
INTEGRATED TASKING, PROCESSING, AND ORBIT DETERMINATION FOR
OPTICAL SENSORS IN A SPACE SITUATIONAL AWARENESS FRAMEWORK

A Dissertation
Presented to

The Academic Faculty

By

Timothy S. Murphy

In Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology

May 2018

Copyright c© Timothy S. Murphy 2018



INTEGRATED TASKING, PROCESSING, AND ORBIT DETERMINATION FOR
OPTICAL SENSORS IN A SPACE SITUATIONAL AWARENESS FRAMEWORK

Approved by:

Dr. Marcus J. Holzinger, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. E. Glenn Lightsey
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Eric N. Johnson
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Brien R. Flewelling
Chief SSA Architect
ExoAnalytic Solutions

Dr. Chris Sabol
Researcher
Air Force Research Lab

Date Approved: March 28, 2018



“If we accept the person we are when we fall, the journey ends. That failure becomes our

destination. To love the journey is to accept no such end. I have found, through painful

experience, that the most important step a person can take is always the next one.”

Brandon Sanderson
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SUMMARY

Space situational awareness (SSA) depends on having networks of telescopes taking

large numbers of observations of myriad space objects to perform orbit estimation and ob-

ject characterization. This involves many engineering problems, including choosing search

patterns to look for objects, choosing telescope parameters to take the optical data, pro-

cessing images to look for objects, and turning that information into orbit estimates. In the

current state of the art, these technical problems are often treated as insular challenges, and

are solved without regard to each other. This dissertation looks at telescope tasking, image

processing, and statistical orbit estimation as a single complete problem. This work first

analyzes the telescope tasking problem on advanced astrodynamic priors. Next, telescope

tasking is analyzed with respect to specific image processing and detection methods. A

specific estimation algorithm is used to optimize detection sensitivity. Finally, advanced

astrodynamic priors are used to inform further detection methods. The contributions in

this work find ways to leverage knowledge of the full SSA problem to make significant

improvements on modeling and solving the individual problems. The end result is a more

complete SSA system and data stream.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

As the use of space continues to grow, more man-made debris will accumulate in earth or-

bit. This has lead to the growth of research in Space situational awareness (SSA), defined

as obtaining all knowledge relevant to the space domain as needed to allow spacecraft and

their operators to make informed decisions [1]. One primary mission of SSA is to effi-

ciently identify orbits of any and all objects, regardless of size, orbit regime, and location.

The Joint Space Operations Center (JSpOC) under U.S. Strategic Command operates the

Space Surveillance Network (SSN) which tracks, as of writing this, upwards of 22,000

space objects of diameters greater than 10 cm. This number is increasing all the time. The

SSN takes around 400,000 observations each day with radar, optical, and space-based sen-

sors [2] 1. The current and future growth of radar systems will allow much smaller objects

in low altitude orbits to be tracked, greatly expanding the current catalog of objects [3] 2.

In particular, the space fence is expected to track objects the size of a marble and increase

the number of objects tracked in low Earth orbit (LEO) by an order of magnitude [4]. At

higher altitudes, radar is difficult to use effectively, so operators rely on electro-optical

sensors (EOS) to form orbit estimates [5]. These range from large, expensive, highly sen-

sitive EOS to smaller, more cost efficient networks of EOS [6]. There is also a growing

interest in utilizing space-based optical sensors as a new means of collecting data [7] [8].

This includes the Space-Based Space Surveillance (SBSS) system and GEO Space Situa-

tion Awareness Program (GSSAP) which are satellite constellations designed specifically

to track other satellites. This dissertation primarily focuses on optical sensors, but many

1space-track.org (accessed March, 2018)
2https://www.leolabs.space/about (accessed March, 2018)
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of the techniques can be extended to other measurement frameworks. This work in gen-

eral focuses on probing questions about how optical systems can and should be used, as

opposed to proposing specific techniques to solve specific situations. The growing number

of sensors in SSA can solve some of the many problems we face, but brute force coverage

should not outweigh fundamental research on how these sensors should be utilized.

The importance of fundemental research into how to perform SSA cannot be under-

stated. Events like the Iridium-Cosmos collision highlight not only the possibility of future

collisions but the potential for new space debris to be created [9]. At higher altitudes, small

regions of advantageous orbits, in particular geostationary orbits (GEO), continue to be

prioritized. Debris at GEO altitude is viewed as a major problem due to the unpredictable

dynamics of high area-to-mass ratio (HAMR) objects [10], the dense arrangement of satel-

lites, and the high economic value of satellite orbit slots [11]. The importance of this work

is tied to how the United States of America, along with much of the rest of the world, relies

on satellites for communication, weather forecasting, agriculture, and fundamental Earth

science [11]. Because these space regions are highly important and can be easy to disrupt,

there exists an obvious military interest in this research as well [12].

However, the current SSN system has several areas in need of expansion. The Air

Force, among others, has expressed a desire to move toward “Trusted, Highly Autonomous

Decision-Making Systems” [13]. Much of the previous design work on optical systems

has come out of a collaboration of astrodynamics specialists and astronomers, while the

community of researchers working solely in SSA is a small but growing community. This

means that the optimal arrangement for an optical system designed specifically for SSA is

still being actively researched [14]. Such design problems rely on and inform research and

analysis into how optical sensors can, could, and should be used to achieve objectives. For

EOS, the problem is not lack of detections but excess of detections. Exquisite sensors scan

the sky and collect detections which do not match an object in the SSN, due to both the

clutter of space objects and the difficulty of correlation [15]. However, these observations
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do not provide full orbits, but rather large admissible regions in which a hypothesized orbit

could exist. The operator can either task a sensor on this object for a large period of time

while an orbit is estimated, or, more often, leave the detection as an uncorrelated track

(UCT). Attempting to correlate two UCTs blindly is an active area of research but often

requires high performance computing [16].

The other side of this problem involves the types of sensors that are used. On one end,

there are exquisite, expensive sensors at premium locations such as the 3.6 meter telescope,

Advanced Electro-Optical System (AEOS), at AMOS [17, 18]. While such sensors can of-

ten detect many exceedingly small objects, there will never be enough of these sensors to

make the follow-up problem practical. On the other end, there are inexpensive sensors and

sensors in areas with light pollution. The follow-up performance of less exquisite sensors

can be improved with sufficiently precise priors. Specifically, Raven-class telescopes are

built with commercial off-the-shelf parts and deployed across the globe in varying condi-

tions for comparatively low costs [6]. Such sensors can be deployed in large networks,

but can struggle to detect exceedingly dim objects at a reliable and precise cadence. An

advantage provided by large networks of sensors is the ability to quickly obtain range esti-

mation through geometrically diverse sensors [19]. Obtaining this range estimate requires

enabling the tasking of two sensors on a single unknown object without an a priori range

estimate.

Coordination of the diverse sensors available in SSA is difficult. At the most basic

level, this is knowing when and how follow-up can and should be performed. For less

exquisite EOS, this means maximizing detection sensitivity in follow up situations. For

highly exquisite EOS, this means optimizing how the sensor is tasked to maximize detec-

tion opportunities. Understanding follow-up tasking requires knowing how orbit estimation

is initialized and how statistical priors evolve over time. Maximizing follow-up detection

sensitivity requires understanding how tasking a sensor interacts with detection methods.

All of this work requires understanding how to make sensitive detections on point sources
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in images, with considerations as to what SSA images look like.

What this leads to is a vision for SSA operations that relies on an interconnected frame-

work of sensor tasking, image processing, astrodynamics, and estimation. While a wealth

of research in each of these topics applied to SSA exists, insufficient research has been done

considering the problem as a whole. Detection methods from the field of computer vision

have been applied to SSA images, but have not been specialized to the unique properties

of a satellite point source in an image. EOS tasking that inherently considers the dynamics

of a statistical prior of a space object is a new area of research. EOS data is taken with-

out consideration to the detection methods that extract information from an image. This

dissertation proposes and solves a more complete SSA problem.

1.1.1 Broad Categories of Search

This section provides a broad definition of search. Search in this context is the process of

looking for an object, or group of objects, which is thought to exist within a set of orbits,

known as the “search set”. The set of orbits could be defined through a variety of meth-

ods. In a lost object scenario, the prior probability density function (PDF) that takes into

account conservative uncertainty in dynamics, can have a search set defined directly by

bounding the PDF. Compared to assuming a Gaussian distribution, this method is preferred

on dynamics which are difficult to quantify. Set-based methods, such as an admissible re-

gion, easily define a search set [20]. Objects which have performed an unknown maneuver

can be used to define a set of orbits by providing a limiting bound on total fuel expendi-

ture [21] [22]. Object maneuver limits can also be applied to other anomalous events such

as a satellite break up. Finally, a search set can be defined more broadly as a region of orbits

where objects may exist for object discovery methods. Furthermore, this definition is not

restricted to man-made space objects; search for particular classes of asteroids, search in

air or sea domains, and a variety of other problems all fit within this framework. Here is

acknowledged two categories in which the search described in this dissertation would be
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useful.

The first is the problem of how to search a volume of state space to observe both known

and unknown objects in it. A common example is to attempt to maintain custody of objects

in or near GEO, by tasking a sensor to constantly scan through that region. An example of

a more unique version of this set, which is explored in Chapter 6, is asset protection. This

is done by defining the set of intercept orbits and searching it to assure it does not contain

a hostile threat. There are a variety of other ways to pose this problem, but the common

theme is constantly searching a large set of orbits to find previously unknown objects.

The second version of search is to perform follow-up on an object(s) when its location

is not entirely known. A prime example of this is the follow-up on an object with a prior

characterized by an admissible region. This can be broadened to searching for debris after

a break-up event, searching for an object that has maneuvered, and reacquiring a catalog

object with sufficiently large uncertainties. Note that such uncertain priors tend to spatially

diverge over time, causing a cascading problem of difficult-to-model uncertainty growth.

If the search region for this object is large, the search strategies may be similar to that of

the custody problem, while for a small search region it becomes trivial.

1.2 Thesis Statement

Combined integration of advanced modeling methods for astrodynamic priors,

high-sensitivity point source detection methods, and optical data collection strategies

improves each individual method by leveraging an analysis of the combined problem.

To summarize, this dissertation explores the following. Coordinating a large network of

EOS for an effective SSN requires several novel capabilities. The first piece of this work

involves the search set, or the set of orbits which may contain relevant object(s). A tasking

algorithm is needed to optimally choose a sensor trajectory through the sky that a sensor
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should take to search a set of orbits. Because of the malleable definition of a set, this allows

EOS to be tasked on a wide variety of search and reacquisition problems. Next, when taking

actual data the sensor exposure time, slew rate, and campaign length need to be chosen to

optimize the quality of image data. These tasking parameters are chosen with respect to

the detection and estimation algorithms themselves, which all relate back to a maximum

likelihood method. Next, the object detection algorithms should be as sensitive as possible.

This enables a larger network of lower cost telescopes to be deployed, and ensures that

performance is robust to light pollution, enabling new telescope locations. These types of

networks are needed to allow the kinds of sensor architectures which support interesting

handoff and reacquisition problems. Finally, to make proper telescope communication,

hand-off, and long term reacquisition possible, detection algorithms should utilize any prior

information (search set) on a particular object or class of objects for more sensitive and

efficient detection. This supports hand-off between arbitrary locations and longer delay

times before reacquisition from the detection side of the problem. Figure 1.1 gives an

outline of how these systems fit into one larger plan.

1.3 Related Work

This section details prior work on the different subjects explored in this dissertation.

A variety of sensor tasking strategies exist, which look at tasking in terms of catalog

upkeep and track maintenance [23–26]. These techniques tend to look at the strategic

tasking problem, that is, how to use a network of sensors to look at a catalog of objects.

These methods often do not account for shape or size of the region or prior being searched.

This dissertation looks to analyze the tactical tasking problem: given a prior on an object

and a sensor, how should the sensor search for the object? In particular, this work extends

a particle-based search strategy proposed by Hobson [27–29]. Existing methods are based

on a greedy maximum probability observation technique, which attempts observing the

densest region of probability. This dissertation expands this methodology by analyzing
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Figure 1.1: Dissertation overview. Green boxes are work included in this dissertation while
blue boxes represent exterior methods which would need to work in conjunction with this
work. Red boxes label each of the four contributions.

a time-optimal version. Once an observation is made, there exist a variety of techniques

for correlating observations with a point in the search set [30, 31]. This problem is also

relevant to allowing non-collocated EOS to observe a single object simultaneously for fast

orbit determination [19]. This work can also be combined with modern models for prior

information in space objects such as sequential Bayesian filters [32, 33].

In typical SSA data a series of stationary or moving point sources exist in an image over

an integration time. The image shows each point or line blurred by a point spread func-

tion, a combination of the airy disc diffraction pattern and other random processes such

as atmospheric blur, camera jitter, and photo-electronic bleeding [34–36]. These processes

can produce varied spatial distributions depending on the specific situation, but are often

approximated as Gaussian [37, 38]. Astrometry is the process of locating where a point

source exists in the field of view of a sensor. This is a relevant problem in SSA, astronomy,

microscopy, and other fields, and is accomplished through various techniques including

thresholding, calculating a centroid, or maximum likelihood estimation. In particular, the

maximum likelihood detection method is seen as a statistically rigorous method for making
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sensitive detection [39–41] and has grown in popularity recently for SSA applications [42].

This method incorporates pixel-to-pixel data in the images and works along the same prin-

ciples as a matched filter [43]. In astronomy, from which many SSA methods are derived,

object motion is virtually nonexistent and limits on exposure time are less critical. For SSA,

good estimates on both space object position and velocity in the image plane are desired.

In this work, astrometry then refers to measuring the position of an object in an image and

the velocity of an object through the image. Image data can also be used for categorization

and intent characterization of space objects. This work looks at point sources, where the

only information is how much light is received from an object. Light curve inversion is

a newer method in SSA which looks at identifying the shape and properties on a space

object-based on the light curve [44,45]. These techniques are based on methods developed

for identifying the approximate shape of asteroids [46, 47]. This can look at trying to esti-

mate the shape model of a completely unknown object. Previous work also suggests that

with a shape model, a light curve can indicate the type of mission the object may have [48].

For all of these missions, the data input into the estimation technique is time-resolved flux

information. These methods should be improved by both denser time resolution of the flux

and more accurate estimation of the flux values. The optimization in this work focuses on

these two factors.

There are a multitude of methods for detecting and tracking low signal-to-noise ra-

tio (SNR) space objects. Examples include multi-object filtering [49], multiple hypothe-

sis testing [50], multi-frame matched filters [51], track-before-detect, [52], shift and add

methods [53], and more. Due to the non-linear equations of motion and perturbations, gen-

eral methods derived from Bayesian filtering [54] have become popular for space object

tracking and orbit determination [32, 33]. Space is represented as a 6 dimension or higher

state space, making such particle-based filters computationally difficult to implement [55].

This work instead looks at kinematic frame-to-frame tracking in images which allows a

reduced dimensionality in the state space. The visual tracking method in this work is de-
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rived from finite set statistics (FISST) based filters [49]. In particular, recent pushes in

FISST filter theory in the field of computer vision have looked at multi-target tracking in

images [42, 56, 57]. The likelihood operates directly on pixel data and requires no explicit

detection algorithm. Very recently, the SSA community has begun to look at FISST fil-

ters [58] and visual tracking [42]. FISST methods used in this dissertation are intended to

build on existing work in the field and to better complement the needs in SSA.

With prior information on an object, methods like matched filtering can enable lower

SNR detections [59]. The matched filter (MF) originates in image and signal processing

as a way to maximize SNR [60]. It has been applied to dim asteroid detection and multi-

frame moving target detection [51, 61]. A MF correlates a known or hypothesized signal

structure with a measured image to provide a single value result. Work on a MF incor-

porating a binary hypothesis test is the basis for the likelihood function proposed in this

dissertation [62]. The velocity filter hypothesizes signal structure with linearized dynamics

over an EOS exposure time [59]. If the underlying signal is unknown, a brute force bank

of velocity filters can be used [63]. The first problem with the past use of the MF in SSA

applications is the dynamics agnostic approach. Linearization is not correct when sensors

contain significant rotation or distortion. More importantly, prior knowledge is treated with

a binary availability. Many SOs which either do not exist in the space object catalog or

have not received updating measurements for long time periods may not be accurately de-

scribed by their catalog entry or other prior information. Instead, modern models for prior

knowledge via the admissible region and Gaussian mixture models should be incorporated

into the MF framework [33,64,65]. These prior PDFs can be non zero over large ranges of

orbital positions, implying any MF-based on them should be a bank of plausible matched

filters. This statistically rigorous framework can and should be the basis for hypothesis sig-

nals in an MF or MF bank. This work also draws from a different branch of mathematics to

partition admissible region-like priors. A good discussion of metric-based search and par-

tition methods can be found in the text Similarity Search: The Metric Space Approach by
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Zezula et al. [66]. The broad approach falls into two categories, ball partition (BP) methods

and generalized hyperplane tree (GHT) methods [67,68]. The literature is rich with imple-

mentations of these methods [69, 70]. Work has also been done to incorporate hypothesis

testing into SSA MFs, which is included [62]. The work in this dissertation shows how to

use partial orbit knowledge to generate hypothesized signals expected in images.

The remaining discussion here looks at ongoing and near-term future work that supports

this dissertation.

The admissible region is talked about throughout this introduction and the entire disser-

tation. In particular it is a major driving inspiration and justification of developing and using

a search set or set of orbits. The admissible region when used for estimation techniques

is not a PDF but an uniformative prior [71]. This implies that doing a direct likelihood

update on an admissible region requires carefully defining what is being updated. Con-

current work to this dissertation has shown that a promising way to update an admissible

region is through Dempster Schafer belief and plausibility [72]. As of writing this, these

techniques are in an early stage of development and cannot be wrapped into this disserta-

tion. However there are some interesting avenues for future work, such as how belief and

plausibility interact with a detectionless likelihood, and how images which only partially

observe the search set update belief and plausibility. Alternatively, many of these problems

can be sidestepped by using admissible region intersection techniques [30].

The tasking problem in this paper is treated as a tactical tasking problem, that is, given

a sensor and target, how should the sensor search for the target. In reality, this problem is

informed by, and directly affects, the strategic tasking problem wherein a decision maker

chooses from many options which sensor observes which target. In this situation, con-

current work is also on-going [25]. The work in this dissertation provides analytical tools

which would support how the strategic tasking problem can be solved. The strategic and

tactical tasking form one interconnected problem which, due to the developing nature of

both, cannot be sufficiently detailed in this dissertation. This provides an excellent avenue

10



for future work.

1.4 Specific Contributions

1.4.1 Optical Sensor Tasking on an Advanced Astrodynamic Prior (C1)

This contribution involves both advanced astrodynamic models and sensor tasking. Sensors

must be tasked to utilize advanced astrodynamics models with orbit determination in mind.

Some strategies are based on maximizing information gain in a single image; many of these

strategies ignore the case where an entire prior cannot be observed in a single image. This

work builds off a particle-based search strategy proposed by Hobson [27] by creating a

tasking framework for set-based priors. In particular this can represent tasking an EOS to

reacquire an object observed by a previous EOS at an arbitrary but different location. This

approach is a generalization of the follow-up problem, allowing any desired geometry to

be utilized, but also incorporates more general search problems in the same framework. A

prior, represented as discrete point-wise approximation, can be analyzed in terms of how it

evolves in the measurement frame of the sensor over time. The search set is analyzed by

modeling set area growth with a Taylor series and analytic derivatives. The work here goes

on to achieve the tasking in a time optimal manor, by targeting areas of maximum growth.

This contribution then looks ahead at how updates occur, by partitioning the prior into an

observed and unobserved part. This partial update closes the loop, allowing the tasking

strategy to feed into the orbit update.

1.4.2 Optical Sensor Parameter Optimization (C2)

Sensor tasking and detection methods are combined by optimizing the observation param-

eters to maximize astrometric and photometric information. When observing a certain

region of orbits, the slew rate, exposure time, number of frames, and possibly other sensor

parameters must be chosen. This chapter develops a framework of how to choose tasking

parameters for taking electro-optical SSA data. Specific reward functions are developed

11



for position, velocity, and brightness of a point sources. This includes a novel derivation

of point source velocity information and time varying photometry aliasing bias. Each of

these reward functions are extended to a streaking object as well. Timing uncertainty is

incorporated into the reward functions. The gradients with respect to exposure times are

developed for all reward functions to ease analysis and optimization. Several constraints on

how data can be taken are included to ensure optimization solutions are realistic. Finally,

simulation work provides a blueprint on how to solve such optimization problems while

provided insight into what general properties an optimal campaign has. The reward func-

tions are based on a maximum likelihood estimator which is closely tied to the likelihood

used in subsequent chapters for detection.

1.4.3 High Sensitivity Detections with Finite Set Statistics (C3)

Advanced statistical techniques, in particular finite set statistics, are leveraged to enable

dim object detection in images in an uncued manor. The computer vision community has

developed a range of more sensitive tracking methods [73], which are referred to as visual

tracking or detectionless tracking, which have recently been adapted by the SSA commu-

nity [42]. The third contribution in this thesis takes detectionless visual tracking methods

and adapts them to SSA images. This contribution develops a likelihood function which

allows such detectionless methods to be used for SSA missions. These methods, in im-

plementation, are non-linear particle-based methods which can be done blindly or initiated

with a prior. Analysis is performed to develop a birth model for the visual tracking tech-

nique which directly support SSA requirements. The technique is extensively validated on

real image data of varying quality.

1.4.4 High Sensitivity Detections on an Advanced Astrodynamic Prior (C4)

Performance of detection algorithms can be increased when an advanced astrodynamic

prior is used [74], which the final contribution analyzes. Prior knowledge in the form
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of a set of orbits can be used to interrogate an image for a particular object, allowing

highly sensitive tracking and direct orbit determination. This last chapter uses the prior

set to directly define a likelihood function in an image. Set partitioning methods are used

to minimize the number of templates used to search an image. The SNR limits of this

detection method are explored in simulation, and are shown to be much lower than uncued

techniques in the previous chapter. The likelihood is also used as a direct update on the

prior set, allowing direct orbit determination.

1.4.5 List of Major Contributions

The completed work provides insight into how to vertically integrate an SSA system. The

first contribution (C1) is the design of a sensor tasking strategy based on advanced astro-

dynamics techniques, providing the connection seen in Figure 1.2. This work provides a

rigorous and general approach, based on optimization techniques, to task a sensor to search

for a particular object or region. The second contribution (C2) presents a method that inte-

grates detection methods with how sensors are tasked, as shown in Figure 1.2. Specifically,

this contribution develops a multi-objective optimal approach to choosing sensor tasking

parameters. The third contribution (C3) describes how to adapt modern visual tracking

methods into an SSA detection algorithm. This contribution provides a building block for

follow-on research. The final contribution (C4) describes how modern detection methods

can be integrated with advanced astrodynamics methods to obtain increased performance

for both the detection method and the orbit determination process. This contribution is the

link between high sensitivity detection used in contribution 1 and orbit parameter estima-

tion, seen in Figure 1.2.

1.4.6 List of Publications

The peer reviewed journal articles associated with this dissertation are as follows:

J1 Murphy, T. S., Holzinger, M. J., and Flewelling, B., “Space Object Detection in Im-
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Figure 1.2: Primary contributions solve the broad and interconnected problem of detection,
estimation and tasking

ages Using Matched Filter Bank and Bayesian Update”, AIAA Journal of Guidance,

Control, and Dynamics, vol. 40, no. 3, 2017, pp. 497-509

J2 Murphy, T. S., Holzinger, M. J., and Flewelling, B., “Visual Tracking Methods for

Improved Sequential Image-based Object Detection”, AIAA Journal of Guidance,

Control, and Dynamics, vol. 41, no. 1, 2018, pp. 74-87

J3 Murphy, T. S., Holzinger, M. J., Luu, K. K., and Sabol, C., “Generalized Minimum-

Time Follow-up Approaches Applied to Electro-Optical Sensor Tasking”, IEEE Trans-

actions on Aerospace and Electronic Systems, 2018, [Submitted]

J4 Murphy, T. S., and Holzinger, M. J., “Optimal Selection of Telescope Parameters for

Space Situational Awareness Astrometry and Photometry”, IEEE Transactions on

Aerospace and Electronic Systems, 2018, [to be Submitted, April 2018]

The conference papers and presentations associated with this dissertation are as follows:

C1 Murphy, T. S., Holzinger, M. J., and Flewelling, B., “Particle and Matched Filtering

Using Admissible Regions”, AAS/AIAA Spaceflight Mechanics Meeting, Williams-

burg, VA, Feb, 2015
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C2 Murphy, T. S., Holzinger, M. J., and Flewelling, B., “Orbit Determination for Par-

tially Understood Object via Matched Filter Bank”, AAS/AIAA Astrodynamics Spe-

cialists Conference, Vail, CO, Aug, 2015

C3 Murphy, T. S., Holzinger, M. J., and Flewelling, B., “Direct Image-to-Likelihood

for Track-Before-Detect Multi-Bernoulli Filter”, AAS/AIAA Spaceflight Mechanics

Meeting, Napa, CA, Feb, 2016

C4 Murphy, T. S., and Holzinger, M. J., “Uncued Low SNR Detection with Likelihood

from Image Multi-Bernoulli Filter”, Advanced Maui Optical and Space Surveillance

Technical Conference, Wailea, HI, Sep, 2016

C5 Murphy, T. S., Holzinger, M. J., Luu, K. K., and Sabol, C., “Optical Sensor Follow-

up Tasking on High Priority Uncorrelated Track”, AAS/AIAA Spaceflight Mechanics

Meeting, San Antonio, TX, Feb, 2016

C6 Murphy, T. S., and Holzinger, M. J., “Generalized Minimum-Time Follow-up Ap-

proaches Applied to Tasking Electro-Optical Sensor Tasking”, Advanced Maui Opti-

cal and Space Surveillance Technical Conference, Wailea, HI, Sep, 2017

C7 Murphy, T. S., and Holzinger, M. J., “Optimal Selection of Telescope Parameters for

Space Situational Awareness Astrometry and Photometry”, Advanced Maui Optical

and Space Surveillance Technical Conference, Wailea, HI, Sep, 2018 [to be submit-

ted]

The contributions and associated background literature can be seen in Table 1.1.

1.5 Unifying Example

The work in this dissertation in many parts is exploratory. Because of this, there is no uni-

fying simulation work which could realistically wrap all of the sub-problems together; this

would require large amounts of extra research work. Instead, at the end of each chapter of
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Table 1.1: Visualization of background material as it relates to each major contribution.
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this document, the chapter’s work will be explained within the context of a single example.

The building blocks provided in this dissertation form together, through this example, to

solve a real application problem in an integrated loop.

The problem starts when an exquisite sensor with a large aperture detects an unknown

Geosyncronous level space object. At the current time, follow-up observations are of lim-

ited use; for such an object, observability of the full orbit is not attainable until well past

10 minutes after the first observation [71]. Furthermore, this dimly lit space object is de-

tectable through the single exquisite sensor but may be difficult to detect through a less

exquisite follow-up sensors. Finally, there are generally too few sensors to follow-up on

every object. Because of these reasons, most of these objects are not tracked immediately

after first detection and cannot be found again when the orbit is fully observable.

The contributions in this dissertation will, in order, do the following. First, an admis-

sible region will be formed on the detected unknown object. Contribution 1 shows how to

take this admissible region, and search through it at a later time. Through this, a follow-up

sensor can effectively delay reacquisition until observability is met. Contribution 2 shows

how the specific data acquisition parameters can be chosen for each region searched in

contribution 1. Contribution 2 feeds a series of images into contribution 3, which in turn

searches through the images for any signals from a star, object, or other source. If con-

tribution 3 fails to find the space object associated with the prior, contribution 4 searches

through the images using the prior provided by the admissible region, enabling much higher

sensitivity. Furthermore, contribution 4 uses the detections on the images to perform orbit

determination on the original admissible region.
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CHAPTER 2

MATHEMATICAL BACKGROUND

2.1 Astrodynamics of Space Situational Awareness

First this work requires defining the general dynamics framework. Define X as the set of

all states which could be position and velocity or some alternative representation like orbit

elements. Given a dynamic system,

ẋ(t) = f(x(t); t) (2.1)

an object can be propagated forward in time via a flow function

x(t1) = φ(t1;x(t0), t0) (2.2)

which simply propagates a state via the dynamics in (2.1). This work considers the prop-

agation of not just a single state, but a set, referred to as the search set. Consider a set of

dynamic states, S(t0) ⊆ X , which is defined with a series of constraints {ga(x)}ba=1

S = {x ∈ X : ga(x) ≤ 0 ∀ a} (2.3)

Because each element in this set is dynamic, the set can be propagated as

S(t) = φ(t;S(t0), t0) (2.4)

Note that this region is time varying, according to the dynamics; the time notation is

dropped unless explicitly necessary.

In the case of orbit estimation it is useful to think in terms of object and observer
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r(t)
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ṙ(t)

ȯ(t)

Figure 2.1: Geometry of SSA problem. An observer and space object are represented with
time varying vectors. The line of sight vector is ρ(t).

position and velocity. For an object, position and velocity are r(t) and ṙ(t), seen by an

optical observer at position and velocity o(t) and ȯ(t) along line-of-sight vector, ρ(t),

defined in an inertial frame. At an instantaneous time, an EOS measures a unit vector ρ̂(t).

It should be noted that while this work assumes x(t) ∈ R6 throughout as position and

velocity, this can be generalized to any formulation of an orbit as well. The observer itself

could be either ground-based or space-based. The geometry is illustrated in Figure 2.1.

2.2 Background on Modeling and Statistics of Images

This section defines the statistical models for an image that are used throughout the disser-

tation. An image is made up of a series of measurements broken into some deterministic

signal content and some zero mean noise of known distribution (assuming background sub-

traction has been performed [77]),

zi = si + wi (2.5)

wi ∼ p(w), E[wi] = 0 (2.6)

where p(w) is some PDF or probability mass function (PMF) of known form, and i is an

indexing denoting a particular pixel.

