 such that (1 + ε) ∥r∥co >
(√

2
)
∥r∥∞ ♢

Proof. 1.-2. Omitted.

3. Consider r =
[

1√
2
, 1√

2
, 1√

2

]T
4. Consider r =

[
1√
2
, 1√

2
, 0
]T

5. Consider r = [1, 0, 0]T

6. Consider r =
[

1√
2
, 1√

2
, 1√

2

]T
Next, Lemma 48 lists an intermediate result which employs norm equivalence relation-

ships in order to simplify proving inclusion/exclusion relationships between balls defined

through any two different norms in Rs.

Lemma 48 (a-b ball exclusion). Let ∥·∥a and ∥·∥b be norms in Rs. Assume there exists

some A > 0 such that

A ∥x∥a ≤ ∥x∥b (10.12)
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for every x in Rs. Assume there exist c > 0, yc ∈ Rs (i.e., a vector in Rs which may change

if c changes) such that

A ∥yc∥a < c (10.13)

∥yc∥b ≥ c (10.14)

Then, for every c′ > 0 and x ∈ Rn,

Bs|b
c′ (x) ⊊ Bs|a

c′/A (x) ♢ (10.15)

Proof. Omitted.

Then, Proposition 49 builds on Lemma 48 to show how cylindrical orthogonal norm-

based balls (c.o.-balls) compare to L2- and L∞-balls from an inclusion/exclusion perspec-

tive.

Proposition 49 (c.o.-ball inclusion/exclusion w.r.t. L2- and L∞-balls). For every r ∈ R3,

c > 0,

1. B3|Eu
c (r) ⊊ B3|co

c (r) ⊊ B3|Eu
c
√

3/2
(r)

2. B3|∞
c/
√
2
(r) ⊊ B3|co

c (r) ⊊ B3|∞
c (r) ♢

Proof. Let d = 0.9999999. Via Proposition 47 and Lemma 48, consider:

1.a) c = 1, r =
[

d√
2
, d√

2
, d√

2

]T
1.b) c = 1, r = [1, 0, 0]T

2.a) c = 1, r = [d, 0, 0]T

2.b) c = 1, r = [d, d, d]T
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Corollary 50. For t ∈ R, li,j(t) > 0,

Vi,j (t; li,j(t), Eu) ⊊ Vi,j (t; li,j(t), co) ⊊ Vi,j

(
t;

√
3

2
li,j(t), Eu

)
(10.16)

Vi,j

(
t;

1√
2
li,j(t), ∞

)
⊊ Vi,j (t; li,j(t), co) ⊊ Vi,j (t; li,j(t), ∞) (10.17)

In particular,

Vi,j (t; li,j(t), Eu) ⊊ Vi,j (t; li,j(t), co) ⊊ Vi,j (t; li,j(t), ∞) ♢ (10.18)

Proof. In Proposition 49, let r = 03×1, and let c = li,j(t).

Corollary 50 has implications for the relationship between the COCR and spherical and

box collision regions. First, spatially, via Eq. 10.18, the COCR strictly overestimates a

spherical collision region, yet such an overestimate is strictly better than how the box col-

lision region overestimates the spherical collision region. Second, Corollary 50 allows for

interpreting Proposition 47 as follows. As projected onto lines through the origin along any

unit direction, Item 1 of Proposition 47 implies that the COCR has, at worst, 22.47% more

points than a spherical collision region – in particular, along the (1/
√
3) · [±1,±1,±1]T

directions. For reference, linearly along any unit direction, Eq. 2.29 implies that the box

collision region has, at worst, 73.21% more points than the spherical collision region.

Fact 51 quantifies the Lebesgue measure (in R3) of c.o.-balls, which may be used to pre-

cisely obtain the relative volume of the COCR compared to the spherical and box collision

regions.

Fact 51 (c.o.-ball measure inequalities). For every r ∈ R3, c > 0,

1. λ
(
B3|Eu
c (r)

)
= 4

3
πc3 ≊ 4.1888c3

2. λ
(
B3|co
c (r)

)
= 8(2−

√
2)c3 ≊ 4.6863c3

3. λ
(
B3|∞

c (r)
)
= 8c3
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Therefore,

0 < λ
(
B3|Eu

c (r)
)
< λ

(
B3|co

c (r)
)
< λ

(
B3|∞

c (r)
)
<∞ ♢ (10.19)

Letting r = 03×1 and c = li,j(t), Fact 51 implies that the COCR volumetrically over-

estimates the spherical collision region by 11.88%. For reference, the box collision region

volumetrically overestimates the spherical collision region by 90.99%.

The close volumetric agreement between the COCR and the spherical collision region,

which is visualized in Figure 10.3, is one of the chief advantages of employing a COCR in

an SFF COLRM context. By considering three planar circular constraints and by seeking

to fulfill at least one of them at a time, and under the premise that doing so is computation-

ally less expensive than trying to satisfy S3ACs exactly (cf. Section 10.1), an approximate

collision region is avoided whose extent closely resembles the original spherical collision

region of interest. This property results in reduced collision constraint satisfaction con-

servatism in a way that does not compromise phenomenological collision safety, and in a

way which may produce computational efficiency gains. Hence, feasibility and benefits for

employing the COCR (in a deterministic SFF COLRM context) are understood.

10.3.2.2 Spherical and box collision regions vs. COCR – IPC measure comparison

This subsubsection compares the instantaneous probabilities of collision induced by the

COCR to those induced by the spherical and box collision regions.

As discussed in Remark 46, Proposition 45 implies that probability measures (implic-

itly defined over the Lebesgue measurable subsets in R3) are well-defined over c.o.-balls.

Proposition 52 employs the set inclusion/exclusion relationships listed in Proposition 49,

as well as the ball measure differences that may be inferred from Fact 51, in order to ob-

tain inequalities that relate probability measures based on c.o.-balls to their spherical- and

box-ball counterparts.
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Figure 10.3: Comparison between instantaneous collision regions based on cylindrical-
orthogonal and L2 norms.

Proposition 52 (c.o.-ball-based probability measures). Let (R3,L(R3),P) be a probability

space in R3. Then, for every r ∈ R3, c > 0,

1. 0 ≤ P
(
B3|Eu

c (r)
)
≤ P

(
B3|co

c (r)
)
≤ P

(
B3|Eu

c
√

3/2
(r)
)
≤ 1

2. 0 ≤ P
(
B3|∞

c/
√
2
(r)
)
≤ P

(
B3|co

c (r)
)
≤ P

(
B3|∞

c (r)
)
≤ 1

Let P be an absolutely continuous probability measure, and let g denote the pdf of P. If

supp(g) = R3 (i.e., if for r in R3, g(r) ̸= 0), then

3. 0 < P
(
B3|Eu

c (r)
)
< P

(
B3|co

c (r)
)
< P

(
B3|Eu

c
√

3/2
(r)
)
< 1

4. 0 < P
(
B3|∞

c/
√
2
(r)
)
< P

(
B3|co

c (r)
)
< P

(
B3|∞

c (r)
)
< 1 ♢

Proof. Omitted.

By applying Proposition 52 to the probability measure associated with the instantaneous

relative position, upper and lower bounds for c.o.-IPC values (in terms of Euclidean-IPC

and box-IPC values) may be gleaned.
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Corollary 53 (c.o.-IPC inequalities). Let Ri,j(t) be a random variable defined in L(R3).

Then,

0 ≤ IPCi,j (t; li,j(t)) ≤ IPCi,j (t; li,j(t), co) ≤ IPCi,j

(
t;

√
3

2
li,j(t)

)
≤ 1 (10.20)

0 ≤ IPCi,j

(
t;

1√
2
li,j(t),∞

)
≤ IPCi,j (t; li,j(t), co) ≤ IPCi,j (t; li,j(t),∞) ≤ 1 (10.21)

Furthermore, if Ri,j(t) is an absolutely continuous random variable, and if supp
(
pdfRi,j(t)

)
=

R3, it follows that

0 < IPCi,j (t; li,j(t)) < IPCi,j (t; li,j(t), co) < IPCi,j

(
t;

√
3

2
li,j(t)

)
< 1 (10.22)

0 < IPCi,j

(
t;

1√
2
li,j(t),∞

)
< IPCi,j (t; li,j(t), co) < IPCi,j (t; li,j(t),∞) < 1 ♢

(10.23)

Proof. Via Proposition 52, consider the probability space (R3,L(R3),P) where P : L(R3)→

[0, 1] is the probability measure associated with the random variable Ri,j(t). The result fol-

lows by noting that

IPCi,j (t; li,j(t), a) = P
(
B3|a

li,j(t)

(
03×1

))
(10.24)

Corollary 53 is significant for validating use of the COCR construct in an SFF COLRM

context, because such a result has immediate applications for the computation and interpre-

tation of instantaneous collision probability measures based on the COCR. For example,

the c.o.-IPC is at most equal to the Euclidean-IPC with the HBR increased by a safety

factor of 22.47%, and at least equal to the Euclidean-IPC without a safety factor on the

HBR. Similarly, the c.o.-IPC is at most equal to the box-IPC without a safety factor on the

HBR, and at least equal to the box-IPC with the HBR decreased by a factor of 29.29%.

These inequalities may be understood as the direct consequence of the volumetric relation-
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ships between the spherical and box collision regions, illustrated in Figures 10.3 and 10.2,

respectively.

10.3.2.3 Spherical and box collision regions vs. COCR – JTC set and Pc measure com-

parison

This subsubsection compares the joint-time collision sets and joint-time probabilities of

collision induced by the COCR to their counterparts induced by the spherical and box

collision regions.

Under certain assumptions (such as continuity and surjectivity of gP , as well as continu-

ity of the flow function Ft,t0), Propositions 17 and 18 show that as long as the instantaneous

collision condition is defined as a ball with respect to some a-norm in RdR , it follows that

the corresponding a-JTC set in RnX is measurable (and hence, the a-Pc measure is well-

defined). Furthermore, if the joint HBR time-history has continuous variation (including

no variation), then these Propositions imply that the a-JTC set and the a-Pc measure may

be obtained through successive discretization – and hence, they may be approximated ar-

bitrarily precisely in a probabilistic sense in the limit. Thus, Propositions 17 and 18 imply

that Pc measures in RnX – whose underlying collision conditions in relative position space

are based on the COCR – are well-defined and computable under certain non-restrictive

conditions.

Proposition 54 is an intermediate result which employs norm equivalence relationships

between any two norms in RdR in order to establish JTC set inclusion relationships in RnX

(and hence, Pc inequalities) concerning the underlying collision regions induced by balls

with respect to these norms.

Proposition 54 (JTC inclusion/Pc inequalities). Let ∥·∥a, ∥·∥b be norms in RdR . Let

C1, C2 > 0 be equivalence constants for the a,b-norms; that is, for every r ∈ RdR ,

C1 ∥r∥a ≤ ∥r∥b ≤ C2 ∥r∥a (10.25)
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Let Remark 8 hold. Assume the function Ft0(t, x) (see Eq. 2.38) is continuous in t and x.

Let li,j : [t0, tf ]→ (0,∞). Then,

JTCi,j

(
[t0, tf ];

1

C2

li,j(·), a
)
⊆ JTCi,j ([t0, tf ]; li,j(·), b)

⊆ JTCi,j

(
[t0, tf ];

1

C1

li,j(·), a
)

(10.26)

Consequently,

0 ≤ Pci,j

(
[t0, tf ];

1

C2

li,j(·), a
)
≤ Pci,j ([t0, tf ]; li,j(·), b)

≤ Pci,j

(
[t0, tf ];

1

C1

li,j(·), a
)
≤ 1 ♢ (10.27)

Proof. This result follows from: 1) inclusion relationships among balls defined via equiv-

alent norms; 2) the preservation of inclusion relationships after pre-images, specifically,

those of gP : RnX → RdR and Ft,t0 : RnX → RnX; and 3) Definition 9 and Proposition

17.

Corollary 55 builds on Proposition 54, as well as on the c.o.-norm equivalence constants

listed in Proposition 47, in order to establish inequalities that relate the COCR-based Pc to

the Pc measures based on the spherical and box collision regions.

Corollary 55 (c.o.-JTC inclusion/c.o.-Pc inequalities). Let Remark 8 hold. Assume the

function Ft0(t, x) (see Eq. 2.38) is continuous in t and x. Let li,j : [t0, tf ] → (0,∞).

Consider the ∥·∥Eu, ∥·∥co, ∥·∥∞ norms in R3. Then,

JTCi,j ([t0, tf ]; li,j(·), Eu) ⊆ JTCi,j ([t0, tf ]; li,j(·), co)

⊆ JTCi,j

(
[t0, tf ];

√
3

2
li,j(·), Eu

)
(10.28)
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JTCi,j

(
[t0, tf ];

1√
2
li,j(·), ∞

)
⊆ JTCi,j ([t0, tf ]; li,j(·), co)

⊆ JTCi,j ([t0, tf ]; li,j(·), ∞) (10.29)

Consequently,

0 ≤ Pci,j ([t0, tf ]; li,j(·), Eu) ≤ Pci,j ([t0, tf ]; li,j(·), co)

≤ Pci,j

(
[t0, tf ];

√
3

2
li,j(·), Eu

)
≤ 1 (10.30)

0 ≤ Pci,j

(
[t0, tf ];

1√
2
li,j(·), ∞

)
≤ Pci,j ([t0, tf ]; li,j(·), co)

≤ Pci,j ([t0, tf ]; li,j(·), ∞) ≤ 1 ♢ (10.31)

Proof. This result follows from Proposition 47 and Proposition 54.

Corollary 55 is significant for validating use of the COCR construct in an SFF COLRM

context, because such a result indicates bounds for joint-time collision probability measures

based on the COCR in terms of Pc measures based on other collision regions advocated

for in the literature. For instance, the c.o.-Pc is at most equal to the Euclidean-Pc with the

HBR increased by a safety factor of 22.47%, and at least equal to the Euclidean-Pcwithout

a safety factor on the HBR. Likewise, the c.o.-Pc is at most equal to the box-Pc without

a safety factor on the HBR, and at least equal to the box-Pc with the HBR decreased by a

factor of 29.29%. These c.o.-Pc bounds are analogous to those obtained for the c.o.-IPC in

Corollary 53.

Although quite similar, there is a significant difference between Corollary 53 (where

c.o.-IPC bounds are listed) and Corollary 55 (where c.o.-Pc bounds are listed): while the

former result does indicate a sufficient condition for such inequalities to be strict (namely,

if the instantaneous relative position has a pdf, and if this pdf is non-zero in R3), the latter
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result does not indicate a sufficient condition for the corresponding inequalities to be strict

(which would require imposing additional restrictions on the flow function Ft,t0).

10.4 Results and discussion

This section has two goals, both of which pertain to the theoretical results presented in

Corollaries 53 and 55: first, to test whether the COCR-based IPC/Pc inequalities (with re-

spect to the bounds listed in Table 10.1) are satisfied; and second, to quantify the extent of

probabilistic collision risk conservatism induced by employing a COCR versus other col-

lision regions (specifically, those listed in Table 10.1). Such inquiries are studied through

numerical and Monte Carlo sample simulation over a variety of SFF geometric regime cases

subject to CW relative orbital dynamics. The COCR-based m-bounds listed in Table 10.1

include set membership and probabilistic collision risk bounds – from both instantaneous

and joint-time perspectives.

Table 10.1: COCR-based set membership and probabilistic collision risk m-bounds.

m Norm (am)
Bound li,j Set membership Eqns. IPC Eqns. Pc Eqns.
Type multiplier (cm) Inst. Joint-Time Non-Strict Strict Non-Strict

1 Euclidean Lower 1 10.16 10.28 10.20 10.22 10.30

2 Euclidean Upper
√
3/2 10.16 10.28 10.20 10.22 10.30

3 L∞ (or box) Lower
√
1/2 10.17 10.29 10.21 10.23 10.31

4 L∞ (or box) Upper 1 10.17 10.29 10.21 10.23 10.31

10.4.1 Simulation cases and computational methodology

10.4.1.1 CW simulation cases

This Chapter focuses on Examples 3D.001–026, which are subject to CW dynamics, and

which are described in Section A.2.
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10.4.1.2 Description of computational methodology

All simulation cases assume time-invariant joint hard-body radii of li,j = 32 m. This

figure is based on an estimate of Hubble Space Telescope’s HBR of li = 16 m.[130] For

the purposes of this Chapter, having such a large joint HBR allows obtaining higher and

thus, more significant IPC values during a two-orbit propagation horizon, which is needed

in order to meaningfully compare numerically-computed IPC signals to sample-computed

IPC time-histories (or waveforms) during such a time window.

Probabilistic collision risk indicators are computed via numerical integration for IPC

values only, and through Monte Carlo (MC) simulation for IPC and Pc values. For numer-

ical IPC integration, truth values for mean and covariance are propagated analytically (i.e.,

using the analytically propagated relative state statistics listed in Eqns. A.22-A.23), while

IPC values are obtained through multi-dimensional brute-force quadrature in MATLAB

R2020b,[129] specifically, via the integral3 function by integrating the instantaneous

relative position pdf, which is obtained through the marginalization listed in Eq. A.24. In

particular, the integration region limits for the COCR are expressed in terms of Cartesian

coordinates, namely, as

x = ±li,j (10.32)

y = ±
√
l2i,j − x2 (10.33)

z =


±
√
l2i,j − y2 if θ ∈

[
π

4
,
3π

4

)
∪
[
5π

4
,
7π

4

)
±
√
l2i,j − x2 otherwise

(10.34)

where θ = atan2(y, x). The absolute and relative error tolerances are set to 10−10 and

10−6, respectively.

Monte Carlo samples of initial CW relative states are drawn in MATLAB R2020b,

through the mvnrnd function,[127] and applying the Mersenne Twister pseudo-random
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number generator. Each sample has 3.2 × 108 elements; such sample sizes are chosen to

ensure that samples are able to reproduce events with probabilities greater than 1 × 10−7,

which is considered a practical threshold for IPC significance, as discussed in Ref. [28].

10.4.1.3 Validation of computational methodology

The cross-correlation coefficient between two real-valued signals is defined as the inner

product between both signals (that is, the integral of the product of both signals) normal-

ized by the L2-norm of each signal (that is, the square root of the self-inner product of

each signal).[155] For the c.o.- and m-bound-based collision regions, Figure 10.4 shows

that the cross-correlation coefficient between sample and numerical IPC time-histories is

approximately equal to 1 for all dynamic cases listed in Table A.2. In the limit that this

cross-correlation coefficient is equal to 1, and in the limit of continuous timesteps, this

result would imply that the sample and numerical IPC waveforms are equal almost every-

where to within a scaling constant. It is therefore necessary to check whether the L2-norm

values of the sample and numerical IPC time-history signals are equal (or reasonably close)

– if so, this would imply that both IPC computation methods produce essentially the same

outcomes.

Figure 10.5 shows the sample-to-numerical IPC waveform L2-norm ratio for all dy-

namic cases listed in Table A.2, which shows that, for all cases, the sample IPC wave-

form L2-norm is within 0.78% of the numerical IPC waveform L2-norm. This fact, along

with the cross-correlation coefficient between these waveforms, shows that the sample IPC

approximates the numerical IPC adequately, i.e., such waveforms coincide with low dis-

crepancy. Together, Figures 10.4 and 10.5 entail, for c.o.- and m-bound-based collision

regions, that sample and numerical IPC results are mutually consistent (even if not exactly

equal), and therefore, information gleaned from both computational methods is assumed to

be reflective of the same underlying phenomena.
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Figure 10.4: Cross-correlation coefficient between sample and numerical IPC waveforms
(over 2 orbit periods), c.o.- and m-bound-based collision regions.

Figure 10.5: Sample-to-numerical IPC waveform L2-norm ratios (over 2 orbit periods),
c.o.- and m-bound-based collision regions.

10.4.2 Validation of COCR-based probabilistic collision risk inequalities

The computational validation of inequalities concerning probabilistic collision risk indica-

tors based on the COCR and their corresponding bounds presented in Corollaries 53 and
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55 is addressed in this subsection.

10.4.2.1 Validation of c.o.-IPC inequalities

Strict c.o.-IPC inequality satisfaction is expected because, for all dynamic cases and for

any time in the propagation horizon, the instantaneous relative position distribution is non-

degenerate normal, and therefore, the corresponding pdf has support in R3. Figures 10.6

and 10.7 illustrate numerical c.o.-IPC and sample c.o.-Pc waveforms, as compared to their

Euclidean and L∞/box bounds (respectively), for one of the CW dynamic cases consid-

ered. Note: throughout the Results and Discussion section, the “m-bound” and “Boundm”

objects are equivalent, m ∈ {1, 2, 3, 4}; properties of each Bound m have been previously

detailed in Table 10.1.

Figure 10.6: Comparison of IPC and Pc waveforms, c.o.- and Euclidean-bound-based col-
lision regions, Example 3D.013.

Numerically-computed c.o.-IPC measures and their m-bounds are compared so as to

establish whether the inequalities listed in Corollary 53 hold for numerically computed

c.o.-IPCs. First, the integral3 c.o.-IPC waveforms do not always meet the non-strict

IPC inequalities listed in Eqns. 10.20 and 10.21; specifically, the non-strict Euclidean
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Figure 10.7: Comparison of IPC and Pc waveforms, c.o.- and box-bound-based collision
regions, Example 3D.013.

bounds (Eq. 10.20) hold in 24/26 cases, and the non-strict L∞/box bounds (Eq. 10.21)

hold in 22/26 cases. However, when examining IPC values above the significance threshold

pthreshold = 10−7, the c.o.-IPC inequalities are met strictly for all cases considered, for

both Euclidean bounds (Eq. 10.22, which implies non-strict satisfaction, cf. Eq. 10.20)

and L∞/box bounds (Eq. 10.23, which implies non-strict satisfaction, cf. Eq. 10.21).

Interpreting the aforementioned discrepancies as arising from errors inherent to numerical

integration, it follows that numerically computed c.o.-IPC values behave in accordance

with the inequalities laid out in Corollary 53.

Similarly, MC c.o.-IPC measures and theirm-bounds are compared in order to ascertain

whether the inequalities listed in Corollary 53 are met for MC-computed c.o.-IPCs. First,

the MC c.o.-IPC waveforms always meet the non-strict IPC inequalities, listed in Eqns.

10.20 and 10.21, regardless of significance threshold. This is expected because collision

event logic, which is applied to each individual particle in the sample, precisely enforces

non-strict subset relationships corresponding to different collision regions – in this case,

those implied by the strict subset relationships listed in Eqns. 10.16 and 10.17. However,
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although MC c.o.-IPC waveforms (above the significance threshold) always meet the strict

IPC inequalities for Bounds 2-4 (that is, for the Euclidean upper bound and the L∞/box

bounds), the strict Bound 1 c.o.-IPC inequalities are not always satisfied; specifically, the

strict Euclidean lower bound only holds in 12/26 of cases. Such sample c.o.-IPC strict

inequality discrepancies with respect to Bound 1 are henceforth discussed:

• Averaging over all 26 cases, the MC c.o.-IPC does not meet the strict Bound 1 in-

equality in 1.23/2881 timesteps (or in 0.043% of the complete propagation horizon)

– which is a small fraction of the simulation time-window.

• Averaging over the 14 violating cases, the MC c.o.-IPC does not meet the strict

Bound 1 inequality during 0.29% of the propagation horizon for which both MC

c.o.- and Bound 1-IPC values are above pthreshold.

• Throughout the 14 violating cases, whenever the MC c.o.-IPC does not indicate

a strict Bound 1 inequality (that is, when the MC c.o.- and Bound 1-IPC values

are equal), in those precise timesteps, the corresponding numerically computed IPC

values indicate on average a positive difference (between MC c.o.- and Bound 1-IPC

values) of ∆ = 1.08×10−8 – or about 3.46 particles in a sample of NMC = 3.2×108

points.

• The difference ∆ is below the threshold of significance pthreshold = 10−7, and thus,

it is not expected that the chosen MC sample size is capable of reproducing such a

difference accurately. In other words, even though the violating timesteps should in-

dicate a positive difference between c.o.- and Bound 1-IPC values, such a difference

is too small to be captured by the probabilistic event resolution that the chosen MC

sample size is able to provide.

Hence, over a vanishingly small fraction of the propagation horizon, the MC-based IPC

is not able to discern an insignificant, yet positive difference between the c.o.-IPC and its

252



Euclidean lower bound. Therefore, it is concluded, to within the accuracy afforded by the

numerical integration and MC sampling methods implemented in this Chapter, that the non-

strict and strict c.o.-IPC inequalities presented in Corollary 53 are validated by simulation

results in an SFF COLRM context.

10.4.2.2 Validation of c.o.-Pc inequalities

In turn, for MC c.o.-Pc waveforms, the non-strict inequalities listed in Eqns. 10.30 and

10.31 are always met, for all dynamic cases and for any choice of m-bound, irrespective of

significance threshold. This result is expected for the same reasons that MC c.o.-IPC values

always meet their corresponding non-strict inequalities – namely, that non-strict subset

relationships (specifically, those listed in Eqns. 10.28 and 10.29) are enforced precisely

through application of the corresponding logic to each particle in the sample. Hence, Monte

Carlo simulations validate the c.o.-Pc inequalities listed in Corollary 55.

Furthermore, the MC c.o.-Pc waveforms (above the significance threshold) meet strict

versions of the non-strict inequalities listed in 10.30 and 10.31 for allm-bounds considered.

As previously discussed, although the fact that c.o.-Pc meets strict m-bound inequalities

is consistent with the finding that c.o.-IPC meets strict m-bound inequalities, the former

outcome is not necessarily guaranteed by the latter.

Because the probability distribution of the initial relative state Xi,j(t0) is non-degenerate

normal, its associated probability measure 1) is absolutely continuous with respect to the

Lebesgue measure in RnX , and 2) its pdf has support in RnX . Hence, these strict c.o.-Pc

inequalities imply that the symmetric set-difference between the c.o.-JTC and its corre-

sponding m-bound JTC sets has positive Lebesgue measure in RnX . In other words, the

following set has positive Lebesgue measure and therefore, non-zero probability: the set

of initial conditions in relative state space for which a) the c.o.-collision condition is met

during the propagation horizon, and also b) a lower bound (Euclidean or L∞/box) collision

condition is not met. Similarly, the following set has positive Lebesgue measure and there-
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fore, non-zero probability: the set of initial conditions in relative state space for which a)

the c.o.-collision condition is not met during the propagation horizon, and also b) an upper

bound (Euclidean or L∞/box) collision condition is met. Therefore, these findings motivate

future research that would help ascertain conditions to be imposed on the flow function Ft,t0

and the propagation horizon such that the set difference between JTC sets (whose underly-

ing collision conditions are defined via distinct a-norms) has positive Lebesgue measure in

RnX . Identifying these conditions would be a first step toward ascertaining more generally

(e.g., for more families of relative state distributions) whether non-trivial differences may

be expected among Pc measures based on distinct a-norm collision conditions.

10.4.3 Conservatism of COCR-based probabilistic collision risk inequalities

The aims of the current subsection are as follows: first, to compare c.o.-IPC/Pcwaveforms

to their corresponding m-bounds in order to ascertain which m-bound the c.o.-IPC/Pc

might generally be in closest agreement with; and second, to quantify the degree of vol-

umetric, IPC, and Pc conservatism that is introduced by employing a COCR instead of

other collision regions utilized in the literature. Within this subsection, numerical IPC and

sample Pc values are employed for these comparisons.

10.4.3.1 Agreement between c.o.- and m-bound-based IPC/Pc values

In this Chapter, the waveform L2-metric (between two signals) refers to the the L2-norm

(as previously discussed) of the difference between such two signals. Although not shown

here, the waveform L2-metric between the c.o.-IPC and the Bound 1-IPC time-histories

is always strictly less than the waveform L2-metric between the c.o.-IPC and the Bound

m′-IPC time-histories, m′ ∈ {2, 3, 4}. Similarly, the waveform L2-metric between the

c.o.-Pc and the Bound 1-Pc time-histories is always strictly less than the waveform L2-

metric between the c.o.-Pc and the Boundm′-Pc time-histories, m′ ∈ {2, 3, 4}. Therefore,

as quantified by the waveform L2-metric, the c.o.-IPC is closer to its Euclidean lower
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bound than to its other bounds, and the c.o.-Pc is closer to its Euclidean lower bound

than to its other m-bounds. Such results hold for all dynamic cases considered. It follows

that, from an SFF probabilistic collision risk perspective, the COCR is most similar to the

original spherical collision risk region than to any other Euclidean or L∞/box tight set-

theoretic bound.

The nature of the observed probabilistic close agreement between the COCR and its Eu-

clidean lower bound is apparent from Figures 10.8 and 10.9. First, for all dynamic cases,

the cross-correlation coefficient between the c.o.-IPC waveform and its Euclidean lower

bound is greater than or equal to the cross-correlation coefficient between the c.o.-IPC

and its other m-bounds. Interpreting such IPC waveforms as points in an abstract vector

space (specifically, the space of square-integrable functions defined over the propagation

horizon) which is endowed with an inner product and hence, where the notion of an angle

between vectors is meaningful, such a cross-correlation coefficient result implies that the

c.o.-IPC is more similar to its Euclidean lower bound over the propagation horizon than to

its other m-bounds in the sense that the former pair of signals is more closely correlated

(i.e., such signals have greater agreement in the timing and relative extent of waveform lo-

cal extrema) than the latter pair – in the same way that, for vectors in Rs, to have a greater

normalized inner product implies having a lower angular (or directional) difference. The

same result holds for c.o.-Pc signals, with a caveat: in 2/26 cases, the cross-correlation co-

efficient between the c.o.-Pc and Bound 2-Pc signals is numerically greater than the cross-

correlation coefficient between the c.o.-Pc and Bound 1-Pc signals; and in 2/26 cases, the

cross-correlation coefficient between the c.o.-Pc and Bound 3-Pc signals is numerically

greater than the cross-correlation coefficient between the c.o.-Pc and Bound 1-Pc signals.

In all discrepant c.o.-Pc cases, the cross-correlation coefficients at hand differ from 1 by

ϵ = 1.13×10−6 on average; in other words, the c.o.-Pcwaveforms and their corresponding

bounds in these discrepant instances are, essentially, equal almost everywhere – to within

a scaling constant. Hence, practically, for all dynamic cases, the correlation between the
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c.o.-Pc and its Euclidean lower bound is at least as strong (if not more) than the correlation

between the c.o.-Pc and its other m-bounds.