The distribution of wi in Equation (2.5) can be arbitrary, but often is assumed to be of a

specific form. A common way to model the statistics of a pixel is with a series of Poisson

distributions [78]. The pixel is composed of some signal, which is Poisson distributed and
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referred to as shot noise, and some dark noise and read noise both of which are Poisson

distributed, and can therefore be combined into one Poisson distributed random variable,

wi. These leads to a pixel, zi = si + wi, made up of signal, si ∼ P(λs,i), and other

noise sources, wi ∼ P(λw,i). However, it is more convenient to redefine a background

subtracted zi. In this dissertation, background subtraction means subtraction of known

statistical outliers, such as hot pixels, and the background mean [77].

si = λs,i (2.7)

wi ∼ {P(λw,i + λs,i)− (λw,i + λs,i)} (2.8)

This new definition of zi allows the problem to be posed as the sum of a deterministic

signal and zero mean random noise. A Poisson distribution approaches a Gaussian distribu-

tion as λ increases, which is explored further in Lemma 5.3.2. Values of λ larger than 100

are typically sufficient. If such a simplification is applicable, the following more simplified

definition of wi can be used.

wi ∼ N (0, λw,i + λs,i) (2.9)

Furthermore, for bright objects the contribution of shot noise on total system randomness

is often ignored and read noise is mostly constant within a small region of pixels. Then, a

more simplified definition of wi is

wi ∼ N (0, λw) (2.10)

Note that in this formulation, si is equivalent to the mean of the measurement zi, which is

Gaussian distributed. It is important to understand that measurements taken over the kth
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integration time are dependent on the length of the integration

λw = GQδ2FotI,k = BFotI,k (2.11)

where G is the sensor’s gain, Q is the quantum efficiency, δ2 is the area of each pixel, and

Fo is the background flux rate. This implies that the design variable tI is able to affect the

information content directly through changing the background brightness. In the final line,

the constants are wrapped into the parameter B = δ2GQ to ease notation.

The pixel-wise SNR for a particular pixel, zi, is defined in Equation (2.12).

SNR(zi) =
E[zi]√

E[(zi − E[zi])2]

=
si
σw,i

(2.12)

In astronomy, the total pixel-to-pixel structure of an object may exist in multiple pixels, and

therefore the per pixel SNR does not fully capture the information available. Total object

SNR is calculated as

SNR
(∑

zi

)
=

E[
∑
zi]√

E[([
∑
zi]

2 − E[
∑
zi])2]

=

∑
si√∑
σ2
w,i

(2.13)

≈
√
Nz

s̄i
σw

(2.14)

where Nz is the number of pixels which contain some signal. Equation (2.13) assumes

only that pixels are uncorrelated. It is convenient to also define an approximate total object

SNR, in Equation (2.14), which assumes all pixels have equal variance. This assumption

allows s̄i to be defined as the average signal value over the pixels being considered, and σw

as the approximate standard deviation in each pixel.
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The two types of SNR warrant further discussion. First, neither values are any less

valid for non-Gaussian distributions, and in particular work equally well for Poisson distri-

butions. Second, both methods say something different but useful about the signal. Pixel

SNR shows how easily an object can be picked out with the naked eye. Photometric SNR

combines all the evidence for an object in the numerator with all the noise in the denomi-

nator and therefore indicates how well a statistical analysis should preform at detecting an

object. Finally, choosing mz pixels which contain signal from an object is a nebulous con-

cept. Typically, there are pixels which may or may not contain signal, and especially in low

SNR cases, ambiguity exists. This is an active are a research with no clear solutions [78].

2.3 Admissible Region

A typical optical measurement of a space object contains good knowledge of angle and an-

gle rates known as observable states, xd ∈ R4. The variable xd is the vector of determined

states, also known as the attributable vector. In the case of an optical observer,

xd = [α, δ, α̇, δ̇]T (2.15)

An orbit requires six disparate data types to be fully constrained. Historically, the final

two data types are angle accelerations or range and range rate (from radar data). This AR

formulation uses range and range rate as the final two states, known as undetermined states

xu ∈ R2. It is assumed that no information can be reliably used to determine these states

from measurements. The following notation was developed by Worthy et al [20]. Using the

fact that the measurement cannot be dependent on xu, the following measurement function

can be written.

y(t) = h(xd;k, t) (2.16)
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Furthermore, this implies a bijective relationship between y(t) and xd

xd = h−1(y;k, t) (2.17)

An AR is then created by enforcing a series of constraints of the form

gi(xd,xu;k, t) ≤ 0 (2.18)

gi(h
−1(y;k, t),xu;k, t) ≤ 0 (2.19)

It should be noted that these constraints can be thought of as hypotheses. The AR is then

the space where all hypotheses are true. Next, we define an admissible region,Ai ∈ R2,

predicated on gi

Ai :=
{
xu|gi(h−1(y;k, t),xu; k, t) ≤ 0

}
(2.20)

In practice, an admissible region predicated on n constraints is used.

A =
n⋂
i=1

Ai (2.21)

Next, the two most common constraints are defined. For optical observer AR, the

primary constraint typically considered is that of Earth-orbiting SO, defined as gE . There

exists a derivation to show the following equations represent energy as a function of [ρ, ρ̇]

and known parameters. The following results were originally derived for Earth objects by

Tommei et al [79]. E is the orbital energy, which must be negative for an Earth-orbiting
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Figure 2.2: Sample admissible region

SO.

2E = gE(h
−1(y;k, t),xu;k, t) ≤ 0 (2.22)

2E = ρ̇2 + w1ρ̇+ T (ρ)− 2µ√
S(ρ)

≤ 0 (2.23)

T (ρ) = w2ρ
2 + w3ρw4 (2.24)

S(ρ) = ρ2 + w5ρ+ w0 (2.25)

where the constants w0−5 are functions of the parameter vector, k, defined as
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w0 = ||o||2 (2.26)

w1 = 2ȯ · ρ̂ (2.27)

w2 = α̇2 cos2 δ + δ̇ (2.28)

w3 = 2(α̇ȯ · ρ̂α + δ̇ȯ · ρ̂δ) (2.29)

w4 = ||ȯ||2 (2.30)

w5 = 2o · ρ̂ (2.31)

where o and ȯ are the position and velocity of the observer, ρ̂ is the unit vector from the

angles, and ρ̂α and ρ̂δ are given by

ρ̂ = [cosα cos δ sinα cos δ sin δ]T (2.32)

ρ̂α = [− sinα cos δ cosα cos δ 0]T (2.33)

ρ̂δ = [− cosα sin δ − sinα sin δ cos δ]T (2.34)

A second commonly used constraint is gr, a constraint on the radius of perigee. There

exists an analytic derivation for the following [65]. It should be noted that D, E, F, and G

are vector quantities.

gr(ρ, ρ̇,xd;k) = (r2min − ‖D‖2)ρ̇− P (ρ)ρ̇− U(ρ) + r2minT (ρ)− 2rminµ√
S(ρ)

≤ 0 (2.35)

P (ρ) = 2D · Eρ2 + 2D · Fρ+ 2D ·G− r2minw1 (2.36)

U(ρ) = ‖E‖2ρ4 + 2E · Fρ3 + (2E ·G + ‖F‖2)ρ2 + 2F ·Gρ+ ‖G‖2 − 2rminµ

(2.37)
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where the D, E, F, and G are defined as

D = q× ρ̂ (2.38)

E = ρ̂× (α̇ρ̂α + δ̇ρ̂δ) (2.39)

F = q× (α̇ρ̂α + δ̇ρ̂δ) + ρ̂× q̇ (2.40)

G = q× q̇ (2.41)

More ways exist to further constrain an admissible region. Beyond perigee and energy,

any further restriction typically requires an additional assumption about the object. For

example, if the object being observed is known to be near a GEO, constraints could be

placed on semi major axis or eccentricity. This can enable prior orbital knowledge to be

used to enhance convergence.
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CHAPTER 3

GENERALIZED MINIMUM-TIME FOLLOW-UP APPROACHES APPLIED TO

ELECTRO-OPTICAL SENSOR TASKING

3.1 Introduction

This chapter proposes a methodology for tasking sensors to search an area of state space for

a particular object, group of objects, or class of objects. This chapter creates a general uni-

fied mathematical framework for analyzing reacquisition, search, scheduling, and custody

operations. In particular, this chapter looks at searching for unknown space object(s) with

prior knowledge in the form of a set. For example, an uncorrelated track (UCT), obtained

from an EOS, can be used to define a set of orbits consistent with the observations, also

known as an admissible region [20,64]. The sets used in this framework can also be defined

through reachability [21], hypothesized regions of state space, or other set-based methods.

This set of orbits can be propagated and projected into the field of regard any sensor, so

follow-up can be tasked from any location and time. In general, this region can be much

larger than the field of view of a sensor and requires multiple observations [29]. This chap-

ter analyzes the area of a search region over time to inform a time-optimal search method.

Simulations look at analyzing search regions relative to a particular sensor, and testing a

tasking algorithm to search through the region. The tasking algorithm is also validated on

a reacquisition problem with a telescope system at Georgia Tech.

The problem facing this technique is how to choose an optimal trajectory when per-

forming a search, and what type of optimality is desirable. Existing methods are based

on a greedy maximum probability observation technique, which attempts observing the

densest region of probability [27]. It becomes clear through the work in this chapter that

time-optimality is the highest priority. Many SSA sensor systems have a problem of too
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many objects and not enough sensors, making time on high sensitivity sensors a priority.

Furthermore, when searching a set of orbits, there is necessarily associated probability in-

formation. If probability density information is available, a greedy maximum probability

observation may take significantly more time to fully search the region. Because an EOS

can be prone to false detections, it is typically more wise to search the entire search set than

to trust the first detection that is made. Therefore time-optimal tasking is pursued in this

chapter.

This optimization problem, then, is the covering salesman problem (CSP), a variation

of the traveling salesman problem [80]. The CSP looks for the time or distance optimal

path to take between a series of points such that every point, or a point within a limiting

distance, is visited. The tasking problem outlined above has a further complication over

the classic CSP, in that the points to be visited have dynamics, and typically spread out as

time passes. This problem is in general NP-hard, and obtaining complete optimal solutions

is difficult. This chapter therefore both attempts the time-optimal optimization, but also

develops tools that can efficiently analyze and compare different search strategies.

3.1.1 Methodology

The first requirement is an analytic formulation of the problem. A region which must be

searched is modeled as a set of orbits. An EOS tasking scheme is modeled as a series of

observation sets centered at fixed angular coordinates, at certain time steps. These discrete

task locations can consist of any number of observations taken at any locations in any order.

Quantities like exposure time and number of observations taken at each location, as well as

characteristics of the sensor, are explored in the next chapter, so this particular work fixes

these quantities for simplicity. These ideas are combined to propose an observed set and

an unobserved set, two partitions of the original search set which describe the progress of

a search and remaining set to be searched, respectively.

An analysis on the area of a search set, or subset, is presented by looking at set area in
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the measurement space. This area is presented as a line integral over the boundary of the

region, in the measurement space. Time derivatives of an arbitrary order are then derived

as line integrals. The calculation of these sets on admissible regions is then shown in more

detail. This section provides a method to analyze search sets relative to a particular sensor,

giving estimates of search campaign length and search feasibility. Section 3.2 details this

work.

An optimization framework is then proposed as a way to choose a trajectory. This chap-

ter looks to minimize the amount of time spent searching for the object, while attempting

to scan the entire search set. In previous work, a variation on simulated annealing [81]

was tried with some success. Due to the high dimensional and non-convex search space,

this optimization can be difficult to successfully implement. Instead, this chapter uses an

optimization greedy on search area growth; it looks to maximize the size of the observed

area at some future time. A region of high divergence grows quickly, increasing the total

number of observations needed to observe it. The implication is that a time-optimal al-

gorithm prioritizes high divergence. This cost function is suited for a finite time horizon

control approach. Section 3.3 details this work.

In order to test the tasking algorithm and illustrate its performance and behavior to the

reader, two simulated test cases are presented. The first test case looks at a same location

handoff. An admissible region, formed from a short arc observation, is propagated an hour

into the future and reacquisition is attempted. This test case shows off many of the strengths

of the work in this chapter. Second, a search set is defined to contain objects in geostation-

ary transfer orbits which intersect a particular GEO slot over a given time interval. This

search set and subsequent tasking simulation showcase the variety of scenarios to which

these techniques can be applied. Section 3.4 details this work.
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3.2 Theory: Search Regions

This section introduces the concept of a search set, a set of orbits that a sensor or group of

sensors must search through. Then a series of analytic tools are presented for analyzing a

search set and the projection of the search set into a measurement subspace. The intention

is to provide insight into the nature of these sets and the implications on their searchability.

3.2.1 General Problem Framework

First this chapter requires defining the general dynamics framework. This discussion is an

expansion of the preliminary discussion in Section 2.1. To review, define X as the set of

all states which could be position and velocity or some alternative representation like orbit

elements. Given a dynamic system

ẋ = f(x) (3.1)

which is a reproduction of Equation (2.1), an object can be propagated forward in time via

a flow function in Equation (2.2) which simply propagates a state via the dynamics. This

chapter in particular considers the propagation of not just a single state, but a set, referred

to as the search set. Consider a set of dynamic states, S(t0) ⊆ X ,

S = {x ∈ X : ga(x) ≤ 0 ∀ a} (3.2)

Because each element in this set is dynamic, the set can be propagated through Equation

2.4. Note that this region is time varying, according to the dynamics; the time notation is

dropped unless explicitly necessary.

The space in which this set exists, X , is in effect a phase space representation. In

accordance with Liouville’s theorem, the measure, | · |, of this set must stay constant under

the given dynamics [82]. However, note that many of the sets used in this dissertation are

sub-dimensional manifolds in X and therefore have zero measure. To review, measure is a
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generalization of volume used to quantify the size of a set [83]. In this chapter volume and

area are used to describe the size of sets which exist in an appropriate space.

This work requires analyzing sets of objects within the measurement space defined by

a particular sensor, Ho, where this space has dimension h. A state, x, can be partially

represented with the states determined from a measurement, xd. In the case of inherent

unobservability, there is also an unobservable subspace, so the state can be partitioned into

two sub-components, where xu is part of a state unobserved by a particular observer, based

on notation used in [20].

x = [xd
T ,xu

T ]T (3.3)

This requires a measurement function, ho, which maps the full state space into the mea-

surement subspace,

xd ∈ Ho (3.4)

ho : X → Ho (3.5)

The o subscript refers to which observer is being considered, but is dropped unless mul-

tiple observers are being explicitly used. Similarly, a search set can be projected into the

measurement space,

Sd = h(S),Sd ⊆ H (3.6)

Note that this mapping is a projection onto a subspace, so multiple elements of S may map

to a single component of Sd. The nominal evolution of both S and Sd are illustrated in

Figure 3.1. Note that while |S(t0)| = |S(t)| in accordance with Louisville’s Theorem, in

general |Sd(t0)| 6= |Sd(t)| as they exist in a subspace of the phase space.

An observation can be modeled as a subset of the search set. A sensor is tasked to
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Figure 3.1: A visualization of how the search space evolves over time, in both X andH.

observe a particular region of the measurement space and corresponding area of the state

space at a particular time step represented by F(tk) ⊂ X .

A requirement for successful search is that every part of S is observed. At each time

step, a section of the measurement space is observed through F . Given a search space at

time step k, S(tk), the subset observed at that time is Ok(tk) = S(tk) ∩ F(tk) while the

unobserved part is U(tk) = S(tk) \ Ok(tk). By these definitions, S(t) is the total search

set,

O(t) =
k=N⋃
k

Ok(t) (3.7)

is the observed portion of the search set, and U(t) is the unobserved portion. Once a part of

the set has been observed, it no longer needs to be observed and should therefore no longer

be part of the search space. Therefore, the dynamics of U(t) are of the highest interest and

the goal of a search is to drive O → S and U → ∅, which would imply a complete search.

The setsO, U can be projected into the measurement space asOd, Ud, similar to other sets.

Note that the set O does not exclude object existence in that set, but that the part of the

space has been searched. Missed detections may lead to such a situation.

The above problem set up assumes a discrete set of observations indicative of a “stop

and stare” type campaign. This problem could instead be treated as a continuous time
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problem which would more closely resemble a time-delay-integrate (TDI) [84]. In such a

case, the continuous time behavior of U(t) is of interest

U(t) = S(t) \ O(t) (3.8)

where S(t) is a known quantity and

O(t) = {x(t) ∈ S(t) : x(τ) ∈ O(τ), τ ∈ [0, t]}. (3.9)

This analytic set up provides challenges which are not explored further in this dissertation,

but provide a rich area for future work.

3.2.2 Search Region Area

The area of a search region at a given time is a useful quantity in the analysis of search

regions. However, there are several different measures of area, when dealing with projec-

tions of high dimensional sets. This chapter analyzes the spatial area of a projected search

region, |S|H, as the spatial area of the set S when projected into the measurement space.

Note that the spatial area is not the full measure of the set, as it measures the projected set

and even then does not include the velocity states which often exist in the measurement

space. The spatial area, | · |H, is useful for quantifying the area a sensor can measure. In

particular, the amount of a search space an optical sensor can measure is defined by the

field of view of the sensor. For ease of notation, this area from now on is represented as

Ah(S) = |S|H (3.10)

This area, then, is a function of the search set which is itself a function of time,

Ah(S(t)). However, a set does not necessarily have a clean analytic definition, and the

propagation of the set over time has no analytic solution, so this area is not always well

33



defined. In the worst case scenario, a set of orbits can be brute force represented with

particles which can be used to approximate the area.

The area of this search region has implications on the searchability of a set. In most

realistic scenarios, different velocities within a search set cause the set to expand spatially.

Conversely, an observer, with each observation, reduces the remaining area that must be

searched. A successful search requires the observations to reduce the search area faster

than the expansion is causing the area to rise.

3.2.3 Search Area and Divergence

This section looks to determine both the over-all growth rate of a search region and the local

regions of expansion and contraction, as seen by a particular sensor. The main motivation

for this section is that the search region over time is not analytically known. Assume that an

observer, located at o(to), wants to take an observation in this search space at time to. First,

the search set must be propagated to the appropriate time, via Equation (2.4). Next, the

search set must be projected into the field of regard of a sensor, through some measurement

function h,

xd = h(x) (3.11)

Sd = {xd : xd = h(x),x ∈ S}. (3.12)

The function h maps to xd, the component an observer can measure.

A clean derivation of area can be calculated using the divergence theorem. To review,

the divergence theorem states that for a vector field, F, defined over a region S, with bound-

ary ∂S,

∫
S
∇ · FdV =

∮
∂S

(F · n̂)dS (3.13)

where ∇ is the vector of derivatives with respect to xd. By setting F equal to xd, this
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integral implies that the area of a particular region of state space can be calculated as the

total integral

Ah(S) =

∫
Sd

dV =
1

dim

∫
Sd
∇ · xddV

=
1

dim

∮
∂Sd

(xd · n̂)dS (3.14)

where dim is the dimensionality of the space, used to normalize ∇ · xd. The lower di-

mensional version of this equation is known as Green’s theorem and is discussed in the

following section.

Note that the bounds and differentials on this integral are functions of time, so to an-

alyze the immediate expansion or contraction of a search region, the Leibniz integral rule

can be used to take the first derivative as

d
dt
Ah(S) =

1

dim
d
dt

∫
Sd
∇ · xddV

=
1

dim

∫
Sd

∂

∂t
(∇ · xd)dV

+
1

dim

∮
∂Sd

(∇ · xd)(ẋd · n̂)dS

=
2

dim

∮
∂Sd

(ẋd · n̂)dS. (3.15)

This value is easily calculable and only involves the velocity at the boundary of the region.

The expansion is mathematically captured by the divergence of velocity vector field,

div(ẋd) = ∇xd · ẋd (3.16)

which when combined with Equation (3.13), yields

∮
∂Sd

(ẋd · n̂)dS =

∫
Sd
∇ · ẋddV. (3.17)
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The implication of this equation is that the contribution to the expansion (or contraction) of

the region at any particular point is due solely to the divergence of the velocity vector field.

Taking the derivative of Equation (3.15)

d
dt

∮
∂Sd

(ẋd · n̂)dS =

∮
∂Sd

∂

∂t
(ẋd · n̂dS)

=

∮
∂Sd

(
ẍd · n̂ + ẋd ·

∂ẋd
∂xd
· n̂
)

dS (3.18)

which requires calculation of the partials of the velocity vector field with respect to position.

To accurately project area of a region forward in time, higher order derivatives should be

used in the Taylor series expansion. Below are the derivatives of area from the second to

the fifth time derivative. The general form is identical to higher order time derivatives of

f(t) = x(t) · y(t), where x(t) is ẋd and y(t) is ∂xd
∂xd

d2

d2t
Ah(S) =

∮
∂Sd

(
ẍd + ẋd ·

∂ẋd
∂xd

)
· n̂dS (3.19)

d3

d3t
Ah(S) =

∮
∂Sd

(
...
xd + 2ẍd ·

∂ẋd
∂xd

+ ẋd ·
∂ẍd
∂xd

)
· n̂dS (3.20)

which gives a general formula for the nth derivative,

dn

dnt
Ah(S) =

∮
∂Sd

n∑
i=1

x
(i)
d ·

∂x
(n−i)
d

∂xd
· n̂dS. (3.21)

Because a search region of arbitrary dimension and shape is being projected through a

non-injective function, multiple orbits with multiple velocities could all project to a single

xd. Even if dim(S) = dim(Sd), the manifold of S might be folded in such a way that two

or more parts of the original manifold map to the same part of dim(Sd). The vector field is

then ill-defined. Therefore, this chapter considers the 3 possible cases; the first is when the

projection is one to one, the second is when the projection is a discrete number of points to

one (folding), and the third is when a continuum of points in the original manifold map to
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Figure 3.2: A manifold can project into the search space in a variety of ways. This shows
such a projection for the one-to-one, discrete-to-one, and continuum-to-one case.

a single point in the projected manifold. These three cases are illustrated in Figure 3.2. For

the one-to-one case, Equation (3.15) can be calculated directly, as can future derivatives.

For the discrete-to-one case, ẋd has multiple values at a single xd. Equation (3.15) has

several disparate values on each level of the original manifold. For any analytic purposes,

these sub-manifolds have completely unique properties and need no special treatment.

If the projection is such that a continuum of points are mapped to a single point in

the measurement space, a continuum of velocity vector fields are defined over the search

set. Calculating area and divergence becomes difficult as there are multiple values for

divergence at any given point. This work proposes defining an upper bound to the area

rate-based on maximum possible line integral from the vector fields. Given a series of

vector fields, define the set of ẋd defined at a particular xd,

Sẋd(xd) =

{
ẋd =

d
dt

(h(x)) : xd = h(x)

}
(3.22)

This set definition now enables the following inequality,

∮
∂So

ẋd · n̂dS ≤
∮
∂So

sup
y∈Sẋd

(y · n̂) dS (3.23)

where the supremum chooses the velocity with the largest outward orthogonal component
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at any given point along the boundary. This integral is larger than any other piece-wise

combination of vector fields. To understand the implication of this inequality, consider

x1,x2 ∈ S : h(x1) = h(x2) = xd ∈ ∂Sd. (3.24)

Now, note that

ẋd,1(t) · n̂ > ẋd,2(t) · n̂→ xd,2(t+ δt) /∈ ∂Sd (3.25)

because the boundary ∂Sd must be moving outward at at a minimum rate of ẋd,1 · n̂. In

other words, if Sd has a continuum of velocity vector fields, the internal motion still does

not effect the growth of the region, and the expansion at the boundary is fully described by

supy∈Sẋd
(y · n̂).

Finally, it is worth considering the behavior of partitions of a search set. The search

space Sd can be partitioned into m sub regions,

Sd =
m⋃
S id (3.26)

∅ = Sad ∩ Sbd ∀ a 6= b (3.27)

where S id are the non-overlapping partitions. The area over time, and area growth, can be

calculated for each partition to give insight into local areas of growth within the search

space. Note that unless the manifold mapping into the search space is one-to-one, non-

overlapping partitions inH may overlap in the future.

3.2.4 Admissible Region-based Search Area

This section focuses on how to apply the previous analysis to follow up on an admissible

region by an optical observer. Consider an admissible region,A, defined at some previous
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time t0. Assume that an optical observer, located at o(t), wants to searchA at time tf .

xd = [α, δ]T = h(x;o) (3.28)

Sd = {[α, δ]T : [α, δ]T = h (φ(tf ;x, t0);o(tf )) ,x ∈A}. (3.29)

The divergence for this optical sensor is

div(xd) =
dα̇
dα

+
dδ̇
dδ
. (3.30)

The area can then be calculated as

Ah(S) =
1

2

∮
∂Sd

(xd · n̂)dS =
1

2

∮
∂Sd
−δ cos(δ)dα + αdδ (3.31)

where the signs and arrangement of α and δ account for the normal vector. The area rate of

change is

d
dt

(Ah(S)) =

∮
∂Sd
−δ̇ cos(δ)dα + α̇dδ (3.32)

Note that any occurrence of dα has an additional factor of cos(δ). This is because a differ-

ential in angular space such as dS or dA must account for the curved nature of the angular

space. This also implies that all angles must be represented in radians, and the area being

calculated is in steradians. These may also be difficult or impossible to calculate near the

singularities at δ = ±π/2.

The higher order derivatives of Ah exist and can be calculated. An infinite Taylor series

can be used to approximate the area over time to very high accuracy. It can be assumed

that sufficient accuracy is achievable by increasing the number of terms in the Taylor series

approximation.

The admissible region from an optical observer is a two-dimensional manifold of orbits.
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Any search set therefore is either entirely one-to-one or has some folding that causes mul-

tiple orbits to map to a single α and δ pair. Qualitatively, there is no guarantee that folding

does not occur, but in practical experience over short periods of time after the inception

ofA, folding tends to not occur. The structure ofA makes the analysis on partitioning

particularly powerful; becauseA is a continuously defined region, partitioned regions do

not overlap outside of folding.

If no folding occurs for a two-dimensional manifold, the original boundary of the man-

ifold is associated with the projected boundary. When considering an admissible region,

the projected boundary of the region then corresponds to the boundary ofA in the original

space.

Equation (3.18) requires calculating ∂ẋd
∂xd

(t). This quantity must be calculated along the

manifold created by the propagated admissible region, Sd(t). This manifold, at a particular

time t, does not have a closed form definition. Instead the derivative must be tied back to

the original definition of the manifold, that is, the original admissible region. The variation

of a location inH with respect to admissible region coordinates is

∂xd(t)

∂xu(t0)
=
∂xd(t)

∂x(t)

∂x(t)

∂x(t0)

∂x(t0)

∂xu(t0)

=
∂xd(t)

∂x(t)
Φ(t, t0;x(t0))

∂x(t0)

∂xu(t0)
(3.33)

where ∂xd(t)
∂x(t)

is the Jacobian of the measurement function, h, and Φ is the state transition

matrix. Similarly,

∂ẋd(t)

∂xu(t0)
=
∂ẋd(t)

∂x(t)

∂x(t)

∂x(t0)

∂x(t0)

∂xu(t0)

=
∂ẋd(t)

∂x(t)
Φ(t, t0;x(t0))

∂x(t0)

∂xu(t0)
(3.34)

where, similarly, ∂ẋd(t)
∂x(t)

is the Jacobian of the derivative of the measurement function. Then
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the final quantity is

∂ẋd(t)

∂xd(t)
=

∂ẋd(t)

∂xu(t0)

(
∂xd(t)

∂xu(t0)

)−1
. (3.35)

Note that although this definition requires a matrix inverse, the final matrix is an easily

invertible two-by-two. The above calculation does not require an understanding of the

manifold orbit to calculate; instead for a particular point in the sky, the exact point in

the admissible region is needed. The given ρ, ρ̇ pair defines an orbit with the original

measurement, which defines all the inputs to Equation (3.35). The same process as above

can be used to calculated higher order derivatives, by replacing ẋd(t) with ẍd(t).

The matrix in the above inverse is not guaranteed to be full rank. Qualitatively, the

inverse not existing refers to the case where a small change in ρ, ρ̇ provides no change

in α, δ. The only case where moving along this two dimensional manifold provides no

change in the measurement space is when the manifold (in X ) is directly orthogonal to the

measurement subspace, H. This occurs in certain special cases, for example when t = t0.

More importantly, when folding occurs in the measurement space, this undefined inverse

occurs exactly along the fold. This fact is both good and bad; this calculation provides

a useful way of predicting when a manifold is folding, but makes the area acceleration

undefined along that boundary.

3.2.5 Analysis of the Search Set

This section focuses on applying the above analysis to the observed and unobserved sets,

O and U . Given a particular sensor, o, over every integration, tI , at time tk a known area

of the sky can be observed, Ok(tk). Then the total search set area can be calculated at each
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time step as the Taylor series

Ah(S(tk)) = |S(tk)|h

≈
∞∑
i=0

di

dit
Ah(S(t0))

(tk − t0)i
i!

(3.36)

while the observed area can similarly be represented as

Ah(O(tk)) =

∣∣∣∣∣
k⋃
l=0

Ol(tk)
∣∣∣∣∣
h

≈
∞∑
i=0

di

dit
Ah

(
k⋃
l=0

Ol(t0)
)

(tk − t0)i
i!

(3.37)

where l is a counter between time step 0 and the current time step, k. Note that, with

the Taylor series expansions, all analysis on the search set can be done at the initial time

step. Equation (3.36) is a smooth function which represents the gradual expansion and

contraction of the search set in the measurement space. Equation (3.37) is instead a step-

like function with respect to tk; at each tk a new observation is incorporated into Equation

(3.7), instantaneously expandingO. The more interesting set is the set of unsearched orbits,

Ah(U(tk)) = Ah(S(tk) \ O(tk)), (3.38)

as this represents the extent of the current search problem. This equation is explicitly

dependent on the proposed search strategy. Note that if h is injective and continuous,

Ah(U(tk)) = Ah(S(tk))− Ah(O(tk)), (3.39)

42



These equations can be turned into a stepwise form,

Ah(U(tk+1)) = Ah(U(tk)) +
d
dt
Ah(U(tk))(tk+1 − tk)

− Ah(Ok+1(tk+1)) (3.40)

where the first term is the unsearched area at the previous time step, the second term is the

unsearched area expansion over the time step, and the third term is the reduction of U by

observing a new region of measurement space. If in general

d
dt
Ah(U(tk))(tk+1 − tk) > Ah(Ok+1(tk+1)) (3.41)

the current search strategy does not close; the region is expanding faster than it is being

observed. This provides a simple and efficient calculation for evaluating whether a search

is feasible. Furthermore, the amount the area changes each time step provides insight into

approximately how long a search should take.

The first derivative of area is dependent on the divergence, giving a tool for defining

short term high priority search areas. Figure 3.3 shows the divergence changing over a re-

gion. Given multiple choices forOk, a higher divergence subset, given equal time, expands

into a larger, harder to search area at a future time. For example, in Figure 3.3, the region

of high divergence on the left should be prioritized over the region of low divergence on

the right because at some final time tN

Ah(Oak(tN)) > Ah(Obk(tN)) (3.42)

which, combined with 3.40, implies a smaller U at a future time step. This is the basis of a

finite horizon control method presented in Section 3.3.3.

Remember that the set Ok is dependent on sensor location and field of view, which is

given when solving a particular search. An additional application of this work is to also
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Figure 3.3: The divergence of ẋd determines which areas of a search set are high priority.

be used as a sensor design tool. Varying sensor location and field of view gives different

results in 3.40 allowing interesting comparisons.

Equation (3.36) contains an infinite Taylor series expansion in it, which in practice

requires sufficient terms to guarantee small errors. This can be done by defining both a time

horizon, tf , and a relative tolerance, εrel, measured in steradians. Recall that a steradian

is a unit of angular area. Then the required N terms for an approximation out to a certain

time horizon satisfies

εrel >
dN

dN t
Ah(S(t0))

(tf − t0)N
N !

. (3.43)

It should be noted that the divergence is PDF agnostic. When operating on a pure set

or a PDF whose effective boundaries are used to define a set, the method gives the same

result. This is particularly relevant to admissible region theory, where a set is used to define

a PDF. Divergence methods operate identically on either representation of the admissible

region, avoiding analytic confusion.

Search regions can become sufficiently large that a region extends out of the field of

regard on an EOS. This may even extend to a ring of orbits around Earth, or all of the unit

sphere, S(2). In these cases, the total region divergence may no longer be a useful measure,

but divergence of partitions is very much still a useful measure.
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3.2.6 Reachability Considerations

Consider a search set, S(t0) ⊆ X , as a set of initial conditions for an orbit. These orbits

have well defined dynamics, and can therefore define a control problem. In this framework,

the set at a future time step, S(t), can be written in terms of a reachability problem

S(t) = R(t, t0,umax;S(t0)) (3.44)

where R is the reachable set of orbits at time t, based on the initial condition set, S(t0),

and the maximum control effort umax. The problem discussed in above sections can then

be cast as a reachability problem, where the search set at a given time step is the reachable

set-based on the initial condition set, S(t0), and a maximum control effort of umax = 0.

This generalization allows the theoretical framework in this chapter to incorporate un-

known control effort. Using any in a variety of control distance analysis frameworks [21],

a reachability set can be calculated and used as the search set. In general, R is not a man-

ifold but rather full dimension subset of X . Like S in sections above, R can be amended

with constraints to make the search set more manageable. Calculation of the derivatives

of Ah are based on an uncontrolled trajectory. Therefore the search set Sd grows faster

than what is predicted by the search area divergence calculations. A full analysis of the

technical challenges involved in reacquiring maneuverable objects is out of the scope of

this dissertation.

3.3 Theory: Optimal Search

3.3.1 The Control of Search on a Set with an Optical Sensor

The search region elements are assumed to be orbits consisting of position and velocity at

a given time, x(t) = [rT (t),vT (t)]T ∈ R6. For an optical observer, the determined states
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are the inertial angle pair, α and δ, with the undetermined states as follows

xd = [α, δ]T (3.45)

xu = [α̇, δ̇, ρ, ρ̇]T . (3.46)

Note that while angular rates are not instantaneously observed, they are often inferred from

a series of measurements. From a tasking perspective, it is assumed that regardless of the

angular rate of the space object, it can be detected if it is in the field of view. If a sensor

can approximately rate track the observed area, O(tk), the assumption is good so long as

the rates do not vary dramatically over the field of view. If they do vary dramatically, the

expansion of the search set is often prohibitively high for a complete search.

The observed part of the measurement space for an optical sensor is just the field of view

of the sensor. The observed state space is then fully defined by the state of the observer,

o, ȯ, and three angles, [αu, δu, θu], where αu and δu define pointing and θu defines rotation

about the line of sight vector. For analytic and computational simplicity, the bore sight

rotation, θu, is ignored. The full observation campaign is represented as a pair of vectors

of pointing angles, and O is represented as an explicit function of these controls,

U = [αu, δu] (3.47)

Ok(tk) = Ok(αu(k), δu(k); tk) (3.48)

where the entire campaign consists of N observations. This is illustrated in Figure 3.4. An

EOS makes an observation by taking a series of images in a certain location in the sky. The

time spent attempting a detection at time step k, is represented by tI(tk). Once these series

of images have been taken, the EOS slews to a new location. Because every sensor mount

is different, an arbitrary function, ft(α1, δ1, α2, δ2), represents the time it takes a particular

sensor to slew from location 1 to location 2.

If the search set is defined similar to an admissible region, that is as a series of con-

46



So

[	α1	,	δ1	]	

[	αN	,	δN	]	

Figure 3.4: Example of a tasking trajectory over a portion of the sky.

straints, the removal of pieces of search set can be analytically incorporated into admissible

region theory. An admissible region is an intersection of a series of sets, each defined in

terms of a constraint,

U =
⋂
Uk (3.49)

Uk = {xu ∈ Ru : gk(xu;xd, ẋd,k) ≤ 0} (3.50)

where gk is a constraint and k is a parameter vector. The removal of observed parts of state

space defines the constraint set,

Uk = {xu ∈ Ru : φ(tj;xu,xd, tk) /∈ F(tj), ∀j} (3.51)

which in essence removes whatever section(s) of a set that intersect a particular observation.

3.3.2 Time-Optimal Cost Function

Many search regions have positive over all divergence, though there can exist situations

where this is not the case. Time-optimal search is built on the assumption that sensor time

is a valuable commodity, and the best way to optimally use a sensor is to spend as little

time accomplishing a task as possible. The cost function is then the total time spent over
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the observation campaign,

ftime(α, δ) =
N∑
k=1

[tI,k + ft(α(tk), δ(tk), α(tk+1), δ(tk+1))] (3.52)

where ft is the slew time of the sensor between two points. The constraint on this optimiza-

tion is to reduce the size of the unobserved set, |U|H, to zero. The constraint is difficult

to enforce directly as it depends upon the intersection of time varying sets. One way to

incorporate it is as a penalty function. It can be enforced as a penalty function

fcost(α, δ) = ftime(α, δ) + fpenalty(α, δ;S) (3.53)

Specifically, this is an exterior penalty function [85]; as the tasking scheme becomes inad-

missible, a large cost is added to the function forcing the constraint to be enforced. Penalty

functions have a known problem in that they can lead to inadmissible solutions to the opti-

mization. The constraint in practice is enforced with a discrete point-wise approximation of

the search set, S(t), to approximate the percentage of the set contained in the observation.

fpenalty(U) = |U(tf )|h (3.54)

where U is defined through Equation (3.7) and Equation (3.8).

3.3.3 Divergence Greedy Cost Function

Because of the computational difficulty of doing a full optimization, a second optimization

method is being proposed. This method is based on the idea that search should be done

quickly to make best use of a sensor. Furthermore, it is assumed that there is no PDF to

define the location of an object, only a set. This is particularly relevant to follow up on an

admissible region. Consider Equation (3.36). At a given time step, k, the best control is the

one which minimizes So(t) for all time. This implies that the observed space should be as
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large as possible, but it also implies the divergence is as large as possible. By maximizing

the divergence in the observed space, the rate of change of area at future time steps is

minimized. This optimization can be solved at each time step but is better posed in a finite

time horizon manner. Again, assume a series of observations defined in Equation (3.47),

but assume further that the total number of observations, N , defines a finite horizon over

which the optimizer searches. A cost function that looks to search the largest area possible

with the largest divergence possible would then be

fDiv = −
N∑
k=1

d
dt
|Fo(u(tk)) ∩ So(t(tk))| (3.55)

keeping in mind that So(tk) changes each time step based on both dynamics and sections

being removed by previous observations. Note that the total divergence is proportional

to the area which is integrated over, so this cost function prefers large, highly divergent

regions.

3.3.4 Optimization Methods Considered

This section discusses a few of the optimization methods attempted on the above problems

and reports on the success of each method.

A basic descent method is considered for the full time-optimal cost function [85]. The

performance of the descent method is well below acceptable, primarily due to two consid-

erations. First, the region itself is highly multi-modal, and fairly poor local optima are often

convergent. Second, the nature of the problem formulation requires a discrete point approx-

imation of the set. The constraint on the optimization, in the form of a penalty function,

acts as a step function when calculating the derivatives making an accurate approximation

difficult.

Because a stochastic optimization method is clearly needed, a genetic algorithm could

provide a solution. However, the genetic algorithm proves insufficient, primarily due to the
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high dimensional nature of the search space and the computational requirements to run a

robust enough genetic algorithm on this problem. Further work may provide more success,

but it is beyond this research arc.

Finally a simulated annealing-like algorithm is considered. Over all, this algorithm has

the best success; it is able to search the complicated region, avoid the many local minima,

avoid derivatives, and generally behave as a descent method would. However, even the suc-

cess of the simulated annealing is only a partial success. A global minimum is still difficult

to find, and stochastic search methods are inherently unrepeatable. The algorithm, after

fine tuning, can find an acceptable solution reliably, but often creates obviously subopti-

mal solutions. More details on this algorithm can be found in [86]. The difficulties of this

search method motivate this analysis that could inform the search before an optimization

takes place, and enable a smaller scope optimization like the receding horizon method.

3.4 Simulation Results

3.4.1 Colocated Reacquisition

This test case demonstrates the results of the analytic work and control implementation

on a situation with a small size, two-dimensional manifold. Because the manifold is 2

dimensional, the higher order area derivatives are all calculable. This allows the full power

of this work to be demonstrated on a best-case, but still useful, scenario.

In the test case presented one observer, located at Georgia Institute of Technology ob-

serves, loses and attempts to reacquire an single object. The space object is in a Geosyn-

chronous orbit in view of the observer. The UTC time is such that the Earth-centered

Earth-fixed, and Earth-centered inertial frames are aligned at t = 0, for simplicity. First, at

time t0 = 0 the observer receives a short arc observation generating an admissible region

containing the object of interest. The admissible region is assumed to have no uncertainties,

and defines the search set, S(t0). The ground station (GS) is at a latitude and longitude of

33.78◦ and −84.40◦. The space object (SO) state truth at t0 is shown in the Table 3.1.
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Table 3.1: Space object state in the Earth-centered inertial frame.

SO ECI location, r (km) SO ECI velocity, ṙ (km/s)
−27.1

−32.3

−0.1

 ×103


2.36

−1.98

0.0



At t0 the search set is all located in a single point in the sky relative to the observer. To

create an interesting test case, one hour is allowed to pass, such that t1 = 1 hour, and the

admissible region is propagated and projected in order to calculate Sh(t1). The timing and

geometry of this test case are chosen such that the resulting search is plausible, difficult to

fully search, but still solvable. Reacquisition is attempted on this region.

First, an analysis of the region area as a function of time is presented. The search set is

propagated over the course of a one hour interval to t2 = 2 hours, starting at t1. The search

set in the measurement space, Sd, has a size of 0.54 millisteradians (msr)at t1, and a size

of 14 millisteradians at t2, calculated through propagation. The area is then also predicted

out over the same time period using the area time derivatives in Equation (3.21). Figure 3.5

presents the true and estimated areas between t1 and t2 for first through fifth order Taylor

series approximations. Figure 3.6 presents the log of the percent error. Note that the error

goes negative over a short time span before diverging towards positive, accounting for the

behavior on the smaller times in Figure 3.6. Percent error can be reduced further with

higher order approximations.

Next, an actual observation control trajectory, U, is calculated. The optimization pre-

sented is a final time area greedy algorithm; at each time step, ti, the observation is chosen

whose area at some horizon time, tf , is maximum, |Ok,d(tf )|H. For this test case, a 100

observation time horizon is used to create a trajectory that fully searches the region, using

an exhaustive search. Only 83 observations are required to have complete search.

The trajectory is calculated for 83 observations over which the region is observed. Fig-
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Figure 3.5: Absolute error for various Talyor series area approximations.

Figure 3.6: Log of percent error for various Talyor series area approximations.

Observation 2 

Observation 3 

Observation 1 

t1 

t2 

t3 

α	

δ	

α	

α	

δ	

δ	

Figure 3.7: Illustration of the search set’s movement and growth’s affect on observation
campaign.
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Table 3.2: Observation campaign parameters.

Field of View Dwell time Slew time

0.25◦ 15 seconds 0 seconds

ure 3.7 gives an intuitive illustration of the form of the results. Each observation is taken

in a particular part of the sky, which corresponds to a particular region of the search set.

The region moves in the positive right ascension direction, while simultaneously expand-

ing and internally shifting over the course of the simulation. This change means that future

observations may overlap with previous observations in the sky, and observations taken at

different times do not overlap perfectly like the square observations could.

Figure 3.8 shows snapshots of the trajectory after 30, and 83 observations. The black

x’s are the locations of the various observations. The black square is the current location of

the sensor field of view. The final trajectory tends to move in the negative right ascension

direction, against the movement of the region. Because of these movements in opposite

directions, the trajectory appears to dwell in the same area for an extended period of time,

but the observations are all looking at distinct areas in the search set. The original region

location is shown on the left side of the figure. The dark regions of the search set are the

unobserved set, U , while the light regions are the observed set, O.

Figure 3.9 shows the area of the original region, and the area of the unobserved region

over time. The dashed line represents the area over time of the original region, while the

solid line represents the unobserved area. In the lower figure, the unobserved region is

projected out over a a short time at each time step to give perspective on the remaining

area growth rate. The figure illustrates the difficulty of this test case; the original region is

growing at a substantial rate, which is constantly fighting against the observation schemes

ability to scan the region. A simple scan of the region is also shown in Figure 3.9. This scan

starts on the right side of the region (positive RA), and creates columns of measurements in

the DEC direction. Each column of observations is one field of view size to the left of the
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(a) Trajectory after 20 Observations.

(b) Trajectory after 40 Observations.

(c) Completed Trajectory after 83 Observations.

Figure 3.8: Final search campaign after 20, 40, and the full 85 observations. Observation
locations marked with x’s.

previous column. The observations also take into account the approximate motion of the

region. This scan attempts to leave no ”holes” in the region, instead trying to thoroughly

search from right to left. This example is intended to show the pitfall involved in analyst-

designed raster scans, which are commonly employed in searches.

3.4.2 Geostationary Slot Protection

The final test case demonstrates the method operating on a more complicated set. This set

is defined as the objects in a geostationary transfer orbit (GTO), which reach apogee in a
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Figure 3.9: Total area and unobserved area over time for same location hand-off.

particular geostationary slot. Specifically, the scalar radius of perigee is set as constant,

rp = 7000km, the three-dimensional position at apogee is any where in a cube of 73 km

sides centered around a particular geostationary object (approximating a “GEO slot”), the

inclination is between -5 and +5 degrees, and the time until intercepting GEO is between

10 and 40 minutes. Note that the above definition uses negative inclination to represent

objects coming up from below the GEO plane (e.g. i = −5 is really an i = +5 but

with true anomaly, argument of perigee, and argument of ascending node rotated by 180◦).

These six quantities (absolute perigee, position at apogee, inclination, time to intercept)

fully constrain an orbit, and the ranges on all quantities except perigee define a set of orbits.

Note that the position at apogee is defined around a geostationary orbit at a particular time

defined by the time to intercept. The resulting region is a trapezoidal set of orbits which

get closer together as they approach the target GEO slot. The geometry of this problem is

nominally shown in Figure 3.10.

The exact same method as in previous simulations is used to calculate a trajectory with

which to scan through the region, which is shown in Figure 3.11. Because of the nature of
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Figure 3.10: Illustration of the 3 dimensional GEO slot, and 5 dimensional search set of
intersecting GTO orbits.
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Figure 3.11: GTO region at beginning and end of search. Observation locations marked
with x’s.

Figure 3.12: Total area and unobserved area over time for GTO Search.

this set, it is actually getting smaller as time goes on meaning the area rate is negative. The

total area and unobserved area are shown in Figure 3.12. Note that the rate of contraction

of the remaining search set appears to get smaller as the simulation runs on. This is due

primarily to the remaining area of the region; the rate of contraction of a smaller area is, by

definition, smaller.

3.4.3 Further Discussion of Results

This final section is intended to discuss the results over all, including many of the practical

problems in implementation. In all test cases, a grid on points over RA and DEC at t0 is

calculated, along with all higher derivatives of α and δ. All area over time calculations

require only to pick a series of grid points and calculate a few line integrals. This method-

ology still requires propagating the grid to future time steps, in order to determine what grid
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points are inside a potential Ok at time step k. To lighten this burden, the N time steps are

pre-chosen and the grid is pre-propagated to each tk. After this no propagation is required.

The derivatives of area can be ignored in favor of pure particle propagation, but no major

computational benefits are reaped either way.

The greedy optimization can lead to a problem where, because sequential observed

sets, Ok, may not align along their boundaries, small holes in the observed set can form.

The beginning of this problem can be seen notionally in Figure 3.7. At the end of the

campaign, these holes must be filled one at a time, causing the final search sets to be

small, and lengthening the total campaign time. The results in this section used a heuristic

to mitigate this problem. When choosing Ok in the optimization algorithm, the field of

view is reduced by 10% on each side before being input into the cost function. Then,

once an optimal location is chosen, it is expanded on each side to determine the true Ok.

This encourages overlap between observed sets and reduces holes in the final campaign.

However, aggressive reduction of these holes can be counter productive. Small holes and

slivers in the unobserved set, U , tend to stay small over long periods of time. Attempting

to leave no holes or slivers is the basis for the scan shown in Figure 3.9, which can lead to

an infeasible or highly inefficient search. Ultimately, an exhaustive optimization search for

U would avoid this problem, but the curse of dimensionality makes it infeasible, at least

within the scope of this chapter.

The results in Figure 3.9, which compare the presented tasking method to a raster type

scan, warrant further discussion. The scan fails to make sufficient progress primarily due

to the inability to leave gaps. When the search region height is divisible by the field of

view height, the observations stack nicely and both methods have comparable performance.

When the search set is, for example, 2.1 field of views wide, two observations are used

efficiently but a third observation only utilizes 10% of the sensor field of view. This is

compounded with the inefficiency involved in not prioritizing high divergence, which is

discussed in depth in the theory section. The raster scan shown in this chapter is not nec-
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essarily representative of all test cases and analysts may be able to design better scans than

the tasking algorithm in some situations. However, the automated way in which this algo-

rithm operates, along with the analytic tools developed in the theory, provide the value of

this work.

3.5 Conclusion

This chapter provides a framework for SSA tasking strategies. Reacquisition, scheduling,

custody, and search operations can all be represented with a search set. As such, all can be

analyzed with divergence methods.

A search set is best analyzed when projected into the measurement space of a particular

observer. The evolution of these regions over time is dominated by the vector field of

velocity and higher order derivatives and the divergence of those vector fields, along the

boundary of the search set. This allows quick analytic solutions for the evolution of the

search set over time. The area over time makes for a suitable metric for both analyzing and

predicting tasking schemes on a search set. This metric also is suitable for use as a control

scheme cost function.

Many search sets are still infeasible to search, and this method does little to solve that

problem. Rather, it provides tools to analyze search sets, and shows how to make search

feasible. This is not always easy or possible. Search sets can be challenging to define in an

explicit, analytic way, making the analytic formulations involved in this work difficult to

calculate.

3.5.1 Unifying Example

At this point in our example, an admissible region has been formed for an unknown detected

object. According to prior work, observability is achieved past ten minutes and closer

to one hour [71]. Reacquisition should then take place somewhere between 30 minutes

and one hour after the first detection (in order to provide a full orbit estimate). Figure
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3.8 shows the reacquisition process after an hour for the exact situation being described.

Because of the size of the search region, reacquisition after an hour is shone to be difficult so

reacquisition after 30 minutes, or with a larger field-of-view, will provide more reasonable

results. This first contribution outputs a series of locations and times to search the night sky

for a reacquisition sensor. It also, notably, provides a dwell time to spend in each location

searching.
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CHAPTER 4

OPTIMAL SELECTION OF TELESCOPE PARAMETERS FOR ASTROMETRIC

AND PHOTOMETRIC PERFORMANCE

4.1 Introduction

This work proposes a methodology for optimally selecting telescope mount and camera

parameters when taking data for space situational awareness applications with various ob-

jectives. The primary objectives examined in this work are maximizing information of

object location and speed in an image, and information on object brightness over time.

The design variables are the telescope integration times over a series of images, the mount

angular rates, and camera gain. Constraints include the data downlink rate, pixel satura-

tion, and star field clutter. The final problem is a multi-objective optimization problem

with a series of constraints and a variable length vector in the form of the exposure times.

The simulation work analyzes the various reward functions individually and the combined

Pareto surface.

Telescope operators, when performing SSA missions, have a variety of parameters

which must be chosen. This includes exposure time, gain and gamma, exact pointing and

slew rate, and in some cases bore sight rotation [34]. These parameters can have large

impact on data efficacy, but are often chosen in an ad-hoc manner [87]. From the perspec-

tive of research, the telescope is often modeled academically as a sensor which is pointed

towards a location in the sky, and obtains measurements on sufficiently bright objects. To

the authors knowledge, telescope parameters have never been rigorously explored for SSA

specific problems.

This chapter treats the telescope tasking problem as a multi-objective optimization

problem. The telescope parameters in question are the design variables for this problem,
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while the objectives are “good” astrometry and photometry. Constraints are introduced by

calling out situations which would corrupt data beyond use or be physically impossible.

4.1.1 Methodology

In section 4.2 the optimization problem is set up. First, the various available design vari-

ables are defined and discussed. The statistics of image and point source data form the

groundwork of this chapter and are succinctly introduced. A few other background topics

are discussed as well.

Section 4.3 introduces the three main reward functions in this chapter. First, maximum

likelihood estimation on an image is introduced along with a general formula for Fisher

information. The astrometric information for both position and velocity is presented. Both

these functions are developed for both a stationary and streaking object. Timing uncertainty

is also incorporated into these reward functions. A formulation for photometry information

is developed, which incorporates flux bias from rapidly changing signals.

Section 4.4 finishes defining the optimization problem by discussing various constraints.

This includes side constraints for variables and physical constraints for a telescope system

such as pixel saturation and pixel bleeding. More interestingly, star background clutter is

analyzed as a constraint, providing an analytic way to trade off information gain from long

exposures with potential information loss from objects intersecting stars.

Section 4.5 discusses the various optimization techniques used in this chapter. First,

gradients for each of the reward functions are developed, which provide both insight into

how the reward functions behave and a faster way to solve the optimization problem. The

Karush Kuhn Tucker conditions are briefly discussed in this section. Finally, a loose outline

of how the single objective and multi-objective optimizations are solved is presented. This

includes a discussion of some of the hurdles and pitfalls in the optimization process.

Finally, Section 4.6 analyzes the various reward functions in simulation. First each

reward function is solved by itself. Discussions on the general shape of solutions along
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with intuitive analysis of the behavior of the reward functions are included. The combined

multi-objective optimization process is also analyzed, with the inclusion of both a Pareto

surface and sample solutions along the surface.

4.2 Optimization Set Up

This section, in order, defines the design variables, objectives, and constraints of the opti-

mization problem.

4.2.1 Available Design Variables

Before the definitions and behaviors of the various SSA objectives can be analyzed, a list

of design variables is needed.

First, the camera integration time is defined. Integration time, tI , also known as ex-

posure time, is the amount of time spent collecting photons for a single image. Longer

integration time implies more photons are collected which implies higher informational

content. Longer exposure time also leads to higher probability of detection in a particular

frame. Shorter integrations leads to more images over a set period of time which gives

more temporal information. Some photometry missions attempt reconstruction of highly

variable light curves over time, while velocity information in images needs some element

of temporal information.

In general, this chapter assumes multiple images may be taken, each with its own

integration time. This forms a rather unique design variable, a variable length vector,

t ∈ RNt+1. To aid this discussion, refer to Figure 4.1 for clarification. This chapter uses

the start times of each integration, tk, as the design variable and models the rest of the tim-

ing quantities around it. Sensors require some time to upload pixel information between

integrations, which is modeled as a constant dead time, td, seen in Figure 4.1. Then the kth
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Figure 4.1: Various variables associated with time during a series of integrations.

integration is defined as

tI,k = tk+1 − tk − td (4.1)

Note that in this formulation the first element t1 is always zero and a final tNt+1 must also

be included. Even though there are Nt + 1 elements, the first and last are always fixed

so there are only Nt − 1 variables to optimize over. As mentioned, the problem involves

a variable length vector in that Nt can be varied and whatever optimization method used

must be able to handle this. Finally, the center time of each integration is useful to define

for future discussions as the midpoint of a particular integration,

t̄k = (tk + tk+1 − td)/2 (4.2)

which can also be seen in Figure 4.1.

Next, two continuous variables, α(t) and δ(t) are defined. This chapter treats these

variables as the inertial angles, right ascension and declination, but they could just as easily

represent a unit vector or local frame (e.g. azimuth and elevation). These variables need

to be defined over the exposure time taken by a sensor. In many cases, this leads to defin-

ing four parameters [α(t0), δ(t0), α̇(t0), δ̇(t0)]. This can be further simplified by moving

the variables into the image plane as [x(t0), y(t0), ẋ(t0), ẏ(t0)]. Finally, it is worth noting

that x(t0) and y(t0) are mostly immaterial as design variable because they only determine

where in the image an object shows up; they do not affect information on the brightness

or shape of the object. This chapter assumes the object is in the field of view and there is

insignificant distortion in the sensor to affect information, which may not be true for very
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wide fields of view. Better rate tracking of an object concentrates more light into fewer pix-

els, increasing probability of detection and photometry information. Astrometry, however,

can be improved in certain situations by imperfect rate tracking, depending on the exact

mapping between the point spread function and pixel space.

Next, the gain map must be discussed. This consists of an overall gain, G, and a gamma

filter, Γ. These effect the mapping of electrons on a CCD to pixel values. If chosen incor-

rectly pixel saturation occurs distorting and biasing photometry information. However, on

the other end, very dim signals can have very poor discretization.

4.2.2 Image Statistics

This section reviews statistical models for an image that are used throughout this chapter.

An image is made up of a series of pixel measurements broken into deterministic signal

content and zero mean noise as seen in Equation (2.5) where i is an index denoting a

particular pixel.

A good way to model the statistics of a pixel is with a series of Poisson distributions

[78]. The pixel is composed of signal (shot noise), dark noise, and read noise which are all

Poisson distributed. It is convenient to factor out the mean of the shot noise as signal, si,

and subtract out the mean of the remaining noise, which gives Equation (2.7), However, this

chapter deals with a more simplified model. A Poisson distribution approaches a Gaussian

distribution as λ increases [88]. Furthermore, for bright objects the contribution of shot

noise on total system randomness is often ignored. The final formulation of a pixel, which

is used throughout this chapter, is then Equation (2.10) Note that the Fisher information for

Poisson distributed pixels is derived in the same way as that of Gaussian pixels [40]. The

work presented in this chapter can therefore by generalized to explicitly Poisson noise as

well.

It is important to understand that measurements taken over the kth integration time are

dependent on the length of the integration time along with a series of other factors. The
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expected value of the noise, which is equal to the variance due to the underlying Poisson

distribution, is

λw,i = σ2
i = GQδ2FotI,k = BFotI,k (4.3)

where Q is the quantum efficiency, δ2 is the area of each pixel, and Fo is the background

and dark current flux rate. In the final line, the constants are wrapped into the parameter

B = δ2GQ to ease notation. This implies that the design variable vector t affects the

information content directly through changing the background variance.

4.3 Reward Functions for SSA

4.3.1 Maximum Likelihood Estimator

For the purposes of this chapter, an estimator needs to be constructed for the flux, position

and velocity of a space object in the image frame at some time θ = (F, x∗(t∗), y∗(t∗), ẋ∗(t∗), ẏ∗(t∗)).

Note that the position and velocity shown above are treated as the location and velocity of

the center (mean) of a point light source in the image plane. A point source object spreads

over pixels through a spatial PDF, h(xi,k|t), called a point spread function (PSF), where

xi,k = [xi,k, yi,k]
T is a specific pixel coordinate. Under ideal conditions the PSF is an Airy

disc [36], but is often approximated as Gaussian for analysis purposes. In reality, this func-

tion is disturbed by atmospheric distortion and mount jitter as well, further distributing the

light. In practical applications, the PSF is estimated directly from image data, either as

an average over several frames or directly in a frame-to-frame manner. The PSF spatial
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distribution is then

h(xi,k|tk) =
1√

(2πw2)2
e−(ξ

2
i,k+η

2
i,k)/2w

2

(4.4)

ξi,k = (xi,k − x∗k), ηi,k = (yi,k − y∗k) (4.5)

x∗k = x∗(t∗) + ẋ∗(t∗)(tk − t∗) (4.6)

y∗k = y∗(t∗) + ẏ∗(t∗)(tk − t∗) (4.7)

where w2 is the variance of the point spread function. Note that the location of the point

source in the image is defined through a series of constants to be estimated, x∗(t∗), y∗(t∗),

ẋ∗(t∗), ẏ∗(t∗), and the time tk. This final PSF h(x) describes the spatial probability density

of photons hitting the ccd plane.

The photons coming off of an object, entering the aperture of a telescope, and hitting

the CCD can be described as a Poisson process and distribution, P (λ). Each photon goes

through a series of random events, including hitting a random place on the CCD (PSF,

h(x)), having a random chance at not being detected (Quantum Efficiency, Q), and being

converted in batches to pixel counts (Gain, G). Each pixel can be then be described as a

Poisson distribution, and approximated as Gaussian as in Equation (2.10). The expected

number of pixel counts (parameter of the Poisson distribution) for pixel i and timestep k is

si,k = λi,k = GQF tI,k

∫
pixel

h(x)dx

≈ GQF tI,k δ
2h(xi,k)

=
BtI,kF√
(2πw2)2

e−(ξ
2
i,k+η

2
i,k)/2w

2

(4.8)

where F is the (average) photon rate off of the object entering the aperture in photons per

second and the integral calculates the probability a given photon hits pixel i. In reality,

the PSF should be integrated over the pixel, but the approximation in line 2 is a common
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Figure 4.2: Photons from a point source are randomly distributed across pixels accord-
ing to a point spread function. Number of photons is determined randomly via a Poisson
distribution.

simplification [40] and effectively a linear approximation of the integral.