Second, for all dynamic cases, for both c.o.-IPC and c.o.-Pc waveforms, their cor-

responding waveform L2-norms are strictly closer in magnitude to their Euclidean lower

bounds than to their other m-bounds. Hence, in an abstract vector sense, the c.o.-IPC

and c.o.-Pc are closer in “direction” (as quantified by the cross-correlation coefficient) and

“magnitude” (as quantified by the waveformL2-norm) to their Euclidean lower bounds than

to their other m-bounds. This result explains the previously observed close c.o.-IPC/Pc

agreement with their Euclidean lower bounds as observed through the comparison based

on the waveform L2-metric.

Figure 10.8: Numerical c.o.-to-m-bound IPC waveform L2-based comparison (over 2 orbit
periods): (orange) Bound 1, (yellow) Bound 2, (purple) Bound 3, (green) Bound 4.
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Figure 10.9: Sample c.o.-to-m-bound Pc waveform L2-based comparison (over 2 orbit
periods): (orange) Bound 1, (yellow) Bound 2, (purple) Bound 3, (green) Bound 4.

10.4.3.2 Relative averaged difference between c.o.- and m-bound-based IPC/Pc values

The extent of c.o.-IPC conservatism with respect to its m-bounds is quantified through the

c.o.-IPCm-comparison index, denoted as compm-IPCi,j , defined as

compm-IPCi,j =
1

λ (Dm)

∫
t∈[t0,tf ]

[IPCi,j-ratiom(t)] fDm(t) dt (10.35)

IPCi,j-ratiom(t) =
IPCi,j (t; li,j, co)− IPCi,j (t; cmli,j, am)

IPCi,j (t; cmli,j, am)
(10.36)

where fDm : [t0, tf ] → {0, 1} is the characteristic (or indicator function) of the Dm set,

defined as

Dm = {t ∈ [t0, tf ] : IPCi,j (t; li,j, co) ≥ pcomp}

∩ {t ∈ [t0, tf ] : IPCi,j (t; cmli,j, am) ≥ pcomp} (10.37)
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Hence, the compm-IPCi,j index may be understood as the relative difference between the

c.o.-IPC and its m-bound, as averaged over the portion of the propagation horizon where

both the c.o.-IPC and its m-bound are above some limit, which is denoted as pcomp (set

here as pcomp = 5 × 10−7). The c.o.-Pc m-comparison index, denoted as compm-Pci,j , is

defined and interpreted similarly, as given by

compm-Pci,j =
1

λ (Em)

∫
t∈[t0,tf ]

[Pci,j-ratiom(t)] fEm(t) dt (10.38)

Pci,j-ratiom(t) =
Pci,j ([t0, t]; li,j, co)− Pci,j ([t0, t]; cmli,j, am)

Pci,j ([t0, t]; cmli,j, am)
(10.39)

Em = {t ∈ [t0, tf ] : Pci,j ([t0, t]; li,j, co) ≥ pcomp}

∩ {t ∈ [t0, tf ] : Pci,j ([t0, t]; cmli,j, am) ≥ pcomp} (10.40)

Results for the compm-IPCi,j and compm-Pci,j indices for Bound 1 comparison (i.e.,

m = 1) are shown in Figure 10.10. These results are compared to reference values, denoted

by compm-voli,j , which represent the volumetric difference between the COCR and its m-

bounds. The compm-voli,j values may be also interpreted as the instantaneousm-IPC ratio,

IPCi,j-ratiom(t), which would result from imposing an underlying instantaneous relative

position distribution that is uniform over the Cartesian product Bρ = [−ρ, ρ]3 in R3, for

ρ > 0 large enough to include all m-bound collision regions. Note:

Bρ = [−ρ, ρ]3 =
{
[x, y, z]T ∈ R3 : b ∈ {x, y, z}, −ρ ≤ b ≤ ρ

}
(10.41)

The m-reference values compm-voli,j are listed in Table 10.2.

Although not shown, it is found that, for all dynamic cases, the comp1-IPCi,j index

is strictly lesser in magnitude than those of the compm′-IPCi,j indices (m′ ∈ {2, 3, 4}),

and the comp1-Pci,j index is strictly lesser in magnitude than those of the compm′-Pci,j
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Table 10.2: COCR volumetric (and uniform Ri,j(t) distribution-based IPC) m-reference
comparison values.

m 1 2 3 4
compm-voli,j 11.88% −39.10% 65.69% −41.42%

Figure 10.10: Cylindrical orthogonal IPC and Pc m-comparison indices (over 2 orbit peri-
ods), Bound 1 (i.e., Euclidean lower bound, m = 1).

indices (m′ ∈ {2, 3, 4}). In other words, for every dynamic case considered, from a sig-

nificant under/overestimate perspective, the c.o.-IPC and c.o.-Pc are closer in magnitude

(over the propagation horizon) than to their other m-bounds. This result is consistent with

the outcome of waveform L2-norm analysis of Subsubsection 10.4.3.1. Hence, the remain-

der of this discussion focuses on comparing the c.o.-IPC and c.o.-Pc to their respective

Euclidean lower bounds.

Except for Example 3D.001, for all other dynamic cases, the comp1-IPCi,j index is

strictly above the comp1-voli,j = 11.88% reference value; averaging over all cases, the

comp1-IPCi,j index is only 1.59% above the comp1-voli,j reference. In principle, it is not

expected that compm-IPCi,j indices would closely resemble compm-voli,j values, since

the instantaneous relative position distribution is not uniform over a sufficient large com-
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pact set in R3, but it is non-degenerate normal for all dynamic cases. Nonetheless, the

close agreement observed between the comp1-IPCi,j index and the comp1-voli,j reference

suggests that, from a c.o.-IPC and Bound 1-IPC perspective, when such IPC values are

significant (i.e., above pcomp), the instantaneous relative position behaves on average as if

it were uniformly distributed in the neighborhood of the COCR and the original spherical

collision region. These findings motivate future work which aims to ascertain conditions

under which instantaneous relative position distributions may be adequately approximated

by locally uniform distributions in a SFF COLRM context.

The foregoing discussion is further validated by comp1-Pci,j results. First, for all dy-

namic cases, comp1-Pci,j values are strictly lesser in magnitude than comp1-IPCi,j values.

This outcome implies, after averaging over portions of the propagation horizon where prob-

abilistic collision risk indicators are significant, that the c.o.-IPC overestimates the Bound

1-IPC to a greater extent than the c.o.-Pc overestimates the Bound 1-Pc. This fact indi-

cates that there is a greater degree of temporal overlap in terms of collision conditions after

propagation as defined via the COCR than as defined via the original spherical collision

region. In other words, the event that collisions occur at multiple timesteps comprises a

larger probabilistic proportion of IPC values for collisions defined via the COCR than for

collisions defined via the original spherical collision region. In turn, this result is consistent

with the temporal and spatial continuity of the flow function of the dynamic cases at hand.

Since the COCR is a superset of the original spherical collision region, by continuity of the

flow function, relative position trajectories that enter the COCR remain in it for at least as

long (and often, longer) than how long relative position trajectories remain in the original

spherical collision region after entering it. Second, although lower than the comp1-voli,j for

all dynamic cases, the comp1-Pci,j index is only 2.08% below the comp1-voli,j reference

after averaging over all cases. This outcome is consistent with the c.o.-IPC overestimate

and the c.o.-Pc overlap behaviors previously discussed.
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10.5 Conclusion

In the context of spacecraft formation flying (SFF) collision risk management (COLRM),

this Chapter motivates the implementation of a cylindrical orthogonal collision region

(COCR) in R3, which is constructed through the intersection of three mutually orthogo-

nal cylinders, each of which represents a two-dimensional avoidance constraint. Since it

is computationally expensive to satisfy spherical, three-dimensional avoidance constraints

(S3ACs) directly, the purpose of the COCR construct is to provide a means for approximate

S3AC satisfaction that allows for both safety sufficiency and reduced constraint satisfaction

conservatism as compared to cubic collision regions and to the three-dimensional coun-

terparts of single circular collision conditions on planar projections of spacecraft relative

motion.

Application of the COCR for approximate S3AC satisfaction in an SFF COLRM con-

text is validated theoretically and computationally. First, it is shown that the COCR is a ball

with respect to a norm in R3 – specifically, the cylindrical orthogonal norm in R3, hereby in-

troduced. This outcome implies that the COCR is a well-defined region, and that stochastic

measures of collision risk in both an instantaneous and joint-time sense based on the COCR

are well-defined and computable. Second, relationships between the COCR and its tight

upper and lower bounds in terms of Euclidean- and L∞/box-norms are presented from the

following perspectives: volumetric, instantaneous set inclusion/exclusion, and joint-time

set inclusion. Third, the aforementioned set-theoretic relationships between COCR-based

collision sets and their bounds are used to infer upper and lower bound inequalities for

instantaneous and joint-time probabilities of collision in terms of their Euclidean- and and

L∞/box-norm counterparts. Fourth, a computational methodology is presented and vali-

dated for the estimation of the instantaneous probability of collision (IPC) and the joint-

time probability of collision (Pc) based on numerical integration and Monte Carlo sam-

pling, respectively. Fifth, the preceding tight upper and lower bound inequalities for the
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COCR-based IPC and Pc in terms of their Euclidean and L∞/box bounds are validated

over a wide range of SFF geometric cases subject to Clohessy-Wiltshire (CW) relative or-

bital dynamics. Sixth, it is found that from volumetric as well as IPC and Pc time-history

perspectives, the COCR is in closest agreement with its Euclidean lower bound, which is

the original spherical collision region. Finally, the averaged overestimate of the COCR-

based IPC and Pc (relative to the original spherical collision region-based IPC and Pc) is

quantified, and it is found to be in close agreement with the volumetric COCR overesti-

mate (relative to the original spherical collision region) of 11.88%. The significance and

applicability of these findings is addressed.

Together, these theoretical and computational contributions constitute substantial sup-

port for employing the COCR construct in practical SFF COLRM applications. Specifi-

cally, these contributions motivate investigating whether there may be efficiency gains in

the computation and verification of SFF relative trajectories that are safe with respect to the

COCR (as opposed to the original spherical collision region).
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CHAPTER 11

STATUS OF INVESTIGATION AND FUTURE WORK

An overview of the benefits of spacecraft formation flying (SFF), the sources of collision

risk in spacecraft formations, and the process of collision risk management (COLRM) in

SFF, is provided in Chapter 1.

Chapter 2 addresses the notation used in this work, a deterministic formulation of colli-

sion events, as well as definitions of probabilistic, distance-based, and hybrid collision risk

indicators.

Contribution 1, addressed in Chapters 3 and 4, is concerned with foundational work

in SFF COLRM. First, for a finite dimensional random vector with a probability density

function (pdf), its Euclidean norm also has a pdf.[12] This substantiates sensitivity studies

of the direct- and inverse-IPC problem. Second, well-definedness and computability is

shown for joint-time probabilities of collision whose instantaneous collision condition is

defined as a ball with respect to an arbitrary norm in relative position space.[183] The extent

of this contribution will be completed after submitting a proof of the well-definedness and

computability of the aforementioned joint-time collision probabilities as a peer-reviewed

journal article, as listed in Table 11.1.

Contribution 2, addressed in Chapters 6 and 7, is concerned with SFF collision risk

quantification, and it encompasses the development of the Mahalanobis Shell Sampling

(MSS) algorithm for collision probability computation,[38] as well as computation tech-

niques for distance-based collision risk indicators. While the MSS stochastic convergence

contribution has been published as a journal article,[38] the distance-based SFF collision

risk contribution will not be published beyond this dissertation. Contribution 2 is therefore

complete, as shown in Table 11.1.

Contribution 3, addressed in Chapters 8 and Chapters 9, is concerned with SFF collision
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risk interpretation and decision-making; it comprises the relationships between probabilis-

tic and distance-based SFF collision risk indicators,[27, 28] and it characterizes the inter-

pretation of hybrid SFF collision risk indicators.[33] While contribution of establishing the

correlation relationship between probabilistic and distance-based SFF collision risk indi-

cators has been published as a journal article,[28] the characterizing the interpretation of

hybrid SFF collision risk indicators has been (and will only be) published as a conference

paper.[33] Contribution 3 is hence complete, as shown in Table 11.1.

Contribution 4, addressed in Chapter 10, contributes to foundational SFF COLRM

work and to SFF collision risk interpretation and decision-making. The cylindrical or-

thogonal collision risk (COCR), which is a new collision region in three-dimensional rela-

tive position space, and which arises from the violation of three mutually orthogonal two-

dimensional collision constraints, is recommended in Contribution 4 for application to ap-

proximate spherical collision constraint satisfaction. Contribution 4 shows that the COCR

is deterministically well-defined, it shows that instantaneous and joint-time stochastic SFF

collision risk measures based on the COCR are well-defined and computable, it presents

theoretical inequalities that relate these measures to upper and lower bounds based on the

violation of the Euclidean and L∞/box norms (which are computationally validated), and

it quantifies the extent of the overestimate of COCR-based stochastic SFF collision risk

measures as compared to their Euclidean L∞/box upper and lower bounds. These devel-

opments have been submitted as a peer-reviwed journal article.[41] Contribution 4 is thus

complete, as shown in Table 11.1.

Additionally, Appendix A lists initial conditions for test cases subject to CW dynamics

used throughout the work; Appendix B discusses the analytical convergence properties

of the Monte Carlo method in the mean square error (MSE) sense when estimating the

sample mean, covariance, and probability measures; Appendix C describes the specific

Monte Carlo simulation framework utilized for SFF collision risk indicator computation

throughout this dissertation; and Appendix D discusses the definition of the CW vector and
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matrix norms, which are used to directly compare CW relative state expected values and

covariances for the purpose of testing asymptotic convergence rates in various sampling

methods.
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Table 11.1: Publication list for this investigation.

Contribution area
Publication title Publication type Status

Est. Date of
to SFF COLRM Completion

Existence of Probability Density Function for
Journal Article Complete Feb. 2022

Norm of Finite-Dimensional Random Vector[12]
Foundational
(Contribution 1) Arbitrary relative position norm effects on spacecraft

Journal Article In Progress Jun. 2023formation flying joint-time collision probability
well-definedness[183]
Mahalanobis Shell Sampling (MSS) Method

Master’s Report Complete Feb. 2020
for Collision Probability Computation[47]

Quantification Mahalanobis Shell Sampling (MSS) Method
Conference Paper Complete Jan. 2021

(Contribution 2) for Collision Probability Computation[46]

Stochastic Convergence of Sobol-Based Mahalanobis
Journal Article Complete Sep. 2022

Shell Sampling (MSS) Collision Probability Computation[38]
Relating Collision Probability and Miss Distance Indicators

Conference Paper Complete Aug. 2020
in Spacecraft Formation Collision Risk Analysis[27]

Interpretation Relating Collision Probability and Separation Indicators
Journal Article Complete Nov. 2021

(Contribution 3) in Spacecraft Formation Collision Risk Analysis[28]

Sensitivity of Separation Indicators in Spacecraft
Conference Paper Complete Aug. 2021

Formation Collision Risk Analysis[33]
Foundational/ Cylindrical orthogonal norm-based stochastic

Journal Article Submitted Apr. 2023Interpretation collision risk measures in spacecraft formation
(Contribution 4) flying[41]
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CHAPTER 12

CONCLUDING REMARKS

12.1 Dissertation problem statement

In view of the advantages to space mission capabilities and performance that may be pro-

vided by operational implementations of the spacecraft formation flying (SFF) mission

design paradigm, considering the prevalence of collision risk to SFF missions from sources

external and internal to such formations, and in light of the drastic consequences to space-

craft formations that would ensue from the occurrence of collision events, this dissertation

seeks to conceptually frame the problem of collision risk management (COLRM) in SFF,

and to provide relevant contributions towards the solution of this problem.

In a practical space mission implementation, operational SFF COLRM tasks comprise

the following: computing indicators of SFF collision risk in a way that accounts for relative

state uncertainty (i.e., SFF collision risk quantification), employing computed SFF collision

risk indicators in order to ascertain whether corrective maneuvers are warranted (i.e., SFF

collision risk interpretation and decision-making), and, if needed, planning and executing

of collision avoidance maneuvers in a manner that ensures collision safety and the efficient

use of onboard resources (i.e., SFF collision risk reduction). Operational SFF COLRM

tasks implicitly rely on the formal definition of SFF collision risk indicators, as well as

the characterization of their basic properties and guarantees; such items are the subject

of foundational SFF COLRM work. From an ontological perspective, any practical SFF

mission implementation must address the ongoing threat of SFF-related collision risk by

adhering to the basic SFF COLRM framework hereby posed.

With the exception of SFF collision risk reduction (also known as SFF collision avoid-

ance), the goal of this dissertation is to contribute to each aspect of the SFF COLRM prob-
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lem, specifically, as related to the long-term risk of collisions among agents in spacecraft

formations. Together, the contributions comprised by this dissertation may appeal to mem-

bers of the spaceflight and astronautics communities interested in a resource which system-

atically (albeit not comprehensively) addresses the definition, usability, computation, and

interpretation of indicators of collision risk among agents in spacecraft formations.

12.2 Overview of findings and implications of this investigation

Throughout this Chapter, the instantaneous probability of collision (IPC) and the joint-time

probability of collision (Pc) between two agents in a spacecraft formation are specifically

based on instantaneous collision regions defined as open balls (in relative position space)

with respect to the Euclidean norm.

12.2.1 Foundational SFF COLRM work

12.2.1.1 Existence of probability density function (pdf) for Euclidean norm of finite-

dimensional random vector

As per Chapter 3, for a finite-dimensional random vector whose probability distribution is

absolutely continuous [i.e., if this random vector has a probability density function (pdf)],

its Euclidean norm is also an absolutely continuous random variable. For the direct and

inverse Euclidean norm-based instantaneous probability of collision (IPC) problems [i.e.,

respectively, for computing the IPC value corresponding to a fixed joint hard-body radius

(HBR), and for obtaining the joint HBR corresponding to a fixed IPC value], this contribu-

tion substantiates studies of the sensitivity of such problems with respect to their defining

parameters (i.e., joint HBR and IPC values, respectively), which can be shown to depend

on the pdf of the Euclidean norm of the instantaneous relative position. Since the instan-

taneous relative position is often modeled as random vector with a pdf in the spaceflight

mechanics community, this result has wide applicability for SFF practice.
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12.2.1.2 Well-Definedness and Computability of Joint-Time Stochastic Collision Risk Mea-

sures

In the context of probability measures (including absolutely continuous probability mea-

sures), the probability of an event is well-defined if the event (which is represented as a

subset of some reference space) is a measurable subset of the corresponding probability

measure space.

Let a-Pc measures refer to joint-time probabilities of collision whose underlying col-

lision conditions in relative position space are defined as origin-centered open balls with

respect to some a-norm in relative position space. Then, Chapter 4 indicates sufficient

conditions for a-Pc measures to be well-defined, namely: 1) if the flow function (corre-

sponding to the relative dynamic process employed to propagate initial relative state space

points) is invertible and continuous, and 2) if the function that projects points in relative

state space into points in relative position space is a continuous surjection. Specifically,

Conditions 1)-2) ensure that the joint-time collision set with respect to the a-norm (de-

noted by a-JTC) is a Lebesgue measurable subset of initial relative state space. Since the

initial relative state (between two agents in a spacecraft formation) is often modeled is an

absolutely continuous random vector, Conditions 1)-2) imply that an a-Pc measure in this

context may be computed as an integral of the initial relative state pdf over the a-JTC set,

and that this integral exists and is finite.

The notion of a-Pc computability refers to the property by which finite-timestep a-Pc

approximations are able to approximate a-Pc measures arbitrarily well in the limit of van-

ishingly small timesteps. Then, Chapter 4 shows that a-Pc measures are computable under

the following sufficient conditions: if Conditions 1)-2) are met, and 3) if the time-history

of the joint HBR (which parameterizes the instantaneous collision region) has continuous

variation over the propagation horizon.

Since Conditions 1)-3) are weak conditions that are met with high generality in space-

flight mechanics applications, the results comprised by this contribution have a powerful
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implication: if any relative position space a-norm is employed (via open balls) to encode

the operational definition of instantaneous collision events, the corresponding a-Pc mea-

sures are automatically known to be well-defined and computable – and hence, such a-Pc

measures may be employed for operational SFF COLRM tasks. Therefore, this contribu-

tion justifies the customization of collision regions in relative position space (specifically,

as enabled by a-norms) in order to better suit operational needs in a wide range of SFF

COLRM contexts.

12.2.2 Algorithms and methods for SFF collision risk indicator quantification

12.2.2.1 Stochastic Convergence of Sobol-based Mahalanobis Shell Sampling (MSS)

Collision Probability Computation

Chapter 6 describes the Mahalanobis Shell Sampling (MSS) algorithm, which is a method

for making samples of a finite-dimensional, non-degenerate normal random vector X . The

MSS algorithm employs uniform unit hypersphere samples (derived from uniform hyper-

cube samples), which are then geometrically mapped into arbitrary Mahalanobis shells (i.e.,

regions whose boundaries are hypersurfaces of constant Mahalanobis distance).

The MSS algorithm produces samples ofX which have a user-defined number of points

within each Mahalanobis shell. Hence, the MSS algorithm allows for obtaining an arbitrar-

ily large number of probabilistically extreme sample points (as quantified by Mahalanobis

distance) in an MSS sample, which enables the inclusion of points that represent rare events

with more ease and predictability than would be allowed by Monte Carlo samples.

Theoretically, MSS-based estimators of sample mean and covariance are unbiased un-

der invertible linear transformations, and MSS-based sample estimators of probability mea-

sures are asymptotically unbiased (with a pre-determined upper error bound) in the limit of

increasing the number of sample shells.

The asymptotic rate of stochastic convergence [in the mean-square-error (MSE) sense]

is quantified for MSS samples [of the Clohessy-Wiltshire (CW) relative orbital dynamic
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state] whose underlying method of unit hypercube generation is the randomized Sobol se-

quence. It is found that, when reproducing the distribution mean and covariance for the CW

relative position, relative position rate, and relative state, MSS-based MSE convergence im-

proves upon Monte Carlo-based MSE convergence by an order of magnitude. Additionally,

MSS-based IPC computation achieves similar error properties as Monte Carlo-based IPC

computation.

Therefore, through its theoretical and computational properties, the MSS algorithm

constitutes an implementable collision risk quantification tool for SFF practitioners seeking

to realize SFF mission concepts that rely on IPC/Pc-based SFF COLRM. Employing the

MSS algorithm for this purpose would have the added benefit of creating the potential for

guidance, navigation, and control (GN&C) synergies in the case that the MSS algorithm

is also utilized as a building block in the development of particle filter-based SFF relative

navigation architectures.

12.2.2.2 Quantification of distance-based SFF collision risk indicators

LetDi,j;d denote the minimum Euclidean distance from the origin of relative position space

to the d-Mahalanobis contour of the instantaneous relative position random vector, which

is assumed to be non-degenerate normal. For certain d-values, the Di,j;d quantity has been

proposed as an SFF collision risk indicator representing critical points in boundaries be-

tween probabilistically extreme and non-extreme events.

Chapter 7 introduces a methodology in three dimensions for Di,j;d computation as fol-

lows. First, in the context of the more general problem of finding the minimum Euclidean

distance from the origin of a finite-dimensional real vector space to the d-Mahalanobis

contour of some non-degenerate random vector X , the following theoretical properties are

ascertained: the existence of solutions to this problem is proven, and upper and lower

bounds for these solutions are obtained in terms of scalar functions of the first- and second-

order statistical moments of X . Second, such general finite-dimensional results are applied
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to Di,j;d for the purposes of: 1) establishing the well-definedness of Di,j;d, and 2) to aid

the computation of Di,j;d – specifically, by rescaling the objective function that defines

Di,j;d so that it has predictable upper and lower bounds. Third, a dimension-reducing iso-

morphism between the unit 2-sphere and the unit square, in addition to a coordinate basis

transformation, enable reframing the problem of finding Di,j;d as a search in a convex,

simply-connected subset of the unit square.

The aforementioned Di,j;d computation methodology is validated in the context of rel-

ative position distributions which have become ill-conditioned after propagation through

CW dynamics. In this dissertation, this methodology is utilized for Di,j;d computation in

the context of a study of the correlation relationship between miss-distance and probabilis-

tic SFF collision risk indicators (see Ch. 8).

Therefore, the Di,j;d computation methodology introduced in Chapter 7 represents a

starting point for SFF practitioners who wish to employ the Di,j;d quantity as a collision

risk indicator for the purposes of developing an SFF COLRM concept.

12.2.3 Spacecraft formation collision risk interpretation and decision-making

12.2.3.1 Relating collision probability and separation indicators in spacecraft formation

collision risk analysis

Active methods of SFF collision avoidance (COLA) may be broadly classified in terms of

which SFF collision risk indicator type is employed as a decision variable on the basis of

which to develop thresholds which encode sufficient conditions for SFF collision safety.

While miss distance-based SFF collision risk indicators refer to statistical descriptions of

inter-agent separation, probabilistic SFF collision risk indicators refer to probability mea-

sures associated with the instantaneous or joint-time risk of inter-agent collisions.

Recognizing the foregoing active SFF COLA decision variable dichotomy prompts ex-

amining whether both types of SFF collision risk indicators provide consistent information

regarding the risk of inter-agent collisions. In Ch. 8, the degree of such consistency is
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assessed via the collision correlation index, which quantifies the extent of the correlation

relationship between miss distance and IPC time-history peaks.

As per the collision correlation index, the Euclidean norm of expected relative position

has no consistent relationship with IPC/Pc measures, while the 99.73% minimum distance

(ρ3σ; this is the 0.27%-quantile of the distribution of the Euclidean norm of relative posi-

tion) exhibited the highest extent of SFF collision risk information consistency with IPC/Pc

measures.

This contribution is valuable to SFF practitioners because it identifies pitfalls of certain

miss distance-based SFF collision risk indicators, while it also substantiates application

of other miss distance-based indicators (in particular, ρ3σ). Additionally, via the collision

correlation index, this contribution provides a coherent mechanism for quantifying whether

miss distance and probabilistic SFF collision risk indicators are related to each other in a

way that accords with intuition.

12.2.3.2 Sensitivity of separation indicators in spacecraft formation collision risk analy-

sis

The 99.73% minimum distance (ρ3σ), which is the 0.27%-quantile in the distribution of

the Euclidean norm of the relative position, is a quantity which has been recommended for

application as a miss distance-based SFF collision risk indicator because it exhibits a high

degree of SFF collision risk information consistency with respect to IPC/Pcmeasure-based

SFF collision risk information.

The ρ3σ quantity may be understood as a hybrid SFF collision risk indicator in the

following way: if the isotropic keep-out-zone distance requirement between two agents is

greater than ρ3σ, their corresponding IPC has a value of at least 0.27%. This probabilistic

ρ3σ interpretation is validated in Chapter 9 by showing that small changes in the IPC value

that defines ρ3σ (i.e., 0.27%.) induce proportionally small changes to the value of ρ3σ itself.

This ρ3σ behavior is observed over a wide range of relative orbital dynamic regimes.
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These results validate the interpretation of ρ3σ as encoding an SFF collision risk bound-

ary in relative position space with a specific interpretation pertaining to probabilistic SFF

collision risk. Therefore, this contribution is valuable to SFF practitioners because it shows

that the foregoing interpretation of ρ3σ holds under numerical and statistical estimator er-

rors to within acceptable user tolerances, which is a property that SFF collision risk indi-

cators must display before being employed in any SFF hardware implementation.

12.2.4 Cylindrical orthogonal norm-based stochastic collision risk measures in spacecraft

formation flying

Every SFF COLRM framework depends on the operational definition of collision events;

such a definition reflects: 1) how SFF collision events are physically understood, and 2)

any assumptions imposed so that collision event occurrences are practically determinable.

A common practice in the spaceflight mechanics community is to define spacecraft

collisions in terms of the violation of minimum distance constraints with respect to the

Euclidean norm; doing so allows for a formulation of collision events that is independent

of relative attitude and the coordinate basis of relative position space. However, satisfying

spherical three-dimensional avoidance constraints (S3ACs) precisely is computationally

expensive (sometimes prohibitively so); hence much of the spacecraft relative trajectory

planning literature focuses on approximate S3AC satisfaction.

Chapter 10 is concerned with the cylindrical orthogonal collision region (COCR), which

arises from the simultaneous violation of two-dimensional (2D) circular collision con-

straints as perceived in three mutually orthogonal planar projections of three-dimensional

(3D) spacecraft relative motion. The COCR is the relative position region guaranteed to be

avoided if at least of one out of three mutually orthogonal planar circular constraints (e.g.,

in the in-plane, cross-plane, and sky-plane) is satisfied at any one time.

Chapter 10 motivates application of the COCR as encoding the operational definition

of collision events in an SFF COLRM context by addressing concerns which arise form
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the construction of the COCR. First, the COCR is a well-defined convex region of 3D rela-

tive position space; hence, avoiding this region is conceptually no different than satisfying

an S3AC. Any COCR is volumetrically 11.88% larger than the largest Euclidean collision

region circumscribed within the COCR. Hence, by satisfying three circular planar con-

straints instead of uncountably many hyperplane constraints, the COCR affords collision

safety sufficiency while also reducing collision safety conservatism as compared to other

regions employed in the literature (such as cubic box regions). Second, based on the well-

definedness of a-norm based IPC/Pc measures listed in Chapter 4, COCR-based IPC/Pc

measures are known to be well-defined and computable as well. Third, upper and lower

bounds for COCR-based IPC/Pc measures are derived in terms of Euclidean norm- and

box norm-based IPC/Pc measures. These bounds are validated numerically for IPC values

and through Monte Carlo simulation for IPC/Pc values in the context of a wide range of

pertinent relative orbital dynamic regimes. Fourth, the extent of COCR-based IPC/Pcmea-

sure overestimate over the original Euclidean norm-based IPC/Pc measures is quantified,

showing that the former measures are more closely related to the latter measures than how

the former measures are related to other upper and lower bounds.

Together, these results are a valuable contribution to SFF practitioners because they

substantiate the validity of deterministic and stochastic applications of the COCR in an op-

erational SFF COLRM context, specifically, by identifying the potential benefits of their

use and by characterizing the corresponding deterministic and stochastic drawbacks of ap-

plying the COCR in this way.

12.3 Final remarks

This dissertation utilizes the notion of spacecraft formation flying (SFF) collision risk in-

dicators as quantities whose computed values may be employed to make informed deci-

sions concerning the necessity of performing correction maneuvers in order to preserve

inter-agent collision safety in an operational SFF context. This investigation makes con-
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tributions to the following subfields within the SFF collision risk management (COLRM)

discipline: SFF collision risk quantification, SFF collision risk interpretation and decision-

making, and foundational SFF collision risk management (COLRM) work. As discussed in

this Chapter, these contributions are relevant to members of the spaceflight and astronautics

communities who might be interested in practical, hardware-based implementations of the

SFF mission design paradigm.
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APPENDIX A

CLOHESSY-WILTSHIRE (CW) DYNAMICS, GEOMETRY, AND TEST CASES

A.1 Clohessy-Wiltshire (CW) dynamics and geometry

Simulation cases in this dissertation are subject to Clohessy Wiltshire (CW) relative orbital

dynamics,[5] which are linearizations of the restricted two-body problem around a refer-

ence Keplerian, circular orbit. The position of the deputy agent k about the chief agent

j0 ([rk,j0 ]H ∈ R3, or simply [rk]H) is expressed in the coordinates of the Hill frame,[138]

which is a rotating reference frame, and which is also designated as the RIC,[184] RTN,[90]

and LVLH frame.[5] The CW relative dynamic state [xk,j0
]H is completed by the relative

position rate, i.e., [xk,j0
]TH =

[
[rk,j0 ]

T
H , [ṙk,j0 ]

T
H

]
, where [ṙk,j0 ]H is not a true, inertial veloc-

ity because Hill frames are rotating reference frames. CW motion exhibits linear, time-

invariant (LTI) dynamics; thus, a deterministic CW relative state [xk,j0
]H (t) is related to its

initial conditions at time t0 as given by

[xk,j0
]H (t) = Φj0 (t, t0) [xk,j0

]H (t0) (A.1)

where the j0 state transition matrix, Φj0 , is given by

Φj0 (t, t0) =



4− 3c 0 0 s
nj0

2
nj0
− 2c

nj0
0

−6nj0 (t− t0) + 6s 1 0 − 2
nj0

+ 2c
nj0

4s
nj0
− 3 (t− t0) 0

0 0 c 0 0 s
nj0

3nj0s 0 0 c 2s 0

−6nj0 + 6nj0c 0 0 −2s −3 + 4c 0

0 0 −nj0s 0 0 c


(A.2)
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where nj0 denotes the mean orbital motion of chief agent j0, and where

c
.
= cos (nj0 (t− t0)) (A.3)

s
.
= sin (nj0 (t− t0)) (A.4)

General CW relative trajectories may be described in terms of the geometric param-

eters (A0, B0, xoff , yoff , α0, β0) as given by Equations A.5, A.6 and A.7, as listed in the

Nomenclature, and in accordance with the notation of Schaub.[5]

[xk,j0 ]H (t) = A0 cos (nj0(t− t0) + α0) + xoff (A.5)

[yk,j0 ]H (t) = −2A0 sin (nj0(t− t0) + α0)−
3

2
nj0(t− t0)xoff + yoff (A.6)

[zk,j0 ]H (t) = B0 cos (nj0(t− t0) + β0) (A.7)

If the CW trajectory of agent k about agent j0 is closed, then the initial relative CW state

[xk,j0
]H (t0) is constrained such that xoff = 0 (i.e., when trajectories have no constant radial

offset; cf. Eq. A.6). This condition is the CW counterpart to Keplerian orbits having equal

energy (and hence, having the same orbital period). Equivalently, closed CW trajectories

satisfy

[ẏk,j0 ]H (t0) = −2nj0 [xk,j0 ]H (t0) (A.8)

Proposition 56 (Duality of relative CW trajectories). Suppose two agents i and j are in

closed CW trajectories about the same arbitrary chief agent, denoted by j0. Then, the

motion of agent i relative to agent j is a virtual, closed CW trajectory with agent j as the

chief. ♢

Proof. Suppose agent k is in a closed CW trajectory about j0. Then,

[ẏk,j0 ]H (t0) = −2nj0 [xk,j0 ]H (t0) (A.9)
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Since, for t ≥ t0, [xk]H (t) = Φj0 (t, t0) [xk]H (t0), it follows that

[xk,j0 ]H (t) = c [xk,j0 ]H (t0) +
s

nj0

[ẋk,j0 ]H (t0) (A.10)

[ẏk,j0 ]H (t) = −2nj0c [xk,j0 ]H (t0)− 2s [ẋk]H (t0)

= −2nj0

[
c [xk,j0 ]H (t0) +

s

nj0

[ẋk,j0 ]H (t0)

]
(A.11)

Therefore, when k has a closed CW trajectory about j0, it follows that, for t ≥ t0,

[ẏk,j0 ]H (t) = −2nj0 [xk,j0 ]H (t) (A.12)

Suppose agents i and j are both in closed CW trajectories about j0. Then,

[xi,j0
]H (t) = Φj0 (t, t0) [xi,j0

]H (t0) (A.13)

[xj,j0
]H (t) = Φj0 (t, t0) [xj,j0

]H (t0) (A.14)

Since agent j is in a closed trajectory about agent j0, and since the j motion is an oscillator

in any H-coordinate direction with period 2π/nj0 , it follows that the motion of agent j oc-

curs with the same periodicity as that of agent j0, i.e., nj = nj0 , and Φj (t, t0) = Φj0 (t, t0).

Thus, because of linearity,

[xi,j]H (t)
.
= [xi]H (t)− [xj]H (t)

= Φj0 (t, t0)
(
[xi]H (t0)− [xj]H (t0)

)
= Φj (t, t0) [xi,j]H (t0) (A.15)

By inspecting Eq. A.15 and applying the general closed orbit condition for t ≥ t0, it
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follows that

[xi,j]
T
H (t) = [xi]

T
H (t)− [xj]

T
H (t)

=

[
xi (t) yi (t) zi (t) ẋi (t) −2nj0xi (t) żi (t)

]
H

−
[
xj (t) yj (t) zj (t) ẋj (t) −2nj0xj (t) żj (t)

]
H

=

[
xi,j (t) yi,j (t) zi,j (t) ẋi,j (t) −2njxi,j (t) żi,j (t)

]
H

(A.16)

In particular, for t = t0, [ẏi,j]H (t0) = −2nj [xi,j]H (t0), which satisfies the closed orbit

condition from Eq. A.8. Therefore, the trajectory of agent i relative to j is a closed CW

trajectory with agent j as a virtual chief.

Via Proposition 56, if a pair of agents have closed CW orbits about a common chief,

it is possible to reformulate the trajectory of one agent of such pair as a virtual CW tra-

jectory about the other agent in the pair, thereby obviating the need to consider this case

as a separate problem. Although this would only hold under major practical assumptions

(i.e., closed relative orbits about the same agent), these assumptions help generalize the

analysis. Therefore, in the rest of this Appendix, the i-j subscripts in the relative state of

CW agents are omitted with the understanding that agent i is any agent that orbits relative

to an arbitrary chief agent j, whether real (in the sense of Eqns. A.2-A.8) or virtual (in the

sense of Proposition 56, if applicable). Additionally, the mean motion of agent j, nj , is

simply denoted by n.

Closed CW relative trajectories can be described in terms of the geometric parameters

(A0, B0, yoff , α0, β0) as given by Equations A.17, A.18, and A.19.

[xk,j0 ]H (t) = A0 cos (nj0(t− t0) + α0) (A.17)

[yk,j0 ]H (t) = −2A0 sin (nj0(t− t0) + α0) + yoff (A.18)

[zk,j0 ]H (t) = B0 cos (nj0(t− t0) + β0) (A.19)
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These are five, not six, geometric parameters, owing to the closed CW trajectory con-

straint, given by Eq. A.8. Also, [z]H motion is that of a simple harmonic oscillator, inde-

pendent of [x]H-[y]H motion. Figure A.1 illustrates the geometry of closed CW orbits.[140,

5] The foregoing closed CW geometric parameters are illustrated in Fig. A.1, and they may

be interpreted as follows:

• A0: amplitude of [x]H motion.

• yoff : steady-state offset of [y]H motion. Note: the amplitude of [y]H motion about

yoff is 2A0.

• B0: amplitude of [z]H motion.

• α0: phase angle of [x]H motion. Note: the [y]H motion leads the [x]H motion by

a phase difference of π/2, i.e., by 0.25 chief orbit periods, regardless of the value

of α0. Thus, the [x]H-[y]H motion is always a 1:2 ellipse (i.e., a “football”-shaped

relative orbit) centered at (0, yoff).

• β0: phase angle of [z]H motion.

It should be noted that the α0 and β0 angles are only meaningful if the A0 and B0

amplitudes, respectively, are nontrivial. If defined, the β0−α0 geometric parameter creates

the greatest variability in the shape of closed CW trajectories. In particular, the following

cases are noteworthy:

• mod(β0 − α0, 2π) ∈ {0, π}. Here, the [x]H and [z]H motions are in phase and are

either correlated or anti-correlated straight lines, whereas the [y]H and [z]H motions

are out of phase, creating a 2:(B0/A0) ellipse. For example, in this β0 − α0 case, if

B0 = 2A0, then the relative trajectory as perceived in the [y]H-[z]H plane is a 1:1

ellipse (i.e., a circle) centered at (yoff , 0).
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Figure A.1: Geometry of closed CW trajectories, where P is the chief orbit period.
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• mod(β0 − α0, 2π) ∈ {π/2, 3π/2}. Here, the [y]H and [z]H motions are in phase

and are either correlated or anti-correlated straight lines, whereas the [x]H and [z]H

motions are out of phase, creating a 1:(B0/A0) ellipse.

• mod(β0 − α0, π/2) ̸= 0. Here, the [z]H motion is neither in phase nor out of phase

with either the [x]H or [y]H motions, creating either correlated or anti-correlated

ellipses in the [x]H-[z]H and [y]H-[z]H planes.

A.2 CW simulation cases

Dynamic scenarios in this dissertation follow CW dynamics. Additionally, the initial rela-

tive state distribution is multivariate, non-degenerate normal; i.e.,

X(t0) ∼ N
(
µX(t0), ΣX(t0)

)
(A.20)

Because CW dynamics are linear, the distribution of the relative state remains multivariate,

non-degenerate normal; that is,

X(t) ∼ N
(
µX(t), ΣX(t)

)
(A.21)

where µX(t) and ΣX(t) are given by

µX(t) = Φj0 (t, t0)µX(t0) (A.22)

ΣX(t) = Φj0(t, t0) [ΣX(t0)] Φ
T
j0
(t, t0) (A.23)

where Φj0 (t, t0) is the CW STM listed in Eq. A.2. In particular, the instantaneous relative

position distribution is obtained through marginalization as

R(t) ∼ N
([

I3, 03×3

]
µX(t),

[
I3, 03×3

]
ΣX(t)

[
I3, 03×3

]T) (A.24)
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Simulation cases are assumed to have a chief agent j0 whose orbit’s semimajor axis is

āj0 = 6800 km. Then, the mean motion n̄j0 (in [rad/s] units) can be computed in terms of

Earth’s standard gravitational parameter µE as

n̄j0
.
=

√
µE/ (āj0)

3 (A.25)

where µE = 3.986004418×105 km3/s2. The simulation horizon is two orbit periods of the

chief agent, and the timestep resolution is 3.8754 seconds, which corresponds to 1/1440th

of one orbit period, or 1/4th of one degree (of mean anomaly) of one revolution of the orbit

of the chief spacecraft.

For simplicity, all cases have the same initial state covariance matrix ΣX (t0), which

assumed to be diagonal, as given by

ΣX (t0) = diag

([
σ2
[x]H

(t0) σ2
[y]H

(t0) σ2
[z]H

(t0) σ2
[ẋ]H

(t0) σ2
[ẏ]H

(t0) σ2
[ż]H

(t0)

])
(A.26)

The diagonal components of ΣX (t0) are listed in Table A.1. The initial expected relative

state µX(t0) is prescribed in terms of the geometric parametrization of a closed CW relative

orbit as depicted in Section A.1, and these parameters are listed in Table A.2. In other

words, µX(t0) is given by µT
X(t0) =

[
µT

R(t0), µ
T
Ṙ(t0)

]
, where

µT
R(t0) =

[
Ā0 cos (ᾱ0) −2Ā0 sin (ᾱ0) + ȳoff B̄0 cos

(
β̄0
)]

(A.27)

µT
Ṙ(t0) =

[
−n̄j0Ā0 sin (ᾱ0) −2n̄j0Ā0 cos (ᾱ0) −n̄j0B̄0 sin

(
β̄0
)]

(A.28)

Hence, it follows from Equations A.17, A.18, and A.19 that the expected value of the

distribution follows a closed CW trajectory – even though the covariance matrix may grow

without bound over time.
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Table A.1: Initial relative state covariance parameters

Relative Rel. pos.
Standard deviation at t0 pos. [m] rate [m/s]
Radial direction ([x]H) 10 0.25
Along-track direction ([y]H) 5 0.75
Cross-track direction ([z]H) 0.5 0.05

Table A.2: Initial relative state expectation parameters

Cases Comments
Ā0 B̄0 ȳoff ᾱ0 β̄0 − ᾱ0

[km] [deg]
3D.001 No [z]H motion 1 0 0 0 N/A

3D.002
With [z]H motion ([x]H 1 0.1 0 0 0

and [z]H motion in phase)
3D.c (c ∈ With [z]H motion ([x]H 1 0.1 0

15(c− 3) (ᾱ0 ∈ 90{003, 004, . . . , 026}) and [z]H motion out of phase) {0, 15, . . . , 345})

A.3 Effects of two-body relative orbital dynamics on SFF probabilistic collision risk

indicators

The effects of employing CW relative orbital dynamics as the underlying dynamic model

for SFF scenario simulation in this dissertation are examined as follows. An overview is

provided for the process of adjusting initial relative dynamic state statistics for propagation

in an inertial frame (via relative Keplerian two-body dynamics) instead of the Hill frame

(via CW dynamics). Then, IPC and Pc measures based on Keplerian dynamics are com-

puted as arising from the collision regions described in Section 10.4 (specifically, Table

10.1). Subsequently, IPC/Pc measures based on relative Keplerian orbital dynamics are

compared to those based on CW dynamics. Ensuing results are briefly discussed.

A.3.1 Setting up relative two-body propagation of a prior Hill-frame relative state sample

Let N ∈ N. Let Hj(t) denote the Hill frame (at time t) centered at some agent j whose

inertial trajectory is a circular Keplerian orbit. This Subsection is concerned with an i.i.d.

finite sample
{[

x̂i,j;k(t0)
]
Hj(t0)

}
(k ∈ SN ) of Xi,j(t0). In particular, a deterministic no-
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tation of sample points is employed here (i.e., lowercase; cf. Section 2.3) because the

following methodology may utilize any specific realization of a finite random sample of

Xi,j(t0). Furthermore, since the process is the same for all k ∈ SN ,
[
x̂i,j;k(t0)

]
Hj(t0)

is

referred to as
[
x̂i,j(t0)

]
Hj(t0)

throughout the rest of this Subsection for conciseness.

Let I denote an implicit inertial frame, and let PQWi denote the ith implicit perifo-

cal frame. This Subsection describes how to obtain the ith inertial position and velocity

[̂ri(t0)]I and
[̂̇ri(t0)]I in terms of

[
x̂i,j;k(t0)

]
Hj(t0)

.

Let the initial classical orbital element set describing the I-inertial two-body trajectory

of agent j be given by



aj

ej

incj

Ωj

ωj

Mj(t0)


=



jth semimajor axis

jth eccentricity

jth inclination

jth RAAN

jth argument of periapsis

jth mean anomaly at t0


=



6800 km

0

45°

20°

10°

0°


(A.29)

Note: the classical orbital elements {incj,Ωj, ωj,Mj(t0)} are chosen arbitrarily, whereas

the {aj, ej} elements are chosen for consistency with the simulation cases listed in Section

A.2. Within this scenario, the central planetary mass is Earth; cf. Section A.2. The jth

classical orbital element set is transformed into the jth inertial position and velocity
[
rj
]
I

and
[
ṙj
]
I via the process described in Ref. [185], Ch 2.

The coordinate transformation matrix from frame I to the jth perifocal frame, ΞPQWj ,I ,

is given by[186]

ΞPQWj ,I = A3 (ωj) A1 (incj) A3 (Ωj) (A.30)

whereas the coordinate transformation matrix from the jth perifocal frame to the jth Hill
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frame at t0, ΞHj(t0),PQWj
, is given by[5]

ΞHj(t0),PQWj
= A3 (θj(t0)) (A.31)

where θj(t0) is the jth true anomaly at time t0; this value is obtained by transforming

the outcome of solving Kepler’s equation (see Ref. [185], Ch. 4). Then, the coordinate

transformation matrix from frame I to the jth Hill frame at t0, ΞHj(t0),I , is given by

ΞHj(t0),I = ΞHj(t0),PQWj
ΞPQWj ,I = A3 (ωj + θj(t0)) A1 (incj) A3 (Ωj) (A.32)

Therefore, the ith I-inertial position at time t0, [̂ri(t0)]I , is given by

[̂ri(t0)]I =
[
rj(t0)

]
I +

[
ΞHj(t0),I

]T [r̂i,j(t0)]Hj(t0)
(A.33)

and, based on the transport theorem for R3-vector time derivatives in rotating frames, the

ith I-inertial velocity,
[̂̇ri(t0)]I , is given by

[̂̇ri(t0)]I =
[
ṙj(t0)

]
I +

[
ΞHj(t0),I

]T [̂̇ri,j(t0)]
Hj(t0)

+
(
θ̇j(t0)

) [
ΞHj(t0),I

]T

0 −1 0

1 0 0

0 0 0

 [r̂i,j(t0)]Hj(t0)
(A.34)

where the jth true anomaly time derivative, θ̇j(t0), may be computed as

θ̇j(t0) =

∥∥[rj(t0)]I × [ṙj(t0)]I∥∥2∥∥[rj(t0)]I∥∥22 (A.35)

Note: for ej = 0, θ̇j(t0) is equal to the jth mean motion, nj .

Once [̂ri(t0)]I and
[̂̇ri(t0)]I are obtained, they are mapped into the ith classical orbital
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element set at time t0 (i.e.,
{
âi, êi, înci, Ω̂i, ω̂i, M̂i(t0)

}
) via the process described in Ref.

[185], Ch 2. Finally, by solving Kepler’s problem and by mapping propagated classical

orbital elements back into inertial Cartesian elements, the ith and jth inertial positions at

time t ([̂ri(t)]I and
[
rj(t)

]
I , respectively) are obtained.

Consequently, instantaneous a-norm collision events in R3 are defined whenever the ith

position relative to agent j meets the condition

∥∥ΞA(t),I
(
[̂ri(t)]I −

[
rj(t)

]
I

)∥∥
a
< li,j(t) (A.36)

where A(t) describes the orthonormal coordinate basis of R3 at time t under which the

instantaneous relative position is implicitly expressed in for the purposes of a-norm com-

putation. For consistency of the comparison of the effects of two-body relative orbital

dynamics on probabilistic SFF collision risk indicators with respect to previous CW-based

indicators, the A(t) frame should be set to Hj(t); cf. Section 10.4, where computational

results are computed assuming the instantaneous relative position is always expressed in

chief agent-centered Hill-frame coordinates. Note: for Euclidean norm-based collision

events (i.e., where a = 2, or Eu), the rotation-invariant nature of the Euclidean norm ren-

ders the definition of the instantaneous a-norm collision event independent of the choice of

A(t), e.g., the same deterministic collision condition on the ith particle is obtained whether

A(t) = I or A(t) = Hj(t).

A.3.2 Probabilistic SFF collision risk indicators based on two-body relative orbital dynamics:

simulation results

Probabilistic SFF collision risk indicators based on two-body propagation of relative orbital

dynamic motion are computed in MATLAB R2020b for Examples 3D.001-026, specifi-

cally, for IPC/Pc measures based on the Euclidean lower and upper bounds to the cylin-

drical orthogonal collision region (COCR) used in Section 10.4 – i.e., for collision regions
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defined by origin-centered Euclidean balls in relative position space whose radii are set to

joint HBR values that are scaled by factors of 1 and
√
3/2 (cf. Table 10.1) of the original

joint HBR of 32m employed throughout this dissertation. (For further information on this

joint HBR choice, see Subsections 6.5.1, 8.2.4, 9.5.1, 10.4.1.)

Such results are summarized in Fig. A.2, which shows the relative change of the max-

imum Pc value based on relative two-body motion (over the propagation horizon) with

respect to the maximum Pc value based on CW motion. In particular, changing the rel-

ative orbital dynamic model from CW dynamics to relative two-body dynamics results in

changes to the maximum Pc value of 1.21% at most throughout all simulation cases con-

sidered.

Figure A.2: Relative change of maximum Pc based on two-body relative orbital dynamics
with respect to maximum Pc based on CW dynamics (Euclidean norm-based relative po-
sition space collision regions).

The close agreement observed between CW-based and two-body-based maximum Pc

values suggests that, from an IPC/Pc measure perspective, CW dynamics are an accu-

rate representation of true SFF relative motion for the duration of the current propagation
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horizon. Although this notion is validated by close agreement between CW-based and two-

body-based IPC/Pc time-histories, as illustrated in Figure A.3 for Example 3D.012 (similar

behavior is observed for all simulation cases), performing precise waveform analysis in or-

der to confirm these qualitative insights is beyond the scope of this dissertation. Similarly,

although similar agreement is expected for IPC/Pc arising from collision regions defined

via balls (in relative position space) with respect to the L∞/box and cylindrical orthogonal

norms, such computations are beyond the scope of this work.

Figure A.3: Comparison of IPC and Pc waveforms, two-body- and CW-based dynamics,
Euclidean-norm-based collision regions, Example 3D.012.
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APPENDIX B

MONTE CARLO STOCHASTIC CONVERGENCE PROPERTIES

B.1 Monte Carlo sample estimators of mean and covariance

Let X be a finite-dimensional random variable in Rs, where s ∈ N. Let µ ∈ Rs and

Σ ∈ Rs×s be constants such that

µ = E [X] (B.1)

Σ = Cov (X) = E
[
(X − E [X]) (X − E [X])T

]
= E

[
(X − µ) (X − µ)T

]
(B.2)

Hence, µ and Σ are the mean and covariance of X . By definition, Σ ≥ 0, i.e., Σ is a

symmetric, positive semi-definite matrix.[64]

Take n ∈ N. Let Sn = {1, . . . , n}. Let {Xk}k∈Sn
be a finite collection of random

variables that are mutually independent and have identical distribution (denoted as i.i.d.) as

X . Let the sample mean of X , µ̂, and the sample covariance of X , Σ̂, be defined as

µ̂ =
1

n

n∑
k=1

Xk (B.3)

Σ̂ =
1

n− 1

n∑
k=1

(Xk − µ̂) (Xk − µ̂)
T (B.4)

For a finite sequence of i.i.d. random variables, it is a known fact that the sample mean and

covariance are unbiased estimators for the actual mean and covariance; that is,

E [µ̂] = µ (B.5)

E
[
Σ̂
]
= Σ (B.6)
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B.2 Monte Carlo errors in sample mean and covariance

Let ∥·∥2 and ∥·∥F denote the Euclidean vector norm and the Frobenius matrix norm, re-

spectively. (See Section 2.3.) Let the µ̂-error and Σ̂-error be defined as

µ̂−error = ∥µ̂− µ∥2 (B.7)

Σ̂−error =
∥∥∥Σ̂− Σ

∥∥∥
F

(B.8)

Although µ and Σ are constants, µ̂ and Σ̂ are typically not, so the µ̂-error and Σ̂-error

cannot be quantified precisely under this framework. However, it is possible to examine

statistical properties of these errors, specifically, via moments of the distribution of these

errors.

The µ̂-mean error (µ̂-ME) and Σ̂-mean error (Σ̂-ME) are defined as

µ̂−ME = E [∥µ̂− µ∥2] (B.9)

Σ̂−ME = E
[∥∥∥Σ̂− Σ

∥∥∥
F

]
(B.10)

Similarly, the µ̂-mean square error (µ̂-MSE) and Σ̂-mean square error (Σ̂-MSE) are defined

as

µ̂−MSE = E
[
∥µ̂− µ∥22

]
(B.11)

Σ̂−MSE = E
[∥∥∥Σ̂− Σ

∥∥∥2
F

]
(B.12)

Finally, the µ̂-root mean square error (µ̂-RMSE) and Σ̂-root mean square error (Σ̂-RMSE)
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are defined as

µ̂−RMSE =
√

E
[
∥µ̂− µ∥22

]
=
√
µ̂−MSE (B.13)

Σ̂−RMSE =

√
E
[∥∥∥Σ̂− Σ

∥∥∥2
F

]
=

√
Σ̂−MSE (B.14)

Since the RMSE is the square root of the MSE, convergence in the RMSE sense and the

MSE sense are addressed interchangeably. It must also be noted that, although the defi-

nition of these errors is motivated by the Monte Carlo sample mean and covariance esti-

mators, these error definitions hold for mean and covariance estimators for any sampling

method.

B.3 Expressions for Monte Carlo mean-square error (MSE) in sample mean

The µ̂-error can be expressed as

∥µ̂− µ∥2 =
√
(µ̂− µ)T (µ̂− µ)

=

√
trace

(
(µ̂− µ)T (µ̂− µ)

) (B.15)

since the original expression inside the square root is a scalar. By trace properties, it follows

that

∥µ̂− µ∥2 =
√
trace

(
(µ̂− µ) (µ̂− µ)T

)
(B.16)

Because of the linearity of both the trace and expectation operators, it follows that the

µ̂-MSE can be expressed as

µ̂−MSE = E
[
∥µ̂− µ∥22

]
= E

[
trace

(
(µ̂− µ) (µ̂− µ)T

)]
= trace

(
E
[
(µ̂− µ) (µ̂− µ)T

]) (B.17)
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In a Monte Carlo sampling framework, it can be shown that

E
[
(µ̂− µ) (µ̂− µ)T

]
=

1

n
Σ (B.18)

Therefore, via trace properties, the Monte Carlo µ̂-MSE can be expressed as

µ̂−MSE = E
[
∥µ̂− µ∥22

]
=

1

n
trace (Σ) (B.19)

From Eq. B.19, a limiting expression for the rate of convergence of µ̂ to µ in the MSE

sense may be obtained, namely,

lim
n→∞

n (µ̂−MSE) = lim
n→∞

n
(
E
[
∥µ̂− µ∥22

])
= trace (Σ) = constant (B.20)

In other words, asymptotically, the Monte Carlo µ̂-MSE may be modeled as being de-

scribed by a power function fit of the form

(µ̂−MSE) (n) = (Cµ)n
−u (B.21)

where Cµ = trace (Σ) and u = 1.

B.4 Expressions for Monte Carlo mean-square error (MSE) in sample covariance

By definition, the Σ̂-error can be expressed as

∥∥∥Σ̂− Σ
∥∥∥
F
=

√
trace

((
Σ̂− Σ

)(
Σ̂− Σ

)T)
(B.22)
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Because of the linearity of both the trace and expectation operators, it follows that the

Σ̂-MSE can be expressed as

Σ̂−MSE = E
[∥∥∥Σ̂− Σ

∥∥∥2
F

]
= E

[
trace

((
Σ̂− Σ

)(
Σ̂− Σ

)T)]
= trace

(
E
[(

Σ̂− Σ
)(

Σ̂− Σ
)T]) (B.23)

Employing the expression Eq. B.23, the definition of the sample mean and covariance

estimators in Eqns. B.3 and B.4, and the i.i.d. property of the elements in the sample, it

can be shown that the Σ̂-MSE in the Monte Carlo framework is given by

Σ̂−MSE = E
[∥∥∥Σ̂− Σ

∥∥∥2
F

]
=

1

n
trace (∆n) (B.24)

where the matrix ∆n ∈ Rs×s is given by

∆n = E
[
XXTXXT

]
− 4 · E

[
XXTX

]
µT + 4 · ΣµµT

+
1

n− 1

[
trace

(
Σ + µµT

)] (
Σ + µµT

)
+

2(n− 2)

n− 1

[
trace

(
µµT

)] (
Σ + µµT

)
+

n

n− 1
µµTµµT − n− 2

n− 1
ΣΣ (B.25)

The expression in Eq. B.25 is given without proof. However, it may be verified through

inspection that, when X is one-dimensional, and by denoting X as X , µ as µ, and Σ as σ2,

that

∆n = E
[
(X − µ)4

]
− (n− 3)

(n− 1)
σ4 (B.26)

and therefore, the expression for the Σ̂-MSE (for this unidimensional case) coincides with

the variance of the sample variance of X , which is given by[187]

Var(σ̂2) =
1

n

(
E
[
(X − µ)4

]
− (n− 3)

(n− 1)
σ4

)
=

1

n
∆n (B.27)
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From Eq. B.24, a limiting expression for the rate of convergence of Σ̂ to Σ in the MSE

sense may be obtained, namely,

lim
n→∞

n
(
Σ̂−MSE

)
= lim

n→∞
n

(
E
[∥∥∥Σ̂− Σ

∥∥∥2
F

])
= trace (∆) = constant (B.28)

where ∆ ∈ Rs×s is given by

∆ = lim
n→∞

∆n

= E
[
XXTXXT

]
− 4 · E

[
XXTX

]
µT + 4 · ΣµµT + 2 ·

[
trace

(
µµT

)] (
Σ + µµT

)
+ µµTµµT − ΣΣ (B.29)

In other words, asymptotically, the Monte Carlo Σ̂-MSE may be modeled as being de-

scribed by a power function fit of the form

(
Σ̂−MSE

)
(n) = (CΣ)n

−u (B.30)

where CΣ = trace (∆) and u = 1.

B.5 Why study in Monte Carlo convergence in the RMSE sense

Theorem 57 (Jensen’s inequality[85] ). Let Y be a random variable with p (a < Y < b)

for −∞ ≤ a < b ≤ ∞. Let the function ϕ : (a, b)→ R be convex on (a, b). Then,

E [ϕ (Y )] ≥ ϕ (E [Y ]) (B.31)

provided E [|Y |] <∞ and E [|ϕ (Y )|] <∞. Furthermore, if ϕ is a strictly convex function,

then the inequality in Eq. B.31 is strict unless Y is a constant almost surely (a.s.). (Note:

for any random variable, a property holds a.s. if it holds with probability 1, i.e., if it holds

everywhere except maybe within a set of zero probability. The a.s. notion is analogous
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to the a.e. notion, i.e., properties that hold everywhere except maybe within a set of zero

measure.) ♢

This dissertation only considers random variables that are not a.s. constants and that do

not have infinite absolute moments. Letting Y = ∥µ̂− µ∥2, and letting ϕ : R→ R satisfy

ϕ(x) = x2 (B.32)

for x ∈ R. Hence, ϕ is strictly convex in R; thus, Jensen’s inequality implies that

(µ̂−ME)2 = (E [∥µ̂− µ∥2])
2 < E

[
∥µ̂− µ∥22

]
= µ̂−MSE <∞ (B.33)

Similarly, letting Y =
∥∥∥Σ̂− Σ

∥∥∥
F

, Jensen’s inequality implies that

(
Σ̂−ME

)2
=
(
E
[∥∥∥Σ̂− Σ

∥∥∥
F

])2
< E

[∥∥∥Σ̂− Σ
∥∥∥2
F

]
= Σ̂−MSE <∞ (B.34)

Therefore, the previously obtained expressions for the precise Monte Carlo convergence

rate in the MSE sense cannot be used to obtain a similarly precise rate of convergence in

the ME sense. It should be noted, however, that Eqns. B.33 and B.34 do imply that

lim
n→∞

n (µ̂−ME)2 ≤ lim
n→∞

n (µ̂−MSE) = tr(Σ) (B.35)

lim
n→∞

n
(
Σ̂−ME

)2
≤ lim

n→∞
n
(
Σ̂−MSE

)
= tr(∆) (B.36)

which shows that µ̂−ME = O(n−1/2) and Σ̂−ME = O(n−1/2), i.e., that the convergence

rates for the sample mean and covariance in the ME sense are no worse than decrease at a

n−1/2 rate.