Each pixel also has further corruptions from dark current and read noise which can

both be modeled as Poisson and approximated as zero mean Gaussian. Each pixel has a

distribution of

p(z) =
1√

2πσ2
i,k

e−(z−si,k)
2/2σ2

i,k (4.9)

where si,k is the expected signal value. Note that it is common to approximate this distri-

bution as Gaussian, so long as the expected value is high enough. The entire process can

be seen, nominally, in Figure 4.2.

Precise astrometry can be calculated in a variety of ways, but this chapter looks at

the commonly used maximum likelihood estimator [40]. The astrometry can be evaluated

through how well the covariance matrix of the measurement is minimized. Similarly, this

can be seen as maximizing the Fisher information in the estimator [89]. The derivation

of the Fisher information starts with the log likelihood function, l(θ) = log(L(θ|z)) =

log(p(z|θ)), which for this example is

l(θ) =
Nt∑
k=1

Nk∑
i=1

log

 1√
2πσ2

i,k

+

(
−(zi,k − si,k)2

2σ2
i,k

)
(4.10)

Note that the summation over k and i are combined and dropped in future equations for
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ease of notation, but in general all summations occur over both k and i. Also note that Nk

is a function of the time step k. Then the first derivative is generally

∂l(θ)

∂θj
=
∑ 1

σ2
i,k

(zi,k − si,k)
∂si,k
∂θj

(4.11)

The Fisher information is found by taking the expected value of the square of the gradient

above. Future sections calculate Fisher information for a variety of values of θj .

4.3.2 Streaking Object Point Spread Function

This section quantifies the modified point spread function, h̃(xi), for a streaking object. The

goal is to modify the PSF in Equation (4.8) for a streaking object. The primary difference

is explicitly integrating over the integration time rather than just including tI,k,

tI,kh̃(xi,k|t) =

tk+1−td∫
tk

h(xi,k|t)dt

=

tk+1−td∫
tk

1√
(2πw2)2

e−(ξ
2
i,k(t)+η

2
i,k(t))/2w

2

dt (4.12)

where ξi,k and ηi,k are now time dependent implying h must be explicitly integrated. Note

that tI,k must be included as part of the definition, because it is calculated through the

integral.

There is a useful shortcut in the evaluation of the integral in Equation (4.12). In order

ease this calculation, this integral can be reparameterized into the distance parallel and

orthogonal to the motion of the Gaussian, [ẋ∗, ẏ∗]T , which are internal parameters in h.

Note that while the parallel distance, ξ̃, is time varying the orthogonal distance, η̃, is time
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invariant. Then the same integral is

tI,kh̃(xi,k|t) =
e−η̃

2
i,k/2w

2√
(2πw2)2

tI,k+1∫
tI,k

e−ξ̃
2
i,k(x̃(t))/2w

2

dt (4.13)

where one direction of the Gaussian is removed from the integral and the other is calculated

from a simple 1-D Gaussian integral evaluation.

4.3.3 Astrometry Reward for Space Object Orbit Determination

In order to synthesize a reward function for tasking parameters with respect to astrometry,

the Fisher information is calculated in this section. Astrometry for space objects in this

case is θ = (x∗(t∗), y∗(t∗), ẋ∗(t∗), ẏ∗(t∗)). The derivation starts with evaluating Equation

(4.11) for the above θ, which leads to

∂l

∂x∗
=

1

w2

∑ (zi,k − si,k)
σ2
i,k

ξi,ksi,k

∂l

∂y∗
=

1

w2

∑ (zi,k − si,k)
σ2
i,k

ηi,ksi,k

∂l

∂ẋ∗
=

1

w2

∑ (zi,k − si,k)
σ2
i,k

ξi,ksi,k(t̄k − t∗)

∂l

∂ẏ∗
=

1

w2

∑ (zi,k − si,k)
σ2
i,k

ηi,ksi,k(t̄k − t∗) (4.14)

The Fisher information is found by taking the expected value of the square of the gradient

above. First note that in this form, the only random variable is the pixel measurements,

zi,k, which appears once. While the square of Equation (4.14) is the square of a sum,

E[(zi,k− si,k)(zj,k− sj,k)] = 0 for i 6= j so long as noise is uncorrelated. For the rest of the
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terms, E[(zi,k − si,k)2] = σ2
i,k, giving Fisher information results of

Ixx =
1

w4

∑ ξ2i,ks
2
i,k

σ2
i,k

(4.15)

Iyy =
1

w4

∑ η2i,ks
2
i,k

σ2
i,k

Iẋẋ =
1

w4

∑ ξ2i,ks
2
i,k

σ2
i,k

(t̄k − t∗)2 (4.16)

Iẏẏ =
1

w4

∑ η2i,ks
2
i,k

σ2
i,k

(t̄k − t∗)2

Next, the same calculation is made for a moving point spread function. The moving

point spread function in Equation (4.12) can be plugged directly into the second line of

Equation (4.8). Referencing Equation (4.11), the same derivative is calculated which for

position and velocity information is unaffected by the presence of an integral over time.

∂l

∂x∗
=
BF

w2

∑ (zi,k − si,k)
σ2
i,k

tk+1−td∫
tk

ξi,khi,kdt (4.17)

∂l

∂ẋ∗
=
BF

w2

∑ (zi,k − si,k)
σ2
i,k

tk+1−td∫
tk

ξi,khi,k(t− t∗)dt (4.18)

which turns into the position and velocity information

Ixx =
B2F 2

w4

∑ 1

σ2
i,k

 tk+1−td∫
tk

ξi,khi,kdt

2

(4.19)

Iẋẋ =
B2F 2

w4

∑ 1

σ2
i,k

 tk+1−td∫
tk

ξi,khi,k(t− t∗)dt

2

(4.20)

In effect, the streak information only requires calculating the modified expected value of

each pixel. These integrals can be easily calculated for each pixel through a Riemann

approximation.
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4.3.4 Photometry Reward for Space Object Characterization

First, the information on the estimate of the photometric flux, that is, how accurately the

flux is estimated in an image, is shown. Starting with Equation (4.11),

∂l(F )

∂F
=
∑ 1

σ2
i,k

(zi,k − si,k)BtI,kh(xi,k) (4.21)

where the F in the denominator cancels with the F in si,k. To get the information, the

expectation of the square of Equation (4.21) is required,

IFF = B2
∑ t2I,kh(xi,k)

2

σ2
i,k

(4.22)

Photometry Bias

For a time varying photometric flux signature, the point spread function must be integrated

over time.

si,k = G

tk+1−td∫
tk

F (t)

∫
pixel

h(x)dxdt

≈ BtI,kF̄ h(xi,k) (4.23)

The flux is only observed through F̄ , the average flux over the integration time. Because

average flux over a time period is a difficult measurement to incorporate into an estima-

tion scheme, the measurement is often treated as the instantaneous flux at the central time,

t̄k. For flux that varies linearly over the integration time, this assumption is accurate, but

many real scenarios can contain significantly varying signals. Furthermore, the variations

in flux are often an important piece of information in object characterization. These varia-

tions provide an inherent bias, εF , in the photometric measurements, which is illustrated in

Figure 4.3.
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tk tk+1 � tdt̄k

F̄k

F (t)

✏F

Figure 4.3: An inherent bias, εF , is created when observing a fluctuating signal.

The expected value of the pixels are then

si,k = BtI,k(F (t̄k) + εF )h(xi,k) (4.24)

where F̄ is split into the true term to be estimated and a bias error term, εF . The bias

is dependent on the shape of the signal itself, thus to make further progress a model for

the flux is proposed. Typically, the kind of quick flux changes which occur during an

integration are due to periodic variations on flux. The flux is modeled as a sum of sinusoidal

signals. It is also assumed that if the highest frequency signal is sampled sufficiently, all

lower frequency signals are also sufficiently sampled. Therefore, the goal of photometry is

to sufficiently sample

F (t) = F0 + A sin(ωt+ θ) (4.25)

where F0 is the average flux, θ is the phase shift, and A and ω are the amplitude and

frequency of the highest frequency time varying component. The bias is then

εF = F (t̄k)−
1

tI,k

tk+1−td∫
tk

F (t)dt

= A sin(ωt̄k + θ)− 1

tI,k

tk+1−td∫
tk

A sin(ωt+ θ)dt (4.26)
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For further analysis, it would be useful to quantify the distribution of εF . The unknown

phase shift, θ, is uniformly distributed over R but, due to the cyclical nature of the sine

function, can be assumed as uniformly distributed over [0, 2π]. For the timing t̄k, tk, and

tk+1 can be assumed as any given choice simply shifts ωt̄k + θ, which is still uniform over

one cycle of sine. Applying these assumptions and a change in variable, τ = ωt, gives

εF = A

sin(θ)− 1

tI,k

tI,k/2∫
−tI,k/2

sin(ωt+ θ)dt


= A

sin(θ)− 1

ωtI,k

ωtI,k/2∫
−ωtI,k/2

sin(τ + θ)dτ

 (4.27)

where ωtI,k forms a time factor. As ωtI,k → 0, the right side of the equation becomes a

very accurate estimate of sin(θ) which drives εF → 0. As ωtI,k →∞, the integral becomes

cyclical between -1 and +1, and so εF → sin(θ). This integral can be evaluated directly,

giving

εF =A

(
sin(θ) +

1

ωtI,k
cos(θ + ωtI,k/2)

− 1

ωtI,k
cos(θ − ωtI,k/2)

)
(4.28)

which can be simplified with the half angle formula into

εF = A sin(θ)

(
1− 2

ωtI,k
sin(ωtI,k/2)

)
= α sin(θ) (4.29)

where α is the modified amplitude

α = A

(
1− 2

ωtI,k
sin(ωtI,k/2)

)
(4.30)
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Figure 4.4: Variation of α with respect to the time constant ωtI,k with constant A = 1.

Note that the phase still heavily affects the bias through the sin(θ) and the results as ωtI,k

goes to zero or infinity still hold. Finally, if θ is uniformly distributed,

pasin(εF ;α) =
1

π
√
α2 − ε2F

(4.31)

giving a PDF for the flux bias. This distribution is the symmetric case of the arcsine disti-

bution. The expected value is zero which intuitively makes sense, and the variance is

Var(εF ) =

∫
ε2F

1

π
√
α2 − ε2F

dεF

= α2/2 (4.32)

which can be analytically calculated.

High Frequency Photometry

Now the photometric information can be calculated with the bias, εF , taken into account.

Because the bias is inherently stochastic and unknown, the best available estimate of the

expected value in each pixel is still Equation (4.8), where F is the instantaneous flux.
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However, each pixel has an added stochastic term

zi,k = B(F + εF )tI,kh(xi,k) + wi,k

= si,k +BεF tI,kh(xi,k) + wi,k (4.33)

εF ∼ pasin(α), wi,k ∼ N (0, σ2
i,k) (4.34)

Var(zi,k) = σ2
i,k + (B2t2I,kα

2h2i,k)/2 (4.35)

In order to incorporate this into the Fisher information, Equation (4.11) is evaluated for the

new distribution,

∂l(F )

∂F
= B

∑ (zi,k − si,k)
Var(zi,k)

tI,khi,k

∂l(F )

∂F
= B

∑ (wi,k +BεF,khi,k)

Var(zi,k)
tI,khi,k (4.36)

noting that εF,k is invariant over index i. To get information, the expectation of the square

of the above derivative is required, but unlike before, cross terms are not necessarily uncor-

related,

IFF = B2E

(∑
k

∑
i

(wi,k +BεF,khi,k)
tI,khi,k

Var(zi,k)

)2
 (4.37)

where wi,k and εF,k are the only stochastic terms. Note that while the various wi,k are

uncorrelated with each other and wi,k is uncorrelated with εF,k, there are εF,kεF,l which are

correlated based on their time offset by the term cos(ω(t̄k − t̄l)). In reality this creates a

quadruple sum reward function over two time step dimensions and two pixel dimensions.

Furthermore, the correlation can be both positive and negative and is based on an initially

unknown frequency. For the simulation work, these correlation terms are not included for
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this reward function giving a simplified information of

IFF = B2
∑
i,k

t2I,kh
2
i,k

Var(zi,k)
(4.38)

This version of the reward inflates the variance of each pixel with the added uncertainty of

εF .

4.3.5 Streaking Photometry

The streaking point spread function is straight forward to calculate. The primary difference

is in substituting h̃ in Equation (4.12) for h,

IFF = B2
∑
i,k

(∫ tk+1−td
tk

hi(t)dt
)2

Var(zi,k)
(4.39)

Note that h̃ also must be substituted into the variance equation.

4.3.6 Timing Uncertainty

When considering real optical sensors, there are a variety of other parameters, such as tim-

ing uncertainty, which may have inherent uncertainty and therefore affect the information

content. This section serves as a template on how to incorporate additional uncertainties

into the above reward functions. Additional uncertainty only needs to be introduced into

the stochastic measurement variables, zi,k, which typically takes the form of inflating the

final variance, σ2
i,k. In the case of timing uncertainty, zero mean Gaussian timing error is

added at each time step,

t̃k = tk + εt,k, εt,k ∼ N (0, w2
t ) (4.40)

where wt is the known timing variance. Equations (4.15) and (4.16) are valid then, because

the timing uncertainty does not change the expected value of the pixels, only the variance.
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The pixel variance needs to be updated for the new value of σ2
i,k which incorporates timing

uncertainty. The primary effect of timing uncertainty occurs through changing the inte-

gration time. Using the ·̃ notation to represent variables which have an internal timing

uncertainty,

t̃I,k = tk+1 + εt,k+1 − tk − εt,k − td

= tI,k +
√

2εt,k (4.41)

which gives

zi,k = s̃i,k + wi,k

s̃i,k = BFh(xi,k)t̃I,k

= si,k +
√

2BFh(xi,k)εt

zi,k = si,k + wi,k +
√

2BFh(xi,k)εt. (4.42)

For a streaking object, Equation (4.12) must be used as the basis for describing pixels,

so the uncertainty is part of the integral bounds. Considering uncertainty in only tk for ease

on derivation, the integral can be broken into the original component and a small stochastic

component,

zi,k = s̃i,k + wi,k

s̃i,k = BF

tk+1−td∫
tk+εt,k

hi,k(t)dt

= si,k +BF

tk∫
tk+εt,k

hi,k(t)dt. (4.43)
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If εt,k is small, which typically is the case, the integral can be linearized around tk

s̃i,k ≈ si,k +BFhi,k(tk)εt,k (4.44)

where hi,k(tk) is the point spread function at the time tk. This linearization also depends

on a small in plane velocity; the assumption is that the point spread function is effectively

stationary over the range of the timing error. Taking into account uncertainty at tk+1 as well

gives

s̃i,k ≈ si,k +BF (hi,k(tk)εt,k + hi,k(tk+1)εt,k+1). (4.45)

First note that the timing uncertainty affects pixels proportionally to the point spread func-

tion at that time, hi,k(t). This implies that only pixels near the end points are affected by

timing uncertainty.

The timing uncertainty can be incorporated into any of the above reward functions by

inflating the variance of each pixel by the additive Gaussian term in Equation (4.42) or

Equation (4.45) for a stationary or moving PSF respectively. The timing can also affect the

information in a second way: by changing exposure time, the mean background radiation

is affected as well. This uncertainty is a gray area because effective background subtraction

implies that any such variation in background is estimated and removed.

4.4 Constraining Parameters

This section outlines the constraints being used for this optimization problem. The standard

notation for inequality constraints is as functions g(x) ≤ 0.

4.4.1 Physical Constraints

The first constraint is total time allocated for images, T . The series of Nt images each

take their respective integration times to be captured. The camera must upload the pixel
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information between integrations. This dead time, td, occurs Nt− 1 times and is a function

of the image size and the data transfer rate of the camera. Because of the structure of tI ,

this can be implemented as a constraint on the last element of the vector, tI,Nt+1, and is

effectively an equality constraint that must be zero.

gt(tI) = (Nt − 1)td +
Nt∑
k=1

tI,k − T (4.46)

gt(tI,Nt+1) = tI,Nt+1 − T (4.47)

The next constraint is based on pixel saturation and bleeding. When a CCD integra-

tion is sufficiently high such that a pixel reaches its maximum number of counts, or FWC

(full well capacity), the pixel begins to “bleed” its counts into adjacent pixels [90]. Pixel

bleeding adds extra signal over vast areas of an image, with poorly understood statistical

distributions, rendering those areas unusable. This chapter treats bleeding as unacceptable;

even if bleeding in an image does not affect the target being observed, secondary objects

may move through an image but be obscured by bleeding. Bleeding is dependent on the

number of photons hitting a pixel and is therefore unaffected by gain. It is also dependent

on the flux of the brightest star in the image, Fmax, which must therefore be predicted or

estimated. This leads to

gb(tI,k) =
Fmax tI,k δ2√

(2πw2)2
− FWC (4.48)

where
√

(2πw2)2 is the PSF’s maximum value (center). Pixel saturation can occur in the

same way, by reaching FWC for a pixel, but this is uncommon for space objects relevant

to SSA. Instead, the gain for a camera can be set too high, so when the analog-to-digital

conversion occurs, the pixel’s bit depth, BD, is reached. This saturation makes photometry

impossible and can have unpredictable affects on astrometry, but does not lead to bleeding.
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Similar to Equation (4.48), the constraint to avoid saturating relevant pixels is

gs(tI,k, G) =
GQE F tI,k δ

2√
(2πw2)2

− BD (4.49)

where F is the brightness of either the space object being tracked or the brightest possible

space object. Note that the negative effect of saturation on astrometry may not be sufficient

to always require this constraint, but that is case dependent.

4.4.2 Star Field Clutter

In many cases of SSA missions, the intuitive tasking involves rate tracking a space object.

Intuitively, the reward functions in this chapter often prioritize longer exposure times. The

reason exposure time is often not maximized is due to star field clutter. Rate tracking an

object causes stars to streak through an image, and when many stars are present this can

clutter a large percentage of the image. Methods exist to subtract out the stars and preserve

data on other light sources [91] but because star photons are a Poisson process, they still

lead to large spikes in uncertainty, especially in photometry. Furthermore, SSA missions

often detect previously unknown objects as uncorrelated tracks (UCT); with high levels of

star clutter this becomes difficult.

This constraint is formulated as a maximum acceptable percentage of pixels obfuscated

by stars, %max.

l =
tI,kθ̇

iFoV
(4.50)

Nstar = #star(9πw
2 + 6lw) (4.51)

g%(tI,k, θ̇) =
Npx
Ntotal

−%max (4.52)

where l is the length of star streaks in the image, θ̇ is the tracking rate, #star is the number

of star in the field of view, w is the standard deviation of the point spread function, and
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Ntotal is the total number of pixels in the image.

4.4.3 Probability of Detection

An important consideration is the probability of detection of an object. This idea can be

used as two possible constraints, one on detecting a specific object of interest and one on

detecting various objects of opportunity in the background. Object of opportunity refers to

an object which may unexpectedly pass through the field of view during a data campaign.

SSA missions often desire that as many objects as possible be detected and characterized

to increase overall situational awareness. Mathematically, this objective is best quantified

as the total photometric evidence for an object, while considering the total corruption of

that evidence by noise. This is then measured through total photometric SNR of an object

in a particular image

SNR
(∑

zi

)
=

E [
∑
zi]√

E
[
([
∑
zi]− E [

∑
zi])

2] (4.53)

≈ GQF̄ tI√
Nkσ

(4.54)

which encapsulates in one number the ratio of information to corruption. Note that GQF̄ tI

is the sum of Equation (4.8) over all pixels for a given time step and Nk is the number of

pixels over which the signal is spread. The number of pixels Nk is dependent on the size of

the point spread function and the length over which the object streaks. For tracking a known

object, this number is already calculated for the summations in the information equations

while for objects of opportunity this is inherently unknown. For objects of opportunity a

nominal value must be chosen for Nk. This gives an equality constraint of

gSNR(tI,k) = SNRmin − SNR
(∑

zi

)
(4.55)
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where SNRmin is some minimum value of SNR, dependent on the detection method be-

ing used. An aggressive minimum SNR would be 3, which pushes the limits of current

detection methods [88].

4.4.4 Side Constraints

Many of the design variables have side constraints which may be considered.

t
I,min ≤ tI,k ≤ tI,max (4.56)

gFoR(α, δ) ≤ 0 (4.57)

gslew(α̇, δ̇) ≤ 0 (4.58)

In Equation (4.56), integration time is usually bounded by minimum and maximum values

which are dependent on the specific camera itself. In Equation (4.57), observatories some-

times have physical constraints on what azimuth and elevation angle pairs are achievable,

which again can be used on a case by case basis. In Equation (4.58), the telescope mount

may require a constraint on slew rate, which is dependent on the mount in question. The

constraint must be tailored to each sensor mount, and may not be necessary for campaigns

involving slow moving objects.

4.5 Optimization Techniques

This section discusses how to calculate gradients on the various reward functions, how to

treat some of the design variables, and what optimization methods are used in this work.

4.5.1 Gradient on Stationary Point Source

This section develops gradients for the reward functions with respect to the timing vector,

tI . The gradients here are only shown for the simpler stationary point spread function,

while the more complicated moving point spread function gradients are shown in the next
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section. In order to efficiently search for optima, it is useful to have analytic gradients of

the reward functions with respect to the integration time vector. Before proceeding, note

the derivatives of the integration time and center times from Equation (4.1) and Equation

(4.2) for the exposures

∂tI,k
∂tk

= −1,
∂tI,k
∂tk−1

= 1 (4.59)

∂t̄k
∂tk

= 1/2,
∂t̄k
∂tk−1

= 1/2 (4.60)

For spatial information, Equation (4.15) must be expanded using Equations (4.8) and

(2.11),

∂Ixx
∂tk

=
∂

∂tk

(
BF 2

Fow4

∑
k

tI,k
∑
i

ξ2i,kh
2
i,k

)
(4.61)

where tI,k is defined in Equation (4.1). The differentiation results in

∂Ixx
∂tk

=
BF 2

Fow4

(∑
i

ξ2i,kh
2
i,k −

∑
i

ξ2i,k−1h
2
i,k−1

)
. (4.62)

This equation represents the trade-off between lengthening the k − 1th integration while

shortening the kth integration. Consequently, if the shape of the point spread function is

constant from frame to frame, the two summations yield a derivative of zero. This implies

for astrometric position information, when the exposure is taken does not matter, only the

amount of exposure; if, say, 20 seconds of exposure will be taken this time can be spread

between any number of measurements of any lengths and achieve equal information. In

realistic circumstances, the presence of dead time implies that longer exposure times are

better, as less time is wasted.
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Similarly for the velocity astrometry information,

∂Iẋẋ
∂tk

=
∂

∂tk

BF 2

Fow4

∑
k

tI,k(t̄k − t∗)2
∑
i

ξ2i,kh
2
i,k

=
BF 2

Fow4

(
tI,k(t̄k − t∗)− (t̄k − t∗)2

)∑
i

ξ2i,kh
2
i,k

−
(
tI,k−1(t̄k−1 − t∗)− (t̄k−1 − t∗)2

)∑
i

ξ2i,k−1h
2
i,k−1 (4.63)

where t̄k is defined in Equation (4.2). This equation contains an interesting interplay which

provides qualitative insight on velocity astrometry. The −(t̄k − t∗)2 term, which is always

negative for the tk integration and positive for the tk−1 integration, represents how increas-

ing tk reduces one exposure time while increasing another. Conversely, the tI,k(t̄k − t∗)

term tends to push the tk away from t∗ to maximize the baseline. These two parts of the

gradient oppose each other and the optimum lies somewhere in between.

The photometry information gradient is more complicated due to the various instances

of tI,k in the denominator, but it is calculable. First note the expanded version of IFF ,

IFF = B2
∑
k

∑
i

t2I,kh
2
i,k

BFotI,k +B2t2I,kh
2
i,kα

2
k/2

= B
∑
k

∑
i

tI,kh
2
i,k

Fo +BtI,kh2i,kα
2
k/2

(4.64)

where αk is dependent on tI,k. The derivative of this expression with respect to tk is then a

function of the kth and k − 1th time steps,

∂IFF
∂tk

= B3
∑
i

−t2I,kh2i,k
Var(zi,k)2

(
Fo +Bt2I,kh

2
i,kαk

∂αk
∂tk

)
−B3

∑
i

−t2I,k−1h2i,k−1
Var(zi,k−1)2

(
Fo −Bt2I,k−1h2i,k−1αk−1

∂αk−1
∂tk

)
(4.65)
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where the derivative of αk is

∂αk
∂tk

= A

(
1

tI,k
cos

(
ωtI,k

2

)
− 2

ωt2I,k
sin

(
ωtI,k

2

))

=
A

tI,k

(
cos

(
ωtI,k

2

)
− 1

)
+
αk
tI,k

(4.66)

This gradient gives less intuition than the previous ones. In practice its performance de-

pends on α as to whether it tries to drive the exposures to be small or large.

4.5.2 Gradient on Streaking Point Source

Position information on a streak object can be reformulated to give

∂Ixx
∂tk

=
∂

∂tk

(
BF 2

Fow4

∑
k

1

tI,k

∑
i

C2
i,k

)
(4.67)

with

Ci,k =

tk+1−td∫
tk

ξi(t)hi(t)dt (4.68)

Included for notation ease. This leads to

∂Ixx
∂tk

=
BF 2

Fow4

(∑
i

C2
i,k

t2I,k
− 2Ci,k

tI,k
ξi(tk)hi(tk)

−
∑
i

C2
i,k−1

t2I,k−1
− 2Ci,k−1

tI,k−1
ξi(tk − td)hi(tk − td)

)
(4.69)
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where tI,k is defined in Equation (4.1). Similarly for velocity astrometry,

Iẋẋ =
BF 2

Fow4

∑
k

1

tI,k

∑
i

D2
i,k

∂Iẋẋ
∂tk

=
BF 2

Fow4

(∑
i

D2
i,k

t2I,k
− 2Di,k

tI,k
di(tk)

−
∑
i

D2
i,k−1

t2I,k−1
− 2Di,k−1

tI,k−1
di(tk − td) (4.70)

where

Di,k =

tk+1−td∫
tk

ξi(t)hi(t)(t− t∗)dt (4.71)

di(t) = ξi(t)hi(t)(t− t∗) (4.72)

is another constant substituted for ease of notation. For both of these formulations, the

information in the y direction is identical save for η replacing ξ.

For streaking photometry information

IFF = B2
∑
i,k

(∫ tk+1−td
tk

hi(t)dt
)2

Var(zi,k)

= B2
∑
i,k

(∫ tk+1−td
tk

hi(t)dt
)2

BFotI,k +B2α2
k

∫ tk+1−td
tk

hi(t)dt
(4.73)

The derivative is then

∂IFF
∂tk

= B2
∑
i

(
−2Var(zi,k)Ei,khi(tk) + E2

i,kei,k(tk)

Var(zi,k)2

−B2
∑
i

−2Var(zi,k−1)Ei,k−1hi(tk − td) + E2
i,k−1ei,k(tk − td)

Var(zi,k−1)2
(4.74)
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where the derivative of αk is defined in Equation (4.66) and Ei,k and ei,k are

Ei,k =

∫ tk+1−td

tk

hi(t)dt (4.75)

ei,k(t) = (BFo +B2α2
kEi,khi(t)−B2αkE

2
i,k

∂αk
∂tk

) (4.76)

Note that the (t) in ei,k refers to the fact that hi(t) is evaluated at a specific time, tk for time

step k and tk − td for times step k − 1.

4.5.3 Karush Kuhn Tucker Conditions

Many optimization problems with analytic gradients can be solved analytically. In the

general case allowing for constraints, the Karush-Kuhn-Tucker conditions are a series of

equations which provide a framework for analytic solutions [92]. The basis of such an

analysis involves setting the gradient of the reward function equal to zero and solving for

the design variables. Such an analysis on Equation (4.62) gives

∑
i

ξ2i,kh
2
i,k =

∑
i

ξ2i,k−1h
2
i,k−1 (4.77)

which is not a function of the design variables and in general always true. Assuming the

above equality holds, the velocity information in Equation (4.63) gives

tI,k(t̄k − t∗)− (t̄k − t∗)2

= tI,k−1(t̄k−1 − t∗)− (t̄k−1 − t∗)2 (4.78)

which is an equation with three unknowns, tk−1, tk, and tk+1. The full gradient gives one

equation for every unknown and is therefore solvable, though non-linearity may provide

multiple solutions. The photometry information gradient is much more complicated, due

to multiple instances of tI,k in the gradient numerator and denominator. Finally, though

the constraints discussed in Section 4.4 may not be active in many of the simulations, their
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inclusion implies the need for a Lagrange multiplier analysis. Due to the complicated

nature of these gradients and the ultimate desire for Pareto type analysis, this chapter does

not spend any further time discussing analytic optimization solutions. The prospect of

further analysis here marks a potent area for future work.

4.5.4 Optimization Methods

The primary optimization method used in this work is a descent method. Because analytic

gradients exist, this is an efficient method which reliably solves the optimization problem.

In practice, the optimization seems well posed with no obvious problems involving discrete

variables, constraints, or local minima. These comments are purely observations and no

explicit analysis of global optima has been done. Constraints are handled with an exterior

penalty function which is easy to implement and has shown no problems in practice [92].

The time vector is of a variable length, which corresponds to different numbers of exposure

times. This is currently solved by running the optimization for all possible lengths, Nt,

and choosing the solution with the best reward. There may be ways to solve this more

efficiently, which should be explored in future work.

The multi-objective problem is well posed and can be solved with a simple weighted

sum method [92]. The actual Pareto surface is typically non-convex, but the Pareto surface

for a fixed value of Nt appears convex in practice. The weighted sum method gives well

posed Pareto surfaces for each value of Nt and the resulting series of Pareto surfaces are

combined into a single final surface. This can be seen in the follow results section in Figures

4.16 and 4.18.