For an arbitrary real-valued measurable function ϕ with real domain, Jensen’s gap is
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defined as

J (ϕ, Y ) = E [ϕ (Y )]− ϕ (E [Y ]) (B.37)

Typically, ascertaining the value of J (ϕ, Y ) is just as difficult as establishing the value of

ϕ (E [Y ]) itself; hence, research related to Jensen’s gap focuses on finding upper and lower

bounds for it, and such bounds are dependent on the specific distribution of Y .[188]

Since the precise Monte Carlo convergence rate in the MSE sense is not distribution-

dependent, it is ideal to use this MSE convergence rate as a theoretical benchmark against

which the statistical convergence properties of other sampling methods may be compared.

B.6 Probability measure estimators in the Monte Carlo sense

Let E ⊆ Rs be a measurable subset of Rs. Let fE : Rs → {0, 1} satisfy

fE(x) =


1 if x ∈ E

0 otherwise
(B.38)

for x ∈ Rs. Hence, fE is the characteristic function of E. Let BE = fE (X). Then, BE is

a Bernoulli random variable, and pmfBE
: R→ [0, 1] satisfies

pmfBE
(b) =


pE if b = 1

1− pE if b = 0

0 otherwise

(B.39)

where pE ∈ [0, 1] is defined as

pE = pX (E) = p (X ∈ E) (B.40)
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It should be noted that

E [BE] = pE (B.41)

Var (BE) = pE (1− pE) (B.42)

For an i.i.d. sample ofX , {Xk}k∈Sn
, the i.i.d. property is retained under transformations of

elements in the collection. Hence, {fE (Xk)}k∈Sn
is an i.i.d. sample ofBE . Therefore, MC

estimators of the mean and variance of BE are the same as listed in Subsubsection B.1, and

error definitions (that is, ME, MSE, and RMSE) for MC estimators are the same as listed in

Subsubsection B.2. The expressions for the µ̂-MSE and Σ̂-MSE rate of convergence may

be further simplified as given by

(µ̂−MSE) (n) = [pE (1− pE)]n−u (B.43)(
Σ̂−MSE

)
(n) =

[
pE
(
1− 5pE + 8p2E − 4p3E

)]
n−u (B.44)

where a = 1, as before. As implied by Eq. B.42, if pE ∈ {0, 1}, then BE = 0 or 1 a.s.,

which would imply, in this case, that

µ̂−ME = µ̂−MSE = µ̂−RMSE = 0 (B.45)

Σ̂−ME = Σ̂−MSE = Σ̂−RMSE = 0 (B.46)

B.7 Monte Carlo estimators for the instantaneous probability of collision (IPC)

Let X and R denote random vectors in R3 and R6, respectively, that represent the CW

relative position and the CW relative state, respectively. Let {Rk}k∈Sn
and {Xk}k∈Sn

be

collections of random vectors that are i.i.d. as R and X, respectively. Let EC,R ⊆ R3 and
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EC,X ⊆ R6 be the sets defined as

EC,R = B3|Eu
li,j

(
03×1

)
=
{
x ∈ R3 : ∥x∥2 < li,j

}
(B.47)

EC,X =

{
x ∈ R6 :

∥∥∥∥[I3 03×3

]
x

∥∥∥∥
2

< li,j

}
(B.48)

Then, the MC sample estimators of the IPC based on R and X, ÎPCR and ÎPCX, respec-

tively, are given by

ÎPCR =
1

n

n∑
k=1

fEC,R (Rk) (B.49)

ÎPCX =
1

n

n∑
k=1

fEC,X (Xk) (B.50)

where fEC,R : R3 → {0, 1} and fEC,X : R6 → {0, 1} are the characteristic functions ofEC,R

and EC,X, respectively. It can be verified that both ÎPCR and ÎPCX are unbiased estimators

for the IPC; that is,

E
[
ÎPCR

]
= E

[
ÎPCX

]
= IPC (B.51)
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APPENDIX C

MONTE CARLO STOCHASTIC LARGE SAMPLE MANAGEMENT

C.1 Introduction

This Chapter describes the computational aspects of Monte Carlo simulation as imple-

mented in this dissertation for the purpose of estimating SFF distance, probabilistic, and

hybrid collision risk indicators. Monte Carlo sample size requirements are explored with

the goal of adequately reproducing the probability of low-likelihood events. Second, given

that large sample sizes are employed, a technique for partitioning and parallelizing the

propagation and processing of such samples is presented.

C.2 Notation adjustments for this Chapter

Throughout this Chapter, unless otherwise noted, SFF collision risk indicators, whether in-

stantaneous or joint-time, are based on underlying collision conditions in relative position

space expressed in terms of the violation of minimum norm conditions with respect to the

Euclidean norm only, specifically, with respect to time-invariant joint-hard body radii li,j

(cf. Subsections 6.2.1, 8.2.1, and 9.2.1, and Section 7.2). While the i, j subscripts are omit-

ted from the notation of relative state and relative position vectors (whether deterministic

or random), it is implied that such vectors are i, j-relative in the sense of Section 2.2. Ad-

ditionally, agent subscripts are omitted from the CW relative state transition matrix, which

is listed in Eq. A.2.

C.3 Monte Carlo (MC) sample requirements

The goal of Conjecture 58 is to introduce and justify a practical requirement for Monte

Carlo sample size as a function of the probabilistic threshold of event significance.
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Note: Conjecture 58 is not rigorously proven; therefore, it is only motivated. Nonethe-

less, application of Conjecture 58 has been resulted in sufficiently large MC samples for

the purposes of this work.

Conjecture 58. Suppose that a Monte Carlo (MC) sample is made of a non-degenerate

multivariate normal distribution. Suppose that events with a probability of preq or lower

can be ignored. Then, it is expected that significant events (i.e., events with probability

greater or equal to than preq) can be captured with a sample size NMC that satisfies

NMC ≥ 30

⌈
1

preq

⌉
(C.1)

Motivation. This conjecture has the following working assumptions:

1. Any particle in the empirical MC distribution is equally likely to be drawn. For

further backgroung on empirical distributions, the reader is encouraged to consult

Ref. [73], Ch. 8. Note: since elements of an MC sample are i.i.d., this assumption is

justified.

2. The empirical MC distribution represents the underlying distributions adequately;

that is, the empirical MC distribution is multivariate non-degenerate normal in initial

relative state space (cf. Eq. A.20), and χ2
s on the space of the Mahalanobis distance

of the initial relative state (cf. Eqns. 6.9 and 6.13), where s denotes the dimension

of elements in the sample. Note: this assumption holds when averaging over all

possible MC samples of fixed size. However, this might not be (and is generally not)

true for a specific fixed-size Monte Carlo sample realization.

3. At least one more significant digit for the probability resolution of single particle

events is needed beyond the probabilistic significance requirement. This assumption

is made in order to ensure that any events that are insignificant can be disregarded

correctly. For example, if preq = 1× 10−7, then any events with probability between
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5 × 10−8 and 15 × 10−8 would satisfy such a criterion, even though some events

would be significant and others would not.

First, this analysis begins by obtaining a worst case estimate of the most extreme events

that would need to be captured by a MC sample, as measured by the Mahalanobis distance

(MHD). This analysis employs the notion of sample leftover particles, denoted byNLeftover,

which are the particles in MC sample that can be expected to have an MHD value beyond

some d in (0,∞). The number of sample leftover particles can be computed as

NLeftover (Nsample, d) =
⌊
Nsample

(
1− cdfχ2

s

(
d2
))⌉

(C.2)

The notion of sample leftover particles is illustrated in Fig. C.1. In accordance with

intuition, more extreme cases (as measured by MHD) can be found in MC samples with

larger sample sizes.

Figure C.1: Notion of sample leftover points,NLeftover (see Eq. C.2) for multivariate normal
distributions (in six dimensions): (top) NLeftover, d ∈ [0, 8.5]; (middle) NLeftover, closeup;
(bottom) probability of sample points at MHD greater than or equal to d.

Additionally, it is clear that the most extreme expected event in a MC sample (i.e., the

event that occurs before a MC sample can no longer be expected to describe any events)
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occurs at NLeftover = 1, which implies that

Nsample

(
1− cdfχ2

s

(
d2
))
∈ [0.5, 1.5] (C.3)

which, in turn, implies that d ∈ [dLB, dUB], where dLB and dUB satisfy

cdfχ2
s

(
d2LB
)
= 1− 1.5

Nsample

(C.4)

cdfχ2
s

(
d2UB

)
= 1− 0.5

Nsample

(C.5)

Given that elements of an MC sample are i.i.d., all elements of the sample are equally likely

to have been drawn. Hence, the probability of the most extreme event in an MC sample

(i.e., the sample point with largest MHD value) is the same as that of any other element of

the sample. Thus, a naı̈ve estimate of Nsample, Nnaı̈ve
sample, would be

Nnaı̈ve
sample =

⌈
1

preq

⌉
(C.6)

However, because another significant digit of resolution is needed beyond the preq require-

ment (cf. Assumption 3), a better first estimate of the sample size, N−
sample, is defined as

N−
sample = 10

⌈
1

preq

⌉
(C.7)

Hence, the worst-case MHD requirement (i.e., the MHD of the most extreme event that

must be included in the MC sample) is d−UB, which is implicitly defined by

cdfχ2
s

((
d−UB

)2)
= 1− 0.5

N−
sample

(C.8)

Let d+ denote the largest MHD value that an MC sample is able to provide; i.e., d+ is the
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largest MHD of any point in an MC sample. Then, d+ must be at least as large as d−UB, i.e.,

d+ ≥ d−UB (C.9)

Therefore, because of rounding (cf. Eqns. C.2 and C.3), the minimum value of d+ that an

MC sample is able to provide is given by d+ = d+LB, which satisfies

cdfχ2
s

((
d+LB
)2)

= 1− 1.5

N+
sample

(C.10)

Thus,

cdfχ2
s

((
d+
)2) ≥ cdfχ2

n

((
d+LB
)2)

= 1− 1.5

N+
sample

≥ 1− 0.5

N−
sample

(C.11)

which in turn implies that

N+
sample ≥ 3N−

sample = 30

⌈
1

preq

⌉
(C.12)

At this stage, suppose that the sample size, NMC, satisfies

NMC ≥ N+
sample ≥ 30

⌈
1

preq

⌉
(C.13)

As shown previously (cf. Eqns. C.4 and C.5), under the current assumptions,

dMC ∈
[
dMC
LB , d

MC
UB

]
(C.14)

where dMC
LB and dMC

UB satisfy

cdfχ2
s

((
dMC
LB

)2)
= 1− 1.5

NMC

(C.15)

cdfχ2
s

((
dMC
UB

)2)
= 1− 0.5

NMC

(C.16)
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Thus, it is expected that

dMC ≥ dMC
LB ≥ d+LB ≥ d−UB ≥ d− (C.17)

which shows that, in a probabilistic sense, the MC sample is able to capture as many ex-

treme cases as needed. From this statement, it also follows that

cdfχ2
s

((
dMC

)2) ≥ cdfχ2
s

((
dMC
LB

)2) ≥ cdfχ2
s

((
d−UB

)2) ≥ cdfχ2
s

((
d−
)2) (C.18)

Thus, via Eqns. C.7 and C.11, Eq. C.18 implies that

1− 1

NMC

≥ 1− 1.5

NMC

≥ 1− 0.5

N−
sample

≥ 1− 1

N−
sample

= 1− 10

⌈
1

preq

⌉
≥ 1− 10

preq
(C.19)

Let pMC denote the empirical probability of any individual particle in an MC sample

with size NMC. That is, pMC is given by

pMC =
1

NMC

(C.20)

Therefore, it follows that

pMC ≤
1

10
preq (C.21)

as desired. ■

In this dissertation, it is assumed that Conjecture 58 holds. An argument based on

NASA CARA practice,[29] detailed in Subsection 8.4.1, is used to establish that IPC and

Pc values less than 1×10−7 may be regarded as operationally insignificant for the purposes

of this dissertation. Thus, preq = 1 × 10−7, which implies that the MC sample size, NMC,

should satisfy NMC ≥ 3.0 × 108. The sample size NMC is chosen as NMC = 3.2 × 108,

which is sufficiently large according to Conjecture 58.
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C.4 MC sample propagation and data reduction process

The large MC sample size requirement is the main driving factor for the technique imple-

mented for sample generation and data reduction. The MC sample management framework

employed in this dissertation has three broad steps: sample generation, intermediate data

reduction, and aggregation of intermediate results into sample-level results.

par_1

par_(Np‐3)

par_2

par_ip

par_(Np‐2)

par_3

par_(Np‐1)

par_4

par_Np

Worker 4
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Worker 3
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Worker 2

X0.
par_2

X0.
par_ip
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save

X0.par_ip = mvnrnd(mu_0',Sigma_0,N_ip)'

x𝑘 𝑘∈ 1,… ,𝑁𝑖𝑝
: x𝑘  ~𝒩 𝜇 𝑡0 , Σ 𝑡0

 

X0.ip,1

X0.ip,jp

X0.ip,N_ip

Figure C.2: MC sample processing Step 1 (sample generation).

C.4.1 Step 1: MC sample generation

Step 1, MC sample generation, is illustrated in Fig. C.2. For each relative orbital dynamic

case considered (see Section A.2), Monte Carlo samples of the initial relative state are made

in MATLAB R2020b through the mvnrnd function,[127] by employing the Mersenne

Twister pseudo-random number generator. Each element in the sample is a 6 × 1 double

array. Since variables with double precision occupy 8 bytes in memory, 14.3 GiB of mem-

ory are required to store the generated sample; much more memory usage is required to

generate or process the sample. Taking advantage of the fact that the underlying dynamic
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Figure C.3: MC sample processing Steps 2 and 3 (high level logic).

process is linear, time-invariant (LTI), the sample is generated once and stored into sample

partitions (as shown in Fig. C.2), and each partition is loaded and propagated in accordance

with the current timestep. For this specific implementation, it is assumed that each sample

partition has 8× 106 elements, which yields 40 sample partitions. After compression, each

X0 sample partition occupies 347 MiB in disk, with 13.5 GiB disk space for the entire X0

sample.

Even though linear, time-invariant (LTI) dynamics could allow for parallelization of

code execution in sample elements time as well as in time, sample estimation of the joint-

time probability of collision (Pc) indicator does not allow for parallelization in time. In this

framework, the sample Pc estimator at timestep tc is the fraction of sample particles which

have collided at any time between the initial and current timesteps t0 and tc, respectively;

cf. Definition 9. Thus, given that particles at any timestep are dynamically coupled with

themselves at the immediately preceding timestep, sample management execution must be

serial in time.

Nevertheless, time partitions are also implemented in order to be enable sample estimate

of ρ3σ, i.e., the hybrid SFF collision risk indicator defined as Methodology 3. In particular,
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the Euclidean norm of the relative position (i.e., inter-agent Euclidean distances) of every

element in the entire MC sample must be processed together at once in order to compute

sample percentiles. Time partitions are meaningful sets of timesteps within which sample

distances are stored to disk, and after which the required sample percentiles can be com-

puted. Then, sample inter-agent Euclidean distances may be deleted in order to free space

in disk for further saving to disk in the next time partition. Fig. C.3 illustrates how Steps 2

and 3 are called within serial execution in time partitions and timesteps.

C.4.2 Step 2: intermediate data reduction

In Step 2, illustrated in Fig. C.4, after sample generation, X0 sample partitions are pro-

cessed in parallel using the MATLAB Parallel Computing Toolbox, mainly through usage

of parfor (“parallel for”) loops. Through these loops, MATLAB processing engines

called “workers” take advantage of multi-core processors by having such workers execute

individual loop iterations simultaneously.[129] Thus, processing of sample partitions is

done in parallel, with the allocation and monitoring of worker execution being automat-

ically handled in the background. In this specific implementation (i.e., with the specific

processor and MATLAB version utilized), MATLAB is able to task 4 workers through the

Parallel Computing Toolbox.

C.4.2.1 Step 2: conceptual description

For each sample element, the Euclidean norm of the relative position is computed. In-

stantaneous collision indicators are computed by checking whether the Euclidean norm of

relative position exceeds the joint hard-body radius specified, where the outcome of this

check is a Boolean variable. Cumulative collision indicators are computed by applying an

OR operation to both instantaneous collision indicators and the cumulative collision indica-

tors from the previous timestep. (Cumulative collision indicators are initialized as logical

false values, and since they are needed at the next timestep, they are stored to disk,
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Figure C.4: MC sample processing Step 2.

retrieved, and deleted when appropriate.)

The Euclidean norm of the relative position for every particle in the relative state sample

(i.e., the entire sample of the Euclidean norm of the relative position) is stored to disk for

each timestep because, in order to compute sample percentiles, the entire sample (2.25 GiB

per timestep) must be processed at once.

C.4.2.2 Step 2: algorithmic implementation

Let g logi denote the cumulative collision indicator of a particle in the MC sample as

described in Subsubsection C.4.2.1; hence, g logi denotes a time-“global” collision “log-
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ical” or boolean indicator. In Step 2, when a specific partition is tasked to a worker, the

corresponding partition X0 sample and partition cumulative g logi sample are loaded

into the workspace of such worker. Then, each particle in the partition sample is passed

through the Pre-processing #1 subroutine illustrated in Fig. C.5, which consists of the fol-

lowing tasks: relative state propagation, computation of the Euclidean distance from the

particle to the origin, instantaneous determination of collision in the sense of Proposition 6

(denoted by c logi, which encodes a “current” collision “logical” or boolean indicator),

and ongoing determination of collision in the sense of the g logi/Pc indicator. After the

Pre-processing #1 subroutine, the partition g logi sample and the partition inter-agent

Euclidean distance sample are stored to disk.
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Figure C.5: MC sample processing, Step 2, Pre-processing #1 subroutine.

Before Step 2 is finished, two more intermediate processing tasks are needed. First, in

the Pre-processing #2 subroutine, the current and ongoing collision indicators are simply
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aggregated into final tallies, as shown in Fig. C.6. Second, in the Pre-processing #3 sub-

routine, X partition sample moments (mean and covariance) are computed and then slightly

modified in order to more easily compute the moments (mean and covariance) of the over-

all sample, as shown in Fig. C.7. Third, the outcomes of the Pre-processing #2 and #3

subroutines are stored to disk, as illustrated in Fig. C.4.

  

In2.ip

c_logi_kT
𝑖𝑝 ,𝑗𝑝 𝑗𝑝∈ 1,… ,𝑁𝑖𝑝

g_logi_kT
𝑖𝑝 ,𝑗𝑝 𝑗𝑝∈ 1,… ,𝑁𝑖𝑝

c_logi_kT
𝑖𝑝 ,𝑗𝑝

𝑁𝑖𝑝

𝑗𝑝 1
g_logi_kT

𝑖𝑝 ,𝑗𝑝

𝑁𝑖𝑝

𝑗𝑝 1

N_col_instant_kT.ip N_col_cumulative_kT.ip

  

out2.kp

Figure C.6: MC sample processing, Step 2, Pre-processing #2 subroutine.

C.4.3 Step 3: aggregation of final results

Finally, in Step 3, intermediate, partition-level MC sample results are aggregated into over-

all results for SFF collision risk indicators based on MC sample estimates.

C.4.3.1 Step 3: conceptual description

Using the instantaneous and cumulative collision indicators previously stored in Step 2,

sample IPC and Pc estimates are computed as the number of particles colliding (instanta-

neously and cumulatively, respectively) divided by the number of sample particles.

In order to quantify MC sample ρ3σ estimates, the entire inter-agent Euclidean distance

sample (stored to disk in Step 2) is loaded into memory; subsequently, the sample ρ3σ is

estimated as the 100p3σ%-percentile of this sample, as computed through the prctile
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In3.ip

�̌�𝑖𝑝  

Figure C.7: MC sample processing, Step 2, Pre-processing #3 subroutine.

function.[127]

C.4.3.2 Step 3: algorithmic implementation

• Step 3.1: Compute IPC.

– Input: all N col instant kT

Vector of size Np whose entries represent the number of particles within each

sample partition that are colliding at timestep.kT (see Fig. C.3).

– Output: ÎPCi,j(tkT ) (sample IPCi,j at timestep.kT)
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– Process:

ÎPCi,j(tkT ) =
1

NMC

Np∑
ip=1

all N col instant kT.ip (C.22)

• Step 3.2: Compute Pc.

– Input: all N col cumulative kT

Vector of size Np whose entries represent the number of particles within each

sample partition that have collided at any timestep between t0 and timestep.kT.

– Output: P̂ ci,j[t0, tkT ] (sample Pci,j over [t0, tkT ] time interval)

Sample estimate of the i-j joint-time probability of collision over the time in-

terval [t0, tkT ], i.e, the probability that agents i and j have collided at any time

in the time interval [t0, tkT ].

– Process:

P̂ ci,j[t0, tkT ] =
1

NMC

Np∑
ip=1

all N col cumulative kT.ip (C.23)

• Step 3.3: Compute MC sample statistics.

– Input: {µ̌ip}ip∈{1,...,Np} and {∆̌ip}ip∈{1,...,Np}

Collections of MC sample-based X pseudo-mean and pseudo-covariance values,

respectively, taken over each sample partition (see Fig. C.7) at timestep.kT.

– Output: X sample mean µ̂X and sample covariance Σ̂X

– Process:

µ̂X =
1

Np

Np∑
ip=1

µ̌ip (C.24)

Σ̂X = − NMC

NMC − 1
µ̂Xµ̂

T
X +

1

Np

Np∑
ip=1

∆̌ip (C.25)
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• Step 3.4: Compute distance-based SFF collision risk indicators (i.e., Methodologies

1 & 2).

– Input: R sample mean µ̂R and sample covariance Σ̂R, and corresponding MHDs

(dm1 and dm2) at timestep.kT. (Note: µ̂R and Σ̂R are obtained by inspection

from µ̂X and Σ̂X, respectively.)

– Output: ŝepm1

i,j (tkT ) and ŝepm2

i,j (tkT )

– Process: The function dist to Ld R3 refers to the algorithm described in

Section 7.4 for computing the minimum inter-agent Euclidean distance from the

origin of relative position space in R3 to Ld (R), computed using MC sample

statistics of relative position. Thus,

ŝepm1

i,j (tkT ) = dist to Ld R3
(
µ̂R, Σ̂R, dm1

)
(C.26)

ŝepm2

i,j (tkT ) = dist to Ld R3
(
µ̂R, Σ̂R, dm2

)
(C.27)

• Step 3.5: Compute hybrid SFF collision risk indicators (i.e., Methodology 3).

– Input:
{∥∥rq

∥∥
2

}
q∈{1,...,NMC}

(all dist kT)

Euclidean distance from origin of relative position space (i.e., Euclidean norm

of inter-agent relative position) of every particle in the Monte Carlo sample at

timestep.kT.

– Output: ŝepm3

i,j (tkT ) = ρ̂3σ (tkT )

– Process: Thus far, every other substep in Step 3 has been straightforward, given

that the computation of their inputs is embarrassingly parallel, and aggregat-

ing such inputs is trivial. However, computing the output of Methodology 3

(i.e., ρ̂3σ) is nontrivial because of the large size MC sample (of the instanta-

neous inter-agent Euclidean distance) employed, which must be processed in

its entirety at once in order to compute sample quantiles. Hence, the MATLAB
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Parallel Computing Toolbox and the MATLAB Statistics and Machine Learn-

ing Toolbox are employed as follows:[129, 127]

* Virtually loading the inter-agent Euclidean distance sample through a tall

array

* Virtually computing the quantile c as

c = prctile (all dist kT, 1− 0.9973 . . . ) (C.28)

* Calling the gather function to evaluate c as

ŝepm3

i,j (tkT ) = gather(c) (C.29)

Note: this subsubstep loads the inter-agent Euclidean distance sample and

computes the result in parallel in the background.

C.5 Extensions of the current MC sample management framework methodology

One of the advantages of implementing a Monte Carlo sample framework for SFF colli-

sion risk indicator computation is that, for certain indicator types, logical conditions which

signal the violation of collision constraints may be easily modified in response to changes

in the definition of collision constraints.

Specifically, instantaneous and joint-time probabilistic collision risk indicators (such

as the IPC and Pc) and quantile-based collision risk indicators (such as the ρ3σ) may be

customized by updating Step 2, Pre-processing #1 subroutine (illustrated in Fig. C.5) as

follows. First, the a-norm collision event that underlies the definition of these indicators

may be changed from the Euclidean norm (i.e., if a = Eu) to an arbitrary a-norm in

relative position space. This change is undertaken in the computational studies carried out

in Chapter 10.

317



Second, the joint HBR may be allowed to vary over the simulation horizon, subject

to the continuity constraints necessary for a-Pc computability and well-definedness, as

evidenced in Propositions 17 and 18.

Third, the dynamic process through which each sample particle is propagated may be

changed from LTI to arbitrary non-linear dynamics. For example, such a customization is

employed in Section A.3, which examines the effects on probabilistic SFF collision risk

indicators caused by changing the underlying relative orbital dynamic model from CW

dynamics to relative 2-body orbital dynamics.

C.6 Discussion of MC sample methodology application

In particular, the following studies carried out in this dissertation have been enabled by

the Monte Carlo (MC) implementation listed in this Chapter. For these studies, Monte

Carlo samples are generated from non-degenerate normal initial relative state distributions,

whose expectations follow closed, collision-free CW trajectories, in accordance with the

cases described in Section A.2.

First, the analytical MC rate convergence (in the RMSE sense) of sample estimators

of random variable mean and covariance (listed in Eqns. B.21 and B.30 is validated in

Subsection 6.5.2. This result establishes a baseline for MSS convergence rate comparison.

Second, the statement that certain W̃ -projection IPCs are overestimates of true IPCs,

listed in Corollary 35 (cf. Theorem 34), is validated via MC simulation in Subsection 8.4.2.

Third, in Subsection 8.4.4 the ρ3σ collision risk indicator is found to have a relationship

with the IPC and Pc that is consistent with intuition. The ρ3σ indicator, which is the p3σ-

quantile of the distribution of the Euclidean norm of the instantaneous, three-dimensional

relative position between agents in an SFF context (see Subsection 9.3.4), is computed via

MC simulation in accordance with the method described in Subsection 9.4.2.

Fourth, in Subsection 9.5.3, it is concluded that the ρ3σ can be interpreted as a collision

region in three-dimensional relative position space with a specific probabilistic SFF colli-
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sion risk interpretation. This result is enabled by numerically computing the probability

density function of the Euclidean norm of the relative position, as evaluated at a ρ3σ value

estimated via MC simulation.

Finally, COCR-based stochastic SFF collision risk measures are characterized in 10.4.

The theoretical c.o.-IPC and c.o.-Pc inequalities which relate these measures to their Eu-

clidean and box/L∞ upper and lower bound counterparts, as posed in Corollaries 53 and

55 (respectively), are validated via MC simulation in Subsection 10.4.2. Finally, c.o.-Pc

overestimate quantification (as compared to Euclidean and box/L∞ upper and lower bound

counterparts) is enabled by MC simulation in Subsection 10.4.3.

Consequently, the MC simulation methodology laid out in this Chapter has been in-

strumental in this dissertation, having been utilized in every major result presented in this

work.
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APPENDIX D

CLOHESSY-WILTSHIRE (CW) VECTOR AND MATRIX NORM

D.1 Introduction

When assigning magnitude to statistics of R or Ṙ, individually, it is meaningful to employ

Euclidean (or Euclidean-like) norm operators for two reasons. First, such operators are

rotation-invariant in two and three dimensions. Second, each component of a statistic of R

and Ṙ, individually, has the same physical interpretation, whether it might be position (in

[m]) or position rate (in [m/s]). However, when considering statistics of X, assigning mag-

nitude via such a norm, without any normalization, would involve operations (specifically,

sums and products of position and position rate) whose result has no meaningful physical

interpretation. Hence, vector and matrix norms are developed in R6 and R6×6, respectively,

that allow for meaningful assignment of magnitude to statistics of X through a suitable

normalization.

D.2 Clohessy-Wiltshire (CW) vector and matrix norm – definition

Fix t in R. Let X̄(t) denote the expected CW relative state, and assume that X̄(t) is rep-

resentative of a closed CW trajectory in the sense of Section A.1. Then, the expected

amplitude of relative position in the Hill-radial direction, Āt, is given by

Āt =

∥∥∥∥∥
[
[x̄]H (n̄)−1 [¯̇x]H

]T∥∥∥∥∥
2

=

√
[x̄]2H +

[¯̇x]
2
H

n̄2
(D.1)
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If Āt > 0, the matrix Mt in R6×6 is defined as

Mt =

I3 (Āt

)
03×3

03×3 I3
(
n̄Āt

)
 =MT

t (D.2)

The inverse of Mt, M−1
t , may be readily computed as

(Mt)
−1 =

I3 (Āt

)−1 03×3

03×3 I3
(
n̄Āt

)−1

 =
(
MT

t

)−1
(D.3)

For x in R6, the transformation Can : R6 → R6 is given by

Can (x) =
(
M−1

t

)
x (D.4)

can be conceptualized as a transformation between dimensional Hill-frame coordinates

onto a set of non-dimensional, “canonical” Hill-frame coordinates.

Definition 59 (CW vector and matrix norms). Fix t in R. Assume Āt > 0. Then, for x in

R6, the CW vector norm, denoted by ∥·∥CW, is defined as

∥x∥CW =
∥∥(M−1

t

)
x
∥∥
2

(D.5)

Similarly, for P in R6×6, the CW matrix norm, denoted by ∥·∥CW,F , is defined as

∥P∥CW,F =
∥∥∥(M−1

t

)
P
(
MT

t

)−1
∥∥∥
F

♢ (D.6)

Theorem 60 (Norm properties of CW vector and matrix norms). Fix t in R. Let Āt > 0.

Then, ∥·∥CW is a norm in R6. That is, for all x, y in R6 and for all scalars c, the following

properties hold:

1. Nonnegativity: 0 ≤ ∥x∥CW <∞
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2. Homogeneity: ∥c x∥CW = |c| ∥x∥CW

3. The Triangle Inequality: ∥x+ y∥CW ≤ ∥x∥CW + ∥y∥CW

4. Uniqueness: ∥x∥CW = 0 if and only x = 06×1

Similarly, ∥·∥CW,F is a norm in R6×6. That is, for all M , P in R6×6 and for all scalars c,

the following properties hold:

1. Nonnegativity: 0 ≤ ∥M∥CW,F <∞

2. Homogeneity: ∥cM∥CW,F = |c| ∥M∥CW,F

3. The Triangle Inequality: ∥M + P∥CW,F ≤ ∥M∥CW,F + ∥P∥CW,F

4. Uniqueness: ∥M∥CW,F = 0 if and only M = 06×6 ♢

Proof. Omitted.

It must be noted that the CW matrix norm, ∥·∥CW,F , is not a submultiplicative matrix

norm because
(
M−1

t

)
is not an orthogonal matrix (i.e., a matrix whose transpose is equal

to its inverse).

D.3 Clohessy-Wiltshire (CW) vector and matrix norm – deterministic and MSE con-

vergence rates

Since ∥·∥2 and ∥·∥CW are both norms in R6, which is a finite-dimensional space, it follows

that both norms are equivalent.[34] That is, there exist constants C1, C2 > 0 such that for

every x in R6,

C1 ∥x∥2 ≤ ∥x∥CW ≤ C2 ∥x∥2 (D.7)

It is a known fact that equivalent norms determine the same convergence criterion.[34] For

the case of the ∥·∥2 and ∥·∥CW norms in R6, this means that a sequence {xk}k∈N of points
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in R6 converges to a point x in R6 with respect to the ∥·∥2 norm if and only if the sequence

converges to x with respect to the ∥·∥CW norm. That is,

lim
k→∞
∥x− xk∥CW = 0 ⇐⇒ lim

k→∞
∥x− xk∥2 = 0 (D.8)

Similarly, ∥·∥F and ∥·∥CW,F are both matrix norms in R6×6. Since all matrix norms

in finite-dimensional spaces are equivalent, it follows that both of these norms determine

the same convergence criterion. That is, a sequence {Mk}k∈N of matrices in R6×6 and a

constant matrix M in R6×6 satisfy

lim
k→∞
∥M −Mk∥CW,F = 0 ⇐⇒ lim

k→∞
∥M −Mk∥F = 0 (D.9)

Letting µ and Σ denote the covariance of X in R6, it can be shown that the Monte

Carlo µ̂−MSE and Σ̂−MSE asymptotic convergence rates are not affected by employing

the CW vector and matrix norms instead of the regular Euclidean and Frobenius norms.

Specifically, these rates may be modeled as

(µ̂−MSE) (n) =
(
C̃µ

)
n−u (D.10)(

Σ̂−MSE
)
(n) =

(
C̃Σ

)
n−u (D.11)

where u = 1, C̃µ = trace
(
Σ
(
M−1

t

)2), and

C̃Σ = trace
(
∆̃
)

(D.12)

where the matrix ∆̃ ∈ R6×6 satisfies

∆̃ (Mt)
4 = E

[
XXTXXT

]
− 4 · E

[
XXTX

]
µT + 4 · ΣµµT

+ 2 ·
[
trace

(
µµT

(
M−1

t

)2)] (
Σ + µµT

)
(Mt)

2 + µµTµµT − ΣΣ (D.13)
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These expressions arise from the way the CW vector and matrix norms are formulated in

Definition 59 in terms of the Euclidean vector and Frobenius matrix norms (respectively),

and from the Monte Carlo asymptotic rates of mean-square-error convergence for the sam-

ple mean (in terms of the Euclidean vector norm; cf. B.21) and the sample covariance (in

terms of the Frobenius matrix norm; cf. B.30), respectively.

D.4 Discussion on application of the CW vector and matrix norms

In Chapter 6, the CW vector and matrix norms are employed in the assignment of mag-

nitude to first and second order statistics to the uncertain CW relative orbital state vector,

the deterministic version of which has been introduced in Section A.1. The CW state en-

codes relative position and relative position rate information; since these physical quantities

are dimensionally inconsistent, the normalization embedded in the CW vector and matrix

norms allows for direct comparison among CW relative state sample points (as well as es-

timates of the CW expected value), and between estimates of CW relative state covariance.

The ability to perform these direct comparisons is leveraged in order to quantify the

stochastic rate of mean-square-error convergence for sample estimators of CW relative

state mean, covariance, and instantaneous probability of collision, with samples based on

the Monte Carlo (MC; see Subsection 6.5.2) and Mahalanobis Shell Sampling (MSS; see

Subsection 6.5.4) methods.
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APPENDIX E

PROOFS RELATED TO FOUNDATIONAL WORK IN SPACECRAFT

FORMATION COLLISION RISK

E.1 Measurability of a-JTC sets

Proposition 61 (Measurability of a-JTC). Let Remark 8 hold. Let li,j : [t0, tf ] → (0,∞).

Let ∥·∥a be any norm in RdR . Assume the function Ft0(t, x) (see Eq. 2.38) is continuous in t

and x. Then, the JTCi,j ([t0, tf ]; li,j(·), a) set (see Definition 9) is an open set (and hence,

it is a measurable subset of RnX). Consequently, the Pci,j ([t0, tf ]; li,j(·), a) measure is

well-defined.

Assume the joint-HBR time history, li,j : [t0, tf ] → (0,∞), is continuous. Then, the

JTCi,j ([t0, tf ]; li,j(·), a) set can be computed as a countable union of sets; specifically, as

given by

JTCi,j ([t0, tf ]; li,j(·), a) = J̃TCi,j ([t0, tf ]; li,j(·), a) (E.1)

Consequently, under these assumptions, the a-Pc and the countable a-Pc are equivalent;

that is,

Pci,j ([t0, tf ]; li,j(·), a) = P̃ ci,j ([t0, tf ]; li,j(·), a) ♢ (E.2)

Proof. Fix t ∈ [t0, tf ], and let ∥·∥a denote any norm in RdR . Since the Vi,j (t; li,j(t), a) set

is an open ball with respect to ∥·∥a – specifically, as given by

Vi,j (t; li,j(t), a) = BdR|a
li,j(t)

(
0dR×1

)
(E.3)

it follows that Vi,j (t; li,j(t), a) set is an open set in RdR .[66]

Let gP : RnX → RdR be a continuous surjection (i.e., gP is a continuous and onto func-

tion), as discussed in Subsection 2.5.1. Since gP is continuous, and since Ci,j (t; li,j(t), a)
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is the pre-image of Vi,j (t; li,j(t), a) under gP , i.e.,

Ci,j (t; li,j(t), a) = g−1
P (Vi,j (t; li,j(t), a)) (E.4)

it follows that Ci,j (t; li,j(t), a) is an open set in RnX .[66]

Let Remark 8 hold. Assume the function Ft0(t, x) (see Eq. 2.38) is continuous in t and

x. Then, Ft,t0 : RnX → RnX (see Definition 9) is continuous and invertible. Since Ft,t0 is

continuous, the set [Ft,t0 ]
−1 [Ci,j (t; li,j(t), a)] is also an open set in RnX .

It is a property of topological spaces (i.e., spaces where the notion of set openness is

defined) that an arbitrary (even uncountable) union of open sets is also an open set.[66]

Since the a-JTC set is defined as an uncountable union of open sets in RnX , specifically, as

given by

JTCi,j ([t0, tf ]; li,j(·), a) =
⋃

t∈[t0,tf ]

[Ft,t0 ]
−1 [Ci,j (t; li,j(t), a)] (E.5)

it follows that the a-JTC set is open. Furthermore, since all open sets are Lebesgue mea-

surable,[34], the a-JTC set is a measurable subset in RnX .

The initial relative state Xi,j(t0) is modeled as an absolutely continuous random vari-

able, which implies that the a-Pc measure is a Lebesgue integral – specifically, of the pdf

of Xi,j(t0) over the a-JTC set, as given by

Pci,j ([t0, tf ]; li,j(·), a) =
∫

x∈JTCi,j([t0,tf ]; li,j(·), a)

pdfXi,j(t0)
(x) dx (E.6)

Therefore, the a-Pc measure is well-defined.

This proof will show that the a-JTC and the countable a-JTC sets are equivalent under

the current assumptions, i.e.,

JTCi,j ([t0, tf ]; li,j(·), a) = J̃TCi,j ([t0, tf ]; li,j(·), a) (E.7)

326



Within this proof, let hT be denoted as h; i.e., h : [0, 1]→ [t0, tf ] satisfies

h(c) = t0 + (tf − t0)c (E.8)

for c ∈ [0, 1]. Let the T set be defined as

T .
= {t0 + (tf − t0)c : c ∈ Q ∩ [0, 1]} = h (Q ∩ [0, 1]) (E.9)

Since Q ∩ [0, 1] ⊆ [0, 1], T ⊆ [t0, tf ]. Therefore,

J̃TCi,j ([t0, tf ]; li,j(·), a)

=
⋃
t∈T

[Ft,t0 ]
−1 [Ci,j (t; li,j(t), a)] ⊆

⋃
t∈[t0,tf ]

[Ft,t0 ]
−1 [Ci,j (t; li,j(t), a)]

= JTCi,j ([t0, tf ]; li,j(·), a) (E.10)

The remainder of this proof is concerned with whether the reverse subset relationship

to the one listed in Eq. E.10 also holds; i.e., if the countable a-JTC set is a superset of the

a-JTC set.

Let c ∈ {0, 1} ⊆ Q. Then, h(c) ∈ T . Thus,

[
Fh(c),t0

]−1
[Ci,j (h(c); li,j(h(c)), a)] ⊆ J̃TCi,j ([t0, tf ]; li,j(·), a) (E.11)
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The a-JTC set may be expressed as

JTCi,j ([t0, tf ]; li,j(·), a)

=
([
Fh(0),t0

]−1
[Ci,j (h(0); li,j(h(0)), a)]

)
∪
([
Fh(1),t0

]−1
[Ci,j (h(1); li,j(h(1)), a)]

)
∪

( ⋃
0<c<1

[
Fh(c),t0

]−1
[Ci,j (h(c); li,j(h(c)), a)]

)
(E.12)

Hence, without loss of generality, assume 0 < c < 1.

Let tc = h(c). Take
¯
yc ∈ Ci,j (tc; li,j(tc), a) ⊆ Rs. It will be shown that there exists

some δ > 0 such that:

1. (tc − δ, tc + δ) ⊊ (t0, tf )

2. For all td ∈ (tc − δ, tc + δ),

¯
yd = [Ftd,tc ]

[
¯
yc
]
∈ Ci,j (td; li,j(td), a) (E.13)

3. There exists some d′ ∈ Q ∩ [0, 1] such that, for td′ = h(d′),

¯
yd′ =

[
Ftd′ ,tc

] [
¯
yc
]
∈ Ci,j (td′ ; li,j(td′), a) (E.14)

Furthermore, d′ may be constrained such that td′ ∈ (tc − δ, tc + δ).

Subproof. Let 0 < c < 1. Let tc
.
= h(c). Let Ac

.
= Ci,j (tc; li,j(tc), a).

Let
¯
yc ∈ Ac. Let rc = gP (yc). Let fc : [t0, tf ]→ Rs be defined as

fc(t) = Ftc(t,
¯
yc) (E.15)

for t ∈ [t0, tf ]. From Remark 8, fc is a continuous function. Note: fc(tc) = yc.
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Since Ac is an open set in Rs, there exists some ε > 0 such that

Bs|Eu
ε

(
¯
yc
)
⊆ Ac (E.16)

Take ε′ = 2
3
ε > 0. Then,

Bs|Eu
ε′

(
¯
yc
)
=
{
¯
y′ ∈ Rs :

∥∥
¯
y′ −

¯
yc
∥∥
2
≤ ε′

}
⊆ Bs|Eu

ε

(
¯
yc
)

(E.17)

Let the sets B1, B2, and B3 be defined as

B1 = gP

(
Bs|Eu
ε′

(
¯
yc
))

(E.18)

B2 = gP
(
Bs|Eu
ε

(
¯
yc
))

(E.19)

B3 = gP (Ac) =: Vi,j (tc; li,j(tc), a) (E.20)

Since the following subset relationships hold

Bs|Eu
ε′

(
¯
yc
)
⊆ Bs|Eu

ε

(
¯
yc
)
⊆ Ac (E.21)

and since subset relationships are preserved under direct images, it follows that

B1 ⊆ B2 ⊆ B3 (E.22)

The closed ball Bs|Eu
ε′

(
¯
yc
)

is a closed and bounded set; hence, by the Heine-Borel Theorem,

Bs|Eu
ε′

(
¯
yc
)

is a compact set in RnX .[34] Since gP is a continuous function, and since B1 is

the direct image of a compact set under gP (see Eq. E.18), it follows that B1 is a compact

set in RdR .[34]
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All compact sets are bounded; hence,

Mε′ = sup
r∈B1

(∥r∥a) <∞ (E.23)

All compact sets are closed; in particular, since B1 is compact, there exists some rε′ in B1

such that

∥rε′∥a =Mε′ (E.24)

However, B1 ⊆ B3, which implies that ∥rε′∥a < li,j(tc). Therefore,

Mε′ < li,j(tc) (E.25)

In particular, since rc ∈ B1, ∥rc∥a ≤Mε′; hence,

∥rc∥a ≤Mε′ < li,j(tc) (E.26)

Let ε′′ = 1
3
ε > 0. Since fc is continuous, it follows that there exists some δ1 > 0 such

that, for all td1 ∈ (tc − δ1, tc + δ1),

∥fc(td1)− fc(tc)∥2 < ε′′ (E.27)

Let td1 ∈ (tc − δ1, tc + δ1). Let
¯
yd1 = fc(td1). Let rd1 = gP (

¯
yd1). Note: fc(tc) = yc.

Then, ∥∥
¯
yd1 −

¯
yc
∥∥
2
< ε′′ (E.28)

which implies that

¯
yd1 ∈

{
¯
yd′ ∈ Rs :

∥∥
¯
yd′ −

¯
yc
∥∥
2
< ε′′

}
= Bs|Eu

ε′′

(
¯
yc
)
⊆ Bs|Eu

ε′

(
¯
yc
)
⊆ Bs|Eu

ε′

(
¯
yc
)

(E.29)

330



Therefore, rd1 ∈ B1 (see Eq. E.18). Hence,

∥∥rd1
∥∥
a
≤Mε′ (E.30)

Let ε′′′ > 0 be defined as

ε′′′ =
li,j(tc)−Mε′

2
> 0 (E.31)

Let the joint-HBR time-history li,j : [t0, tf ] → (0,∞) be a continuous function. Then,

there exists some δ2 > 0 such that for all td2 ∈ (tc − δ2, tc + δ2),

|li,j(td2)− li,j(tc)| < ε′′′ (E.32)

Let td2 ∈ (tc − δ2, tc + δ2). Then,

|li,j(td2)− li,j(tc)| < ε′′′ (E.33)

which implies that

li,j(tc)− ε′′′ < li,j(td2) (E.34)

Let δ = min(δ1, δ2) > 0. Let td ∈ (tc − δ, tc + δ). Let yd = fc(td), and let the point rd

in RdR be defined such that

rd = gP
(
¯
yd
)
= gP (fc(td)) (E.35)

Hence, rd satisfies

∥rd∥a ≤Mε′ (E.36)

li,j(tc)− ε′′′ < li,j(td) (E.37)
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Via algebraic manipulation, it can be shown that

Mε′ + ε′′′ = li,j(tc)− ε′′′ (E.38)

Hence,

∥rd∥a ≤Mε′ < Mε′ + ε′′′ = li,j(tc)− ε′′′ < li,j(td) (E.39)

Thus, rd ∈ Vi,j (td; li,j(td), a). Since rd = gP
(
¯
yd
)
, it follows that

¯
yd ∈ Ci,j (td; li,j(td), a) =

Ad.

Therefore, for every
¯
yc ∈ Ac, there exists some δ > 0 such that for every td ∈ (tc −

δ, tc + δ), yd = fc(td) ∈ Ad. Without loss of generality, δ may be restricted such that

(tc − δ, tc + δ) ⊊ (t0, tf ) – for example, by setting δ′ = 1
2
min(δ, tc − t0, tf − tc) > 0.

In particular, since tc < tc + δ, it follows from the properties of real numbers that there

exists some d′ ∈ Q such that

tc − t0
tf − t0

< d′ <
(tc + δ)− t0
tf − t0

(E.40)

which implies that

tc < h(d′) = t0 + (tf − t0)d′ < tc + δ (E.41)

It follows that, for every
¯
yc ∈ Ac, there exists some δ′ > 0 such that:

1. (tc − δ′, tc + δ′) ⊊ (t0, tf )

2. For all td ∈ (tc − δ′, tc + δ′),

¯
yd = fc(td) ∈ Ci,j (td; li,j(td), a) (E.42)

3. There exists some d′ ∈ Q ∩ [0, 1] such that, for td′ = h(d′),

¯
yd′ = fc(td′) ∈ Ci,j (td′ ; li,j(td′), a) (E.43)
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Furthermore, d′ may be constrained such that td′ ∈ (tc − δ′, tc + δ′).

■

Let 0 < c < 1. Let tc = h(c). Take
¯
yc ∈ Ac = Ci,j (tc; li,j(tc), a). Choose d′ ∈ Q ∩ [0, 1]

such that

¯
yd′ =

[
Ftd′ ,tc

] [
¯
yc
]

(E.44)

¯
yd′ ∈ Ad′ = Ci,j (td′ ; li,j(td′), a) (E.45)

where td′ = h(d′).

Let the sets B4, B5 be defined as

B4 =
{
¯
y0 ∈ Rs : [Ftc,t0 ]

(
¯
y0
)
∈ {

¯
yc}
}
= [Ftc,t0 ]

−1 ({
¯
yc}
)

(E.46)

B5 =
{
¯
y0 ∈ Rs :

[
Ftd′ ,t0

] (
¯
y0
)
∈ Ad′

}
=
[
Ftd′ ,t0

]−1
(Ad′) (E.47)

It will be shown that B4 ⊆ B5.

Take
¯
y0 ∈ B4. Then, [Ftc,t0 ]

(
¯
y0
)
=

¯
yc. Additionally,

¯
yd′ =

[
Ftd′ ,tc

] [
¯
yc
]
∈ Ad′ . By

properties of flow functions,[86] it follows that

¯
yd′ =

[
Ftd′ ,tc

] (
[Ftc,t0 ]

(
¯
y0
))

=
[
Ftd′ ,t0

] (
¯
y0
)

(E.48)

which implies that

¯
y0 ∈

[
Ftd′ ,t0

]−1
(Ad′) = B5 (E.49)

Hence, B4 ⊆ B5, which proves that, for every
¯
yc ∈ Ci,j (h(c); li,j(h(c)), a), there exists

some d′ ∈ Q ∩ [0, 1] such that

[
Fh(c),t0

]−1 ({
¯
yc}
)
⊆
[
Fh(d′),t0

]−1
(Ci,j (h(d

′); li,j(h(d
′)), a)) (E.50)
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which implies that

⋃
¯
yc∈Ci,j(h(c); li,j(h(c)), a)

[
Fh(c),t0

]−1 ({
¯
yc}
)

⊆
⋃

d′∈Q∩[0,1]

[
Fh(d′),t0

]−1
[Ci,j (h(d

′); li,j(h(d
′)), a)]

= J̃TCi,j ([t0, tf ]; li,j(·), a) (E.51)

However, by properties of pre-images under unions,[66] it follows that

⋃
¯
yc∈Ci,j(h(c); li,j(h(c)), a)

[
Fh(c),t0

]−1 ({
¯
yc}
)

=
[
Fh(c),t0

]−1

 ⋃
¯
yc∈Ci,j(h(c); li,j(h(c)), a)

{
¯
yc}


=
[
Fh(c),t0

]−1
[Ci,j (h(c); li,j(h(c)), a)] (E.52)

Then,

[
Fh(c),t0

]−1
[Ci,j (h(c); li,j(h(c)), a)] ⊆ J̃TCi,j ([t0, tf ]; li,j(·), a) (E.53)

Since c was assumed to satisfy 0 < c < 1, Eq. E.53 holds for 0 < c < 1. Furthermore,

Eq. E.53 has already been shown to hold for c ∈ {0, 1} (see Eq. E.11). Thus, Eq. E.53

holds for 0 ≤ c ≤ 1, which implies that

JTCi,j ([t0, tf ]; li,j(·), a)

=
⋃

c∈[0,1]

[
Fh(c),t0

]−1
[Ci,j (h(c); li,j(h(c)), a)]

⊆ J̃TCi,j ([t0, tf ]; li,j(·), a) (E.54)
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Therefore, under the current assumptions, the a-JTC and the countable a-JTC sets are

equivalent; that is,

JTCi,j ([t0, tf ]; li,j(·), a) = J̃TCi,j ([t0, tf ]; li,j(·), a) (E.55)

which was to be shown.

E.2 Computability of a-Pc measures

Proposition 62 (Convergence of discrete-timestep a-JTC/a-Pc approximations). Let Re-

mark 8 hold. Let ∥·∥a be any norm in RdR . Assume the function Ft0(t, x) (see Eq. 2.38)

is continuous in t and x. Assume the joint HBR time history, li,j : [t0, tf ] → (0,∞), is

continuous. Let A, DN denote the sets

A = JTCi,j ([t0, tf ]; li,j(·), a) (E.56)

DN = JTCN
i,j ([t0, tf ]; li,j(·), a) (E.57)

for N ∈ N. Let P denote the probability measure associated with Xi,j(t0). Then,

lim
N→∞

P(A \DN) = 0 (E.58)

lim
N→∞

P(DN) = P(A) (E.59)

In terms of the current notation, the preceding equations may be expressed as

lim
N→∞

p
(
Xi,j(t0) ∈ [JTCi,j ([t0, tf ]; li,j(·), a)] \

[
JTCN

i,j ([t0, tf ]; li,j(·), a)
])

= 0

(E.60)

lim
N→∞

PcNi,j ([t0, tf ]; li,j(·), a) = Pci,j ([t0, tf ]; li,j(·), a) ♢ (E.61)

Proof. Let P : L(RnX)→ [0, 1] denote the probability measure associated with Xi,j(t0). In
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other words, for a set E ∈ L(RnX) (i.e., E is Lebesgue measurable in relative state space),

P(E) = p
(
Xi,j(t0) ∈ E

)
(E.62)

Let ∥·∥a be any norm in RdR . Let the set A ⊆ RnX denote the a-JTC set; i.e.,

A = JTCi,j ([t0, tf ]; li,j(·), a) (E.63)

Let c ∈ [0, 1]. Let tc = hT (c). Then, let the set Ac ⊆ RnX be defined as

Ac = [Ftc,t0 ]
−1 [Ci,j (tc; li,j(tc), a)] (E.64)

Hence,

A =
⋃

c∈[0,1]

Ac (E.65)

Consider N ∈ N. Let k ∈ {0, . . . , N}. Then, let the set BN,k ⊆ RnX be defined as

BN,k = Ak/N (E.66)

Let the DN set in RnX be defined as

DN =
N⋃
k=0

BN,k =
N⋃
k=0

Ak/N (E.67)

Under the current assumptions, theA,DN , andAc sets are related to each other as given

by

A =
⋃
N∈N

DN =
⋃

c∈Q∩[0,1]

Ac (E.68)

It should be noted that the finite-timestep a-JTC set and the finite-timestep a-Pc measure
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are a function of the DN set, as given by

JTCN
i,j ([t0, tf ]; li,j(·), a) = DN (E.69)

PcNi,j ([t0, tf ]; li,j(·), a) = p
(
Xi,j(t0) ∈ JTCN

i,j ([t0, tf ]; li,j(·), a)
)
= P(DN) (E.70)

Similarly, the a-Pc measure is defined via A; i.e.,

Pci,j ([t0, tf ]; li,j(·), a) = P(A) (E.71)

Let Remark 8 hold. Assume the function Ft0(t, x) (see Eq. 2.38) is continuous in t and x.

Via Proposition 17, the A, Ac, DN , and BN,k sets are Lebesgue measurable in relative state

space.

Let χA : A→ {0, 1}, χDN
: DN → {0, 1} denote the characteristic functions of the A

and DN sets; that is, for x ∈ RnX ,

χA(x) =


1 if x ∈ A

0 if x /∈ A
(E.72)

χDN
(x) =


1 if x ∈ DN

0 if x /∈ DN

(E.73)

Assume the joint HBR time history, li,j : [t0, tf ] → (0,∞), is continuous. It will be

shown, under the current assumptions, that χA → χDN
pointwise, i.e., for every x ∈ RnX ,

lim
N→∞

χDN
(x) = χA(x) (E.74)

Subproof. Let the preceding notation and assumptions hold.

First, let x /∈ A. Since DN ⊆ A, by properties of set complements,

(A)C ⊆ (DN)
C (E.75)
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Hence, x /∈ DN . Therefore,

χDN
(x) = 0 = χA(x) (E.76)

Since this is true for all N ∈ N, it follows that

lim
N→∞

χDN
(x) = χA(x) = 0 (E.77)

Take x ∈ A. Then, as per Eq. E.65, there exists some c ∈ [0, 1] such that x ∈ Ac. If

c ∈ {0, 1}, then x ∈ DN for all N ∈ N. Hence, in the case that c ∈ {0, 1},

|χA(x)− χDN
(x)| = |1− 1| = 0 (E.78)

which implies that

lim
N→∞

χDN
(x) = χA(x) (E.79)

Hence, without loss of generality, c ∈ (0, 1).

Additionally, in the context of the current subproof, since [0, 1] and [t0, tf ] are related

through a linear mapping, t0 and tf are set to t0 = 0 and tf = 1 without loss of generality.

As per the subproof included in the proof of Proposition 17, there exists some δ > 0

such that, for every d ∈ (c− δ, c+ δ) ⊊ (0, 1)

x ∈ Ad = Ci,j (td; li,j(td), a) (E.80)

for td = hT (d).

The goal is to show that limN→∞ χDN
(x) = χA(x); i.e., that for every ε > 0, there

exists some N ∈ N such that, for all n ≥ N ,

|χDn(x)− χA(x)| < ε (E.81)
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Since x ∈ A, then χA(x) = 1. Hence,

|χDn(x)− 1| < ε (E.82)

Since Eq. E.82 holds for every ε > 0 if χDN
(x)→ χA(x), and since χDN

(x) ∈ {0, 1}, Eq.

E.82 implies that demonstrating Eq. E.81 is equivalent to showing that there exists some

N ∈ N such that, for every n ≥ N , x ∈ Dn, i.e.,

χDn(x) = 1 (E.83)

Eq. E.83 will be demonstrated through an argument by induction; specifically, by show-

ing that there exists some NL1 ∈ N that is large enough to meet the following two criteria:

1. There exists some KL1 ∈ {1, . . . , NL1 − 1} such that

KL1

NL1

∈
(
c− δ

2
, c+

δ

2

)
(E.84)

2. For NL2 = NL1 + 1, there exists some KL2 ∈ {1, . . . , NL2 − 1} such that

KL2

NL2

∈
(
c− δ

2
, c+

δ

2

)
(E.85)

Observe that

0 < c− δ

2
< c+

δ

2
< 1 (E.86)

By properties of real numbers, there exists some d1 ∈ Q such that

0 < c− δ

2
< d1 < c+

δ

2
< 1 (E.87)
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Since d1 ∈ Q, there exists some N1, K1 ∈ N such that

d1 =
K1

N1

(E.88)

However,

0 < d1 =
K1

N1

< 1 (E.89)

which implies that

0 < K1 < N1 (E.90)

Therefore, there exists a N1 ∈ N, K1 ∈ {1, . . . , N1 − 1} such that

K1

N1

∈
(
c− δ

2
, c+

δ

2

)
(E.91)

Let the integer N2 be defined as

N2 =

⌈
8

δ
+ 1

⌉
(E.92)

Then,

N2 ≥
8

δ
+ 1 >

8

δ
(E.93)

which implies that
1

N2

<
δ

8
(E.94)

Observe that d1 satisfies

d1 =
K1

N1

=
K1N2

N1N2

(E.95)

Let the integers NL1 , KL1 be defined as

NL1 = N1N2 (E.96)

KL1 = K1N2 (E.97)
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Since 0 < K1 < N1, it follows that

0 < KL1 = K1N2 < N1N2 = NL1 (E.98)

However N1 > 1; hence,

NL1 = N1N2 > N2 (E.99)

which shows that
1

NL1

<
1

N2

<
δ

8
(E.100)

Note: NL1 ∈ N, KL1 ∈ {1, . . . , NL1 − 1}, and

d1 =
KL1

NL1

∈
(
c− δ

2
, c+

δ

2

)
(E.101)

Let x and x′ be defined as

x =
KL1 + 1

NL1 + 1
(E.102)

x′ =
KL1 − 1

NL1 + 1
(E.103)

Let ∆ and ∆′ be defined as

∆ = x− d1 =
KL1 + 1

NL1 + 1
− KL1

NL1

=
(KL1 + 1)NL1 −KL1(NL1 + 1)

(NL1 + 1)NL1

=
NL1 −KL1

(NL1 + 1)NL1

(E.104)
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∆′ = d1 − x′ =
KL1

NL1

− KL1 − 1

NL1 + 1

=
(NL1 + 1)KL1 − (KL1 − 1)NL1

NL1(NL1 + 1)

=
KL1 +NL1

NL1(NL1 + 1)
(E.105)

1. Case 1: d1 = c

Since NL1 −KL1 > 0, ∆ > 0, which shows that d1 < x.