4.6 Optimal Solutions for Control of Telescope

4.6.1 Discussion and Analysis of Reward Functions

This section gives an intuitive explanation of the various reward functions developed in

this chapter. The main design variables that affect the image information content are the
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Figure 4.5: Astrometry gets more information from long exposure times, and a long time
baseline. Photometry gets more information from short exposure times, to reduce uncer-
tainty from time varying signals.

exposure times. Figure 4.5 illustrates the interplay of photometry and astrometry. Figure

4.5 shows two exposures centered at two times, t1 and t2, and how they appear with respect

to both position and brightness. Exposure time in an image is generally proportional to

information content, and so t2 provides more raw position and brightness information. This

is exactly true for position astrometry, but velocity astrometry is dependent on both ∆x and

∆t as well so separating two long exposures is also useful. Constant flux photometry would

also want long exposures, but the curvature of F (t) in Figure 4.5 shows why long exposures

are a liability due to the potential bias.

In the next few subsections, the reward functions and subsequent Pareto surfaces are

explored over a particular nominal test case. The test case has parameters defined in Table

4.1. Total time refers to the total length of the campaign and is equivalent to the final

element of the exposure time vector, tNt+1. The primary design variable being explored is

the exposure time vector. The slew variable is simplified as object speed (px/s) and object

heading (degrees) in the pixel plane, though the object speed is set to zero for many of

these simulations to maximize the intuition in the results. Gain, G, quantum efficiency,

Q, and PSF size, w, play only a small role in information content and are set to be round

values to minimize their impact. The flux, background noise, and amplitude are chosen as
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Table 4.1: Various parameters and constants used for simulated observation campaign.

G Q Fo δ w

1.0 1.0 100. ph/(s px2) 1.0 px 1.5 px

Total time td Mean Flux ω A

20 s 0.5 s 1000 ph/s π/4 rad/s 10, 100 ph/s

nominal values. The relative values of A (sinusoidal amplitude) and Fo (background noise

flux) tend to determine whether photometry prioritizes avoiding bias through εF versus raw

number of photons. Two values of A are used in the simulation section so each case can be

separately analyzed.

Before fully analyzing the reward functions, the aliasing error discussed in Section

4.3 is validated here. Measurement values are all generated by generating actual streaks

(with no noise) and summing up the pixels. For the time span and parameters defined in

Table 4.1, the different exposure times are shown in Figure 4.6. The exposures have three

different lengths, one well above the Nyquist frequency, one which experiences high levels

of aliasing, and one with only small errors.

The velocity cost function pushes exposure center time t̄k away from the campaign

center time, t∗. This results in a single exposure that occurs over the entire time span which

necessitates t̄k = t∗ and zero information. Furthermore, while the parameter t∗ is set as

the center time of the campaign, as this is typically when velocity is estimated, it could

be set to other values which can give very different answers. These examples highlight

the limitations of the above analysis; the reward functions are the trace of a single part of

the Fisher information matrix, don’t account for nuisance parameters and don’t account for

every possible factor. The reward functions are surrogates to actual information and have a

good deal of room for improvement.
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Figure 4.6: Flux over time as measured by different exposure times. The smooth red line is
truth while the solid black lines represent measured flux for exposure times of tI,k = 20s,
tI,k = 4.6s, and tI,k = 0.86s. Stars are paced at the center time of each exposure, t̄k.

4.6.2 Optimal Velocity Astrometry Solution

More photons lead to better statistical significance for position astrometry in an image or

series of images. For velocity astrometry, more photons still help, but the time baseline over

which observations are taken is important as well. This leads to prioritizing long exposure

times in the first and last observation of an image set. There is a natural counterweight

to this, because longer first and last exposure times push the first and last center times,

t̄k closer towards the center. As mentioned, the optimal arrangement of exposure times is

solved with a descent algorithm, which is performed over a range of values for the number

of exposure times, Nt. Because each number of exposures is solved independently, each

solution can be shown and respectively analyzed. In Figure 4.7, each solution integration

set is visually represented. Most of the solutions regardless of Nt have the same general

form, prioritizing the first and last exposure. As Equation (4.16) implies, the integrations

furthest away from the center time, t∗ = 10s, have the most information value. This is better
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Figure 4.7: For the velocity information reward function, this shows each optimal set of
integrations for a respective total number of integrations. The total number of integration
which provides the highest reward is highlighted with a green dashed line.

illustrated in Figure 4.8 which shows the cumulative information after each exposure as a

function of time. The integrations very close to 10s have little impact on the information

content, and morph to support maximizing information from the first and last integrations.

This leads to all of the solutions with more than 4 integrations having similar first and last

integrations, while the integrations in the middle of the set vary greatly. The information

content in each solution in Figure 4.7 is shown in Figure 4.9. Note how the information

content for all solutions past 6 exposures is effectively the same. Figure 4.9 also compares

the solutions to campaigns of constant exposures, to illustrate the advantages.

4.6.3 Optimal Photometry Solution

Constant flux photometry requires maximizing the number of photons, similar to position

astrometry, and therefore wants a long exposure time. Contrary to the other reward func-

tions, photometry on a variable flux signal requires sufficiently short exposure times in

order to minimize the flux bias, εF . This requirement creates a reward function that wants
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Figure 4.8: For the velocity information reward function, this shows the cumulative in-
formation over time for the optimal solution. Information is focused in the first and last
exposures.

Figure 4.9: For the velocity information reward function, this shows the information con-
tent for each possible number of integrations (value of Nt). Information is shown for a
constant exposure time at each value of Nt for comparison.
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both short exposures and as little dead time as possible. To highlight the duality of this re-

ward function, Figure 4.10 shows solutions forA = 100, while Figure 4.13 shows solutions

for A = 10. In general there is no reason to vary the exposure time so the solutions typi-

cally have constant tI . Figure 4.10 illustrates why this is in the solutions for a low number

of exposures; the solution involves minimizing as many exposures as possible and leaving

one large exposure with a large photometry bias. The primary difference between A = 100

andA = 10 is the optimal exposure time. The integration time in the solution does not have

intuitive meaning without the context provided by the frequency of the oscillating flux. The

choice of integration time combined with ω = π/4 gives a value on Figure 4.4, associating

with a certain amount of error. Figure 4.13 is skewed towards ignoring the variable flux

and prioritizing as few exposures as possible, and so the solution occurs as 4 integrations

of about 4.5 seconds each with α = 0.44A. Figure 4.10 is skewed towards prioritizing

the variable flux as a large source of error, and so the solution occurs as 8 integrations of

about 2.0 seconds each with α = 0.10A. Recall that the value of α directly defines the

variance in Equation (4.32), which is in the denominator of Equation (4.38). The optimiza-

tion chooses values of tI only in that they directly define the error due to εF . Figures 4.11

and 4.14 show the information over time for the optimal campaign, which takes the form

of a simple step pattern. Figures 4.12 and 4.15 show the information for each exposure

time compared against a constant exposure time campaign. The two only diverge for low

numbers of exposures corresponding with the non constant exposure campaigns in Figures

4.10 and 4.13.

4.6.4 Velocity Astrometry Versus Photometry Pareto Surface

Because this is multi-objective optimization, there is no single solution but a set of solutions

which all attempt to balance the two reward functions. This set of solutions can be seen

in Figures 4.16 and 4.18, for A = 100 and A = 10 respectively, as a curve through the

space defined by the two reward functions. Because the rewards have different units, both
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Figure 4.10: For the photometry information reward function and A = 100, this shows
each optimal set of integrations for a respective total number of integrations. The over all
optimum is highlighted with a green dashed line.

Figure 4.11: For the photometry information reward function and A = 100, this shows the
cumulative information over time for the optimal solution. Information is focused in the
first and last exposures.
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Figure 4.12: For the photometry information reward function and A = 100, this shows the
information content for each possible number of integrations (value of Nt). Information is
shown for a constant exposure time at each value of Nt for comparison.

Figure 4.13: For the photometry information reward function and A = 10, this shows
each optimal set of integrations for a respective total number of integrations. The over all
optimum is highlighted with a green dashed line.
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Figure 4.14: For the photometry information reward function and A = 10, this shows the
cumulative information over time for the optimal solution. Information is focused in the
first and last exposures.

Figure 4.15: For the photometry information reward function and A = 10, this shows the
information content for each possible number of integrations (value of Nt). Information is
shown for a constant exposure time at each value of Nt for comparison.
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solutions are normalized by the individual optima for each reward function. This set of

individual optima is known as the utopia point. As discussed in Section 4.5, the actual

Pareto Surfaces are composed of a series of visually convex surfaces corresponding to

different numbers of exposures, Nt. The surface in Figure 4.16 goes from Nt = 8 to

Nt = 7 to Nt = 6 and then back to Nt = 7 for the very last few solutions, though it is hard

to distinguish visually. The surface in Figure 4.18 is comprised of a series f disjoint surfaces

from Nt = 4 to Nt = 7. To complement the Pareto surfaces, a series of solutions along

the Pareto frontier are provided in Figures 4.17 and 4.19. These solutions show the steady

progression between a velocity astrometry optimal solution in Figure 4.7 at the bottom to

a photometry optimal solution in Figures 4.10 and 4.13 at the top. To provide context for

a single solution, the solution closest to the utopia point, [1, 1]T , in terms of Euclidean

distance is highlighted on all plots. The highlighted solutions in the middle of Figures

4.17 and 4.19 provide a campaign which intuitively balances photometry and astrometry

by taking the optimal first and last integrations for astrometry and inserting the optimal

photometry tasking in between.

4.7 Conclusion

This chapter provides a framework for analyzing how to select telescope parameters for

SSA data collection. Reward functions are developed for the primary two goals of SSA,

astrometry and photometry. Gradients are developed with respect to the main design vari-

able considered, exposure time. This provides results for an optimal exposure time schedule

and Pareto frontiers between the two reward functions.

One of the main lessons from this work is the trade-off between the various reward

functions. Photometry comes in two varieties, long exposures on an unchanging flux versus

high frame rate of varying flux. Velocity astrometry by itself has an trade-off between long

exposures and maximization of the time baseline. When combined together, the various

reward functions can have unexpected interconnections as well, which is shown in their
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Figure 4.16: Demonstration of the Pareto surface between velocity astrometry and pho-
tomtery reward functions for A = 100. The axes are normalized by the individual optima
for each reward function, or utopia point.

Figure 4.17: Each optimal set of integrations for a respective point along the Pareto surface
for A = 100. Solutions vary from the optimal velocity solution in Figure 4.7 to the optimal
photometry solution in Figure 4.10.
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Figure 4.18: Demonstration of the Pareto surface between velocity astrometry and pho-
tomtery reward functions for A = 10. The axes are normalized by the individual optima
for each reward function, or utopia point.

Figure 4.19: Each optimal set of integrations for a respective point along the Pareto surface
for A = 10. Solutions vary from the optimal velocity solution in Figure 4.7 to the optimal
photometry solution in Figure 4.13.
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Pareto surfaces. While many data campaigns with a single goal may stay the same, taking

data efficiently always has value, which is the purpose of this work.

4.7.1 Unifying Example

At this point in our example, we have a series of locations to be search along with a start

and end time for data collection. We implicitly also have a nominal orbit for which we

are searching, provided by the admissible region, for each location we are searching. The

work in this contribution first commands that the sensor rate track that nominal orbit. The

sensor is really tasking on a small set of orbits, which all cannot be rate tracked, so a

mean orbit must be chosen. The way in which to effectively task on a set is a source of

future work for this paper. Next, a Pareto analysis is performed for every data collection

period, according to the work in this chapter. Depending on the sensor operator’s goals, the

final data collection solution would either solely focus on astrometry or balance astrometry

and photometry; both strategies have merits. This second contribution outputs a series of

images for each area of the admissible region, which must now be analyzed. Implicitly,

there is also prior knowledge of the object motion through the image, from the admissible

region.
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CHAPTER 5

VISUAL TRACKING METHODS FOR IMPROVED SEQUENTIAL

IMAGE-BASED OBJECT DETECTION

The first problem this chapter analyzes is the likelihood function. The current state-of-the-

art likelihood function is based on modeling the statistics of an image [41]. This likelihood

function has been around for a long time, and has been used in recent years for detectionless

tracking. [73]. The same likelihood can be applied to moving point sources as well as

complex shapes such as tracking of people [56]. More critically, this method doesn’t make

any detections. Instead the data in the image is used produce a likelihood for a given state.

If an object’s signal deviates significantly from noise and follows a set of given dynamics,

the filter obtains enough evidence to say a detection has been made.

A different method, based on a hypothesis test on the matched filter predicted by a

particular particle to evaluate measurement likelihood, is used in this chapter [62] [74]. This

newer likelihood provides a series of improvements, including eliminating the requirement

to predict object brightness, and a built-in way to modulate probability of false alarm. This

chapter shows a fundamental similarity between the two likelihoods; the only substantial

difference is the use of a hypothesis test. A simulation-based analysis gives evidence for

why one algorithm may be better than another in a certain situation.

Another area this chapter improves upon is the particle birth model. The Bernoulli

filters cited in this chapter generate new particles using a random uniform distribution.

The birth model of a random finite set-based tracker is intended to be catered to particular

problems. No such birth model has been designed for SSA applications, and this chapter

proposes some guidelines for creating one. The discussion in this chapter analyzes how to

search a particular orbit regime, how to incorporate prior knowledge, and how to efficiently

search a space given no prior knowledge.
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5.1 Methodology

This chapter applies the random finite set-based multi-Bernoilli filter with a detection-

less likelihood function to frame-to-frame tracking of space objects observed in electro-

optical imagery for space domain awareness applications. First, this chapter reviews multi-

Bernoulli filters applied to frame-to-frame tracking, image statistics, and matched filters.

A likelihood function for space-based imagery is analyzed in comparison to the previously

used likelihood function. A birth model is proposed which better models potential space

objects using observer characteristics and object dynamics. In simulation, the final algo-

rithm is able to perform completely uncued detection down to a total photometric Signal-

to-Noise Ratio (SNR) of 5.6 and a per pixel SNR of 1.5. Promising results are shown for

total photometric SNR of 3.35 and per pixel SNR of 0.7. The algorithm is also applied to

empirical data, tracking of low SNR, Geostationary objects in images taken with a 0.5m

Raven-class telescope.

To reiterate, this chapter makes the following contributions. First, state-of-the-art multi-

object tracking methods for space object discovery in a series of images are presented. This

chapter proves that the current state-of-the-art likelihood function is inherently related to a

matched filter and therefore has SNR optimality. The new likelihood function is analyzed

for different noise models that can apply to electro-optical images. The previous state of the

art likelihood and the new likelihood are compared to show which filter is better suited for

what situations. This chapter goes on to explore a series of specialized birth models which

can apply to SSA Imagery. This includes pure object discovery, search in a specific orbit

regime, and search primed by previous orbit knowledge. Finally, the validation of proposed

methods is presented on empirical data taken with the Georgia Tech Space Object Research

Telescope.

This chapter is presented as follows. Section 5.2 reviews the basics of multi-Bernoulli

filtering. Section 5.3 presents a comprehensive discussion of the theoretical and quantita-
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tive aspects of the two likelihood functions. Section 5.4 motivates and derives the various

birth models proposed in this work. Section 5.5 explains the particular implementation de-

tails involved in this filter. Section 5.6 shows simulation results which provide insight into

limitting SNR values for the algorithm. Section 5.7 presents the results of operating the

algorithm on empirical data taken with a 0.5m Raven-class telescope.

5.2 Multi-Bernoulli Filtering for Frame-to-Frame Tracking

5.2.1 Dynamics

Consider the standard filtering problem with discrete dynamics and measurement models

xk+1 = f(xk) + w (5.1)

zk = h(xk) + v (5.2)

where x ∈ Rn, z ∈ Rm, w ∼ fw : Rn → R, and v ∼ fv : Rm → R. x can be thought

of as the state to be estimated, while z can be thought of as the measurements. For frame-

to-frame image tracking, the measurement is a series of m pixels, zk := {zk,i}mi=1, where k

represents the time step associated with a particular frame.

5.2.2 Multi-Bernoulli Filter

This chapter uses the multi-Bernoulli filter used in [73]. Various other variations of this

filter, including the Labeled Multi-Bernoulli Filter [76], can be used as well. This chapter’s

primary focus is not on which multi-target particle filter is best, but on how to imple-

ment such filters on sequences of images. A brief review of the theory and application is

presented for the reader’s convenience. The Bernoulli filter starts from Bayesian filtering
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equations [54]

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (Prediction) (5.3)

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(Update) (5.4)

where z1:k is the time series of measurements up until times step k. Equation 5.3 is the

prediction step while Equation 5.4 is the update step.

For the multi-object filter, Xk is defined as a random finite set (RFS) used to represent

the multi-object tracking problem where the number of objects is unknown. In essence, an

RFS is a set of objects represented as random vectors, but in which the number of objects

itself is also a random variable. For a single Bernoulli filter, the state is modeled as a

Bernoulli random finite set (BRFS). The BRFS is a special set Sk containing a probability

of existence, rk, and a RFS which contains 1 object with probability rk and is empty with

probability 1 − rk. The object state is described by the PDF, p(xk). In other words, the

object is described by a PDF and probability of existence shown in Equation (5.5).

Sk = {p(xk), rk} (5.5)

The Bernoulli filter estimates the PDF with equations (5.3) and (5.4) and updates the

probability of existence with update equations that can be found in [73].

A multi-Bernoulli filter is a bank of Bernoulli filters used to process the full multi-object

tracking problem. The prediction and update equations for a multi-target tracking scheme

are

πk|k−1(Xk|Z1:k−1) =

∫
pk|k−1(Xk|Xk−1)πk−1(Xk−1|Z1:k−1)δX (Prediction) (5.6)

πk(Xk|Z1:k) =
g(Zk|Xk)πk|k−1(Xk|Z1:k−1)∫
g(Zk|Xk)πk|k−1(Xk|Z1:k−1)δX

(Update) (5.7)
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where g(·|·) is the likelihood function, a subject of novel work in this chapter. Keep in mind

that these are FISST set integrals, not standard integrals. In essence, πk is similar to a PDF

in that higher density means higher probability of an object existing in that area. However,

πk does not need to integrate to 1; instead, the integral over an area is the expected number

of objects in that area.

The multi-Bernoulli filter represents the multi-object state as the union of a series of

BRFSs

Xk =
ns⋃
l=1

S lk (5.8)

This allows the implementation of a Multi-Bernoulli filter to reduce to a series of

Bernoulli filters. There are particle implementations of Bernoulli filters [75], and the union

of these filters is relatively straight forward to compute. A more in depth, general analysis

of FISST can be seen in [49]. The next few sections focus on applying the Multi-Bernoulli

filter which operates on image frame-to-frame tracking to EO sensors tracking. The pri-

mary novel change is defining a likelihood function g(·|·) which combines space imagery

and Multi-Bernoulli filter. The likelihood function is used to update particle weights and

is where a measurement function is defined. Because in images, the measurement is the

whole image, special considerations should be taken to properly define this function.

5.3 Analysis of Likelihood Functions Suitable for Detection of Space Objects

5.3.1 Statistics of an Image

This section defines the statistical models for an image that are used throughout the chapter.

This includes a review of the information in Section 2.2. In general there are a variety of

ways to model the signal and noise an image, and this chapter discusses results with respect

to multiple models.

An image is made up of a series of measurements taken at the same time. In practice,
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each pixel zi is broken into some deterministic signal content si and some zero mean noise

wi of known distribution p(w) (assuming background subtraction has been performed) as

seen in Equation (2.5). While zi represents the ith pixel, this same quantity can be defined

as a vector of Nz pixels, z = [z1 . . . zNz ]
T .

The distribution of wi in Equation (2.5) can be arbitrary, but often is assumed to be of a

specific form. A common way to model the statistics of a pixel is with a series of Poisson

distributions [78]. The pixel is composed of some signal (shot noise), dark noise and read

noise. It is convenient to redefine a background subtracted zi in Equation (2.7). This new

definition of zi allows the problem to be posed as the sum of a deterministic signal and

zero mean random noise. The Poisson distributions approaches a Gaussian distribution as

the parameter, λ, increases. Further assumptions can be made to assume the dark noise

and read noise dominate the shot noise, are equivariant in all pixels, and are independent

of each other, giving Equation 2.10

Note that in this formulation, si is equivalent to the mean of the measurement zi, which

is Gaussian distributed. It is worth noting that these measurements are taken over an inte-

gration time, of which they are functions

T = [t0, t0 + tI ] (5.9)

zi = zi(T ) (5.10)

While this notation is not included in this chapter, timing and integration error is a

further source of uncertainty in pixels.

SNR is a measure of the amount of signal present relative to the strength of the noise

and a common measure of signal quality. The SNR for a particular pixel, zi, is defined in

Equation (2.12). Total photometric SNR for an object that exists in Nz pixels (assuming

independent noise between pixels) is calculated in Equation (2.13).
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5.3.2 Matched Filters

The matched filter (MF) is an image filter which is used to define a likelihood function

in this chapter. The MF is predicated on correlating a hypothesized signal structure with

a series of pixels in an image. Given a state, x, in some state space, define the set and

function, T (x) and hi(x), which predict the location of an object in an image, and the pixel

values produced by the object, respectively.

hi(x) = s′i (5.11)

T (x) = {i : s′i > 0} (5.12)

In other words, if an image has m pixels, and there exists a hypothesized state x, then

T (x) is a list of pixels which contain some signal given x, and hi(x) is the predicted value

in pixel i given x. Also note that the cardinality of (T (x)) is Nz, which is directly related

to the Nz in Equation (2.14). These two quantities, hi and T , are referred to as the template

in matched filter theory. If the object has no apparent motion in an image, T (x) and hi(x)

are defined by the point spread function in the image, the flux of the photons coming off the

object, and the exposure time. If the object has apparent motion, the template is generated

via an integration of a moving point spread function along the dynamics. See [74] for more

details.

Given the most general formulation of zi in Equation (2.5), the matched filter is a linear

image filter which seeks to maximize the post filter SNR. Consider an arbitrary linear filter,

m := {mi}Nzi=1

zMF =
∑
i∈T (x)

mizi = mTz = mT s + mTw (5.13)

SNRMF =
mT s√
E[mTw]2

(5.14)
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where s is the pure signal content and w is the pure zero mean noise content. At this point

we can define the covariance matrix of w, Rw = E[wwT ]. From matched filter theory the

optimal choice for m, to maximize the SNR (5.14) of the final result, is

m = aR−1w s (5.15)

where a is an arbitrary scaling parameter [93] [94].

If the underlying state x is known, then s = h(x). For a hypothesized state x, then

s = h(x) is still a reasonable method for testing the validity of that hypothesis, but produces

a sub-optimal filter. If the noise vector w is independent and equivariant, R−1w can be

absorbed into the arbitrary scaling parameter, a, giving m = as. The matched filter makes

no assumptions about the distribution of the noise. In other words, if the expected value

of the measurements (h(x)) and the covariance matrix of the noise can be estimated (Rw),

the matched filter is SNR optimal.

The final matched filter equation for some predicted state, x, and i.i.d. noise is then

zMF = a
∑
i∈T (x)

hi(x)zi (5.16)

5.3.3 Likelihood Ratio

The current established likelihood function for tracking point sources in images is a likeli-

hood ratio [73], [41]. This has already been used in SO tracking [42].

Each pixel is assumed to belong to one of two distributions, depending on whether the

pixel is predicted to have signal.

p(zi|x) =

 ψi(zi) i ∈ T (x)

φi(zi) i /∈ T (x)
(5.17)
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Commonly assumed distribution for ψ and φ is

φ(zi) = N (zi; 0, σ2) (5.18)

ψ(zi,x) = N (zi;hi(x), σ2) (5.19)

where N (·;µ, σ2) is a Gaussian with mean µ and variance σ2. Note that this method does

not rely on a Gaussian assumption. Like the matched filter, this method should work for

any distributions that can be properly modeled. The total likelihood for the entire filter is

then

g(z|Xk) =

 ∏
xk∈Xk

∏
i∈T (xk)

ψi(zi,xk)

 ∏
i/∈∪T (xk)

φi(zi)

 (5.20)

The total likelihood is a quantity used in multi-target filters. The per pixel likelihood is

calculated as the product of relative likelihoods of a pixel belonging to either the distribu-

tion in Equation (5.17).

gz(x) =
∏

i∈T (x)

ψ(zi,x)

φ(zi)
(5.21)

The probability of existence update is formulated with the same relative likelihood.

This likelihood function is general enough to work for the case of arbitrary point tracking.

The current likelihood function, in the case of Gaussian noise, is nothing more than the

ratio of the measured matched filter result tested against a zero mean and assumed variance.

Lemma 5.3.1. Using the definition of zi in Equation (2.10), the likelihood ratio defined in

Equation (5.21) can be rewritten as a likelihood ratio of the result of a matched filter.
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Proof. Using the definition of a Gaussian PDF

gz(x) =
∏

i∈T (x)

e−
1
2
(zi−si)2

e−
1
2
(zi−0)2

(5.22)

=
∏

i∈T (x)

e−
1
2
(z2i−2zisi+s2i )e

1
2
z2i

= e
∑

(zisi− 1
2
s2i )

Next, define the following constant scaling parameter as the root sum square of the per

pixel photometric intensity.

α =

√ ∑
i∈T (x)

(s2i ) (5.23)

Recalling the matched filter defined in Equation (5.13), the likelihood ratio becomes,

gz(x) = e
∑

(zisi− 1
2
s2i )

= e
zMF
α

α− 1
2
α2+( 1

2

zMF
α )

2
−( 1

2

zMF
α )

2

=
e−

1
2( zMF

α
−α)

2

e−
1
2( zMF

α )
2 (5.24)

Note the identical form between Equations (5.22) and (5.24).

Note that the quantity zMF/α is a scaled matched filter result with an expected value

of α. The likelihood ratio is therefore a comparison of the matched filter result on the true

signal and pure noise.

The primary difficulty in using this canonical likelihood ratio is the required estimate

of the photometric root mean square of the pixel intensities. In space object tracking, and

especially in object discovery, the actual photon flux coming off a space object is difficult

or impossible to know before a detection is made. Conversely, with a good estimate of a

point spread function, the relative photometric intensities between the pixel values can be

112



predicted; this is only dependent on the dynamics and point spread function. The relative

likelihood cannot be correctly computed without the expected signal values in each pixel.

Previous efforts to implement this likelihood estimate the mean of the signal [42]. However,

the matched filter is invariant to an arbitrary scaling parameter; the SNR gain is optimal so

long as the expected relative values are correct. Because of this, the matched filter can be

used to define a likelihood function which doesn’t need a photon flux estimate.

5.3.4 Hypothesis Test Likelihood

This chapter proposes a new likelihood function for detectionless multi-Bernoulli filters

based on a hypothesis test on the matched filter. Such a likelihood function has been used

for a general particle filter [88].

Similar to the already shown likelihood function, the measured signal is assumed to be

zero mean noise and predicted signal hi(x) in a series of pixels T (x). The matched filter

is the weighted sum of the measured pixels, zi, weighted by the predicted values, hi(x),

shown in Equation (5.16). Under an arbitrary distribution of wi assumed in Equation (2.5),

the distribution of zMF can be calculated.

pMF = ph1(x)z1 ∗ ph2(x)z2 ∗ . . . ∗ phnz (x)znz (5.25)

where ∗ represents the convolution operator. This can be difficult to calculate for arbitrary

complex distributions, but is possible.

Because the noise, wi, is assumed to be mean zero, if the predicted region contains no

signal, si = 0 ∀ i ∈ T (x), the resulting distribution is mean zero.

E[zMF |si = 0] = a
∑
i∈T (x)

hi(x)E[wi] = 0 (5.26)

By a similar argument, if there is signal content in the pixels on which the matched

filter operates, the result has a mean greater than zero. If the matched filter operates with a
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perfect template, the distribution has a known expected value.

E[zMF |si = hi(xtrue)] = a
∑
i∈T (x)

hi(x)hi(xtrue) = aα2 (5.27)

Note that aα2 is typically not achieved in particle filtering, due to the random nature

of particle sampling. The matched filter, zMF , can be assumed to exist in one of two

distributions

φ̃MF (z) = pMF (z; 0) (5.28)

ψ̃MF (z; β) = pMF (z; β), β > 0 (5.29)

where the distribution pMF (z; β) has an expected value of β and is otherwise an arbitrary

PDF calculated in Equation (5.25). These distributions in Equations (5.17) and (5.29) are

mirrors of each other; Equation (5.17) defines the two possible distributions for a pixel

given signal or no signal, while Equation (5.29) defines the two possible distributions for a

matched filter given signal or no signal.

Recall that the Equation (5.16) assumes that noise is i.i.d., which is violated by shot

noise which explicitly dependent on the magnitude of the signal. Because signal magnitude

is unknown, shot noise must either be estimated or ignored. For some low SNR signals,

shot noise is dominated by other noise sources and can be ignored, such as when read noise

is high. It should be noted that this is not always true, in which case shot noise must be

estimated. If estimated, it requires calculation of the covariance matrix Rw in Equation

(5.15). This is a limitation to both likelihoods analyzed in this chapter. Note that pixel

SNR in Equation (2.12) is λs/
√
λw + λs. Choose a constant, γ, such that in order to say

shot noise is dominated, λw > γλs. Also choose an SNR below which this method is being

114



used. Then if

λw > (SNR)2
1 + γ

γ2
(5.30)

holds, either the SNR is sufficiently high that is does not matter, or λw > γλs.

Next, the following null and alternate hypotheses for a binary hypothesis test are defined

H0 : z ∼ φ̃(z)

H1 : z ∼ ψ̃(z; β); β = zMF (5.31)

In essence, this test assumes no signal content in the pixels defined by T (x), and asks

whether the measurement gives significant evidence of underlying signal (mean of matched

filter greater than zero). For binary hypothesis testing, a probability of false alarm is set,

pFA, which in turn defines an integration threshold, zTH , based on the null hypothesis

cumulative density function (CDF).

pFA =

∞∫
zTH

φ̃(z)dz (5.32)

A probability of detection can be calculated with the following integral.

pD =

∞∫
zTH

ψ̃(z)dz (5.33)

To calculate this probability of detection, the arbitrary distribution p(z; β) in Equation

(5.31) must be known. For more on binary hypothesis testing, see [95]. This hypothesis test

determines if there is significant evidence that the predicted signal exists in the predicted

location. Because the matched filter gives an SNR gain, this test should maximize pD,

though an explicit proof of this claim has not yet been shown.