Note: 0 < NL1 −KL1 < NL1 < NL1 + 1. Therefore,

∆ =
NL1 −KL1

(NL1 + 1)NL1

<
NL1

(NL1 + 1)NL1

=
1

NL1 + 1
<

1

NL1

<
δ

8
(E.106)

However,

c− δ

2
< c = d1 < x = c+∆ < c+

δ

8
< c+

δ

2
(E.107)

Hence,

x =
KL1 + 1

NL1 + 1
∈
(
c− δ

2
, c+

δ

2

)
(E.108)

2. Case 2: d1 < c

Since d1 ∈
(
c− δ

2
, c+ δ

2

)
still, and since ∆ = x− d1 < δ

8
, it follows that

c− δ

2
< d1 < x = d1 +∆ < c+∆ < c+

δ

8
< c+

δ

2
(E.109)

Therefore,

x =
KL1 + 1

NL1 + 1
∈
(
c− δ

2
, c+

δ

2

)
(E.110)

3. Case 3: d1 > c

Since 0 < KL1 < NL1 < KL1 +NL1 < 2NL1 , it follows that

∆′ =
KL1 +NL1

NL1(NL1 + 1)
<

2NL1

NL1(NL1 + 1)
=

2

NL1 + 1
<

2

NL1

<
δ

4
(E.111)
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Therefore,

c− δ

2
< c− δ

4
< c−∆′ < d1 −∆′ = x′ < d1 < c+

δ

2
(E.112)

which implies that

x′ =
KL1 − 1

NL1 + 1
∈
(
c− δ

2
, c+

δ

2

)
(E.113)

By induction, it follows that, for all n ≥ NL1 , there exists some k ∈ {1, . . . , n − 1}

such that

d =
k

n
∈
(
c− δ

2
, c+

δ

2

)
(E.114)

Hence, via Eq. E.80, for td = hT (d),

x ∈ Ci,j (td; li,j(td), a) = Ad = Ak/n = Bk,n ⊆
n⋃

k=0

Bk,n = Dn (E.115)

which implies that χDn(x) = 1. Therefore, via Eq. E.83,

lim
N→∞

χDN
(x) = χA(x) (E.116)

which was to be shown. ■

Fix N ∈ N. Let gN = χDN
. Then, gN → χA pointwise, which implies that gN → χA

pointwise a.e. [with respect to (w.r.t.) P]; i.e., there exists a set Z ⊆ RnX (namely, Z = ∅)

such that

P(Z) = 0 (E.117)

gN(x)→ χA(x) (E.118)

for all x ∈ RnX \ Z.

The gN function has the following properties:
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1. gN is a simple function

This means that the co-domain of gN is a finite set; i.e., gN only has a finite number

of possible values – specifically, values in {0, 1}.

2. gN is non-negative

3. gN is integrable with respect to P

Treating P as an abstract measure with respect to which integration may be per-

formed, it follows that

∫
x∈RnX

|gN(x)| dP(x) =
∫

x∈RnX

gN(x) dP(x)

=

∫
x∈RnX

χDN
(x) dP(x) = P(DN) <∞ (E.119)

Let the function f : RnX → R be defined as

f(x) = 1 (E.120)

for x ∈ RnX . Since |gN | ≤ |f | [that is, for x ∈ RnX , |gN(x)| ≤ |f(x)|], it follows that

|gN | ≤ |f | a.e. (w.r.t. P); that is, there’s a set Z ⊆ RnX (namely Z = ∅) such that

P(Z) = 0 (E.121)

|gN(x)| ≤ |f(x)| (E.122)

for all x ∈ RnX \ Z.

Additionally, f is is integrable (w.r.t. P), i.e.,

∫
x∈RnX

|f(x)| dP(x) =
∫

x∈RnX

dP(x) = P(RnX) = 1 <∞ (E.123)
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Summarizing,

a. For all N ∈ N, |gN | ≤ |f | a.e. (w.r.t. P)

b. f is integrable (w.r.t. P)

c. gN → χA pointwise a.e. (w.r.t. P)

Therefore, by the Lebesgue Dominated Convergence Theorem (DCT),[85] the following

statements hold:

i. χA is an integrable function (w.r.t. P) on the measure space (Rs,L(Rs),P)

Note: this was already known, since P(A) ≤ 1 <∞.

ii. χA, gN satisfy

lim
N→∞

∫
x∈RnX

|χA(x)− gN(x)| dP(x) (E.124)

iii. χA, gN satisfy

lim
N→∞

∫
x∈RnX

gN(x) dP(x) =
∫

x∈RnX

χA(x) dP(x) (E.125)

However,

∫
x∈RnX

gN(x) dP(x) = P(DN) (E.126)

∫
x∈RnX

χA(x) dP(x) = P(A) (E.127)

Therefore, Eq. E.125 implies that

lim
N→∞

P(DN) = P(A) (E.128)

It should be noted that χA − χDN
= χA\DN

, shown as follows:
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1. Case 1: x ∈ DN ⊆ A

First,

χA(x) = χDN
(x) = 1 (E.129)

which implies that

χA(x)− χDN
(x) = 0 (E.130)

Second, sinceA\DN = A∩(DN)
C , the fact that x ∈ DN implies that x /∈ (DN)

C ⊇

A ∩ (DN)
C = A \DN . Therefore,

χA\DN
(x) = 0 (E.131)

2. Case 2: x ∈ A \DN

Since x ∈ A and x /∈ DN ,

χA(x)− χDN
(x) = 1− 0 = 1 = χA\DN

(x) (E.132)

3. Case 3: x ∈ (A)C

Since DN ⊆ A, (A)C ⊆ (DN)
C , it follows that x ∈ (DN)

C , so x ∈ DN . Since

A ⊇ A \DN , it follows that x /∈ A \DN , which implies,

χA(x)− χDN
(x) = 0− 0 = 0 = χA\DN

(x) (E.133)

Hence,

|χA − χDN
| =

∣∣χA\DN

∣∣ = χA\DN
(E.134)

Therefore,

∫
x∈RnX

|χA(x)− χN(x)| dP(x) =
∫

x∈RnX

χA\DN
(x) dP(x) = P(A \DN) (E.135)
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Consequently, Eq. E.124 implies that

lim
N→∞

P(A \DN) = 0 (E.136)

In terms of the original notation, Eqns. E.128 and E.136 equations may be expressed as

lim
N→∞

p
(
Xi,j(t0) ∈ [JTCi,j ([t0, tf ]; li,j(·), a)] \

[
JTCN

i,j ([t0, tf ]; li,j(·), a)
])

= 0

(E.137)

lim
N→∞

PcNi,j ([t0, tf ]; li,j(·), a) = Pci,j ([t0, tf ]; li,j(·), a) (E.138)

which was to be shown.

In summary, this Proposition is a consequence of the continuity of li,j(·) and Ft,t0 , of

Proposition 17, and of the Lebesgue Dominated Convergence Theorem (DCT) (as applied

to integrals with respect to the abstract measure P).[85]
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APPENDIX F

PROOFS OF MAHALANOBIS SHELL SAMPLING (MSS) THEORETICAL

RESULTS

F.1 Preliminaries

Throughout this Chapter, unltess otherwise noted, Lebesgue-measurable and Lebesgue-

integrable functions are simply referred to measurable and integrable functions.

Definition 63 (L1-norm[34]). Let g : Rs → R be a measurable, real-valued function.

Then, the L1-norm of g is defined as

∥g∥L1 =

∫
x∈Rs

|g(x)| dx (F.1)

Note: ∥g∥L1 always exists in the extended-real sense; i.e., ∥g∥L1 ≤ ∞. The statement “g is

integrable” implies that ∥g∥L1 <∞. ♢

Definition 64 (L∞-norm[34]). Let g : Rs → R be a measurable, real-valued function.

Then, the L∞-norm of g is defined as

∥g∥L∞ = esssup
x∈Rs

|g(x)| (F.2)

where the essentially supremum of a measurable function f : Rs → R is given by

esssup
x∈Rs

f(x) = inf{M ∈ [−∞,∞] : f(x) ≤M for a.e. x ∈ Rs} (F.3)

Note: ∥g∥L∞ always exists in the extended-real sense; i.e., ∥g∥L∞ ≤ ∞. The statements

“g is essentially bounded” or (equivalently) “g is bounded a.e.” imply that ∥g∥L∞ < ∞.

♢
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The space denoted by L1(Rs) is the set of integrable, measurable real-valued functions

g : Rs → R. Similarly, the space denoted by L∞(Rs) is the set of essentially bounded,

measurable real-valued functions g : Rs → R. For further background on measurable

functions, as well as on the spaces L1(Rs) and L∞(Rs), the reader is encouraged to consult

Ref. [34], Chaps. 3-4.

It can be shown that D2 is chi-square distributed if and only if D is chi-distributed; i.e.,

D2 ∼ χ2
s ⇐⇒ D ∼ χs (F.4)

F.2 Mahalanobis Shell Sampling (MSS) – Asymptotically Unbiased Theoretical Re-

sults

Lemma 65 (Existence of expected value of real-valued function of non-degenerate normal

random variable). Let µ ∈ Rs, Σ ∈ Rs×s, Σ > 0. Let X ∼ N (µ, Σ). Let g : Rs →

R be a measurable, integrable real-valued function. Then, E [g(X)] exists and is finite.

Additionally, g pdfX is an integrable function. ♢

Proof. The pdf of X is bounded on Rs. In particular,

0 < MX = sup
x∈Rs

pdfX (x) = [(2π)s det(Σ)]−1/2 <∞ (F.5)

Hence, pdfX is essentially bounded on Rs [i.e., pdfX ∈ L∞(Rs)]. By assumption, g ∈

L1(Rs). Therefore, via Ref. [34] (Problem 4.4.21.a), (g pdfX) ∈ L1(Rs). That is,

∥∥g pdfX∥∥L1 =

∫
x∈Rs

∣∣g(x) pdfX (x)
∣∣ dx <∞ (F.6)

Therefore,

I =

∫
x∈Rs

g(x) pdfX (x) dx (F.7)
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exists and is finite. However, whenever E [g(X)] exists, it is given by

E [g(X)] =

∫
x∈Rs

g(x) pdfX (x) dx (F.8)

Therefore, E [g(X)] exists and is finite.

Fact 66 (Relationship between non-degenerate normal, uniform spherical, and chi-square

distributions). Let µ ∈ Rs, Σ ∈ Rs×s, Σ > 0. Let X , Z be random variables in Rs, and let

D be a random variable in [0,∞). Then, the following statements are equivalent:

1. X ∼ N (µ, Σ)

2. X = µ+ Σ1/2 (DZ), D and Z are independent, and

D2 ∼ χ2
s (F.9)

Z ∼ U
(
S(s−1)

)
♢ (F.10)

Proof. See Ref. [189], Theorem 4.1.1.

Lemma 67. Fix N ∈ N. Let l ∈ {1, . . . , N}. Let the Bl interval be defined as

Bl =


[
l − 1

N
,
l

N

)
if l ∈ {1, . . . , N}[

N − 1

N
,
N

N

]
if l = N

(F.11)

Fix v ∈ [0, 1]. Then, there exists some j ∈ {1, . . . , N} such that

v ∈ Bj (F.12)

v /∈
⋃

l∈{1,...,N}
l ̸=j

Bl ♢ (F.13)

Proof. Since v must belong to Bl for some l ∈ {1, . . . , N}, and since the {Bl}l∈{1,...,N}

sets are disjoint, the result follows.
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Proposition 68. Let g : Rs → R be a measurable, integrable real-valued function. Let

dmax > 0. Let µ ∈ Rs, Σ ∈ Rs×s, Σ > 0. Let X ∼ N (µ, Σ). Let the support of g,

supp(g), satisfy supp(g) ⊆ Vdmax (X).

Let
{
x̃l,q
}

, l ∈ SNsh
, q ∈ SNss be an MSS sample drawn in accordance with Algorithm

1, with sample weights {wl,q} and {Wl}. Let the MSS asymptotic estimator of E [g(X)],

µ̂g(X),MSS, be defined as

µ̂g(X),MSS =

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

g
(
x̃l,q
)

(F.14)

Then,

lim
Nsh→∞

E
[
µ̂g(X),MSS

]
= E [g(X)] ♢ (F.15)

Proof. Let g : Rs → R be integrable. Let supp(g) ⊆ Vdmax (X). Since the quantity

I = E [g(X)] satisfies

I =

∫
x∈Rs

g(x) pdfX (x) dx =

∫
x∈Vdmax (X)

g(x) pdfX (x) dx (F.16)

it follows that I exists and is finite (see Lemma 65).

Let γ : Rs → Rs be the invertible function defined by

γ(
¯
y) = µ+ Σ1/2

¯
y (F.17)

for
¯
y ∈ Rs. Let the random variable Y in Rs be defined as Y = γ−1(X). Then, Y ∼

N
(
0s×1, Is

)
.

Throughout the rest of this proof, let z ∈ S(s−1), d ∈ [0,∞).

Let Z and D be random variables defined as

Z =
Y

∥Y ∥2
(F.18)
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D = ∥Y ∥2 (F.19)

Then, via Fact 66, Z and D are independent random variables.

For s = 1, S(s−1) = {±1}; hence, the random variable Z can only take on values

in {±1}. Since Z is a discrete random variable with a finite set of possible values, Z is

an absolutely continuous random variable with respect to the counting measure in S(s−1).

Hence, for s = 1, integrals with respect to the Lebesgue measure in S(s−1) may be replaced

with integrals with respect to the counting measure in S(s−1). Similarly, for s = 1, integrals

with respect to the Lebesgue measure in S(s−1) × [0, dmax] may be replaced by integrals

with respect to the product measure in S(s−1) × [0, dmax] induced by the counting measure

in S(s−1) and the Lebesgue measure in [0, dmax] (referred to as the the “prod” measure for

the rest of this proof). With this abuse of notation in mind, for s = 1, the pdf of Z with

respect to the counting measure in S(s−1) is given by

pdfZ (z) =
1

2
(F.20)

for z ∈ S(s−1). Hence, for s = 1, the pdf of Z with respect to the counting measure in

S(s−1) is a bounded function in S(s−1).

For integers s ≥ 2, the pdf of Z [implicitly, with respect to the Lebesgue measure in

S(s−1)] is given by

pdfZ (z) =
1

Area (S(s−1))
(F.21)

for z ∈ S(s−1), where Area
(
S(s−1)

)
denotes the surface area of S(s−1), which satisfies

0 < Area
(
S(s−1)

)
=

2(π)(s/2)

Γ(s/2)
<∞ (F.22)

where Γ(x) denotes the complete gamma function evaluated at x > 0.[190] Hence,

0 < pdfZ (z) =
1

Area (S(s−1))
<∞ (F.23)
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Thus, for integers s ≥ 2, the pdf of Z with respect to the Lebesgue measure in S(s−1) is a

bounded function in S(s−1).

Therefore, because Z and D are independent, their joint pdf satisfies

pdfZ,D (z, d) = pdfZ (z) pdfD (d) (F.24)

Let h : S(s−1) × [0,∞)→ Rs satisfy

h(z, d) = dz (F.25)

Hence,

E [g(X)] = E [g (γ [Y ])] = E [g (γ [h(Z,D)])] (F.26)

Then,

I =

∫∫
S(s−1)×[0,dmax]

g (γ [h(z, d)]) pdfZ (z) pdfD (d) dz dd (F.27)

Let the function f : S(s−1) × [0, dmax]→ R satisfy

f


z
d


 = g (γ [h(z, d)]) pdfZ (z) pdfD (d) (F.28)

for
[
zT , d

]T ∈ S(s−1) × [0, dmax]. Then, the L1-norm of f , ∥f∥L1 , satisfies

∥f∥L1 =

∫∫
S(s−1)×[0,dmax]

∣∣∣∣∣∣∣f

z
d



∣∣∣∣∣∣∣ dz dd

=

∫∫
S(s−1)×[0,dmax]

∣∣g (γ [h(z, d)]) pdfZ (z) pdfD (d)
∣∣ dz dd

=

∫∫
S(s−1)×[0,dmax]

|g (γ [h(z, d)])| pdfZ (z) pdfD (d) dz dd

= E [|g (γ [h(Z,D)])|] = E [|g (γ [Y ])|] = E [|g (X)|] (F.29)
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Since g pdfX is an integrable function in Rs [i.e., g pdfX ∈ L1(Rs)], Eq. F.29 implies that

∥f∥L1 = E [|g (X)|] =
∫
x∈Rs

|g(x)| pdfX (x) dx

=

∫
x∈Rs

∣∣g(x) pdfX (x)
∣∣ dx =

∥∥g pdfX∥∥L1 <∞ (F.30)

which shows that f is an integrable function in S(s−1) × [0, dmax]. Specifically, for s = 1,

f ∈ prod1
(
S(s−1) × [0, dmax]

)
– that is, f belongs to the set of functions in S(s−1) ×

[0, dmax] that are integrable with respect to the prod measure; for integers s ≥ 2, f ∈

L1
(
S(s−1) × [0, dmax]

)
.

It also follows from Eqns. F.27 and F.28 that

I =

∫∫
S(s−1)×[0,dmax]

f


z
d


 dz dd = E [g(X)] (F.31)

Note: since f is integrable, the integral of f over its domain exists and is finite.

Let l ∈ {0, . . . , Nsh}. Let dl be defined as

dl =
dmax

Nsh

l (F.32)

For l ∈ {1, . . . , Nsh − 1}, let the sets Al and ANsh
be defined as

Al = [dl−1, dl) (F.33)

ANsh
= [d(Nsh−1), dNsh

] (F.34)

Fix l ∈ {1, . . . , Nsh}. Then,

dl − dl−1 =
dmax

Nsh

(F.35)

Let the random variable Ul be uniformly distributed on Al – i.e., Ul ∼ U (Al). There-
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fore,

pdfUl
(d) =


1

dmax/Nsh

d ∈ Al

0 d /∈ Al

(F.36)

Fix q ∈ Nss. From Algorithm 1, it follows that the (l, q)th MSS sample point, x̃l,q,

satisfies

x̃l,q = µ+ ul,q
[
Σ1/2

]
zl,q (F.37)

where ul,q ∼ U (Al), zl,q ∼ U
(
S(s−1)

)
, and where ul,q and zl,q are independent. In other

words, ul,q ∼ U (Ul), zl,q ∼ Z, where Ul and Z are independent. Note: x̃l,q satisfies

x̃l,q = γ[ul,q zl,q] = γ
[
h(zl,q, ul,q)

]
(F.38)

Let INsh
be defined as

INsh
= E

[
µ̂g(X),MSS

]
(F.39)

Then, by linearity of the expectation operator,

INsh
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

E
[
g
(
x̃l,q
)]

=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

E [g (γ [h(Z,Ul)])] =

Nsh∑
l=1

(Wl)E [g (γ [h(Z,Ul)])]

=

Nsh∑
l=1

(Wl)

∫∫
S(s−1)×Al

g (γ [h(z, u)]) pdfZ (z) pdfUl
(u) dz du (F.40)

From Algorithm 1, it follows that

Wl = cdfχs

([
dmax

Nsh

]
l

)
− cdfχs

([
dmax

Nsh

]
(l − 1)

)
(F.41)

355



Let δ = dmax/Nsh. Let the function aNsh
: [0, dmax]→ [0,∞) be defined as

aNsh
(u) =



1

δ
[cdfχs (u+ δ)− cdfχs (u)] if

u

δ
∈ {0, . . . , Nsh − 1}

1

δ
[cdfχs (dmax)− cdfχs (dmax − δ)] if u = dmax

1

δ

[
cdfχs

(
δ
⌈u
δ

⌉)
− cdfχs

(
δ
⌊u
δ

⌋)]
otherwise

(F.42)

Let l ∈ {1, . . . , Nsh−1}. Consider u ∈
[
dmax

Nsh
(l − 1), dmax

Nsh
l
)

. Then, uNsh

dmax
∈ [l−1, l), which

implies that, for such u,

aNsh
(u) =

cdfχs

(
dmax

Nsh
[l]
)
− cdfχs

(
dmax

Nsh
[l − 1]

)
dmax/Nsh

= (Wl) pdfUl
(u) (F.43)

Let l = Nsh. Consider u ∈
[
dmax

Nsh
(l − 1), dmax

Nsh
l
]
. Then, uNsh

dmax
∈ [l−1, l], which implies that,

for such u,

aNsh
(u) =

cdfχs

(
dmax

Nsh
[l]
)
− cdfχs

(
dmax

Nsh
[l − 1]

)
dmax/Nsh

= (Wl) pdfUl
(u) (F.44)

Therefore, for u ∈ Al, for l ∈ {1, . . . , Nsh}, the value of aNsh
(u) is given by

aNsh
(u) =

cdfχs

(
dmax

Nsh
[l]
)
− cdfχs

(
dmax

Nsh
[l − 1]

)
dmax/Nsh

= (Wl) pdfUl
(u) (F.45)

Then,

INsh
=

Nsh∑
l=1

∫∫
S(s−1)×Al

g (γ [h(z, u)]) pdfZ (z)
[
(Wl) pdfUl

(u)
]
dz du

=

Nsh∑
l=1

∫∫
S(s−1)×Al

g (γ [h(z, u)]) pdfZ (z) aNsh
(u) dz du (F.46)

Note: theAl sets are disjoint; hence, the Cartesian products S(s−1)×Al are also disjoint.
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Hence, the fact that
Nsh⋃
l=1

Al = [0, dmax] (F.47)

implies that
Nsh⋃
l=1

[
S(s−1) × Al

]
= S(s−1) ×

Nsh⋃
l=1

Al = S(s−1) × [0, dmax] (F.48)

By countable additivity of integrals with respect to abstract measures, it follows that

INsh
=

∫∫
S(s−1)×[0,dmax]

g (γ [h(z, u)]) pdfZ (z) aNsh
(u) dz du (F.49)

Let the function fNsh
: S(s−1) × [0, dmax]→ R be defined such that

fNsh


z
u


 = g (γ [h(z, u)]) pdfZ (z) aNsh

(u) (F.50)

for
[
zT , u

]T ∈ S(s−1) × [0, dmax]. Note:

INsh
=

∫∫
S(s−1)×[0,dmax]

fNsh


z
u


 dz du (F.51)

It will be shown that fNsh
→ f pointwise a.e.; that is, it will be demonstrated that, for

a.e.
[
zT , u

]T ∈ S(s−1) × [0, dmax],

lim
Nsh→∞

fNsh


z
u


 = f


z
u


 (F.52)

where such a.e. property holds w.r.t. to the prod measure in S(s−1) × [0, dmax] (for s = 1)

w.r.t. to the Lebesgue measure in S(s−1) × [0, dmax] (for integers s ≥ 2).

Subproof. Let the preceding notation and assumptions hold.
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Fix
[
zT , u

]T ∈ S(s−1) × [0, dmax]. Then,

lim
Nsh→∞

fNsh


z
u


 = lim

Nsh→∞
g (γ [h(z, u)]) pdfZ (z) aNsh

(u)

= g (γ [h(z, u)]) pdfZ (z) lim
Nsh→∞

aNsh
(u) (F.53)

Hence, the main goal in this subproof is to show that, for a.e. u ∈ [0, dmax],

lim
Nsh→∞

aNsh
(u) = pdfχs

(u) (F.54)

Fix u ∈ (0, dmax). Let h ∈ R satisfy u + h ∈ (0, dmax), which implies that h ∈

(−u,−u+ dmax). Let the function F : (−u,−u+ dmax)→ R be defined as

F (h) =
cdfχs (u+ h)− cdfχs (u)

h
(F.55)

for h ∈ (−u,−u+ dmax). Then, the variable Lu satisfies

Lu = lim
h→0

F (h) = lim
h→0

cdfχs (u+ h)− cdfχs (u)

h
= pdfχs

(u) (F.56)

Note: the cdf of χs is continuously differentiable in [0,∞); i.e., the pdf of χs exists and is

continuous in [0,∞).[191] However, for the purposes of this subproof, only the existence

of the pdf of χs on (0, dmax) is needed.

Take ε > 0. Then, there exists some δ > 0 such that, for every h such that 0 < |h| < δ,

∣∣∣∣cdfχs (u+ h)− cdfχs (u)

h
− pdfχs

(u)

∣∣∣∣ < ε (F.57)

without loss of generality, δ may be restricted such that (u− δ, u+ δ) ⊊ (0, dmax).
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Let N ∈ N. For l ∈ {1, . . . , N − 1}, let the sets Bl and BN be defined as

Bl =

[
l − 1

N
,
l

N

)
(F.58)

BN =

[
N − 1

N
,
N

N

]
(F.59)

It will be demonstrated that there exists someM ∈ N such that, for all integersN ≥M ,

there exists some l ∈ {1, . . . , N} such that

u

dmax

∈ Bl ⊆
(
u− δ
dmax

,
u+ δ

dmax

)
(F.60)

Let M ∈ N be defined such that

1

M
<

1

4

δ

dmax

. (F.61)

Then,

M <
4dmax

δ
. (F.62)

Let N ∈ N be defined such that N ≥M , which implies that

1

N
≤ 1

M
<

1

4

δ

dmax

. (F.63)

Then, by Lemma 67, there exists some l ∈ {1, . . . , N} such that

u

dmax

∈ Bl (F.64)

u

dmax

/∈
⋃

j∈{1,...,N}
j ̸=l

Bj (F.65)
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Let l ∈ {1, . . . , N} satisfy Eqns. F.64 and F.65. Then,

l − 1

N
≤ u

dmax

≤ l

N
(F.66)

which implies that

l − 1

N
+

1

N
=

l

N
≤ u

dmax

+
1

N
(F.67)

u

dmax

− 1

N
≤ l

N
− 1

N
=
l − 1

N
(F.68)

Therefore,
u

dmax

− 1

N
≤ l − 1

N
≤ u

dmax

≤ l

N
≤ u

dmax

+
1

N
(F.69)

Then,
u

dmax

∈ Bl ⊆
[
l − 1

N
,
l

N

]
⊆
[

u

dmax

− 1

N
,
u

dmax

+
1

N

]
(F.70)

Since N ≥M ,

1

N
<

1

4

δ

dmax

<
δ

dmax

(F.71)

− 1

N
> −1

4

δ

dmax

> − δ

dmax

(F.72)

Then,

u

dmax

+
1

N
<

u

dmax

+
1

4

δ

dmax

<
u

dmax

+
δ

dmax

(F.73)

u

dmax

− 1

N
>

u

dmax

− 1

4

δ

dmax

>
u

dmax

− δ

dmax

(F.74)

Aggregating these results, it follows that

u− δ
dmax

<
u

dmax

− 1

N
≤ l − 1

N
≤ u

dmax

≤ l

N
≤ u

dmax

+
1

N
<
u+ δ

dmax

(F.75)
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Therefore,

u

dmax

∈ Bl ⊆
[
l − 1

N
,
l

N

]
⊆
[

u

dmax

− 1

N
,
u

dmax

+
1

N

]
⊊
(
u− δ
dmax

,
u+ δ

dmax

)
(F.76)

Let ηsh ∈ N be given by

ηsh =

⌈
4dmax

δ

⌉
+ 1 (F.77)

Then,

ηsh >

⌈
4dmax

δ

⌉
≥ 4dmax

δ
(F.78)

Let Nsh ≥ ηsh. Then, Nsh >
4dmax

δ
, so

δ >
4dmax

Nsh

>
dmax

Nsh

(F.79)

Then, via Eqns. F.64, F.65, and F.76, there exists some l ∈ {1, . . . , Nsh} such that

u

dmax

∈ Bl ⊆
[
l − 1

Nsh

,
l

Nsh

]
⊆
[

u

dmax

− 1

Nsh

,
u

dmax

+
1

Nsh

]
⊊
(
u− δ
dmax

,
u+ δ

dmax

)
(F.80)

u

dmax

/∈
⋃

j∈{1,...,Nsh}
j ̸=l

Bj (F.81)

Let l ∈ {1, . . . , Nsh}. Let u/dmax satisfy Eqns. F.80 and F.81. Then, as per Eq. F.45,

aNsh
(u) =

cdfχs

(
[l]dmax

Nsh

)
− cdfχs

(
[l − 1]dmax

Nsh

)
dmax/Nsh

= (Wl) pdfUl
(u) (F.82)

Let u/dmax be restricted so that u/dmax ∈ (0, 1). It will be shown whether all such

u/dmax satisfy ∣∣aNsh
(u)− pdfχs

(u)
∣∣ < ε (F.83)

1. Case 1: u = dmax

Nsh
[l]
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Let h = dmax

Nsh
. Then, h < δ. Let h′ = −h. Note that |h′| = |h| < δ. Therefore,

aNsh
(u) =

cdfχs (u)− cdfχs (u− h)
h

=
cdfχs (u)− cdfχs (u+ h′)

−h′

=
cdfχs (u+ h′)− cdfχs (u)

h′
(F.84)

It follows from Eq. F.57 that

∣∣aNsh
(u)− pdfχs

(u)
∣∣ < ε (F.85)

Note: this case is listed for informational purposes only, since this case would only

occur if l = Nsh, which is not being considered since u/dmax ∈ (0, 1).

2. Case 2: u = dmax

Nsh
[l − 1]

Let h = dmax

Nsh
. Then, h < δ. Therefore,

aNsh
(u) =

cdfχs (u+ h)− cdfχs (u)

h
(F.86)

Hence, from Eq. F.57, it follows that

∣∣aNsh
(u)− pdfχs

(u)
∣∣ < ε (F.87)

3. Case 3: dmax

Nsh
[l − 1] < u < dmax

Nsh
[l].

Let the variables dL, dU , and d′L be defined as

dL = u− [l − 1]
dmax

Nsh

> 0 (F.88)

dU =
[l]dmax

Nsh

− u > 0 (F.89)
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d′L = −dL (F.90)

Then, the following properties concerning dL, dU , and d′L hold on.

dL + dU =
dmax

Nsh

< δ (F.91)

dL = |d′L| <
dmax

Nsh

< δ (F.92)

dU <
dmax

Nsh

< δ (F.93)

Then,

aNsh
(u) =

cdfχs

(
[l]dmax

Nsh

)
− cdfχs

(
[l − 1]dmax

Nsh

)
dmax/Nsh

=
cdfχs (u+ dU)− cdfχs (u− dL)

dmax/Nsh

(F.94)

which implies that

aNsh
(u) =

cdfχs (u+ dU)− cdfχs (u) + cdfχs (u)− cdfχs (u− dL)
dmax/Nsh

(F.95)

which, in turn, implies that

aNsh
(u) =

dU
dmax/Nsh

cdfχs (u+ dU)− cdfχs (u)

dU

+
dL

dmax/Nsh

cdfχs (u)− cdfχs (u− dL)
dL

(F.96)

It should be noted that

pdfχs
(u) = pdfχs

(u)

[
dU

dmax/Nsh

+
dL

dmax/Nsh

]
(F.97)

363



Hence,

∣∣aNsh
(u)− pdfχs

(u)
∣∣ ≤ ∣∣∣∣ dU

dmax/Nsh

[
cdfχs (u+ dU)− cdfχs (u)

dU
− pdfχs

(u)

]∣∣∣∣
+

∣∣∣∣ dL
dmax/Nsh

[
cdfχs (u)− cdfχs (u− dL)

dL
− pdfχs

(u)

]∣∣∣∣ (F.98)

which implies that

∣∣aNsh
(u)− pdfχs

(u)
∣∣ ≤ dU

dmax/Nsh

∣∣∣∣cdfχs (u+ dU)− cdfχs (u)

dU
− pdfχs

(u)

∣∣∣∣
+

dL
dmax/Nsh

∣∣∣∣cdfχs (u+ d′L)− cdfχs (u)

d′L
− pdfχs

(u)

∣∣∣∣ (F.99)

Thus,

∣∣aNsh
(u)− pdfχs

(u)
∣∣ < dU

dmax/Nsh

ε+
dL

dmax/Nsh

ε

= ε

[
dU

dmax/Nsh

+
dL

dmax/Nsh

]
= ε (F.100)

Therefore, Eqns. F.87 and F.100 imply that, for every u/dmax ∈ (0, 1), for every ε > 0,

there exists some integer ηsh such that, for every integer Nsh ≥ ηsh,

∣∣aNsh
(u)− pdfχs

(u)
∣∣ < ε (F.101)

Thus, aNsh
→ pdfχs

pointwise on (0, dmax).

Since the set {0, dmax} has zero Lebesgue measure, it follows that aNsh
→ pdfχs

point-

wise a.e. on [0, dmax].

Let u ∈ (0, dmax). Hence,

lim
Nsh→∞

aNsh
(u) = pdfχs

(u) = pdfD (u) (F.102)
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Consider
[
zT , u

]T ∈ S(s−1) × (0, dmax). Then, via Eqns. F.28, F.53, and F.102, it follows

that

lim
Nsh→∞

fNsh


z
u


 = g (γ [h(z, u)]) pdfZ (z) lim

Nsh→∞
aNsh

(u)

= g (γ [h(z, u)]) pdfZ (z) pdfD (u) = f


z
u


 (F.103)

Hence, fNsh
→ f pointwise on S(s−1) × (0, dmax).

However, since the set {0, dmax} has zero Lebesgue measure on [0, dmax], it follows

that:

1. For s = 1, the set S(s−1) × {0, dmax} has zero prod measure in S(s−1) × [0, dmax].

2. For integers s ≥ 2, the set S(s−1)×{0, dmax} has zero Lebesgue measure in S(s−1)×

[0, dmax].[34]

Therefore,

fNsh
→ f pointwise a.e.


w.r.t. prod measure on S(s−1) × [0, dmax] if s = 1

w.r.t. Lebesgue measure on S(s−1) × [0, dmax] if s ≥ 2

(F.104)

which was to be shown. ■

Let Nsh ∈ N. Let l ∈ {1, . . . , Nsh}. Let PNsh
be the set defined as

PNsh
=

{
x ∈ [0, 1] : x =

l

Nsh

, l ∈ {0, . . . , Nsh}
}

(F.105)

Let u ∈ [0, dmax] be restricted to

u ∈
(
[l − 1]dmax

Nsh

,
[l]dmax

Nsh

)
⊆ Al (F.106)
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Then, via Lemma 67,
u

dmax

/∈
⋃

j∈{1,...,Nsh}
j ̸=l

Bj (F.107)

Note: for such an u, aNsh
(u) is given by

aNsh
(u) =

cdfχs

(
[l]dmax

Nsh

)
− cdfχs

(
[l−1]dmax

Nsh

)
dmax/Nsh

(F.108)

Let the variables c1 and c2,

c1 =
[l − 1]dmax

Nsh

(F.109)

c2 =
[l]dmax

Nsh

(F.110)

Then,

aNsh
(u) =

cdfχs (c2)− cdfχs (c1)

c2 − c1
(F.111)

Since cdfχs is differentiable in (0,∞) ⊇ (c1, c2), by the Mean Value Theorem (MVT),[66]

there exists some c ∈ (c1, c2) such that

aNsh
(u) =

d

dx
cdfχs (x)

∣∣∣
x=c

= pdfχs
(c) (F.112)

Hence, for all u ∈ [0, dmax] \ PNsh
, there exists some c ∈ [0, dmax] \ PNsh

such that

aNsh
(u) = pdfχs

(c) (F.113)

Note: for s ∈ N, pdfχs
is a bounded function. Hence,

Mχs = sup
u∈[0,∞)

∣∣pdfχs
(u)
∣∣ <∞ (F.114)
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Hence, for all u ∈ [0, dmax] \ PNsh
, there exist some c ∈ [0, dmax] \ PNsh

,

aNsh
(u) = pdfχs

(c) ≤Mχs (F.115)

Therefore, the function aNsh
is bounded on [0, dmax] \ PNsh

. Since PNsh
is a set of zero

Lebesgue measure in [0, dmax], it follows that the function aNsh
is bounded a.e. in [0, dmax].

Let the function V : S(s−1) × [0, dmax]→ R satisfy

V


z
u


 = g (γ [h(z, u)]) (F.116)

for
[
zT , u

]T ∈ S(s−1) × [0, dmax]. Then, because of the integrability of g [and since

supp(g) ⊆ Vdmax (X)], it follows that

∫
S(s−1)×[0,dmax]

∣∣V ([zT , u]T )∣∣ dz du =

∫
S(s−1)×[0,dmax]

|g (γ [h(z, u)])| dz du

=

∫
Vdmax (X)

|g(x)| dx =

∫
Rs

|g(x)| dx <∞ (F.117)

Therefore, V is an integrable function in S(s−1) × [0, dmax]. Specifically, for s = 1, V ∈

prod1
(
S(s−1) × [0, dmax]

)
; for integers s ≥ 2, V ∈ L1

(
S(s−1) × [0, dmax]

)
.

Let the functions WNsh
: S(s−1) × [0, dmax] → [0,∞) and W : S(s−1) × [0, dmax] →

[0,∞) be defined as

WNsh


z
u


 = pdfZ (z) aNsh

(u) (F.118)

W


z
u


 =

Γ(s/2)

2(π)(s/2)
Mχs =: Cχs (F.119)
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for
[
zT , u

]T ∈ S(s−1) × [0, dmax]. Note: for
[
zT , u

]T ∈ S(s−1) × [0, dmax] \ PNsh
,

∣∣∣∣∣∣∣WNsh


z
u



∣∣∣∣∣∣∣ =

∣∣pdfZ (z) aNsh
(u)
∣∣ = ∣∣∣∣ Γ(s/2)2(π)(s/2)

aNsh
(u)

∣∣∣∣ (F.120)

which implies that

∣∣∣∣∣∣∣WNsh


z
u



∣∣∣∣∣∣∣ =

Γ(s/2)

2(π)(s/2)
|aNsh

(u)| ≤ Γ(s/2)

2(π)(s/2)
Mχs = W


z
u


 (F.121)

Thus, |WNsh
| ≤ W in S(s−1) × [0, dmax] \ PNsh

. Since the set PNsh
has zero Lebesgue

measure in [0, dmax], it follows that:

1. For s = 1, the set S(s−1)×PNsh
has zero prod measure in S(s−1)×[0, dmax]. Therefore,

|WNsh
| ≤ W a.e. (w.r.t. to the prod measure in S(s−1) × [0, dmax]).

2. For integers s ≥ 2, the set S(s−1) × PNsh
has zero Lebesgue measure in S(s−1) ×

[0, dmax]. Therefore, |WNsh
| ≤ W a.e. (w.r.t. to the Lebesgue measure in S(s−1) ×

[0, dmax]).

Since W is a function with a single, finite constant value throughout its domain (specif-

ically, Cχs), W is a bounded function in S(s−1) × [0, dmax]. Therefore, W is an essentially

bounded function in S(s−1) × [0, dmax] . Specifically, for s = 1, it follows that W ∈

prod∞ (S(s−1) × [0, dmax]
)

– that is, W belongs to the set of functions in S(s−1) × [0, dmax]

that are essentially bounded with respect to the prod measure; for integers s ≥ 2, W ∈

L∞ (S(s−1) × [0, dmax]
)
.

Since the product of an integrable function and an essentially bounded function is an

integrable function,[34] it follows that VW is an integrable function in S(s−1) × [0, dmax].

Specifically, for s = 1, VW ∈ prod1
(
S(s−1) × [0, dmax]

)
; for integers s ≥ 2, VW ∈

L1
(
S(s−1) × [0, dmax]

)
.

368



Consider
[
zT , u

]T ∈ S(s−1) × [0, dmax] \ PNsh
. Then,

∣∣∣∣∣∣∣fNsh


z
u



∣∣∣∣∣∣∣ =

∣∣g (γ [h(z, u)]) pdfZ (z) aNsh
(u)
∣∣ = |g (γ [h(z, u)])| ∣∣pdfZ (z) aNsh

(u)
∣∣

(F.122)

which implies that

∣∣∣∣∣∣∣fNsh


z
u



∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣V

z
u



∣∣∣∣∣∣∣
∣∣∣∣∣∣∣WNsh


z
u



∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣V

z
u


W


z
u



∣∣∣∣∣∣∣ (F.123)

Hence, |fNsh
| ≤ |VW | in S(s−1) × [0, dmax] \ PNsh

. Hence,

1. Since for s = 1, the set S(s−1) × PNsh
has zero prod measure in S(s−1) × [0, dmax], it

follows that |fNsh
| ≤ |VW | a.e. (w.r.t. to the prod measure in S(s−1) × [0, dmax]).

2. Since for integers s ≥ 2, the set S(s−1)×PNsh
has zero Lebesgue measure in S(s−1)×

[0, dmax], it follows that |fNsh
| ≤ |VW | a.e. (w.r.t. to the Lebesgue measure in

S(s−1) × [0, dmax]).

Therefore, there exists an integrable function fdom : S(s−1) × [0, dmax] → [0,∞]

[namely, fdom
.
= |VW |; for s = 1, fdom ∈ prod1

(
S(s−1) × [0, dmax]

)
, and for integers

s ≥ 2, fdom ∈ L1
(
S(s−1) × [0, dmax]

)
] such that, for every integer Nsh,

|fNsh
| ≤ fdom a.e.


w.r.t. prod measure on S(s−1) × [0, dmax] if s = 1

w.r.t. Lebesgue measure on S(s−1) × [0, dmax] if s ≥ 2

(F.124)

In summary, via Eqns. F.104 and F.124, the following statements hold [noting that a.e.

statements and integrability hold w.r.t. the prod measure on S(s−1) × [0, dmax] (if s = 1)

and w.r.t. the Lebesgue measure on S(s−1) × [0, dmax] (for integers s ≥ 2)]:

a. For all Nsh ∈ N, |fNsh
| ≤ fdom a.e.
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b. fdom is integrable

c. |fNsh
| → f pointwise a.e.

Therefore, one of the consequences of the Dominated Convergence Theorem (DCT) is the

following:[85, 34]

lim
Nsh→∞

∫∫
S(s−1)×[0,dmax]

fNsh


z
u


 dz du

=

∫∫
S(s−1)×[0,dmax]

f


z
u


 dz du (F.125)

It follows from Eqns. F.31, F.39, F.51, and F.125 that

lim
Nsh→∞

E
[
µ̂g(X),MSS

]
= E [g(X)] (F.126)

which was to be shown.

Proposition 69. Let g : Rs → R be a measurable, integrable real-valued function. Let

dmax > 0. Let µ ∈ Rs, Σ ∈ Rs×s, Σ > 0. Let X ∼ N (µ, Σ).

Let g be bounded a.e. in Rs; i.e., let g ∈ L∞(Rs). Let M ≥ 0, µg(X) ∈ R satisfy

µg(X) = E [g(X)] (F.127)

M = esssup
x∈[Vdmax (X)]C

|g(x)| (F.128)

Let
{
x̃l,q
}

, l ∈ SNsh
, q ∈ SNss be an MSS sample drawn in accordance with Algorithm

1, with sample weights {wl,q} and {Wl}. Let the MSS asymptotic estimator of E [g(X)],

µ̂g(X),MSS, be defined as

µ̂g(X),MSS =

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

g
(
x̃l,q
)

(F.129)
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Then, ∣∣∣∣µg(X) − lim
Nsh→∞

E
[
µ̂g(X),MSS

]∣∣∣∣ ≤Mpexc (F.130)

where pexc satisfies Eq. 6.18. ♢

Proof. Let the preceding assumptions and notation hold.

Let the functions g1 : Rs → R, g2 : Rs → R be defined as

g1(x) = g(x)χVdmax (X)(x) (F.131)

g2(x) = g(x)χ[Vdmax (X)]C (x) (F.132)

Then,

µg(X) = E [g(X)] =

∫
x∈Rs

g(x) pdfX (x) dx

=

∫
x∈Vdmax (X)

g(x) pdfX (x) dx+

∫
x∈[Vdmax (X)]C

g(x) pdfX (x) dx

=

∫
x∈Rs

g(x)χVdmax (X)(x) pdfX (x) dx+

∫
x∈Rs

g(x)χ[Vdmax (X)]C (x) pdfX (x) dx

(F.133)

Since g ∈ L1(Rs), and since χVdmax (X), χ[Vdmax (X)]C ∈ L∞(Rs), it follows that g1 and g2

are integrable functions; that is, g1, g2 ∈ L1(Rs). Therefore, µg1(X) and µg2(X) exist and

are finite, where these variables are defined as

µg1(X) = E [g1(X)] =

∫
x∈Rs

g(x)χVdmax (X)(x) pdfX (x) dx (F.134)

µg2(X) = E [g2(X)] =

∫
x∈Rs

g(x)χ[Vdmax (X)]C (x) pdfX (x) dx (F.135)

Note:

µg(X) = µg1(X) + µg2(X) (F.136)

Since g1 = g χVdmax (X), it follows that supp(g1) ⊆ Vdmax (X) and g1 = g on Vdmax (X).
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Therefore,

µ̂g1(X),MSS =

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

g1
(
x̃l,q
)
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

g
(
x̃l,q
)
= µ̂g(X),MSS (F.137)

It follows from Proposition 68 and from Eqns. F.129 and F.134 that

µg1(X) = lim
Nsh→∞

E
[
µ̂g1(X),MSS

]
= lim

Nsh→∞
E
[
µ̂g(X),MSS

]
(F.138)

which, based on Lebesgue integral properties and Eq. F.135, implies that

∣∣∣∣µg(X) − lim
Nsh→∞

E
[
µ̂g(X),MSS

]∣∣∣∣ =
∣∣∣∣∣
∫
x∈[Vdmax (X)]C

g(x) pdfX (x) dx

∣∣∣∣∣
≤
∫
x∈[Vdmax (X)]C

∣∣g(x) pdfX (x)
∣∣ dx =

∫
x∈[Vdmax (X)]C

|g(x)| pdfX (x) dx (F.139)

Assume g ∈ L∞(Rs). Since |g2| ≤ |g|, g2 ∈ L∞(Rs). Therefore,

M = esssup
x∈[Vdmax (X)]C

|g(x)| <∞ (F.140)

Thus,

|g(x)| ≤M for a.e. x ∈ [Vdmax (X)]C (F.141)

It follows from Eq. 6.18 that

∫
x∈[Vdmax (X)]C

|g(x)| pdfX (x) dx ≤
∫
x∈[Vdmax (X)]C

M pdfX (x) dx

=M

∫
x∈[Vdmax (X)]C

pdfX (x) dx =M

∫
x∈Rs

χ[Vdmax (X)]C (x) pdfX (x) dx

=M E
[
χ[Vdmax (X)]C (X)

]
=M pX

(
[Vdmax (X)]C

)
=M pexc (F.142)
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Therefore, from Eqns. F.139 and F.142, it follows that

∣∣∣∣µg(X) − lim
Nsh→∞

E
[
µ̂g(X),MSS

]∣∣∣∣ ≤M pexc (F.143)

which was to be shown.

Proposition 70 (Asymptotic MSS estimators of probability measures). Let E ⊆ Rs be a

measurable subset of Rs. Let pE = pX(E) = p (X ∈ E).

Let dmax > 0. Let µ ∈ Rs, Σ ∈ Rs×s, Σ > 0. Let X ∼ N (µ, Σ).

Let
{
x̃l,q
}

, l ∈ SNsh
, q ∈ SNss be an MSS sample drawn in accordance with Algorithm 1,

with sample weights {wl,q} and {Wl}.

Let the MSS asymptotic estimator of pE , denoted by p̂E,MSS, be defined as

p̂E,MSS =

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

χE

(
x̃l,q
)

(F.144)

where χE : Rs → {0, 1}. Then, if E ⊆ Vdmax (X),

lim
Nsh→∞

E [p̂E,MSS] = pE (F.145)

Alternatively, if E ⊈ Vdmax (X),

∣∣∣∣pE − lim
Nsh→∞

E [p̂E,MSS]

∣∣∣∣ ≤ pexc (F.146)

where pexc satisfies Eq. 6.18. ♢

Proof. Let the preceding notation and assumptions hold.

Subproof, Case 1: E ⊆ Vdmax (X). Since the Vdmax (X) set is bounded, it follows that the

Lebesgue measure of Vdmax (X) is finite; i.e.,

λ (Vdmax (X)) <∞ (F.147)
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Letting χE : Rs → {0, 1} denote the characteristic function of E ⊆ Vdmax (X), the integral

of |χE| satisfies

∫
x∈Rs

|χE(x)| dx =

∫
x∈Rs

χE(x) dx =

∫
x∈E

1 dx

≤
∫
x∈Vdmax (X)

1 dx = λ (Vdmax (X)) <∞ (F.148)

Hence, χE is integrable; i.e., χE ∈ L1(Rs). Note: since E ⊆ Vdmax (X), it follows that

supp(χE) ⊆ supp
(
χVdmax (X)

)
= Vdmax (X).

Therefore, by Proposition 68,

lim
Nsh→∞

E [p̂E,MSS] = pE (F.149)

which was to be shown. ■

Subproof, Case 2: E ⊈ Vdmax (X). Let the sets A, B in Rs be defined as

A = E ∩ Vdmax (X) (F.150)

B = E ∩ [Vdmax (X)]C (F.151)

Let the pA, pB variables be given by

pA = pX(A) = p (X ∈ A) (F.152)

pB = pX(B) = p (X ∈ B) (F.153)

Note: since A and B are disjoint sets, the fact that E = A ∪B implies that

pE = p (X ∈ E) = p (X ∈ A) + p (X ∈ B) = pA + pB (F.154)
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Since χA = χE on A, it follows that

p̂E,MSS =

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

χE

(
x̃l,q
)
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

χA

(
x̃l,q
)
= p̂A,MSS (F.155)

Since A ⊆ Vdmax (X), it follows from Subproof, Case 1 and Eq. F.155 that

pA = lim
Nsh→∞

E [p̂A,MSS] = lim
Nsh→∞

E [p̂E,MSS] (F.156)

It should be noted that

pA =

∫
x∈Rs

χA(x) pdfX (x) dx =

∫
x∈Vdmax (X)

χA(x) pdfX (x) dx

=

∫
x∈Vdmax (X)

χE(x) pdfX (x) dx (F.157)

It should also be noted that

pE =

∫
x∈Rs

χE(x) pdfX (x) dx

=

∫
x∈Vdmax (X)

χE(x) pdfX (x) dx+

∫
x∈[Vdmax (X)]C

χE(x) pdfX (x) dx (F.158)

Therefore, Eq. F.156 implies that

pE − pA =

∫
x∈[Vdmax (X)]C

χE(x) pdfX (x) dx = pE − lim
Nsh→∞

E [p̂E,MSS] (F.159)

Hence, the quantity ∆ satisfies

∆ =

∣∣∣∣pE − lim
Nsh→∞

E [p̂E,MSS]

∣∣∣∣ =
∣∣∣∣∣
∫
x∈[Vdmax (X)]C

χE(x) pdfX (x) dx

∣∣∣∣∣ (F.160)

Since B = E ∩ [Vdmax (X)]C , it follows that χE = χB on [Vdmax (X)]C , which implies
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(via Lebesgue integral properties) that

∆ =

∣∣∣∣∣
∫
x∈[Vdmax (X)]C

χB(x) pdfX (x) dx

∣∣∣∣∣ ≤
∫
x∈[Vdmax (X)]C

∣∣χB(x) pdfX (x)
∣∣ dx (F.161)

Since B ⊆ [Vdmax (X)]C , χB ≤ χ[Vdmax (X)]C in Rs. Because the χB and pdfX functions are

non-negative, it follows from Eq. 6.18 that

∆ ≤
∫
x∈[Vdmax (X)]C

χB(x) pdfX (x) dx ≤
∫
x∈[Vdmax (X)]C

χ[Vdmax (X)]C (x) pdfX (x) dx

=

∫
x∈Rs

χ[Vdmax (X)]C (x) pdfX (x) dx = E
[
[Vdmax (X)]C

]
= pX

(
[Vdmax (X)]C

)
= pexc (F.162)

Therefore, ∣∣∣∣pE − lim
Nsh→∞

E [p̂E,MSS]

∣∣∣∣ ≤ pexc (F.163)

which was to be shown. ■

Through the results for Subproof, Case 1 and Subproof, Case 2, the result follows.

F.3 Mahalanobis Shell Sampling (MSS) – Unbiased Theoretical Results

The unbiased MSS sample estimators presented in this section rely on the definition of the

following constants:

S1 =

Nsh∑
l=1

Wl = cdfχ2
s

(
(dmax)

2) (F.164)

S2 =

Nsh∑
l=1

W 2
l (F.165)

S3 =
1

s

(
dmax

Nsh

)2 Nsh∑
l=1

Wl

(
l − 1

2

)2

(F.166)
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S4 =
1

s

(
dmax

Nsh

)2 Nsh∑
l=1

W 2
l

(
l − 1

2

)2

(F.167)

D1 =
1

12s

(
dmax

Nsh

)2

(F.168)

Proposition 71 (Unbiased MSS estimators in sample mean). Let s, Nsh, Nss ∈ N, and let

0 < dmax <∞. Let X ∼ N (µ, Σ), where µ ∈ Rs, Σ ∈ Rs×s, Σ > 0.

Let
{
x̃l,q
}

, l ∈ {1, . . . , Nsh}, q ∈ {1, . . . , Nss} be an MSS sample drawn in accordance

with Algorithm 1, with sample weights {wl,q} and {Wl}. Let the constant H be defined as

H =
1

S1

=
1

cdfχ2
s

(
(dmax)

2) (F.169)

Let µ̂MSS be defined as

µ̂MSS = H

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

x̃l,q (F.170)

Then, µ̂MSS is an unbiased estimator of µ; that is,

E [µ̂MSS] = µ ♢ (F.171)

Proof. Let the preceding notation and assumptions hold.

Let l ∈ {1, . . . , Nsh}, q ∈ {1, . . . , Nss}. Then, by Algorithm 1, there exist some

zl,q ∼ U
(
S(s−1)

)
, ul,q ∼ U ([0, 1]) such that zl,q and ul,q are independent, and

x̃l,q = µ+ (dl + ul,q δd)
[
Σ1/2

]
zl,q (F.172)

where δd and dl satisfy

δd =
dmax

Nsh

(F.173)

dl = [l − 1]δd (F.174)
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Let the constant d′l and the random variable vl,q be defined as

d′l
.
= dl +

1

2
δd (F.175)

vl,q
.
= ul,q −

1

2
(F.176)

Note: vl,q ∼ U
([
−1

2
, 1
2

])
, and

dl + ul,q δd =

[
dl +

1

2
δd

]
+

[
ul,q δd −

1

2
δd

]
= d′l + vl,q δd (F.177)

Let the expression B be defined as

B
.
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

x̃l,q =

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

[
µ+ (dl + ul,q δd)

[
Σ1/2

]
zl,q
]

=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

[
µ+ (d′l + vl,q δd)

[
Σ1/2

]
zl,q
]

(F.178)

Let the expressions B1, B2, B3 be defined as

B1
.
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

µ (F.179)

B2
.
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

d′l
[
Σ1/2

]
zl,q (F.180)

B3
.
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

(vl,q δd)
[
Σ1/2

]
zl,q (F.181)

Therefore,

B = B1 +B2 +B3 (F.182)
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The expression B1 satisfies

B1
.
=

Nsh∑
l=1

Wl µ = (µ)

Nsh∑
l=1

Wl (F.183)

However,

dl + δd = [l − 1]δd + δd = l δd (F.184)

which implies that

Nsh∑
l=1

Wl =

Nsh∑
l=1

cdfχ2
s

(
[lδd]

2)− cdfχ2
s

(
[(l − 1)δd]

2)
= cdfχ2

s

(
[Nshδd]

2)− cdfχ2
s
(0) = cdfχ2

s

(
[dmax]

2) =: S1 (F.185)

Hence,

B1 = S1 µ (F.186)

Since B1 is a constant, it follows that

E [B1] = B1 = S1 µ (F.187)

The expression B2 satisfies

B2 =

Nsh∑
l=1

(
Wl

Nss

)
d′l

Nss∑
q=1

[
Σ1/2

]
zl,q =

Nsh∑
l=1

(
Wl

Nss

)
d′l
[
Σ1/2

]( Nss∑
q=1

zl,q

)
(F.188)

By the linearity of the expectation operator, E [B2] satisfies

E [B2] =

Nsh∑
l=1

(
Wl

Nss

)
d′l
[
Σ1/2

] Nss∑
q=1

E
[
zl,q
]

(F.189)
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Since zl,q ∼ U
(
S(s−1)

)
, E
[
zl,q
]
= 0s×1, which implies that

E [B2] = 0s×1 (F.190)

Similarly, the expression B3 satisfies

B3 =

Nsh∑
l=1

(
Wl

Nss

)
δd

Nss∑
q=1

vl,q
[
Σ1/2

]
zl,q (F.191)

By scalar multiplication,

B3 =

Nsh∑
l=1

(
Wl

Nss

)
δd

Nss∑
q=1

[
Σ1/2

] (
vl,q zl,q

)
(F.192)

By linearity of matrix multiplication,

B3 =

Nsh∑
l=1

(
Wl

Nss

)
δd
[
Σ1/2

]( Nss∑
q=1

vl,q zl,q

)
(F.193)

By linearity of the expectation operator, E [B3] satisfies

E [B3] =

Nsh∑
l=1

(
Wl

Nss

)
δd
[
Σ1/2

] Nss∑
q=1

E
[
vl,q zl,q

]
(F.194)

Since zl,q and ul,q are independent, it follows from Eq. F.176 that zl,q and vl,q are also

independent. Hence, zl,q and vl,q are uncorrelated; i.e.,

E
[
vl,q zl,q

]
= E [vl,q]E

[
zl,q
]

(F.195)

Since E [ul,q] =
1
2
, Eq. F.176 implies that E [vl,q] = 0. (Also: E

[
zl,q
]
= 0s×1, as noted

previously). Hence,

E [B3] = 0s×1 (F.196)
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Collecting terms, it follows that

E [µ̂MSS] = E [HB] =
1

S1

E [B1 +B2 +B3] =
1

S1

(E [B1] + E [B2] + E [B3]) (F.197)

Therefore,

E [µ̂MSS] =
1

S1

B1 =
1

S1

S1 µ = µ (F.198)

which was to be shown.

Proposition 72 (Unbiased MSS estimators in sample covariance). Let s, Nsh, Nss ∈ N,

and let 0 < dmax <∞. Let X ∼ N (µ, Σ), where µ ∈ Rs, Σ ∈ Rs×s, Σ > 0.

Let
{
x̃l,q
}

, l ∈ {1, . . . , Nsh}, q ∈ {1, . . . , Nss} be an MSS sample drawn in accordance

with Algorithm 1, with sample weights {wl,q} and {Wl}.

Let the constants H and G be defined as

H =
1

S1

=
1

cdfχ2
s

(
(dmax)

2) (F.199)

G =

[
1 +

H2S2

Nss

]
S3 −

2 (HS4)

Nss

+D1

(
S1 −

HS2

Nss

)
(F.200)

Let µ̂MSS and Σ̂MSS be defined as

µ̂MSS = H

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

x̃l,q (F.201)

Σ̂MSS =
1

G

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

(
x̃l,q − µ̂MSS

) (
x̃l,q − µ̂MSS

)T (F.202)

Then, Σ̂MSS is an unbiased estimator of Σ; that is,

E
[
Σ̂MSS

]
= Σ ♢ (F.203)

Proof. Let the preceding notation and assumptions hold.
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Let l ∈ {1, . . . , Nsh}, q ∈ {1, . . . , Nss}. Then, by Algorithm 1, there exist some

zl,q ∼ U
(
S(s−1)

)
, ul,q ∼ U ([0, 1]) such that zl,q and ul,q are independent, and

x̃l,q = µ+ (dl + ul,q δd)
[
Σ1/2

]
zl,q (F.204)

where δd and dl satisfy

δd =
dmax

Nsh

(F.205)

dl = [l − 1]δd (F.206)

Let the constant d′l and the random variable vl,q be defined as

d′l
.
= dl +

1

2
δd =

[
l − 1

2

]
δd (F.207)

vl,q
.
= ul,q −

1

2
(F.208)

Note: vl,q ∼ U
([
−1

2
, 1
2

])
, and

dl + ul,qδd =

[
dl +

1

2
δd

]
+

[
ul,qδd −

1

2
δd

]
= d′l + vl,qδd (F.209)

Consequently,

x̃l,q = µ+ (d′l + vl,qδd)
[
Σ1/2

]
zl,q (F.210)

Additionally, the first and second order moment statistics of vl,q and zl,q are given by

E [vl,q] = 0 (F.211)

Var (vl,q) = E
[
(vl,q − E [vl,q])

2] = E
[
(vl,q)

2] = 1

12
(F.212)

E
[
zl,q
]
= 0s×1 (F.213)

Cov
(
zl,q
)
= E

[(
zl,q − E

[
zl,q
]) (

zl,q − E
[
zl,q
])T]

= E
[(
zl,q
) (
zl,q
)T]

=
1

s
Is (F.214)
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Since zl,q and ul,q are independent, it follows from Eq. F.208 that zl,q and vl,q are also

independent.

Within this proof, let µ̂MSS be denoted as µ̂ for simplicity.