The probability of existence update can also be formulated in terms of the matched
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filter. The relative likelihood can be calculated from the two distributions in Equation

(5.29). This leads to the particle-wise relative likelihood

gz(x) =
ψ̃(zMF )

φ̃(zMF )
(5.34)

This backtracking to a relative likelihood is necessary for the probability of existence

update, which does not operate correctly without a relative likelihood. The simulation

results shown in Section 5.6 highlight the need for further research into this likelihood

ratio. The actual test distributions of zMF , φ̃(z) and ψ̃(z), are not trivial to calculate in

general. If zi is assumed to be Gaussian distributed as shown in Equation (2.10), and the

noise is again assumed to be i.i.d., zMF is distributed as

Var[zMF ] = E

a ∑
i∈T (x)

hi(x)wi

2 = a2σ2
w

∑
i∈T (x)

h2i (x)

zMF ∼ N (α2, a2α2σ2
w) (5.35)

where α is defined in Equation (5.23). Recalling Equation (5.15), the matched filter has

an arbitrary scaling parameter, a. First, in preprocessing, an image can be scaled by 1/σw

to reduce the variance in each pixel to 1. If the value a = 1/α is chosen, the variance

is reduced to 1. Alternatively, a factor of 1/σw can be inserted into a, rather than in pre-

processing. Recall that the expected value in Equation (5.35) can only be achieved with a

perfect template, which is typically not the case. Regardless, the test distributions in this

special case become

φ̃MF (z) = N (z; 0, 1) (5.36)

ψ̃MF (z) = N (z; β, 1), 0 < β ≤ α (5.37)

For Poisson distributed zi as seen in Equation (2.7), Equation (5.29) takes one of two
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forms. If the expected value of the Poisson distribution is small, the test distributions are

two discrete PMFs. If the expected value is high enough, the test distributions become

approximately Gaussian.

For a Poisson distribution, it is easy to show

w ∼ λke−λ

k!
, k = 0, 1, 2, 3 . . . =⇒

c1w+c2 ∼
λ(k−c2)/c1e−λ

((k−c2)/c1)!
, k = +c2, c1+c2, 2c1+c2, 3c1+c2 . . . (5.38)

The random variable c1w+c2 has a PMF with mass locations dependent on the scalars

c1 and c2. The matched filter, zMF , can be represented by a PMF, because it is a weighted

sum of discrete random variables with known PMFs. While Poisson random variables

technically have infinite permutations, for sufficiently low values of λ, sufficient mass can

be captured with a computationally bounded number of permutations.

This method of permutations can be used to exactly calculate the PMF in Equation

(5.29), and evaluate the hypothesis test. The number of permutations grows proportion-

ately with the cardinality of T (x), and the Poisson parameter of the noise λ. When not

computationally restrictive, the permutations of the PMF should be used to evaluate the

hypothesis test; otherwise, a Gaussian approximation can be used. This motivates the fol-

lowing Lemma.

Lemma 5.3.2. For a series of Poisson distributed random variables, wi ∼ P(λi), the

random variable zMF =
Nz∑
i=1

ciwi is approximately Gaussian for sufficiently high values of

either λi or Nz.

Proof. First, the mean and variance of z is

E[zMF ] =
Nz∑
i=1

ciλi (5.39)

σ2 =
Nz∑
i=1

c2iλi (5.40)
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Next we must define a new random variable, which is just the matched filter normalized

by its mean and standard deviation.

zMF − E[zMF ]

σ
=

Nz∑
i=1

ciwi −
Nz∑
i=1

ciλi√
Nz∑
i=1

c2iλi

(5.41)

It is convenient to also define w′i = wi/λi so that E[w′i] = 1 for the next part of this

proof.

zMF − E[zMF ]

σ
=

Nz∑
i=1

ciλiw
′
i −

Nz∑
i=1

ciλi√
Nz∑
i=1

c2iλi

(5.42)

Next, we need to simply send all the Poisson parameter to be sufficiently high, λi →∞

∀i. This implies that all λi are approximately equal to λ which gives the following form

zMF − E[zMF ]

σ
=
√
λ

Nz∑
i=1

ciw
′
i −

Nz∑
i=1

ci√
Nz∑
i=1

c2i

(5.43)

By the central limit theorem, this random variable becomes a standard normal random

variable. Similarly,

zMF − E[zMF ]

σ
=

Nz∑
i=1

ciwi −
Nz∑
i=1

ciλi√
Nz∑
i=1

c2iλi

=
√
Nz

Nz∑
i=1

ci
wi
Nz
−

Nz∑
i=1

ci
λi
Nz√

Nz∑
i=1

c2i
λi
Nz

(5.44)
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which again, by the central limit theorem approaches a normal random variable as Nz →

∞.

This lemma has the following implications. As a signal is spread out over more pixels,

either through a long streaking object or a large PSF, the hypothesis distributions should

approach Gaussian. Additionally, as the photometric magnitude increases, the hypothesis

distribution approaches Gaussian. In testing, the Gaussian approximation appears to be

appropriate in most situations.

5.3.5 Qualitative Comparison of Likelihoods

To test the effectiveness of these two methods, the following Monte Carlo analysis is shown.

The noise model is additive zero mean Gaussian, as in Equation (2.10), and the signal

shape is assumed to be perfectly known. Each likelihood function is tested on an image

containing signal with a perfect matched filter (no error in template or total magnitude),

giving gs+w. Each likelihood function is also tested on an image containing no signal,

only noise, giving g0+w. Because a Bernoulli filter uses a PDF, all particles are normalized

each frame. Because of this, only the relative value between the two likelihoods affects

the performance of the filter. To evaluate the performance of each likelihood function, a

likelihood gain is calculated, gs+w/g0+w.

The likelihood gain is calculated for both filters over a variety of SNR values. It is

also calculated over a variety of errors in predicted signal strength for the likelihood ratio

function, and a variety of probability of false alarm values for the hypothesis test likelihood

function. Each likelihood gain is calculated over 10,000 test runs, and a mean and variance

of the likelihood gain are calculated.

Figures 5.1(a) and 5.1(b) show the shape of the gain with respect to the two variables

of interest. The hypothesis test likelihood function can achieve higher gain values with a

diminishing probability of false alarm, but at the expense of increased variance. Figures

5.2(a) and 5.2(b) show the shape of the variance with respect to the two variables of interest,
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(a) Likelihood ratio function gain

(b) Hypothesis test likelihood function gain

Figure 5.1: Comparison of gain achieved when using each likelihood function.

which appears to vary directly with gain. Figure 5.3 gives the best reason for why the new

likelihood is better; while variance in gain is high, the new method preforms better at low

SNR. Note that both likelihoods are dependent on knowing the exact shape of the signal

defined through Equations (5.11) and (5.12). One of the implications of Lemma 5.3.1 is that

both the likelihood ratio and hypothesis test likelihood are inherently based on a matched

filter and therefore degrade in performance with an incorrect signal model.
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(a) Likelihood ratio function variance

(b) Hypothesis test likelihood function variance

Figure 5.2: Comparison of the variance obtained when using each likelihood function.

Figure 5.3: Likelihood gain comparison between methods.
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5.4 Birth Model

As the Multi-Bernoulli filter runs, multiple single Bernoulli filters run in parallel. New

Bernoulli filters are constantly added into the system to promote exploration of the state

space. These new filters are initially sampled from a birth model, which attempts to predict

the kind of states a new track could have. Birth models have been proposed and used in the

past [75]. This chapter develops a series of birth models for searching for an SO.

The birth model should enforce a series of constraints in the form of sets of possible

states x = [rT , ṙT ]T ∈ R6. If a series of c constraint sets are defined, {Ai}ci=1, the birth

model would then just be an uninformed prior over the intersection of those sets.

A =
c⋂
i=1

Ai (5.45)

Γ =


1∫
Adx if x ∈ A

0 if x /∈ A
(5.46)

In Equation (5.46), Γ is the birth model PDF to sample from, and x is some orbit state. Note

that A must be a bounded set, or the uninformed prior is ill posed. This thought process is

directly inspired by work done on admissible regions [64], [20], [96].

The first assumption on our birth model is of an Earth orbiting object. This is done

with a maximum on orbit specific energy, E < 0, and a minimum on radius of periapse

constraint rp > rEarth. The second assumption is that the object exists in the field of view

of the sensor. This is effectively a subset of R3 defining possible positions at which an

object could exist. This birth model does not sufficiently restrict the sample space. The

above model attempts to sample what could be all possible Earth orbiting objects. This is

computationally infeasible.

This motivates the next few subsections. Often, it is beneficial to design constraints in

R4. Equations (5.45) and (5.46) still apply, but the series of constraints, {Ai}ci=1, are de-
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fined as subsets of R4. In some situations, a beneficial constraint may exist in R6, that is the

space of orbits. In such a case, the constraint can be mapped to R4 through Equation (5.2).

Note that this chapter presents several possible birth models which may be appropriate for

certain observation campaigns.

5.4.1 Partial Prior Knowledge

In some cases, the orbit of an object or objects, while not completely known, may have

some prior knowledge. This includes a previous observation and associated admissible

region, a known event (such as a break up event), or objects that actively maneuvered from

a previous orbit. If the prior PDF or set can be reasonably represented with a discrete

particle approximation, the prior can be used as a birth model.

For example, consider a satellite break-up event at time t0. There exists a known object

at location r0(t0) ∈ R3 and velocity v0(t0) ∈ R3, known to have broken up at time t0. It

can be assumed that object i from the break up had the same position at the original object’s

position r0 at time t0, and a velocity from a distribution based on a break up model.

ri(t0) = r0(t0), ṙi(t0) = ṙ0(t0) + ε (5.47)

ε ∼ pε(v) (5.48)

For example, pε(v) could be a zero mean Gaussian distribution, or a more complicated

distribution, approximating the spread of objects from the break up. Furthermore, a re-

strictive set of velocities can be calculated by excluding ballistic trajectories. This model

can be sampled, as a birth model; all particles should then be propagated through orbital

mechanics and a measurement model for the electro-optical sensor to create particles in the

correct state space. An admissible region would be done in an identical manner. See [74]

for more details about propagation and projection of particles.

This chapter focuses on when prior knowledge is not available, so this topic is not
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explored further in this chapter.

5.4.2 No Prior Knowledge

For a Bernoulli filter to reliably track an object, the object must exist in the frame of the

image for a minimum number of frames. If an object is in the top left corner of an image

with a velocity headed out of the frame, it is impossible for the filter to track it; several

frames are typically needed for filter convergence. Instead, a minimum number of obser-

vations should be enforced within the birth model. Such a constraint can be related to the

to photometric SNR of the object over multiple frames. An object with sufficiently high

photometric SNR in a single frame may be identified as existing in that single frame. An

object with low photometric SNR in a single frame, may have sufficient photometric SNR

over several frames to be identified. Through an assumed minimum per frame photometric

SNR, and a minimum multi-frame photometric SNR for detection, a minimum number of

needed detections could be defined. Further analysis is out of the scope of this chapter.

This defines a birth model within the image as a uniform distribution over set of ad-

missible position and velocity states. The birth model can be derived in one dimension,

because x and y can be sampled independently.

The object position must exist within some range dependent on the size of an image.

x ∈ [xmin, xmax] (5.49)

Assume that the filter requires a minimum number of observations, n0, and observations

are taken at equal intervals of ∆t. Then velocities for a particular position must be within

range of values defined in Equation (5.50).

ẋ ∈
[
xmin − x
n0∆t

,
xmax − x
n0∆t

]
(5.50)
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The size of this interval is is shown in Equation (5.51).

xmax − x
n0∆t

− xmin − x
n0∆t

=
xmax − xmin

n0∆t
(5.51)

This equation is important because interval size is independent of location. The im-

plication is that all possible values of x have equal probability mass and can therefore

be sampled independently of ẋ. The birth model can be implemented by independently

sampling [x, y] from Equation (5.49), then sampling [ẋ, ẏ] from an appropriately formed

Equation (5.50).

5.4.3 Rejection of Inertially fixed Objects

Assume the observer is located on Earth. This allows the question, is there a way to lower

bound the relative angular velocity that an object can move at with respect to the observer?

Note that relative angular velocity refers to the rotation of the vector between the object

and observer relative to the inertial. This analysis enables deliberately omitting stars from

the considered state space. This should be an object that is as far away as possible moving

at the lowest velocity possible. For an observation campaign looking at the geostationary

belt, this corresponds to a geostationary transfer orbit (GTO). For an observation campaign

looking at the low Earth orbits, it is a ballistic trajectory.

Under the right circumstances, the minimum velocity constraint on the birth model can

remove a large amount of the velocity space that needs to be sampled. In the simulations

that are presented in this chapter, this constraint removes approximately 1/3 of the possible

velocities. Just as importantly, this constraint does not contain star dynamics in the space of

hypothesized signals. Star identification and subtraction are recommended, but any errors

in the star identification or subtraction leave residual signal in an image, which inherently

provide likelihood to particular particles. In implementation on real data, star identification

and subtraction have proven difficult, and filters have often converged to stars. It is therefore
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beneficial to ignore stars in the birth model and likelihood function. An example of the

implementation of such a model is given in Section 5.5.2.

5.4.4 Hypothesized Orbits

This section briefly describes the process of informing a Bernoulli filter birth model based

on an assumed orbit regime. If observations are taken with the intention of looking for a

particular class of space objects, the dynamics of those space objects can be assumed, and

used as a birth model for a Multi-Bernoulli filter.

As an example consider the Geostionary (GEO) regime. The GEO regime in particular

contains debris and man made objects at a range of brightnesses and relative angular rates

which are extremely dissimilar to other populated orbits. These objects exist in a range of

realistic values for semi major axis and eccentricity which determine the relative angular

speed with respect to a ground-based observer. The inclination can also exist within a

bounded range of values, which modulates the relative direction of the speed of objects. In

this way, a range of relative velocity rates and headings can be defined, and used in a birth

model. This analysis is partly based on work done in admissible regions [79]. The results

shown on real data in Section 5.7 use this type of birth model.

Other orbit regimes can be analyzed in a similar way.

5.5 Implementation Notes

5.5.1 Multi-Bernoulli Filter Implementation Notes

This section outlines specific heuristics and design choices used for the Bernoulli filter

in order to help it converge. The major heuristic edit was added to avoid multiple filters

converging on a single object. The assumption is made that the probability of multiple

objects existing in the same place at the same time is zero. This assumption is not a novel

innovation of this chapter [73]. Based on this assumption, the likelihood function for each

Bernoulli filter is set to zero in the area around every other Bernoulli filter’s maximum a
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posteriori estimate from the previous iteration. Once one Bernoulli filter is tracking one

object with good accuracy, this assumption makes it impossible for other filters to track

the same object. However, this assumption can lead to some instability when multiple

filters are trying to track one object, but none are tracking accurately enough to zero out the

correct pixels in the likelihood calculation. This can also lead to problems when multiple

tracks overlap, as this is the exact case that breaks the given assumption.

The Multi-Bernoulli filter is started with only 1 filter running. Every three iterations,

a new Bernoulli filter is added (sampled entirely from the birth model) and all Bernoulli

filters below a probability of existence of 0.05 are deactivated. The first assumption in

this section, when combined with too many filters, leads to filter competition which hurts

convergence. The gradual addition of Bernoulli filters allows each new filter to have time to

search for a new object without competition. The relatively small number of simultaneous

filters keep computation time manageable.

The state space chosen for frame-to-frame tracking has 2 dimensions in both image

position and velocity. The state, x, is modeled as position and velocity, in the frame,

measured in pixels.

x = [x, y, ẋ, ẏ]T (5.52)

The dynamics chosen for frame-to-frame tracking are a simple double integrator.

xk+1 =

 I2×2 I2×2∆t

02×2 I2×2

xk + v (5.53)

v ∼ N (0,Q) (5.54)

The process noise for the dynamics uses a covariance matrix of diag([5, 5, 1, 1]T ) in

pixels and pixels per second.

Because of computational restriction, the Bernoulli filter typically cannot fully sample
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the state space, as defined by the birth model. Particles randomly sampled from a birth

model near the true space object in position space typically don’t have the correct velocity

state, due to particle impoverishment. By artificially inflating the dynamics covariance,

state space exploration is encouraged. This leads to better state space exploration and

convergence for Bernoulli filters, but worse final tracks generated by the algorithm. There

is a trade off which is not further explored in this chapter.

The filter bank uses 20,000 particles per Bernoulli filter. The filters typically perform

well for this number of particles, and computation times are bearable for implementation

on a personal laptop.

5.5.2 Example of Minimum Velocity Birth Model

A geostationary transfer orbit, in the most extreme case, has a periapsis and apoapsis radius

of rp = 6471 km and ra = 42164 km. This gives an apoapsis velocity of

va =

√
µ

ra

√
2

1 + ra
rp

= 1.586
km
s

(5.55)

where µ = 398600km3/s2 is the specific gravitation parameter of Earth. By varying the ob-

server’s location on Earth, the instantaneous orthogonal component of the velocity changes

are under 2%. The distance between the object and observer changes more significantly.

The worst case scenario is a distance of 42642 km and orthogonal velocity component of

1.568 km/s. The instantaneous relative angular rate is then

tan−1
(

1.568 km/s
42642 km

)
= 0.002107◦/s (5.56)

The sensor used in the simulations in this chapter has a field of view of 2 degrees and a

resolution of 512 pixels in both directions. In this example, this gives a minimum angular

velocity of 0.539 pixels/s.
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Table 5.1: Orbital elements for simulated objects.
a(km) e Ω(deg) i(deg) ω(deg) f(deg)

Obj. 1 42165 0.0044 0 0.0017 3.1163 1.5699
Obj. 2 42165 0.0087 4.6862 0.5237 1.5734 4.7063
Obj. 3 42165 0.0087 1.5206 0.1747 4.7417 4.7063

5.6 Simulation Results

5.6.1 Problem Set Up

The multi-Bernoulli filter is shown in this section tracking objects in simulated data. In the

simulation, a sensor is modeled as a simple pinhole camera with a 2 degrees field of view

and 512 pixel resolution in both x and y. The point spread function (PSF) is approximated

as a 5px by 5px Gaussian distribution [97], [98]. Note that for simulation purposes, the

measurement images are simulated with the same PSF as the matched filter templates.

Three objects are simulated with various orbit characteristics shown in Table 5.1. Note that

small amounts of eccentricity and inclination are added to all orbits to give a range of in

plane headings and disambiguate orbital elements. An observer is simulated at Georgia

Tech (84.39W, 33.78N) on November 12, 2015, at 20:00:00 UTC performing a fixed stare

at r = [0;−42164; 0]. This is effectively a sidereal stare tasking.

The three objects are simulated with a constant total flux per exposure. The fluxes

for each object are F1 = 1000, F2 = 750, and F3 = 500. The unit and scale of these

numbers is ultimately insignificant; the SNR is the ultimate deciding factor for detection,

which is unitless, and measured as a relative scale. The images include per pixel normally

distributed noise with variance of σ2
w = 100, w ∼ N (0, 100). The total object SNR (for

when an object’s signal is spread over multiple pixels) can be calculated via [88]

SNR
(∑

yj(T )
)

=
E[
∑
yj(T )]√∑

E[(yj(T )− E[yj(T )])2]

=
1√
Nz

F

σw
(5.57)
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Figure 5.4: Example of a simulated image.

where Nz is the total number of pixels being considered, and F is the total signal from the

SO. All objects spread over approximately 80 pixels in the simulations, giving SNR1 =

11.18, SNR2 = 8.39, and SNR3 = 5.59. Note that by the above calculation, the SNR

in a single pixel is much lower than the above values. The actual value depends of the

spreading of the signal over the pixels. Per pixel, the SNR for each object is around 2.7,

2.2, and 1.5 respectively. Exposures are 10 seconds long and taken every 20 seconds. This

flux is blurred over multiple pixels by the movement of the object over the exposure and

then by a 5 by 5 normal distribution kernel. The system is simulated for 25 frames (500 s).

Object 1 begins in the image and leaves at frame 17 (340 s). Object 2 enters in the frame

12 (240 s) and leaves in frame 23 (460 s). Object 3 enters at frame 9 (180 s) and does

not leave. There is no significance to the enter and exit times beyond testing a variety of

conditions. Figure 5.4 shows am example of a simulated image.

The simulations uses a combination of two birth models. First, a minimum detections

birth model is used, with a minimum number of detections of n0 = 10, outlined in Section

5.4.2. Second, a minimum angular rate is enforced, shown in Section 5.5.2
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5.6.2 Multi-Bernoulli Filter on GEO level Objects

Figures 5.5(a), 5.6(a), and 5.7(a) show the error, Figures 5.5(b), 5.6(b), and 5.7(b) show the

velocity error, and Figures 5.5(c), 5.6(c), and 5.7(c) show the probability of existence of all

Bernoulli filters which track a particular object. Initially, multiple filters may track a single

object, due to the random nature of particle filters. Eventually, one filter tracks an object

accurately enough, and all other Bernoulli filters diverge; it is explicitly enforced that no

two filters can have equal states, as assumed in Section 5.5.1. Figures 5.5(a), 5.5(b), and

5.5(c) show object one which has the highest SNR and is in the field of view from time 0

to 340. This object is tracked with relative ease. Figures 5.7(a), 5.7(b), and 5.7(c) show

object three which has the lowest SNR and is in the field of view from time 180 to the end.

It takes some time for a filter to accurately converge on this object but once it does, the

probability of existence quickly rises to almost 1. Figure 5.8 shows the truth tracks of each

object in black with the most successful filters overlaid in gray. Error is calculated in pixels

as the norm of the difference between the true position and the of the maximum a posteriori

position estimate. The maximum a posteriori estimate, or point of maximum probability

density, is subject to pixel level errors due to the difficulty in calculating it; keep in mind

that Bernoulli filters in general is multi-modal, so the mean cannot be used. Iterations of

the filters before and after they successfully track an object are not included, as these steps

consist of the maximum a posteriori estimate wandering through the image.
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(a) Object 1 Error (pixels) (SNR = 11.18). (b) Object 1 Velocity Error (pixels/s) (SNR =
11.18).

(c) Object 1 Probability of Existence (SNR =
11.18).

Figure 5.5: Tracking results for object one.
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(a) Object 2 Error (pixels) (SNR = 8.39). (b) Object 2 Velocity Error (pixels/s) (SNR = 8.39).

(c) Object 2 Probability of Existence (SNR = 8.39).

Figure 5.6: Tracking results for object two.
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(a) Object 3 Error (pixels) (SNR = 5.59). (b) Object 3 Velocity Error (pixels/s) (SNR = 5.59).

(c) Object 3 Probability of Existence (SNR = 5.59).

Figure 5.7: Tracking results for object three.

Figure 5.8: Tracking various entering and exiting objects.
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5.6.3 Exploration of Limiting SNR of Multi-Bernoulli Filter

The ultimate goal of this research is to detect as low SNR objects as possible. A similar

test case is used with three objects over 500 s. All objects spend the entire duration in the

field of view, have the same velocity, and vary only in starting position. Objects one, two,

and three have total object SNR of 4.47, 3.35, and 2.24, and max per pixel SNR of 1.0,

0.7, and 0.56, respectively. Figures 5.9(a), 5.9(b), 5.10(a), and 5.10(b), show the error and

probability of existence of all Bernoulli filters which track objects 1 and 2. Both object 1

and object 2 have multiple filters begin to track the object but none of the filters manage to

fully converge on the object. The objects are accurately tracked by the algorithm in terms

of the PDF. The probability of existence update, as it is formulated, does not increase from

frame-to-frame. No filter succeeds at tracking object 3. The hypothesis likelihood tracks

objects down to a total photometric SNR of 3.35. The probability of existence update

warrants further work.

Previous work with this likelihood confirms the capability to track down to a total pho-

tometric SNR of less than 1 [74], [88]. This previous work was done with a Bayesian

particle filter and a space object with prior knowledge. Given enough particles and a con-

strained enough birth model, such performance should be possible with a multi-Bernoulli

filter, though computational feasibility is a concern.

5.7 Empirical Data Results

5.7.1 Geostationary Object, small Field of View

This section presents the validation of the multi-Bernoulli filter on real telescope data. The

data was taken by GT-SORT, a 0.5m Raven-class telescope located at Georgia Tech. The

field of view is approximately 14 by 11 (arc minutes). The sensor has a resolution of 2736

by 2192 pixels. This specific data set was taken by performing sidereal stare on a region

known to contain GEO objects. Images were taken with 1 second exposures, at a rate
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(a) Object 1 Error (pixels) (SNR = 4.47). (b) Object 1 Probability of Existence (SNR = 4.47).

Figure 5.9: Tracking results for object four.

(a) Object 2 Error (pixels) (SNR = 3.35). (b) Object 2 Probability of Existence (SNR = 3.35).

Figure 5.10: Tracking results for object five. This is the limiting SNR test case.
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of approximately 1 image every 1.6 seconds. Twenty five consecutive images are used

for these results. Over the twenty five images, an GEO object starts in the center of the

image and eventually exits at the bottom of the image. A second object enters from the

top of the image for 12 frames. The zero inclination GEO orbit plane runs approximately

vertically through the image. The PSF is estimated from a bright star in the image, and

assumed to be invariant between frames and location in the image. The actual object, as

it appears in the data, can be seen in Figure 5.13. The images, including Figure 5.13,

are re-scaled between ± 3 standard deviations of the background noise, in order to better

visualize outlying signals. Two different birth models are used. The first birth model uses

the estimated velocity of a zero inclination geostationary object, to better capture expected

objects. The second birth model uses the estimated velocity of a any geostationary object,

but doesn’t assume a direction of motion.

Using Equations (2.12) and (2.13), the per pixel and total photometric SNRs of this

object can be estimated from the images. The per pixel SNR is approximately 0.18, while

the total photometric SNR is approximately 6.9. These values should be taken as rough es-

timates; for objects of 0.18 per pixel SNR, noise is pervasive, and it is difficult to determine

which pixels contain signal. Figure 5.13 shows the zoomed in point spread of the object.

The resulting two tracks for the assumed heading birth model are plotted over an image

from the data set in Figure 5.11. Similarly, the results for the no assumed heading birth

model are plotted over an image from the data set in Figure 5.12. When a Bernoulli filter

is initialized, due to particle impoverishment and the inherent randomness of the system,

the maximum a posteriori estimate randomly moves around the image. Both estimates

are random location in the image for a few frames before the Bernoulli filters converge;

this is normal behavior. This is due to the low signal SNR; noise randomly mimics object

signal enough to cause random hits occasionally, but the true object signal also follows

the dynamic model, allowing convergence. There are also around 5 other Bernoulli filters

operating in parallel, which are not shown, due to lack of significant convergence. Stars in
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Figure 5.11: Object tracks overlayed on image. 2192 by 2736 pixels. Assumed heading
birth model.
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Figure 5.12: Object tracks overlayed on image. 2192 by 2736 pixels. No assumed heading
birth model.

139



Figure 5.13: Object size and signal strength.

the images are inertially fixed from frame-to-frame. The stars are detected in preprocessing

and zeroed out in the image. Stars may appear to have a vertical oblong shape; this is due

to a combination of vibrations in the telescope mount, wind buffeting, and atmospheric

turbulence. The objects appear somewhere between 8 or 9 arcminutes apart in the images.

5.7.2 Tumbling Low Earth Orbit, Wide Field of View

On the 26th of March, 2016, the Hitomi Astro-H spacecraft lost communication with the

ground and experienced a break up due to what is thought to be an unstable spin rate. On

the 29th of March, 2016, a series of images were taken with a wide field of view sensor

of the Hitomi as it passed over the Georgia Tech observatory. The sensor has a field of

view of about 20 degrees, and a resolution of 1024 by 1280 pixels. The object is seen for

about 26 frames, over which large variations in photometric magnitude are observered, as

the object tumbles. Because observations were taken multiple days after the breakup, no

debris objects were seen in the images.

In order to better validate the work in this chapter, the multi-Bernoulli Filter was used

to detect objects in this data set. Figure 5.14 shows the observed track laid over a sample
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Figure 5.14: Track of Hitomi Astro-H. Triangle is beginning of track.

image. The space object total photometric SNR variations over the iterations are shown in

Figure 5.15. The minimum total photometric SNR is 1.5, while the total photometric SNR

falls below 3 for at most three consecutive iterations. Star identification has been performed

for this data set with the open source astrometry.net algorithm 1.

Filter performance is not hampered by object signal variations. Object probability of ex-

istence converges to 1 after approximately 3 iterations, and never decreases. This example

highlights an important property of the hypothesis test likelihood; variations in brightness

do not affect performance at all, because no approximation of photometric brightness is

required.

5.8 Conclusion

The first objective of this work is to implement a multi-Bernoulli filter for tracking SOs

which focuses on the uncued detection of as dim as possible space objects. This chapter

uses a likelihood function which attempts to allow detection of as dim as possible signals.

The birth model is also tailored towards being as restrictive as possible, in an attempt to

help particle convergence.

The second goal is to use every possible method to make the multi-Bernoulli filter as

1astrometry.net, May 3rd, 2016
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Figure 5.15: SNR variations of Hitomi Astro-H over observation.

efficient as possible. The restrictive birth model attempts to cut down the state space as

much as possible, which helps with sample density. Ultimately there is always a trade-off

between performance and computation time, as modulated by number of particles used.

The primary direction of further research should be in making these methods as computa-

tionally tractable as possible.

5.8.1 Unifying Example

At this point in our example, we have a series of images for each of several locations

spread across the admissible region prior. The goal now is to search through each image to

identify all sources of light. First, trivially, all stars must be tracked. Tracking stars both

provides the astrometry analysis with a better basis for star identification and identifies

stars singals so they can be ignored by the object identification algorithms. These objects

can be located by simply setting the birth model velocity in this chapter’s contribution to

track stars. Next, the multi-Bernoulli filter is run on the data sets to search for any space

objects. Any objects found can easily be associated with the prior admissible region [99].

Detections not associated with the prior are useful to further update the space object catalog.

If this method does not detect the space object associated with the prior, contribution 4

provides a more sensitive framework.
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CHAPTER 6

SPACE OBJECT DETECTION IN IMAGES USING MATCHED FILTER BANK

AND BAYESIAN UPDATE

Electro-optical sensors, when used to track space objects, are often used to produce detec-

tions of space objects for some orbit determination scheme. Instead, this chapter proposes

a series of methods to use electro-optical images directly in orbit determination. This work

uses the SNR optimal image filter, called a matched filter, to search for partially known

space objects.

When considering an EOS attempting to measure a partially known object with low

SNR, two problems are defined which are addressed in this chapter. First, how can an

EOS signal be predicted by partial orbit knowledge and how can that information be used

to detect an SO? This chapter approaches this problem by modeling a partially known

SO as a set of possible orbits. The set of possible orbits is mapped into the frame of an

EOS, providing a framework to rigorously search for an object. By defining a metric for

measuring matched filter template similarity, a bank of matched filters is efficiently defined

by partitioning the prior knowledge set [66]. Once partitioned sets are known, the matched

filter bank can be localized to regions of the sky. A method for hypothesis testing the

result of a matched filter for a space object is developed. Finally, a framework for orbit

determination based on the matched filter result is developed. Simulation shows that the

analytic results enable a better framework for implementing matched filters for low SNR

object detection.

Second, how can the results of this MF Bank be incorporated into the existing SSA

framework? The detectionless likelihood from the previous chapter is applied in a sequen-

tial Bayesian update formulation on the prior information, reformulated as a PDF. Another

result which this chapter presents involves reducing the computational burden of the MF
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bank. In general, the MF is a discrete correlation of a known signal template with the mea-

surement image. The MF need only be calculated in certain localized areas as defined by a

partition. The chapter develops precisely how to define these local search regions, ensuring

no wasted computation.

6.1 Methodology

This chapter’s primary contributions are as follows. First, this chapter develops a matched

filter based on true space object dynamics. This chapter defines a metric which measures

how dissimilar two EOS signals are. The topic of set partitioning based on metrics is

introduced to the SSA community and applied to create a matched filter bank. A localized

matched filter bank is presented to enable search on specific areas of an image based on

the partitioning. Matched filter results are then used as the measurement likelihood for a

Bayesian update. Finally, the methods in this chapter are applied to detect low SNR and

dim space objects with an electro-optical sensor.

The chapter organization is as follows. Section 6.2 introduces the concepts behind an

MF which the reader should be familiarized with. Section 6.3.1 defines the problem set

up and some of the functions this chapter uses. Section 6.3.2 defines the framework for

the partitioning process and the measurement dissimilarity metric. Section 6.3.3 develops

a matched filter-based partition for searching for partially known SO. Section 6.3.4 derives

the measurement dissimilarity metric. Section 6.3.5 uses the measurement dissimilarity

metric to develop an implementation for the partitioning process. Section 6.3.6 develops

the localized matched filter process. Section 6.4 gives intuition into how to implement this

methodology. Section 6.5 simulates the matched filter bank to demonstrate strengths.

6.2 Matched Filter

This section reviews the concepts of matched filtering, image generation and processing,

and mapping of continuous distributions to discrete images.

144



This chapter assumes an effective background subtraction has been performed on all

images, as is common in pre-processing [77]. When effective background subtraction is

performed, the mean of the noise is subtracted out, meaning that what is left is zero mean.

Note that this can lead to negative pixels; this does not mean that negative photons were

received, but rather, less photons were received than the expected value of the noise. The

read noise in images can be effectively modeled by a Poisson distribution. When a Poisson

distribution’s parameter becomes large enough, the distribution becomes approximately

Gaussian in shape [95]. Pixel values are integers while a Gaussian distribution is contin-

uous. Using a Gaussian distribution to model pixel noise is therefore an approximation,

which becomes more correct with larger pixel values.

First, define a measurement as Z(t0, tI) ∈ Rd1×d2 which is a matrix of pixel values,

which are measured in analogue to digital units (ADU), for an EOS. Assume that the pixel

zi consists of some signal si and zero mean Gaussian read noise wi as defined in Section

2.2 and Equation (2.5).

The values t0 and tI represent the beginning time and length of the observer exposure,

respectively. This allows the definition of the integration time set,

T = [t0, t0 + tI ]. (6.1)

Each pixel is an integration of photons (or some unit of measure such as ADU) from a

particular direction in the sky, and is therefore a function of the integration time set, zi(T ).

The matrix of pixels can be broken into signal and noise

Z(T ) = M(T ) + W(T ) (6.2)

M(T ) ∈ Rd1×d2 , W(T ) ∈ Rd1×d2 .

For SNR, which is discussed and refered to throughout this chapter, a brief discussion

is included in Section 2.2, Equations (2.12), (2.13), and (2.14). The MF is predicated on a
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hypothesized signal structure, which is referred to as a template, M0(T ) ∈ Rd3×d4 , which

is a hypothesis of the signal contained in M(T ). M0(T ) is a smaller or equal dimension

matrix than M(T ), that is d1 ≥ d3 and d2 ≥ d4 due to the constraint that the observed

true signal cannot be larger than the entire optical frame. It should be noted that M0(T )

is not always a function of the exposure time, but could be predicated on any number of

factors. For optical observation, the signal is dependent on the timing of the exposure

making M0(T ) dependent on the timing of the exposure. A matched filter can then be

defined as a mapping gMF : Rd1×d2 × Rd3×d4 → Rd1×d2

Z′(T ) = gMF (Z(T ),M0(T )). (6.3)

The matched filter gives an optimal SNR gain for linear image filters [93] [94]. In

other words, if the predicted signal M0(T ) is identical to the measured signal in M(T ),

the resulting SNR is maximized. In practice, the function gMF is a discrete correlation of

M0(T ) centered on every pixel in Z(T ). These results may be normalized to make perfect

correlation positive one and perfect anti-correlation negative one.

6.3 Theory

6.3.1 Definition of Problem and Dynamics

This subsection presents the background material for the chapter. Consider a space object,

with a state x(t) ∈ X composed of position and velocity r(t) and ṙ(t), seen by an optical

observer at position and velocity o(t) and ȯ(t) along line-of-sight vector, ρ(t), defined in

an inertial frame. It should be noted that while this chapter assumes x(t) ∈ R6, as position

and velocity, this can be generalized to any formulation of an orbit as well. The observer

itself could be either ground-based or space-based.

At an instantaneous time, an EOS measures a unit vector ρ̂(t). This allows the following
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partition of the state, derived from the notation used in [20],

x′(t) =
[
xTd (t) ẋTd (t) xTu (t)

]T
xd(t) = ρ̂(t) ∈ S(2)

ẋd(t) = ˙̂ρ(t) ∈ R2

xu(t) = [ρ(t) ρ̇(t)]T ∈ R+ × R.

Note that ρ = ρρ̂. As a reminder, the unit sphere, S(2), is being used to represent

the set of directions in R3. It can be represented by unit vectors and can also be thought

of as the set of points that lie on the unit sphere or celestial sphere. It is easy to see that

x′ is simply a representation of x = [rT vT ]T in an observer-centric, spherical coordinate

frame. Therefore, there exists a transformation between the two representations of the state

x′(t) = m(x(t);ko(t)) (6.4)

where ko(t) is a parameter vector containing oo(t) and ȯo(t), observer o, and any other

information needed on the observer. Multiple measurements or a non-zero exposure time

allow inference of the rate of change of the unit vector, allowing the following further

definition

x′d(t) = [xTd (t) ẋTd (t)]T . (6.5)

In general, ẋd is inferred from two xd measured at different times. It is useful to define

the following instantaneous measurement function, which maps an orbit at a particular time

to a measurement as seen by a particular observer, o in Equation (6.6).

xd(t) = ho(x(t);ko(t)) (6.6)

This chapter works heavily with sets of orbits which are mapped to a particular EOS
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xd(T )

Figure 6.1: Modeling an optical observer and measurement arc in Equation (6.8).

measurement space. In general, if S is a set of orbits at time t, then

So(t) = ho(S(t);ko(t)). (6.7)

gives these orbits mapped into points in S(2), centered around oo. For ease of notation, the

parameter vector k may be dropped from Equation (6.6), but is always implied.

Matched filtering relies on predicting the image that an optical observer produces based

on the presence of a particular SO. The actual measurement obtained is the integration of

a time-varying line-of-sight unit vector, ρ̂(t), over an exposure time t ∈ T = [t0, t0 + tI ].

Each bin on the EOS obtains photons from a small subset of S(2). As the line-of-sight

vector ρ̂(t) changes over the exposure, it illuminates different pixels, producing an image

that the user sees. This process, which can be seen in Figure 6.1, is defined as the mapping

M(T ) = h̃o(x
′
d(t); T ,ko(t)). (6.8)

which represents the model for a particular observer’s mapping from angular space into

pixel values. This transformation may include further observer parameters which are also

contained in the observer parameter vector, ko.

The prediction of objects also requires modeling the movement of objects through

space. This chapter uses the following flow function to map x(t) through time

x(t) = φ(t;x(t0), t0). (6.9)
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For a typical SO this is practically done by integrating the nonlinear dynamics with a

differential equation solver.

The admissible region (AR) is used throughout this chapter as an example to illustrate

parts of the discussion.

A typical optical measurement of a space object contains good knowledge of angle and

angle rates known as observable states, xd ∈ R4. An orbit requires six disparate data types

to be fully constrained. This AR formulation uses range and range rate as the final two

states, known as undetermined states xu ∈ R2. It is assumed that no information can be

reliably used to determine these states from measurements. An AR is created by enforcing

a series of constraints of the form

go(xd,xu;k, t) ≤ 0 (6.10)

go(h
−1(y;k, t),xu;k, t) ≤ 0. (6.11)

It should be noted that these constraints can be thought of as hypotheses. The AR is

then the space where all hypotheses are true. When an AR is represented as a set, the

notationA is used. Next, we define an admissible region,Ao ∈ R2, predicated on go

Ao :=
{
xu|go(h−1(y;k, t),xu; k, t) ≤ 0

}
. (6.12)

The most common hypotheses are a closed earth orbit [79] and a minimum radius of

periapse to avoid ballistic trajectories [65].

6.3.2 General Matched Filter Primed by Previous Orbital Knowledge

The first contribution of this chapter is proposing an MF for orbital tracking applications

that does not require a constant velocity assumption. Assume there exists a hypothesis

orbit of an SO, x(t0). This hypothesis can then be mapped to the measurement frame of an

observer o via Equation (6.6). This hypothesis can also be mapped forward in time using
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the known flow function from Equation (6.9), giving

xd(t) = ho(φ(t;x(t0), t0),ko(t)). (6.13)

In reality, the result of interest is to predict the object’s position trajectory over a known

integration time. By varying t, a hypothesized orbit, x(t), can be mapped to any point in

the integration time of an observer. This hypothesis can then be used to calculate the orbit

arc Ar through R3 × T ,

Ar = {[rT (t), t]T ∈ R3 × T :

r(t) = [I3×3 03×3] φ(t;x(t0), t0), t ∈ T }. (6.14)

This is simply the position trajectory of the orbit over the integration time, with as-

sociated time history. Ar is labeled in Figure 6.2. In reality, an optical observer does not

observe the true arc of the orbit, but rather the arc through angular space, or S(2). Similarly,

Am can be defined as an arc through S(2) in Equation (6.15).

Am = {[xTd (t), t]T ∈ S(2)× R :

xd(t) = ho(φ(t;x(t0), t0),k(t)), t ∈ T } (6.15)

This measurement arc is the arc Ar mapped through Equation (6.6). The measurement

arc and this mapping process can be visualized in Figure 6.2. While the notation of mapping

Ar to Am is useful for visualization purposes, the ultimate purpose of this discussion is to

map an orbit to a measurement arc. The following mapping is defined

Am = ho(x(t); T ) (6.16)

which maps an orbit, x(t), with an associated integration time, T , to a measurement arc,
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Figure 6.2: Mapping of orbit to measurement arc.

Am. The use of ho in Equation (6.16) is a slight abuse of notation; it is assumed that the

orbit is integrated over the exposure time to allow this new mapping. It is assumed that

when ho is used, time history is preserved alongside the position history. The time history

is needed in Subsection 6.3.4.

In addition, the measurement arc is ultimately mapped to a template which exists as

predicted EOS pixel values so Equation (6.8) should be redefined as

M(T ) = h̃o(Am,ko). (6.17)

In practice, Am should be discretized over the integration time, and each discrete point

mapped into a pixel. It is also worth noting that Am is sensor specific. Perhaps a better

notation would beAm,i, where o denotes the sensor. It should be clear which sensor is being

considered throughout this chapter, so the o notation is omitted. Modeling phenomenology

such as atmospheric blurring and distortion models is advisable but not required. This

MF template is built directly from the hypothesized SO signal structure, accounting for

observer motion, and has no built in linearization.

Equation (6.16) represents the culmination of the results in this subsection. This mea-

surement arc, Am is a mathematically rigorous equivalent to the measurement an observer

would take. This subsection lays down a framework for creating templates based on orbits.

The final result is an image that models what an EOS should see. In general, there are more
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considerations that should be included in template generation. This can include but is not

limited to SO apparent brightness and subpixel localization. These processes are discussed

in Section 6.4.

This chapter discusses sets of measurement arcs. Typically, these result from mapping

sets of orbits through Equation (6.15). This chapter therefore defines A for a given t0, tI as

the set of all possible measurement arcs

A = {Am = ho(x(t); T ) : x ∈ X}. (6.18)

This is convenient for defining subsets of A in Subsection 6.3.4.

6.3.3 Matched Filter Bank Primed by Prior Distribution

This subsection motivates the need for a bank of matched filters, provides an explanation

for how partitions can correctly define a bank of matched filters, and finalizes the definition

of this partitioning. It should be noted that, without loss of generality, a single observer is

being considered from here on, so the o notation is dropped.

Consider prior information in the form of a set of orbits, S0, which is referred to as

the prior set. By creating s non-overlapping subsets which cover S0, a partitioning can be

created for the prior set, seen in Equations (6.19), (6.20).

S0 =
s⋃

k=1

Sk (6.19)

Sl ∩ Sk = ∅,∀l 6= k. (6.20)

It is not necessary that the partitioning be non-overlapping, and certain partitioning

schemes may benefit from this condition being relaxed. The intention is to define each

partition set, Sk, such that all orbits from this set produce templates nearly identical to
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some representative template, Mk

Sk = {x(t) : Mk ≈ h̃(h(x(t); T ,k))}. (6.21)

It is generally the case that a single subset Sk ⊆ S0 does not contain all possible orbits

from a prior distribution implying a series of sets, {Sk}k=sk=1. This is the basis on which a

bank of matched filters is defined.

Next, an analysis of the contents of Sk is presented. Consider a nominal orbit, x̄, and

its particular measurement arc, Ām, with arbitrary time and observer parameters

Ām = h(x̄(t); T ). (6.22)

The measurement mapping defined in Equation (6.6) maps a position in R3 to the two

dimensional space S(2) through the equation

ρ = r− o (6.23)

ρ̂ =
ρ

‖ρ‖ (6.24)

where ‖·‖ is the 2-norm. Note that while ρ̂ is a vector in R3, it only has two free dimensions

as an element of S(2). Because this is the mapping on which the measurement arc is based,

different ρ inputs which vary only in magnitude all map to a single ρ̂. Therefore there must

exist a non-trivial set of orbits, S̄, with corresponding orbit arcs which all map to the same

measurement arc

S̄ = {x ∈ X : Ām = h(x(t); T )}. (6.25)

This is an inversion of the admissible region approach; instead of having a measure-

ment and creating a set of consistent orbits, consistent orbits are being grouped together to
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predict a measurement. A single partition, defined in this way, is illustrated in Figure 6.3.

Small enough variations in Ām provide effectively identical templates. In order to have an

effective matched filter, the template does not necessarily need to be perfect; it may benefit

a user to have fewer templates with an increased risk of imperfect matching but decreased

computation time. It is possible to define a new partition set,

Sk = {x ∈ S0 : d(Ām,h(x(t); T )) ≤ dmax}. (6.26)

where d : A × A → R+ defines a metric which evaluates the difference between two

measurement arcs. Assuming an appropriate metric exists, all orbits in Sk produce mea-

surement arcs similar enough to Ām.

Prior knowledge is often some probability density function (PDF), available from an a

previous estimate. In the extreme case of object discovery, this PDF may be large, consist-

ing of an admissible region, or a large Gaussian mixture or discrete particle distribution.

For this analysis, it is necessary to define a prior set of orbits, S0. In the case of a PDF, this

could be thought of as the interior of an iso-probability surface of the PDF which is used to

create this prior set, S0

S0 , {x ∈ X : f(x) > fmin} (6.27)

where the function f : X → R+ is the prior PDF over the state space.

The next subsection goes on to define a suitable metric, d, for Equation 6.26.

6.3.4 Measurement Dissimilarity Metric

A bank of MF are desirable for large prior distributions, but due to computation time it is

also useful to choose a minimal number of templates. This subsection is concerned with

creating a framework to allow similar templates to be grouped together. Conversely, tem-

plates which are sufficiently different in shape should not be grouped together. Therefore,
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Figure 6.3: A non trivial region of orbits all map to a single MF template.

a measure of similarity of templates is necessary. As it has been shown before, the mea-

surement arc Am defined in Equation (6.15) is the continuous space equivalent to the MF

template, M0(t). There could be many ways to compare similarity of measurement arcs,

but a metric has many desirable properties. The most important feature of metrics which

motivates this discussion is the existence of a large body of work on partitioning metric

spaces. Previous work on partitioning metric spaces is discussed in Subsection 6.3.5, after

the metric to be used has been defined [66].

The first step is to choose an existing metric to compare arc similarity. First, consider

the similarity of two points on the celestial sphere, ρ̂a(t) and ρ̂b(t). The distance between

points on the surface of a sphere, along the surface of the sphere, is called the great-circle

distance or orthodromic distance and is defined as

∆θa,b(t) = 2 sin−1
( ||ρ̂a(t)− ρ̂b(t)||

2

)
. (6.28)

This particular formulation of the orthodromic distance assumes ρ̂a(t), ρ̂b(t) are both

unit vectors. The unit vector assumption makes orthodromic distance equivalent to the

angle between the unit vectors, in radians. A metric which compares two measurement

arcs is desirable. When considering the entire measurement arc, integrating ∆θa,b(t) over a

predefined exposure time, [t0, t0 + tI ] takes into account how two measurement arcs differ

155



over the relevant time interval. Thus the measurement dissimilarity metric (MDM) for a

given [t0, t0 + tI ] is defined in Equation (6.29).

dMDM(ρ̂a(t), ρ̂b(t)) =

t0+tI∫
t0

∆θa,b(τ)dτ (6.29)

This metric can be wrapped into the measurement arc notation defined in Subsection

6.3.2. Given a particular measurement arc, Am,a, defines a time-varying unit vector, ρ̂a(t)

over a predefined time interval [t0, t0 + tI ]. Therefore, the MDM can be directly computed

between two measurement arcs,

dMDM(Am,a,Am,b) =

t0+tI∫
t0

∆θa,b(τ)dτ. (6.30)

Lemma 6.3.1. The measurement dissimilarity metric defined in Equation (6.30) over a

fixed time interval, [t0, t0 + tI ], is a metric on A, the set of measurement arcs, for any pair

ρ̂a(t) ∈ Am,a, ρ̂b(t) ∈ Am,b, that is, it satisfies the following:

1. dMDM(Am,a,Am,b) ≥ 0 ( non-negativity )

2. dMDM(Am,a,Am,b) = 0 if and only if ρ̂a(t) = ρ̂b(t) ( coincidence )

3. dMDM(Am,a,Am,b) = dMDM(Am,b,Am,a) ( symmetry )

4. dMDM(Am,a,Am,c) ≤ dMDM(Am,a,Am,b)+dMDM(Am,b,Am,c) ( triangle inequality )
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Proof. Non negativity follows directly from the range of the functions involved,

||ρ̂a − ρ̂b|| ∈ [0, 2]

sin−1
( ||ρ̂a(t)− ρ̂b(t)||

2

)
∈ [0, π/2]

∆θa,b(t) ≥ 0

t0+tI∫
t0

∆θa,b(t)dt ≥ 0. (6.31)

For coincidence, first note that
t2∫
t1

f(t)dt = 0 ⇐⇒ f(t) = 0, ∀t ∈ [t1, t2], for any

non-negative continuous function f(t) and arbitrary values of t1 and t2. Next, note that over

the range of inputs, x ∈ [0, 1], sin−1(x) = 0 ⇐⇒ x = 0, and is non-negative as shown

above. This directly implies 2. This is equivalent to saying the only way the measurement

dissimilarity metric can be zero is if the measurement arcs are identical.

For symmetry, note that ||ρ̂a− ρ̂b|| = ||ρ̂b− ρ̂a|| for an arbitrary pair of unit vectors. 3

follows immediately.

The shortest distance along the surface of a sphere between two points is the ortho-

dromic distance. Therefore ∆θa,c(t) ≤ ∆θa,b(t)+∆θb,c(t) must be true, because ∆θa,b(t)+

∆θb,c(t) represents another path along the surface of a sphere from a to c. Remember the

following property of integrals

fa(t) ≤ fb(t)⇒
t2∫
t1

fa(t)dt ≤
t2∫
t1

fb(t)dt.

which is true for any t1 and t2, so

t0+tI∫
t0

∆θa,c(t)dt ≤
t0+tI∫
t0

∆θa,b(t)dt+

t0+tI∫
t0

∆θb,c(t)dt. (6.32)

This gives the triangle inequality.
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Thus, the MDM is a metric on A, the set of measurement arcs, allowing partition meth-

ods to be applied to A. The desired partitioning, however, occurs on orbits which exist

as elements in X . The MDM can also be defined over a set of orbits because of the onto

mapping from orbits to measurement arcs, Equation (6.16). This can also be shown by

acknowledging that ρ̂a(t) is a function of x(t), so

∆θa,b(t) = 2 sin−1
( ||ρ̂a(x(t))− ρ̂b(x(t))||

2

)

dMDM(xa,xb) =

t0+tI∫
t0

∆θa,b(τ)dτ. (6.33)

The following corollary shows that the MDM is a pseudo-metric on X , or any set of

orbits.

Corollary 6.3.2. The measurement dissimilarity metric defined in Equation (6.29) over a

fixed time interval, t ∈ [t0, t0 + tI ], is a pseudo-metric on X × R for any pair of orbits

xa(t),xb(t), that is, it satisfies the following:

1. dMDM(xa(t),xb(t)) ≥ 0 ( non - negativity )

2. dMDM(xa(t),xb(t)) = dMDM(xb(t),xa(t)) ( symmetry )

3. dMDM(xa(t),xc(t)) ≤ dMDM(xa(t),xb(t))+dMDM(xb(t),xc(t)) ( triangle inequality )

Proof. Non negativity and symmetry follow from Lemma 6.3.1. Every orbit maps to a

measurement arc which exists on A.

First fix three orbits, xa, xb, and xc. Because the mapping from orbits to measurement

arcs is onto, these orbits map to single time-varying unit vectors, ρ̂a(t), ρ̂b(t), and ρ̂c(t).

The triangle inequality follows from Lemma 6.3.1.

The pseudo-metric does not have a coincidence property because the mapping from

orbits to measurement arcs is not one-to-one. However, Subsection 6.3.5 discusses metrics
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rather than pseudo-metrics. In order to enable metric space partitioning based on pseudo-

metrics, coincident objects are considered as one object [68]. This is equivalent to saying

all orbits that produce the identically same streak are the same object. Such a simplification

is the inversion of the admissible region argument. Instead of having a measurement and

creating a set of consistent orbits, consistent orbits are being grouped together to predict a

measurement. EachA is an individual object in the space to be partitioned. This definition

is a mathematical necessity, but does not change the partition process in the next subsection.

A prior set could be redefined by grouping admissible regions analytically, but such an

analysis is unnecessary and not included in this chapter.

One question remains: is the MDM robust to the presence of sensor dynamics and dis-

tortion? If a sensor is rotating, all objects in a measurement frame appear to arc and rotate

through the measurement frame. Furthermore, this rotation can be different depending on

where an object is in the sensor frame. Sensor distortion can alter streaks as a function

of where they occur in the frame. Different templates are needed for different localized

areas. Equation (6.17) includes an assumed dependence on k, the parameter vector which

includes o, ȯ. The parameter vector can be expanded to include parameters on local sensor

distortion and observer rotation to address this. For typical distortion and rotation models,

the number of distinct templates should be minimal. The error produced by not including

a correction should be small for most narrow field of view sensors. The localization anal-

ysis in Subsection 6.3.6 should further reduce this problem. An in-depth analysis of these

effects and how best to localize them is out of the scope of this chapter.

6.3.5 Metric-Based Partitioning

The properties of a metric seem obvious and trivial at first glance, but in fact a wide variety

of partition methods exist. A good discussion of metric-based search and partition methods

can be found in the text Similarity Search: The Metric Space Approach by Zezula et al. [66].

An overview of the concepts and methods is discussed here. The broad approach falls
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Figure 6.4: Ball partition and generalized hyperplane methods [66].

into two categories, ball partition (BP) methods and generalized hyperplane tree (GHT)

methods [67] [68]. The literature is rich with implementations of these methods [69], [70].

Most variations of methods are attempts to improve methods for particular situations or

overcoming general pitfalls. The bulk of these methods are simply a reworked BP or GHT

method. This subsection introduces the BP method, which is used for the results of this

chapter.

BP is based around a predetermined maximum distance, dmax. It can be visualized in

Figure 6.4. First, a maximum dissimilarity of two measurements, dmax, is defined as the

sufficient difference for templates to be unique. Once a dmax is set, BP is straightforward.

BP is implemented by choosing a series of pivot points, xk ∈ S0. Each partition Sa is a

ball centered at a respective pivot, xa, with a radius dmax,

Sk = {x ∈ S0 : dMDM(x,xk) ≤ dmax}. (6.34)

In practice, the set is represented as a discrete point-wise approximation and the points

are sorted. This can be done as a single run, with a large number of pivots, or recursively,

gradually adding pivot points.

In this process, a few questions still exist: what should dmax be set as and why, and how

fine does the discrete point-wise approximation need to be?

A higher value of dmax results in fewer partitions, while a lower dmax gives more par-

160



titions. The accuracy of the templates is dependent on how large the chosen dmax is. The

computation time is directly proportional to the number of templates chosen as well. The

correct value of dmax is also highly dependent on the characteristics of the sensor being

used. Therefore, a “best” dmax is difficult to define and problem dependent.

A proposed way is to assure that the two measurements with dMDM ≤ dmax appear

essentially the same to an observer. The choice of dmax should be based on the pixel size of

the sensor δx, the exposure time, texp, and length of the measurement arc L. The MDM as

derived gives arc dissimilarity integrated over a time period. The threshold should instead

give weight to longer streaks. What is desired is that, at most, a single pixel has an error

of length of one pixel. This leads to the formulation, which normalizes the MDM by the

average object speed in the image, L
texp

, and upper bounds it be the pixel size,

dMDM(ρ̂1(t), ρ̂2(t))

(
L

texp

)
< δx. (6.35)

L is the approximate length of the expected streak, in number of the pixels, which

allows dmax to be normalized for larger or smaller length streaks. This value in practice

is very restrictive, and for this reason has not be implemented in the simulation results

section. More analysis on how to analytically define a threshold for this process is needed.

The methods described thus far rely on a discrete point-wise approximation. As with

any such approximation, sufficient particles are needed to allow the approximation to be

representative of the set. This implies highly dimensional sets are difficult to model. Ex-

ploiting sub-spaces of lower dimensionality is recommended, such as admissible regions.

Insufficient particles can also lead to poorly defined partition set boundaries.

6.3.6 Localized Matched Filtering

The matched filter involves a discrete correlation of the template over the measurement

image. The matched filter can be applied over the entire measurement image, but is a
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computationally costly process. If certain templates can be skipped or searched in only a

local area, large computation times are saved. This subsection defines a method by which

the partition sets can be used to localize the matched filter search.

When a particular hypothesis orbit is mapped into the sensor frame, Am has an associ-

ated location in that frame. Each partition Sk, as defined, is a set of hypothesis orbits. If a

particular anchor time, t∗, is defined, a particular partition can be mapped into S(2), so

Q′k = {xd ∈ S(2) : xd = h(φ(t∗; t0,x(t0)),k(t0)),x(t0) ∈ Sk, }. (6.36)

For this particular partition’s template to be necessary, the observer must be looking at

the object during the exposure time

Oo = {xd ∈ S(2) : xd in observer frame at t∗}. (6.37)

When an MF template is used to search an image, it is tiled over the pixels. This is done

by choosing an anchor pixel in the template, typically the center pixel. This anchor pixel is

aligned with each pixel in the image and then the correlation is evaluated. S ′k is the set of

all unit vectors which can be generated from the partition set Sk at t∗. If the anchor pixel is

defined as the location of the object at t∗, a search space can be defined

Qk = Oo ∩Q′k. (6.38)

Qk represents the search space for template k in an image taken by observer o. This can

be seen in Figure 6.5, where each template has local areas where it should be evaluated.

This method yields one of two results. First, Qk can be empty, in which case the

template does not require searching for a particular image. Second, Qk is non-empty, and

the template need only be searched over a subset of Oo. More generally, this illustrates

a fundamental problem of searching for partially known SO: the search space defined by
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Figure 6.5: Localized searching of the sensor frame for partitions a through d.

prior knowledge can be larger than what can be captured by a single measurement. The

prior set, S0, and the subsets,Q′k can inform sensor tasking. For example, a tasking scheme

could be to take a minimum number of observations to observe the entire set, S0. Tasking

schemes for observing partially known space objects based on this framework is considered

future work. Sensor pointing and orientation must be known in order to implement this

method. In the case of significant uncertainty in pointing, search areas should be expanded

appropriately (e.g. one pixel of point uncertainty implies one pixel of padding on search

spaces is needed).

6.3.7 Probability of Detection and Likelihood Map from Matched Filter

Hypothesis testing on matched filter results is not a new concept [62]. Multiple methods

exist and this chapter makes no claims about which is best or worst. Instead, this subsection

presents one possible formulation.