Let the expression B be defined as

B
.
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

(
x̃l,q − µ̂

) (
x̃l,q − µ̂

)T
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

[
x̃l,q x̃

T
l,q − x̃l,q µ̂

T − µ̂ x̃Tl,q + µ̂ µ̂T
]

(F.215)

Let the expressions B1, B2, and B3 be defined as

B1
.
= x̃l,q x̃

T
l,q (F.216)

B2
.
= x̃l,q µ̂

T (F.217)

B3
.
= µ̂ µ̂T (F.218)

Let the expressions T1, T2 and T3 be defined as

T1
.
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

x̃l,q x̃
T
l,q =

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

B1 (F.219)

T2
.
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

x̃l,q µ̂
T =

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

B2 (F.220)

T3
.
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

µ̂ µ̂T =

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

B3 (F.221)

Therefore,

B = T1 − T2 − T T
2 + T3 (F.222)

Subproof: Examining the B1 expression. Let the preceding assumptions and notation hold.
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The expression B1 may be expanded as follows:

B1 = x̃l,q x̃
T
l,q =

[
µ+ (d′l + vl,qδd)

[
Σ1/2

]
zl,q
] [
µ+ (d′l + vl,qδd)

[
Σ1/2

]
zl,q
]T

=
[
µ+ (d′l + vl,qδd)

[
Σ1/2

]
zl,q
] [
µT + (d′l + vl,qδd) z

T
l,q

[
Σ1/2

]]
= µµT + (d′l + vl,qδd)µ z

T
l,q

[
Σ1/2

]
+ (d′l + vl,qδd)

[
Σ1/2

]
zl,q µ

T

+ (d′l + vl,qδd)
2 [
Σ1/2

]
zl,q z

T
l,q

[
Σ1/2

]
(F.223)

Let the expressions C1 through C6 be defined as

C1 = µµT (F.224)

C2 = d′l µ z
T
l,q

[
Σ1/2

]
(F.225)

C3 = δd µ
(
vl,q z

T
l,q

) [
Σ1/2

]
(F.226)

C4 = (d′l)
2 [
Σ1/2

]
zl,q z

T
l,q

[
Σ1/2

]
(F.227)

C5 = 2 (d′l δd)
[
Σ1/2

] (
zl,q z

T
l,q vl,q

) [
Σ1/2

]
(F.228)

C6 = (δd)
2 [Σ1/2

] (
zl,q z

T
l,q [vl,q]

2
) [

Σ1/2
]

(F.229)

Therefore,

B1 = C1 + C2 + C3 + CT
2 + CT

3 + C4 + C5 + C6 (F.230)

Since C1 is a constant, it follows that E [C1] satisfies

E [C1] = C1 (F.231)

By the linearity of the expectation operator, it follows that E [C2] satisfies

E [C2] = E
[
d′l µ z

T
l,q

[
Σ1/2

]]
= d′l µ

(
E
[
zl,q
])T [

Σ1/2
]

(F.232)
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Since zl,q ∼ U
(
S(s−1)

)
, Eq. F.213 implies that

E [C2] = 0s×s (F.233)

By the linearity of the expectation operator, it follows that E [C3] satisfies

E [C3] = E
[
δd µ

(
vl,q z

T
l,q

) [
Σ1/2

]]
= (δd µ)

(
E
[
vl,q zl,q

])T [
Σ1/2

]
(F.234)

Since vl,q and zl,q are independent, they are uncorrelated; i.e.,

E
[
vl,q zl,q

]
= E [vl,q] E

[
zl,q
]

(F.235)

which, via Eqns. F.211 and F.213, implies that

E [C3] = 0s×s (F.236)

By the linearity of the expectation operator, via Eq. F.214, it follows that E [C4] satisfies

E [C4] = E
[
(d′l)

2 [
Σ1/2

]
zl,q z

T
l,q

[
Σ1/2

]]
= (d′l)

2 [
Σ1/2

]
E
[
zl,q z

T
l,q

] [
Σ1/2

]
=

(d′l)
2

s

[
Σ1/2

]
Is
[
Σ1/2

]
=

(d′l)
2

s
Σ (F.237)

By the linearity of the expectation operator, it follows that E [C5] satisfies

E [C5] = E
[
2 (d′l δd)

[
Σ1/2

] (
zl,q z

T
l,q vl,q

) [
Σ1/2

]]
= 2 (d′l δd)

[
Σ1/2

] (
E
[
zl,q z

T
l,q vl,q

]) [
Σ1/2

]
(F.238)

Since vl,q and zl,q are independent, it follows that vl,q and zl,q z
T
l,q are independent, which
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implies that vl,q and zl,q z
T
l,q are uncorrelated; i.e.,

E
[
vl,q zl,q z

T
l,q

]
= E [vl,q] E

[
zl,q z

T
l,q

]
(F.239)

Thus, via Eq. F.211,

E [C5] = 0s×s (F.240)

By the linearity of the expectation operator, it follows that E [C6] satisfies

E [C6] = E
[
(δd)

2 [Σ1/2
] (
zl,q z

T
l,q [vl,q]

2
) [

Σ1/2
]]

= (δd)
2 [Σ1/2

]
E
[
zl,q z

T
l,q [vl,q]

2
] [
Σ1/2

]
(F.241)

Since vl,q and zl,q are independent, it follows that (vl,q)
2 and zl,q z

T
l,q are independent, which

implies that (vl,q)
2 and zl,q z

T
l,q are uncorrelated; i.e.,

E
[
(vl,q)

2 zl,q z
T
l,q

]
= E

[
(vl,q)

2] E [zl,q zTl,q] (F.242)

which, via Eqns. F.212 and F.214, implies that

E [C6] = (δd)
2 [Σ1/2

]( 1

12

)(
1

s
Is
)[

Σ1/2
]
=

(δd)
2

12s
Σ (F.243)

Let the expressions C7, C8, C9, and C10 be defined as

C7 =

[
(d′l)

2

s
+

(δd)
2

12s

]
Σ (F.244)

C8 =
(d′l)

2

s
+

(δd)
2

12s
(F.245)

C9 =
(d′l)

2

s
(F.246)
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C10 =
(δd)

2

12s
(F.247)

Note: C7 = C8Σ, and C8 = C9 + C10.

Collecting terms, E [B1] satisfies

E [B1] = E [C1] + E [C2] + E [C3] + E
[
CT

2

]
+ E

[
CT

3

]
+ E [C4] + E [C5] + E [C6]

= E [C1] + E [C4] + E [C6] = C1 +

[
(d′l)

2

s

]
Σ +

[
(δd)

2

12s

]
Σ

= C1 + C7 =: E
[
x̃l,q x̃

T
l,q

]
(F.248)

which concludes examination of the B1 expression. ■

Subproof: Examining the B2 expression. Let the preceding assumptions and notation hold

(including those of the preceding subproof).

The quantity µ̂ may be expressed as

µ̂ = H

Nsh∑
l′=1

(
Wl′

Nss

) Nss∑
q′=1

x̃l′,q′ (F.249)

Hence, the expression BT
2 may be expanded as follows:

BT
2 = H

Nsh∑
l′=1

(
Wl′

Nss

) Nss∑
q′=1

x̃l′,q′ x̃
T
l,q (F.250)

which implies that the expression E
[
BT

2

]
is given by

E
[
BT

2

]
= H

Nsh∑
l′=1

(
Wl′

Nss

) Nss∑
q′=1

E
[
x̃l′,q′ x̃

T
l,q

]
(F.251)

First, the expression E
[
x̃l′,q′ x̃

T
l,q

]
will be calculated for the case that (l′, q′) = (l, q).
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For this case, Eq. F.248 implies that

E
[
x̃l′,q′ x̃

T
l,q

]
= E

[
x̃l,q x̃

T
l,q

]
= E [B1] = C1 + C7 (F.252)

Second, the expression E
[
x̃l′,q′ x̃

T
l,q

]
will be calculated for the case that (l′, q′) ̸= (l, q).

For this case, the expression x̃l′,q′ x̃
T
l,q may be expanded as follows:

x̃l′,q′ x̃
T
l,q =

[
µ+ (d′l′ + vl′,q′δd)

[
Σ1/2

]
zl′,q′

] [
µ+ (d′l + vl,qδd)

[
Σ1/2

]
zl,q
]T

=
[
µ+ (d′l′ + vl′,q′δd)

[
Σ1/2

]
zl′,q′

] [
µT + (d′l + vl,qδd) z

T
l,q

[
Σ1/2

]]
(F.253)

Let the expressions D0 and D1 be defined as

D0 = (d′l + vl,q δd)µ z
T
l,q

[
Σ1/2

]
=: C2 + C3 (F.254)

D1 = (d′l′ + vl′,q′ δd)µ z
T
l′,q′

[
Σ1/2

]
=:
(
[D0]

T
)∣∣∣

(l′,q′)=(l,q)
(F.255)

In other words, Eq. F.255 implies that expression D1 is equal to expression [D0]
T when the

(l, q) indices in [D0]
T are replaced by the (l′, q′) indices.

Let the expression D2 be defined as

D2 = (d′l′ + vl′,q′ δd) (d
′
l + vl,q δd)

[
Σ1/2

]
zl′,q′z

T
l,q

[
Σ1/2

]
(F.256)

Hence,

x̃l′,q′ x̃
T
l,q = C1 +D0 +D1 +D2 (F.257)

By Eqns. F.233 and F.236, the expression E [D0] satisfies

E [D0] = E [C2 + C3] = E [C2] + E [C3] = 0s×s (F.258)

Since Eq. F.258 holds for an arbitrary index pair (l, q), it also holds for an arbitrary index
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pair (l′, q′). It follows from Eq. F.258 that

E [D1] = E
[
(D0)

T
]
= 0s×s (F.259)

The expression D2 may be expanded further as follows:

D2 =
(
d′l′ d

′
l + d′l′ vl,q δd + d′l vl′,q′ δd + δ2d vl′,q′ vl,q

) [
Σ1/2

]
zl′,q′z

T
l,q

[
Σ1/2

]
= (d′l′ d

′
l)
[
Σ1/2

]
zl′,q′z

T
l,q

[
Σ1/2

]
+ (d′l′ vl,q δd)

[
Σ1/2

]
zl′,q′z

T
l,q

[
Σ1/2

]
+ (d′l vl′,q′ δd)

[
Σ1/2

]
zl′,q′z

T
l,q

[
Σ1/2

]
+
(
δ2d vl′,q′ vl,q

) [
Σ1/2

]
zl′,q′z

T
l,q

[
Σ1/2

]
(F.260)

which, in turn, implies that

D2 = (d′l′ d
′
l)
[
Σ1/2

] [(
zl′,q′

) (
zl,q
)T] [

Σ1/2
]

+ (d′l′ δd)
[
Σ1/2

] [(
zl′,q′

) (
vl,q zl,q

)T] [
Σ1/2

]
+ (d′l δd)

[
Σ1/2

] [(
vl′,q′ zl′,q′

) (
zl,q
)T] [

Σ1/2
]

+
(
δ2d
) [

Σ1/2
] [(

vl′,q′ zl′,q′
) (
vl,q zl,q

)T] [
Σ1/2

]
(F.261)

The [0, 1] and S(s−1) and samples [from which {vl′,q′ , vl,q} and
{
zl′,q′ , zl,q

}
are selected] are

i.i.d. as per Algorithm 1. Since (l′, q′) ̸= (l, q), it follows that
(
vl′,q′ , zl′,q′

)
and

(
vl,q, zl,q

)
are independent. This fact has the following implications:

1. zl′,q′ and zl,q are independent =⇒ zl′,q′ and zTl,q are uncorrelated; i.e.,

E
[
zl′,q′ z

T
l,q

]
= E

[
zl′,q′

]
E
[
zTl,q
]

(F.262)

2. zl′,q′ and vl,q zl,q are independent =⇒ zl′,q′ and vl,q zTl,q are uncorrelated; i.e.,

E
[
zl′,q′ vl,q z

T
l,q

]
= E

[
zl′,q′

]
E
[
vl,q z

T
l,q

]
(F.263)
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3. vl′,q′ zl′,q′ and zl,q are independent =⇒ vl′,q′ zl′,q′ and zTl,q are uncorrelated; i.e.,

E
[
vl′,q′ zl′,q′ z

T
l,q

]
= E

[
vl′,q′ zl′,q′

]
E
[
zTl,q
]

(F.264)

4. vl′,q′ zl′,q′ and vl,q zl,q are independent =⇒ vl′,q′ zl′,q′ and vl,q zTl,q are uncorrelated;

i.e.,

E
[
vl′,q′ zl′,q′ vl,q z

T
l,q

]
= E

[
vl′,q′ zl′,q′

]
E
[
vl,q z

T
l,q

]
(F.265)

Since the expression E [D2] is given by

E [D2] = (d′l′ d
′
l)
[
Σ1/2

]
E
[(
zl′,q′

) (
zl,q
)T] [

Σ1/2
]

+(d′l′ δd)
[
Σ1/2

]
E
[(
zl′,q′

) (
vl,q zl,q

)T] [
Σ1/2

]
+(d′l δd)

[
Σ1/2

]
E
[(
vl′,q′ zl′,q′

) (
zl,q
)T] [

Σ1/2
]

+
(
δ2d
) [

Σ1/2
]
E
[(
vl′,q′ zl′,q′

) (
vl,q zl,q

)T] [
Σ1/2

]
(F.266)

Hence, from from Eqns. F.262, F.263, F.264, and F.265, it follows that

E [D2] = (d′l′ d
′
l)
[
Σ1/2

]
E
[
zl′,q′

]
E
[
zTl,q
] [
Σ1/2

]
+ (d′l′ δd)

[
Σ1/2

]
E
[
zl′,q′

]
E
[
vl,q z

T
l,q

] [
Σ1/2

]
+ (d′l δd)

[
Σ1/2

]
E
[
vl′,q′ zl′,q′

]
E
[
zTl,q
] [
Σ1/2

]
+
(
δ2d
) [

Σ1/2
]
E
[
vl′,q′ zl′,q′

]
E
[
vl,q z

T
l,q

] [
Σ1/2

]
(F.267)

Therefore, via Eqns. F.211, F.213, and F.235, the expression E [D2] satisfies

E [D2] = 0s×s (F.268)

Hence, from Eqns. F.257, F.258, F.259, and F.268, it follows that for the case where
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(l′, q′) ̸= (l, q), the expression E
[
x̃l′,q′ x̃

T
l,q

]
is given by

E
[
x̃l′,q′ x̃

T
l,q

]
= C1 (F.269)

Therefore, Eqns. F.252 and F.269 imply that the expression E
[
x̃l′,q′ x̃

T
l,q

]
is given gen-

erally by

E
[
x̃l′,q′ x̃

T
l,q

]
= C1 +


C7 if (l′, q′) = (l, q)

0s×s otherwise
(F.270)

Since (l′, q′) = (l, q) only once for (l′, q′) in {1, . . . , Nsh} × {1, . . . , Nss}, and since it

can be shown that
Nsh∑
l=1

Wl = cdfχ2
s

(
[dmax]

2) =: S1 =
1

H
(F.271)

(cf. Eqns. F.199 and F.185), it follows from Eq. F.251 that the expression E
[
BT

2

]
satisfies

E
[
BT

2

]
= H

[
Wl

Nss

C7 +

Nsh∑
l′=1

(
Wl′

Nss

) Nss∑
q′=1

C1

]

= H

[
Wl

Nss

C7 +

(
Nsh∑
l′=1

(
Wl′

Nss

) Nss∑
q′=1

1

)
C1

]
=
HWl

Nss

C7 + C1 (F.272)

Since the C1 and C7 matrices are symmetric (as see in Eqns. F.224 and F.244, while noting

Σ is a symmetric matrix), it follows that the expression E [B2] is given by

E [B2] = E
[
(B2)

T
]
=
HWl

Nss

CT
7 + CT

1 =
HWl

Nss

C7 + C1 =: E
[
BT

2

]
(F.273)

which concludes examination of the B2 expression. ■

Let the preceding assumptions and notation hold (including those of the preceding sub-

proofs).

391



Let the expressions E1 and Q1 be defined as

E1
.
= B1 −B2 −BT

2 (F.274)

Q1
.
= T1 − T2 − T T

2 =

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

(
B1 −B2 −BT

2

)
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

E1 (F.275)

Hence, via Eqns. F.248 and F.273, the expression E [E1] is given by

E [E1] = E [B1]− E [B2]− E
[
BT

2

]
= E [B1]− 2E [B2]

= (C1 + C7)− 2

(
C1 +

HWl

Nss

C7

)
= C7

(
1− 2HWl

Nss

)
− C1 (F.276)

The expression B3 is given by

B3
.
= µ̂ µ̂T = H

[
Nsh∑
l′=1

(
Wl′

Nss

) Nss∑
q′=1

x̃l′,q′

]
H

[
Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

x̃Tl,q

]

= H2

Nsh∑
l′=1

Nss∑
q′=1

Nsh∑
l=1

Nss∑
q=1

(
Wl′

Nss

)(
Wl

Nss

)
x̃l′,q′x̃

T
l,q

= H2

Nsh∑
l=1

Nss∑
q=1

Nsh∑
l′=1

Nss∑
q′=1

(
Wl′

Nss

)(
Wl

Nss

)
x̃l′,q′ x̃

T
l,q (F.277)

Based on Eq. F.270, it follows that the expression E [B3] satisfies

E [B3] = H2

Nsh∑
l=1

Nss∑
q=1

Nsh∑
l′=1

Nss∑
q′=1

[(
Wl′

Nss

)(
Wl

Nss

)
C1

]
+H2

Nsh∑
l=1

Nss∑
q=1

[(
Wl

Nss

)2

C7

]

= H2

[
Nsh∑
l=1

Nss∑
q=1

Nsh∑
l′=1

Nss∑
q′=1

(
Wl′

Nss

)(
Wl

Nss

)]
C1 +H2

[
Nsh∑
l=1

Nss∑
q=1

(
Wl

Nss

)2
]
C7 (F.278)

Let the expressions F1 and F2 be defined as

F1 = H2

Nsh∑
l=1

Nss∑
q=1

Nsh∑
l′=1

Nss∑
q′=1

(
Wl′

Nss

)(
Wl

Nss

)
(F.279)
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F2 = H2

Nsh∑
l=1

Nss∑
q=1

(
Wl

Nss

)2

(F.280)

Via Eq. F.271, the expression F1 satisfies

F1 = H2

[
Nsh∑
l=1

Nss∑
q=1

(
Wl

Nss

)][Nsh∑
l′=1

Nss∑
q′=1

(
Wl′

Nss

)]

= H2

[
Nsh∑
l=1

Wl

][
Nsh∑
l′=1

Wl′

]
= H2 1

H2
= 1 (F.281)

It follows that the expression E [B3] is given by

E [B3] = C1 + F2C7 (F.282)

Via Eqns. F.222 and F.275, it follows that the expression B satisfies

B = Q1 + T3 =

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

(E1 +B3) (F.283)

which, in turn, implies (via Eqns. F.276 and F.282) that the expression E [B] is given by

E [B] =

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

(E [E1] + E [B3])

=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

[
C7

(
1− 2HWl

Nss

)
− C1 + C1 + F2C7

]

=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

[(
1− 2HWl

Nss

)
+ F2

]
[C7] (F.284)

Consequently, it follows that from Eqns. F.244 and F.245 that E [B] is proportional to Σ,
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specifically, as given by

E [B] =

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

[
1− 2HWl

Nss

+ F2

]
[C8Σ]

=

(
Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

[
1− 2HWl

Nss

+ F2

]
[C8]

)
[Σ] (F.285)

Let the constant G be defined as

G
.
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

[
1− 2HWl

Nss

+ F2

]
[C8] (F.286)

It follows that the expression B/G is an unbiased estimator of Σ; i.e.,

E
[
B

G

]
=

1

G
E [B] =

1

G
GΣ = Σ (F.287)

Therefore, the remainder of this proof is concerned with simplifying the expression G.

Subproof: Simplifying the G expression. Let the preceding assumptions and notation hold

(including those of the preceding subproofs).

Note:
Nss∑
q=1

(
Wl

Nss

)2

=
(Wl)

2

Nss

(F.288)

which, via Eq. F.165, implies that

Nsh∑
l=1

Nss∑
q=1

(
Wl

Nss

)2

=
1

Nss

Nsh∑
l=1

(Wl)
2 =

S2

Nss

(F.289)

Therefore, via Eq. F.280, the expression F2 is given by

F2 = H2

Nsh∑
l=1

Nss∑
q=1

(
Wl

Nss

)2

=
H2 S2

Nss

(F.290)

Hence, F2 is a constant.
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In order to highlight the dependence of the expression C9 on l (see Eq. F.246), it will

be denoted as C9(l). Additionally, C10 is a constant (see Eq. F.247).

Hence, the expression G may be expanded as follows:

G
.
=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

[
1− 2HWl

Nss

+ F2

]
[C8]

=

Nsh∑
l=1

(
Wl

Nss

) Nss∑
q=1

[
1− 2HWl

Nss

+ F2

]
[C9(l) + C10]

=

Nsh∑
l=1

Wl

[
1− 2HWl

Nss

+ F2

]
[C9(l) + C10] (F.291)

which implies that the expression G may be expanded further, as given by

G =

Nsh∑
l=1

[Wl (1 + F2)C10] +

Nsh∑
l=1

[Wl C9(l) (1 + F2)]

+

Nsh∑
l=1

[
W 2

l

(
−2H C10

Nss

)]
+

Nsh∑
l=1

[
W 2

l C9(l)

(
−2H

Nss

)]
(F.292)

Note: Eqns. F.166, F.167, F.168, F.205, F.207, F.246 and F.247 imply that

Nsh∑
l=1

Wl C9(l) =

Nsh∑
l=1

Wl
(d′l)

2

s
=

1

s

Nsh∑
l=1

Wl

([
l − 1

2

]
δd

)2

=
1

s

(
dmax

Nsh

)2 Nsh∑
l=1

Wl

(
l − 1

2

)2

=: S3 (F.293)

Nsh∑
l=1

W 2
l C9(l) =

Nsh∑
l=1

W 2
l

(d′l)
2

s
=

1

s

Nsh∑
l=1

W 2
l

([
l − 1

2

]
δd

)2

=
1

s

(
dmax

Nsh

)2 Nsh∑
l=1

W 2
l

(
l − 1

2

)2

=: S4 (F.294)

C10 =
(δd)

2

12s
=

1

12s

(
dmax

Nsh

)2

=: D1 (F.295)
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Therefore, via Eqns. F.164, F.165, and F.291, the expression G is given by

G = (1 + F2)C10

Nsh∑
l=1

[Wl] + (1 + F2)

Nsh∑
l=1

[Wl C9(l)]

+

(
−2H C10

Nss

) Nsh∑
l=1

[
W 2

l

]
+

(
−2H

Nss

) Nsh∑
l=1

[
W 2

l C9(l)
]

= (1 + F2)C10 S1 + (1 + F2)S3 +

(
−2H C10

Nss

)
S2 +

(
−2H

Nss

)
S4 (F.296)

Hence, the expression G is given by

G = (1 + F2) (C10 S1 + S3) +

(
−2H

Nss

)
(C10 S2 + S4) (F.297)

Via Eqns. F.290 and F.295, the expression G is given by

G =

(
1 +

H2 S2

Nss

)
(C10 S1 + S3) +

(
−2H

Nss

)
(C10 S2 + S4)

=

(
1 +

H2 S2

Nss

)
S3 + (C10 S1) +

H S2

Nss

C10 +−
2H S2

Nss

C10 −
2H

Nss

S4

=

(
1 +

H2 S2

Nss

)
S3 −

2H

Nss

S4 +D1

(
S1 −

H S2

Nss

)
(F.298)

which concludes simplification of the G expression. ■

Since the G expressions listed in Eqns. F.200 and F.298 are in agreement, the result

follows from Eq. F.202 and F.287.

As can be seen in Figure F.1, the value of the G expression is close to 1, as calculated

numerically through direct application of Eq. F.200 (as well as its corresponding interme-

diate constants).
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Figure F.1: Values of |G− 1| as a function of MSS sample dimension (s) and number of
MSS sample shells (Nsh): (blue) G < 1, (red) G > 1.
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[27] U. E. Núñez Garzón and E. G. Lightsey, “Relating collision probability and miss
distance indicators in spacecraft formation collision risk analysis,” in 2020 AAS/AIAA
Astrodynamics Specialist Conference, ser. AAS 20-528, San Diego, CA: Univelt,
Inc., Aug. 2020, pp. 3853–3872.
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from grades Pre-K through 12th (1999-2012), where he was high school valedictorian in

Dec. 2012, and where he received awards in the Panamanian Physics Olympics competition

(Gold Medal, 2010; Silver Medal, 2012).

Ulises attended the Georgia Institute of Technology (Georgia Tech) for his undergrad-

uate degree (2013-2017) with a full scholarship as the personal scholar of Mr. Juan Car-

los Varela, Vice-President of Panama (2009-2014) and President of Panama (2014-2019).

Ulises received his B.S. (2017; Highest Honors) and M.S. (2020) degrees in aerospace

engineering from Georgia Tech. Ulises’ industry experience includes aeronautics (Copa

Airlines, and Boeing Commercial Airplanes) and space (Odyssey Space Research, LLC)

work experience.

While at Georgia Tech, Ulises has been a member of the Dr. E. Glenn Lightsey Re-

search Group within the Georgia Tech Space Systems Design Lab (SSDL). Ulises’ research

interests are in the areas of astrodynamics and spacecraft guidance, navigation, and control

(GN&C). His current work encompasses applications of measure and probability theory

and quasi-random number sequence generation to spaceflight mechanics, specifically, in

the context of the dynamics of spacecraft relative motion. These techniques are applied

to the process of collision risk management in spacecraft formations – specifically, in the

areas of collision risk quantification, collision risk interpretation and decision-making, and

in the ascertaining of well-definedness and computability of new collision risk indicators.

During his time at the SSDL (2015-2023), Ulises has also participated in the following

activities outside of his doctoral thesis work: mission operations for the Bevo-2/AggieSat-

4 missions, satellite range scheduling optimization research, early mission concept for-

416



mulation for the VIrtual Super Optics Reconfigurable Swarm (VISORS) mission, mission

concept formulation for the Formation Flying Radio Astronomy group within the Preci-

sion Aggregated Space Systems (PASS) initiative of the Georgia Tech Research Institute

(GTRI), and lab instruction for the Space Systems undergraduate design capstone course

within the Daniel Guggenheim School of Aerospace Engineering.

Ulises has been married to Amanda (née Remus) since Aug. 3, 2019, and they currently

reside in Atlanta, GA, where they are members of Christ Covenant Church. Ulises and

Amanda enjoy serving in the children’s ministry at Christ Covenant and participating in

the Brooks’ Community Group, of which they are active members.

417


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Thesis Abstract
	1 | Introduction
	Spacecraft formation flying (SFF) – definition and benefits
	Nature of collision risk in spacecraft formation flying (SFF)
	Overview of the collision risk management (COLRM) process in spacecraft formation flying (SFF)
	Contributions of this investigation
	Dissertation outline
	Intended audience

	2 | Background
	Acronyms
	Nomenclature
	Notation
	Definition of collision events
	Probabilistic collision risk indicators
	Distance-based collision risk indicators
	Hybrid collision risk indicators
	Computational test cases

	3 | Foundational work in spacecraft formation collision risk (Part 1) – Existence of probability density function (pdf) for Euclidean norm of finite-dimensional random vector 
	Introduction
	Background
	Theory
	Applications
	Conclusion

	4 | Foundational work in spacecraft formation collision risk (Part 2) – Well-Definedness and Computability of Joint-Time Stochastic Collision Risk Measures
	Introduction
	Measurability of a-JTC sets and computability of a-Pc measures
	Applicability of a-JTC and a-Pc results in spaceflight mechanics
	Equivalence of a-Pc with respect to open vs. closed a-norm collision regions
	Conclusion

	5 | Adequacy of SFF probabilistic collision risk indicators
	Overview of the probability dilution of SFF probabilistic collision risk indicators
	On the usability of the IPC for SFF COLRM
	Conceptual illustration of IPC/Pc dilution (one-dimensional relative position)
	Asymptotic and transient IPC/Pc probability dilution behavior (two-dimensional relative position)
	On miss distance-based statistical inference models for SFF COLRM
	Summary

	6 | Spacecraft formation collision risk quantification (Part 1) – Stochastic Convergence of Sobol-based Mahalanobis Shell Sampling (MSS) Collision Probability Computation 
	Introduction
	Background
	Theory
	Implementation – Test methodology for MSS stochastic convergence properties
	Results and discussion
	Conclusion

	7 | Spacecraft formation collision risk quantification (Part 2) – Distance-based SFF collision risk indicators
	Introduction
	Notation adjustments for this Chapter
	Minimum Euclidean distance from origin to Mahalanobis contour – Theory
	Minimum Euclidean distance from origin to Mahalanobis contour – Computational algorithm in R3
	Simulation Cases, Results and Discussion
	Minimum Euclidean distance from origin to Mahalanobis contour – Effectiveness of R3 algorithm
	Summary

	8 | Spacecraft formation collision risk interpretation and decision making (Part 1) – Relating collision probability and separation indicators in spacecraft formation collision risk analysis 
	Introduction
	Background
	Theory
	Results and discussion
	Conclusion

	9 | Spacecraft formation collision risk interpretation and decision making (Part 2) – Sensitivity of separation indicators in spacecraft formation collision risk analysis 
	Introduction
	Background
	Theory
	Methodology
	Results and discussion
	Conclusion

	10 | Cylindrical orthogonal norm-based stochastic collision risk measures in spacecraft formation flying
	Introduction
	Background
	Theory
	Results and discussion
	Conclusion

	11 | Status of investigation and future work
	12 | Concluding remarks
	Dissertation problem statement
	Overview of findings and implications of this investigation
	Final remarks

	Appendices
	A | Clohessy-Wiltshire (CW) dynamics, geometry, and test cases
	Clohessy-Wiltshire (CW) dynamics and geometry
	CW simulation cases
	Effects of two-body relative orbital dynamics on SFF probabilistic collision risk indicators

	B | Monte Carlo Stochastic Convergence Properties
	Monte Carlo sample estimators of mean and covariance
	Monte Carlo errors in sample mean and covariance
	Expressions for Monte Carlo mean-square error (MSE) in sample mean
	Expressions for Monte Carlo mean-square error (MSE) in sample covariance
	Why study in Monte Carlo convergence in the RMSE sense
	Probability measure estimators in the Monte Carlo sense
	Monte Carlo estimators for the instantaneous probability of collision (IPC)

	C | Monte Carlo Stochastic Large Sample Management
	Introduction
	Notation adjustments for this Chapter
	Monte Carlo (MC) sample requirements
	MC sample propagation and data reduction process
	Extensions of the current MC sample management framework methodology
	Discussion of MC sample methodology application

	D | Clohessy-Wiltshire (CW) vector and matrix norm
	Introduction
	Clohessy-Wiltshire (CW) vector and matrix norm – definition
	Clohessy-Wiltshire (CW) vector and matrix norm – deterministic and MSE convergence rates
	Discussion on application of the CW vector and matrix norms 

	E | Proofs related to Foundational work in spacecraft formation collision risk
	Measurability of a-JTC sets
	Computability of a-Pc measures

	F | Proofs of Mahalanobis Shell Sampling (MSS) Theoretical Results
	Preliminaries
	Mahalanobis Shell Sampling (MSS) – Asymptotically Unbiased Theoretical Results
	Mahalanobis Shell Sampling (MSS) – Unbiased Theoretical Results

	References
	Vita