Consider a matched filter template which consists of Nz non-zero pixels ai. When

calculating the matched filter for a particular position, the template, M0, is correlated with

a subsection of the image, Z. This appears as a weighted sum, where each pixel in the

template, ai, is associated with a particular measured pixel value, zi. Then the matched
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filter correlation is calculated by

zMF =
Nz∑
i=1

aizi. (6.39)

As per Section 6.2, assume that the pixels consist of some signal, si, and zero mean

i.i.d. Gaussian read noise, wi, shown in Equations (2.5) and (2.6). Note that in this for-

mulation, si is equivalent to the mean of the measurement zi. In order to have zero mean

read noise in practice, an effective background subtraction method is needed to remove ar-

tifacts including dark current and hot pixels. Under these assumptions, zMF is distributed

as follows:

E[zMF ] =
Nz∑
i=1

aisi

Var[zMF ] = E

( Nz∑
i=1

aiwi

)2
 = σ2

w

Nz∑
i=1

a2i

zMF ∼ N (Σaisi, ασ
2
w) (6.40)

where α =
Nz∑
i=1

a2i is a scaling factor dependent on the actual weights, ai. A hypothesis

test is desired for determining if there is signal present which is effecting zMF . This is

equivalent to asking if zMF has a mean of zero or a mean greater than zero. Consider the

null and test hypotheses for a binary hypothesis test, for a matched filter

H0 : zMF ∼ N (0, ασ2
w)

H1 : zMF ∼ N (β, ασ2
w), β > 0. (6.41)

For binary hypothesis testing, a probability of false alarm is set, pFA, which in term
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defines an integration threshold, zTH , based on the null hypothesis PDF, f0(z),

pFA =

∞∫
zTH

f0(z)dz. (6.42)

The test hypothesis PDF, f1(z), is then integrated over, giving a probability of detection,

pDetect =

∞∫
zTH

f1(z)dz. (6.43)

For more on this subject, see [95]. Note that the this analysis relies on the Gaussian

noise assumption. If the noise is non-Gaussian, this methodology is still usable, but re-

quires further work to model the distributions for the null and test hypotheses. By using a

continuous Gaussian distribution, an inherent error is incurred based on the difference be-

tween the true CDF and approximate Gaussian CDF. Under the assumption that the discrete

function is approximately Gaussian in shape, this continuous CDF approximation should

be a smooth function that interpolates through the discrete CDF. As the resolution of the

discretization goes up, the approximation becomes better. This hypothesis test can be used

to determine if there is significant evidence that the predicted signal exists in the predicted

location. Because the matched filter gives an optimal SNR gain, this test should maximize

pDetect, though an explicit proof of this claim is out of the scope of this chapter.

6.3.8 Orbit Determination and Sequential Bayesian Filter

The main motivating case for this research is an admissible region hand off for fast and

accurate orbit determination. Admissible regions hand off refers to attempting to finding

an object with an associated admissible region, with a sensor that was not used to generate

the admissible region. Work has been done on this problem in the past [32]. The basic

case of this is trivial; if two observers with sufficiently diverse locations observe an SO

at the same time, a good orbit determination can be calculated through triangulation. For
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more on this subject, see [19]. For the case of observers at different times and positions

attempting to perform orbit determination on a particular space object, more analysis is

needed. First, consider the aforementioned matched filter bank, performed on an admissible

region detected by observer o, Ao. This admissible region can be propagated forward

to time t0, forming S0 and mapped into the sensor frame of a second observer p. If a

statistically significant detection is made by the matched filter bank, a measurement can be

made. This measurement, made by observer p, consists of the determinable states for an

EOS:

x′d,p(t0) = [α(t0), δ(t0), α̇(t0), δ̇(t0)]
T . (6.44)

If the calculated x′d,p(t0) is not consistent with the location and rate of the template used

to detect it, then the measurement can be disregarded; the object that has been detected is

not consistent with any hypothesis generated from S0. Assuming, the measurement and

template are consistent, an admissible region, Ap, can be constructed. Now, there exists

two sets S0 andAp both represented by orbits at a particular time, t0. Furthermore, it is

known that both admissible regions contain an orbit consistent with a particular measure-

ment, x′d,p(t0). This implies a non zero intersection of the two admissible regions, that

is,

S0 ∩Ap 6= ∅. (6.45)

Fujimoto and Scheeres showed that if two arbitrary admissible region intersect, there

is a diminishingly low probability that they were not generated from the same object [31].

This statement implies that whatever orbit in S0 that could create the measurement xd,p(t0),

are the intersection of these two admissible regions, and therefore the correct orbit. The

Fujimoto and Scheeres chapter works with exact admissible regions and draws the conclu-

sion that the intersection must necessarily be a single point in the state space. This can be
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expanded to include uncertainties in the measurements of S0 andAp, implying a non-point

intersection,

S ′0 = S0 ∩Ap. (6.46)

where S ′0 is a new set of orbits. The new set, S ′0, can also be written asAo∩Ap. Note that

by definition S0 ⊇ S0 ∩Ap, implying that this calculation consists only of deleting parts

of S0 =Ao. The knowledge obtained from x′d,p(t0) can be used to rate track the object or

inform an online matched filter [100].

The problem with this approach is that new measurements can either be significantly

noisy or the probability of detection may be below one. In these cases, a sequential

Bayesian update scheme, in the form of a particle filter, can be formulated to operate di-

rectly on hypothesis test results. At this point, the prior set must be instead thought of as a

prior PDF. The uncertainty in S0 can either be represented by a known prior PDF or with

a uniform prior similar to an admissible region, The new measurement defines a Bayesian

update

P (x|x′d,p(t0)) =
P (x′d,p(t0)|x)P (x|S0)

P (x′d,p(t0))
. (6.47)

The measurement likelihood map, P (x′d,p(t0)|x), can be calculated from the local-

ization of xd,p(t0). The localization of xd,p(t0) must necessarily be calculated from the

matched filter result, which is represented by the hypothesis test in Equation (6.41).

P (x′d,p(t0)|x) = P (zp > 0 ∀ j ∈ [1, . . . , n]) (6.48)

The right hand side of Equation (6.48) is equivalent to the hypothesis test in Equation

(6.41). The matched filter can be built into a Bayesian update, allowing the matched filter

bank to be built into a particle-based filter. It should be noted that while this chapter’s
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results only include a basic particle filter, this likelihood can apply to a wide range of filters

including random finite set and multi-target filters.

There is a statistical hurdle that occurs in certain cases when performing this update;

the image which provides the likelihood update may not cover the entire prior set, meaning

some particles simply cannot be updated. In such a case, the authors recommend parti-

tioning the prior set S0 into two pieces, the observered partition, SO0 , and the unobserved

partition, S\O0 . Because no information is obtained on the unobserved partition, the prob-

ability density must stay the same, PS\O0 (x) = PS\O0
(x|xd,p(t0)). Conversely, Bayes rule

can be applied to only the observed set,

PSO0 (x|x′d,p(t0)) =
PSO0 (x′d,p(t0)|x)PSO0 (x|SO0 )

P (x′d,p(t0))
. (6.49)

This particular case of partial likelihood is incomplete and deserves a great deal more

work. Further analysis is out of the scope of this chapter.

6.4 Implementation of Theory

In Figure 6.6, the logic for an implementation of a matched filter bank based on the work

in this chapter is mapped out. Boxes 1 and 2 define the prior information for the process.

Box 3 maps a prior set of orbits to measurement arcs, which in practice are what is used

to partition and generate templates. In Box 5, the pivot point xk can be chosen in a few

different ways. The simulations in this chapter choose the first pivot point randomly and

choose all following pivots as the point furthest in MDM from the previous pivot. Box 6

represents comparing the distance between each point and the pivot in MDM. The measure-

ment arcs should be pre-calculated for each point to expedite this. The time density of the

measurement arcs should be chosen based on processing power. The partitioning module

should pass out both the pivot point and the associated partition set. The subsection labeled

“Local Matched Filter” represents how to process the matched filters. L is the intersection
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13 Search over L
M0 = h̃o(xk)

14 Likelihood Map

Ball Partition Method

Local Matched Filter

Figure 6.6: Code flow diagram for implementing MF Bank.

of the measurement frame and a particular partition. In practice, this can be generated by

mapping the measurement arcs into the measurement frame with the desired camera model

and locating all pixels with any signal. It is useful to pad the localization matrix to expand

the search area by a few rows and columns. This assures that if the truth appears near the

boundary of the search area, the matched filter correlation peak is captured fully. If L is

empty, this template can be skipped. If L is not empty, the non-empty pixels defines the

locations where the signal should be checked.

The likelihood can be used in a variety of ways: each particle’s likelihood can be evalu-

ated for a particle filter update, the peak likelihood can be directly considered as a measure-

ment, or the likelihood itself can used seen as the final product. Another extra processing

technique which is worth considering is point spread function (PSF) fitting [98]. This tech-

nique involves optimizing over the underlying signal’s end points and PSF at sub-pixel

accuracy. The matched filter template with the best correlation can be used an initial guess

for the PSF fit. The PSF fit result can then be used as the detection, which should lead to

sub-pixel accurate localization of endpoints.
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Table 6.1: Orbital elements for simulated object.
a (km) e Ω (rad) i (rad) ω (rad) f (rad)

1.2658e+04 0.2198 2.3863 0.3489 1.2698 0.3724

6.5 Simulation Results

6.5.1 Problem Geometry

A medium Earth orbiting object, with parameters in Table 6.1 is simulated to demonstrate

the admissible region hand off. The object is simulated at the UTC, November 12, 2011, at

20:34:07.

Two EOS observers, o1 and o2, located in Colorado and Hawai’i respectively, take

observations of the space object at times t1 = 0s and t2 = 120s. Consider observer 1

to be a high sensitivity sensor able to detect this space object via conventional methods.

Consider observer 2 to be a low sensitivity sensor which would normally be unable to

detect this space object. The geometry of the problem is shown in Figure 6.7. The SO and

observer position and velocities at the time of the observations are:

r(t1) = [−5906.3 − 7313.5 3410.0]T (km)

ṙ(t1) = [5.0791 − 4.7364 − 0.01212]T (km/s)

r(t2) = [−5280.5 − 7860.5 3398.8]T (km)

ṙ(t2) = [5.3445 − 4.3765 − 0.17361]T (km/s)

o1 = [−1207.0 − 4746.7 4072.0]T (km)

ȯ1 = [0.34519 − 0.08777 0.0000]T (km/s)

o2 = [−5446.2 − 2431.8 2252.0]T (km)

ȯ2 = [0.17337 − 0.39759 0.0]T (km/s).

170



Figure 6.7: Location of observers and SO.

6.5.2 Observations

The first observer takes an image which leads to a detection and measurement by conven-

tional methods. The admissible region throughout these simulation results is represented

by a discrete point-wise approximation of 20,000 particles. The second observer, o2, takes

low SNR observation of the SO, also at t2 = 120s. The image simulation is done with-

out star signals, to prevent false detections. Stars present a problem in implementation on

real data, but can be avoided with good star identification and subtraction. The image is

generated with a 10 second exposure time, field of view of 10 degrees, and sidereal stare

pointing mode. The total object SNR in this image is approximately 6.8, while the maxi-

mum pixel-wise SNR in this image is approximately 1.0. Conventional methods, such as

thresholding and corner detection, fail to detect this object. Because the only orbital knowl-

edge on this object in the admissible region from observer 1, conventional velocity filters

cannot be implemented.

6.5.3 Partitioning

In order to give insight into the computational cost of the ball partitioning, the simulation

has been run for a range of MDM threshold values. For these multi-value test runs, object

171



Figure 6.8: Maximum likelihood results from varying MDM threshold with 3 sigma bars.

SNR is set to approximately 0.25, the probability of false alarm threshold is set to 0.999,

and 10,000 particles are used to represent the AR. In this particular simulation, only the 2

dimensional admissible region need be represented by a discrete set of particles. For such

space, 10,000 particles is typically sufficient. Another note on particle density is that in

order for the partitions to be well formed, sufficient particles per subset are desired. A

good rule of thumb is around 100 particles per partition, but as always, more particles help.

In Figure 6.8, the maximum likelihood is shown to vary more significantly with a higher

MDM threshold. Because raw measurement SNR is constant, a perfect template should

always provide the same likelihood. The sporadic behavior at high MDM threshold is a

result of the inability of a high MDM threshold to consistently provide effective templates.

The number of templates and computation time are plotted against MDM threshold on a

log-log scale in Figure 6.9. Computation time follows a predictable curve; more templates

proportionately leads to more computation time.

Next, a particular partitioning is shown in more detail. In remaining simulations, object

SNR is set to approximately 1, the probability of false alarm threshold is set to 0.999, and

20,000 particles are used to represent the AR. A maximum MDM value of dmax = 0.1 rad·

s is chosen. The measurement arc is calculated for each particle, represented by a time

series of unit vectors. A ball partitioning algorithm based on approximate integration over
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Figure 6.9: Computational time results from varying MDM threshold.

(a) Mosaic of Templates

(b) Temp A (c) Temp B (d) Temp C

Figure 6.10: Sampling of matched filter templates from partitioning. Colors are Inverted.

the time series sorts the particles into subsets containing consistent orbits. The partitioning

provides 80 distinct partitions with corresponding templates. Figure 6.10 shows a sample

of the types of templates which are generated. A diverse set of templates are created by the

partitioning, corresponding to the range of possible signals that could be produced by the

space object, given it exists in the admissible region. Figure 6.11 shows the partitions on the

original admissible region. Each template in Figure 6.10 corresponds to a partition shown

in 6.10. When the evaluating the matched filters, these partitions define search spaces for

the associated templates. Three particular partitions, labeled A, B, and C, are followed

more closely through the remaining process. Partition C is the most correct partition, and

contains truth somewhere in it.
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Figure 6.11: Sets generated from partitioning, shown on original AR.

6.5.4 Observation Search

The templates with corresponding partitions are searched in the image. Figure 6.12 shows

the image with overlaid partitions. The matched filter gives a value for each pixel in the

image which the template is centered at. Each matched filter result is then tested via the

hypothesis test in Equation (6.41). This gives a likelihood function over the partition, which

can evaluated for all particles. Figure 6.13 shows the correlation maps for three templates.

Figure 6.13(a) shows an incorrect template which doesn’t produce significant SNR gain.

Figure 6.13(b) shows a template with an imperfect template, illustrating the kind of SNR

gain possible in real operation. Figure 6.13(c) shows a template primed with perfect orbital

knowledge, simply to illustrate what the ideal case can look like.

6.5.5 Orbit Update

The final step is calculate a Bayesian update on the space object. Each particle’s likelihood

is evaluated within its partition. Some particles do not fall within the EOS image which

poses a problem for the update. As previously discussed, Equation (6.49) is used to perform

a likelihood update on only the particles which are observed, while the particles outside the

image are kept at constant weight. Using the new measurements, the PDF over the original
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A

B
C

Figure 6.12: Measurement image taken by observer 2.

(a) (b) (c)

Figure 6.13: Correlation results from a variety of templates.
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Figure 6.14: Final PDF update from matched filter likelihood.

admissible region can be updated, point-wise, similar to a particle filter update. Figure 6.14

shows the results of a single Bayesian update. It is important to note that this method does

not make a hard update decision and should not. When objects at a low SNR are observed,

it can be impossible to confirm that a statistically significant “detection” has been made.

Many false alarms mimic the signal giving the false peaks seen in the PDF. Only through

multiple detections, which show both statistical significance in the image and adherence

to a dynamic model, can a conclusive statement be made. Ultimately, this would be used

in a filtering scheme such as a particle filter or multiple hypothesis filter, as the likelihood

function.

6.5.6 Sequential Particle Filter

As of now, the likelihood function update at a given time only makes sense if it can be eval-

uated for all objects within the PDF. The following results proceeds under the assumption

that the measurement likelihood can be evaluated for all particles. Two observers in Geor-

gia and a MEO object are simulated. Similar to the previous simulation, the first observer

takes an observation of the object and an admissible region is created. The AR is passed

off to the second observer, which then takes a series of 9 observations. Each observation is

a 10 second exposure, sidereal stare observation, which are initiated at 20 second intervals.
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The following initial parameters are used

r(t1) = [−3420.2 − 8138.0 4698.5]T (km)

ṙ(t1) = [6.5260 − 2.3753 − 0.0121]T (km/s)

o1 = [652.95 − 5284.4 3499.5]T (km)

ȯ1 = [0.3843 0.0475 0.0000]T (km/s)

o2 = [522.51 − 5281.8 3525.1]T (km)

ȯ2 = [0.3841 0.0380 0.0]T (km/s).

The final posterior PDF of the particle filter can be seen in Figure 6.15. The standard

deviations in range and range rate space can be seen plotted over iterations in Figure 6.16.

The final values of the particle filter are highly dependent on factors such as process noise,

image pixel size, object SNR, and more. In addition, the noise at such low SNR values

provides a large numbers of false alarms. These plots are meant to demonstrate that particle

filter convergence is possible. Object SNR over the series of images is shown in Figures

6.17 and 6.18. Figure 6.17 shows the total object SNR calculated by Equation (2.13). The

total object SNR, which is the SNR of all pixels which the object appears in, gives an idea

of the total available information for an object. Figure 6.18 shows the maximum per pixel

SNR calculated by Equation (2.12). The maximum per pixel SNR gives a measure of the

ability of classical detection methods (thresholding, edge detection) to detect this object.

It is worth noting that this particle filter scales gracefully for different object SNR values.

This means that this method can be used as a general object detection method which can

capture dim space objects.

6.6 Conclusion

A methodology has been developed for obtaining low SNR detections of space objects

when uncertain prior information is available. Unlike typical matched filters, exact knowl-
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Figure 6.15: Final PDF update from multi-frame matched filter likelihood particle filter.

Figure 6.16: Standard deviation of PF over iterations.

Figure 6.17: Object SNR over observation series.
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Figure 6.18: Pixel SNR over observation series.

edge is not necessary with this matched filter bank. The partitioning method that is pro-

posed in this chapter enables efficient and mathematically rigorous generation of the matched

filter bank. A novel metric is first defined in this chapter, upon which the partition process

is defined. The resulting partitions are then used for an analytic result which allows the

localization of a matched filter. This MF bank enables a statistical update to an orbit to be

derived directly from image data. Reliable low SNR detection methods have the ability to

decrease require costs for performing SSA with electro-optical sensors. Instead of building

more monolithic telescopes, large numbers of smaller sensors can be used to gather im-

portant SSA data. Large, exquisite sensors can then be focused on object discovery rather

than catalog upkeep. Furthermore, this methodology can be generalized to a wide variety

of sensors and data types.

6.6.1 Unifying Example

At this point in our example, we still have a series of images for each of several locations

spread across the admissible region prior. All reasonable bright lights sources are also

identified and checked for association with the prior. Unlike contribution 3, the goal now

is to search through each image to perform orbit determination directly on the admissible

region. The example provided in the simulation section of this chapter is exactly the same

as the last piece of this unifying example. Each image set provided by contributions one

and two are searched with matched filters provided by the underlying admissible region.
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The likelihood provided by the matched filters is used to update the admissible region,

provided the final orbit determination.
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CHAPTER 7

CONCLUSIONS

In moving toward an ever improving Space Surveillance Network, there are myriad dif-

ferent interconnecting techniques which all affect our ability to track, estimate and char-

acterize space objects. Some of the most important techniques concern data acquisition,

which requires both where to point a sensor and what qualities the data should have. Just

as important is what to do with the data once it is taken, both for tracking objects and

turning these tracks into meaningful information on orbits. This work is broken into four

distinct contributions; the first looks at how a sensor should scan a set in order to take data,

the second shows how to choose optimal telescope parameters when taking data, the third

looks at image processing algorithms for uncued detections, while the fourth looks at cuing

detections with a set and performing orbit determination on the set.

The first major pillar of this work is showing the interconnectivity between orbit statis-

tics and sensor tasking. One of the foundational motivations of this work, and a major new

development in SSA, is admissible region theory. Admissible regions, as seen through-

out this work, are an inherently set-based method of storing prior knowledge on a space

object. While admissible regions have been incorporated into orbit estimation techniques,

this work looks at how they fit into sensor tasking and image processing. The first major

contribution in this dissertation constructs an entire tasking algorithm based on reacquir-

ing a object with a set as prior knowledge. This work leverages the set by analyzing the

boundaries expansion rate and working this knowledge directly into the optimization algo-

rithm. The fourth contribution in this work looks at how the admissible region set can be

used to inform detection methods. This piece of work is able to achieve extremely sensitive

detections which are attainable only through prior information.

The second major pillar of this work is the integration of sensor tasking and image
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processing techniques. Another major motivation of this work, the maximum likelihood

estimator, is introduced as a popular and thorough technique for detection and analysis in

SSA. This estimator is used to define statistical reward functions which allow the compar-

ison of image data. This allows sensor tasking strategies and data campaigns to be chosen

based on the reward inherent to the data taken. In Lemma 5.3.1, the inherent relationship

is shown between the maximum likelihood estimator and the hypothesis test likelihood

function used for detection and estimation algorithms.

The final major pillar of this work is the combined integration of image processing

and orbit statistics. This piece is built upon the use of a detectionless likelihood function,

in particular one designed for SSA. This is a likelihood function which allows statistical

conclusions to be drawn directly from an image. The third contribution develops and an-

alyzes this likelihood function purely as a detection technique. The Multi-Bernoulli Filter

is equipped with this likelihood function and specialized for SSA purposes. The fourth

contribution brings in admissible region theory by formulating a method by which orbit

determination can be performed directly with the detectionless likelihood function.

The work in this thesis provides an array of new research ideas. The detection meth-

ods provided in this work push the current boundaries of image detection sensitivity. The

derivation on velocity astrometry information provides a novel way to choose how data is

taken. The search set, an analytic concept that is used throughout this dissertation, provides

a new way of thinking about orbits and unifies several disparate concepts. Admissible re-

gions are used extensively in SSA but are often modeled as PDF’s, reachability sets have

been explored but never fully utilized, and search regions are often erroneously modeled

as areas of the sky. Furthermore, the set which is required to formally define a PDF is

typically ignored in SSA applications. This dissertation represents a new way of concep-

tualizing orbits; all of these constructs are modeled first as a set of orbits. The search set,

and the methods in this dissertation which utilize it, provide a unifying framework around

which SSA systems can and should be built. This work also supports a broad push away
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from simple orbit models, such as TLEs. This dissertation also branches out to currently

popular estimation methods such as maximum likelihood estimation and finite set statistics,

broadening the applicability. Finally, it should be noted that multiple pieces of this disser-

tation have inspired direct future work internally at Georgia Tech. The multi-Bernoulli

filter detection technique has an ongoing follow-up effort [101] and work has begun on a

follow-up effort for the optimal sensor tasking techniques.

The search set concept has the potential to broadly alter how the SSN is currently op-

erated. A core goal of this dissertation is to enable specific space objects to be reacquired

regardless of the time, location, and quality of the follow-up sensor or sensors. This works

towards enabling reacquisition of poorly known, maneuverable, and difficult-to-detect ob-

jects regardless of circumstance. This has the potential to enable a variety of new SSA

missions. Tracking small objects from multiple locations provides an enabling technology

for networks of inexpensive and unconventional sensors to support space object catalog

expansion. Operators now have a way to search for maneuverable and dynamic objects

through reachability sets. Finally, these techniques build toward military missions such as

asset protection, uncooperative target tracking, and intercept missions.

The mathematics in this dissertation are purposefully written to be as broadly applicable

as possible. The search set, and dynamics it obeys, are broad enough to apply to any number

of situations from sea domain awareness to tracking individuals for security purposes. The

search set technique, if used for other domains, now has a dissertation’s worth of supporting

techniques attached to it. The detection methods are all closely related to computer vision

where similar techniques are being employed. The new likelihood function and matched

filter bank in this dissertation represent steps forward for the computer vision community.

The four chapters of this dissertation, as a whole, forecast the future of the Space

Surveillance Network. Each chapter shows how new ideas in SSA, like detectionless fil-

ters and admissible regions, can be combined together to form powerful new techniques.

Highly sensitive low SNR detections, orbit determination from multiple sensor locations
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and times, reacquisition on barely detectable objects with large priors. In many ways, the

work in this document only scratches the surface. Many of the results in this dissertation

are only preliminary, and further work will provide stronger methods.

7.1 Joint Tasking and Estimation of a Search Region

There exist a variety of methods to handle the scheduling problem [23–25], as discussed in

the introduction. These methods can all be used in conjunction with the work described in

this dissertation. A scheduling algorithm can be used to decide between multiple prior dis-

tributions and multiple sensors, while the tasking algorithms in this dissertation prescribes

how a sensor searches and acquires data. Area growth rate estimation can be used as a

foundation for a scheduling algorithm, which is ongoing future work [102]. Finally, it is

worth mentioning that the scheduling problem is a special case for the work in this disserta-

tion, and the combined scheduling tasking problem can be considered one problem within

the framework of this work. The computational tractability of this problem, which is in

essence a second CSP wrapped around the CSP considered in this chapter, is not practical.

A discussion about future estimation schemes which make sense to be used in conjunc-

tion with these algorithms is included. This paper works under a Bayesian assumption; in

the case that prior information on a single object is represented with a PDF, a fairly standard

Bayesian filter is sufficient. This takes the form of a particle filter for orbit determination

directly on an admissible region. For a robust implementation on real data, special consid-

erations must be taken in order to account for false and missed detections. For operating on

an admissible region, there are two primary options. The first method, which is commonly

used is the literature and is used here, makes a uniform prior distribution assumption and

uses Bayesian estimation, similar to above [32]. A second, newer method exists which

makes no uniform prior distribution assumption, instead modeling the set with an uninfor-

mative prior and using Dempster-Shafer theory to perform estimation [71]. This method of

uninformative priors has not been explicitly extended to a general set for orbit estimation,
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but such a method should work and would apply to all cases in this dissertation. Neither

of these methods consider how estimation should be handled when a measurement only

interrogates a subset of the state-space, rather than the whole space. However, Dempster-

Shafer theory’s use of belief and plausibility as bounds on the true probability may provide

an interesting framework to directly account for partial state space interrogation. This is a

primary area of future work.

7.2 Opportunities for Future Work

The first contribution on search through prior sets has several interesting new directions.

Area over time is a simplistic bulk measure for search sets prediction. One area of future

work should be to provide more complex predictions that better take into account search

space shape and how it intersects with sensor field of view. If such an analysis can be

worked into a cost function, it creates a powerful optimization tool. Sensor design is an

obvious extension of this work. The analyses provided take both sensor location and sensor

parameters into consideration, and can be easily turned around to look at what those factors

should be to provide certain search capabilities. The actual estimation of objects which

exist in a set may prove to be more complicated than one might think. Methods based

on finite set statistics and Dempster-Shafer theory may provide the best avenue. Such a

method should allow for a solution of no objects, one object, or many objects existing in

the set.

The second contribution on optimal telescope parameters was chronologically the last

piece of this document to be researched and written. This chapter ended with a wealth of

interesting research problems that could not fit into a single chapter. The reward function

gradients and optimization results are all centered on the exposure time vector as the pri-

mary design variable. Some minor analysis has been performed on slew rate, which lead

to the intuitive result that rate tracking generally leads to better information. The primary

results treat slew rate as a fixed variable determined by the feasibility of rate tracking.
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Especially when considering some constraints such as star clutter and reliability of star

identification, there may be interesting situations when choosing a non-rate track trajectory

could be advantageous. Another variable which is not discussed in detail in this disser-

tation is the ability of modern sensors to sample a smaller “window” inside an image, or

sub-sample blocks of pixels into single pixels. These processes, known as windowing and

binning, provide a way to exchange data quality for data down-link rate. In the case of

wanting high frequency data, an interesting case can be made to include these processes

as full design variables. Related to windowing and binning is the pointing uncertainty of

a telescope, which is typically found through star identification. Not only could this inher-

ently have an affect on the various information metrics, but it is dependent on factors such

as slew rate, field of view, and astrometry information of stars.

The results in this dissertation are rather theoretical, providing a framework of how to

design data campaigns with only minimal analysis of the actual data campaigns. Part of

the ongoing and future work associated with this dissertation is validation on simulated

and actual data campaigns. While the rewards functions here are based on the maximum

likelihood estimator, there are a variety of detection, tracking and estimation techniques for

both astrometry and photometry. Data can take a variety of forms depending on telescope

field of view, aperture, location, etc. An extensive set of validations would be best to

explore how the reward functions in this dissertation, as well as future reward functions,

perform.

In the case of a signal with a known frequency or already well known light curve, the

only engineering decision is choosing what point on the Pareto surface is desired. This is

complicated when the signal frequency and amplitude are unknown. Furthermore, signals

may not be sinusoidal in shape and can have interesting artifacts such as glints. This dis-

sertation sidesteps this design decision by selecting a worst case scenario frequency and

amplitude and solving accordingly. The intuitive result for such a situation is to initially

have exposure times as short as possible to allow dynamic estimation of frequency content,
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then switch to an Pareto solution suitable to the detected frequency. This is at odds with

the astrometry which calls for starting the campaign with a single long exposure. Solving

these issues with a dynamic algorithm that updates its solution based on new data provides

a wealth of new engineering problems.

As of right now, the velocity astrometry rewards function registers zero information for

a single rate tracking image, and has a problematic parameter, t∗. Further analysis into

how to develop velocity astrometry may provide an easy, intuitive solution to this. The

current astrometry rewards assume that position and velocity information are the only re-

alistic objectives. However, given a long enough campaign, full orbit information becomes

observable. Future work should therefore look at how to extend or replace the astrometry

reward functions with one which maximizes information on full orbit determination. Pho-

tometry, similarly, is solved in a simplistic way by attempting to minimize the uncertainty

of the flux over time. In reality, photometry is part of a broader problem of object classi-

fication, whose objectives may require a wholly new reward function or functions. All of

the reward functions developed in thi should not be viewed as final results, but instead as a

blueprint on how to develop a reward function for whatever specific objects are necessary

in a given situation. It is the author’s hope that this work spawns a multitude of follow-on

projects analyzing new ways to maximize SSA data.

The third contribution on a detectionless filter is part of a much more crowded field with

currently ongoing work. One critical broad piece of of ongoing and future work involves the

computational benefits of Gaussian and Gaussian mixture methods. The detectionless filter

requires a full particle filter even though many of the final distributions appear Gaussian.

Finite set statistics filters often have Gaussian mixture forms, but the current likelihood is

not compatible with a Gaussian update as the measurement function can be very non-linear.

Future work should look at finding cases where Gaussian estimation can be used alongside

detectionless filtering. The best possible outcome would be a way to effectively marry

Gaussian mixtures with the full detectionless filter without sacrificing quality, though the
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feasibility of this is unknown.
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