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SUMMARY

Situation awareness is the perception of elements in the environment, comprehension

of their meaning, and projection of their status into the future. Space situational awareness

(SSA) is particularly concerned with accurately representing state knowledge of space ob-

jects to resolve potential threats, such as collision. Tracking techniques used in the space

surveillance system still rely largely on models and applications from the 1950s and 1960s,

while the number of tracked objects continues to grow with improved sensor technologies

and ease-of-access to space. This work frames the SSA sensor tasking problem to interro-

gate specific hypotheses using evidential reasoning. First, cognitive systems engineering

practices are applied to derive cognitive work and information relationship requirements

for SSA decision-support systems and provide insight on the utility of hypothesis-based

methods in SSA. To evaluate hypothesis-based methods for SSA, the spacecraft anomaly

detection problem is formulated as a binary hypothesis test using distance metrics while

accounting for non-Gaussian boundary conditions to improve applicability to non-linear

orbital dynamics. Next, a sensor tasking criterion is developed to gather the evidence that

minimizes ambiguity, or ignorance, in hypothesis resolution. The application of evidential

reasoning provides a rigorous framework for quantifying ambiguity and allows inclusion of

diverse SSA sensors. Building upon this method, a generalized evidence-gathering frame-

work, Judicial Evidential Reasoning (JER), is proposed for hypothesis resolution tasks.

JER also accounts for confirmation bias by applying a principle of equal effort. Resource

allocation is a non-linear, high-dimensional, mixed-integer problem, so JER also applies

adversarial optimization techniques to address computational tractability concerns. Finally,

a prototype SSA decision support system is developed based on the derived requirements

to evaluate workload and situation awareness impacts of hypothesis-based tasking. This

work aims to enable predictive sensor tasking to provide decision-quality information and

improve decision-maker situation awareness and workload.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

In the 60 years since the launch of Sputnik 1, humans have steadily learned to leverage

the “final frontier” to suit our needs. Currently, there are over 20,000 trackable objects

in the space object catalog [1, 2] ranging from decommissioned rocket bodies to active

telecommunications assets to university science and technology experiments (see Fig. 1.1).

These numbers are expected to grow significantly due to improved tracking capabilities,

new launches, and continued debris generation [3]. While Earth orbit is a vast volume,

useful or strategic orbit regimes (e.g. low Earth orbit (LEO), Geostationary Earth Orbit

(GEO), sun-sychronous LEO) have quickly become congested and contested [4]. With

such diverse involvement in the space arena, there is a large economic and national security

incentive to understand the space environment to ensure continued operation of assets.

Space situational awareness (SSA) is concerned with accurately representing the state

knowledge of objects in the space environment to provide better prediction capabilities for

threats such as potential conjunction events. Maintaining SSA is essential to the command

and control missions of the Joint Space Operations Center (JSpOC) [7]. Discourse and ac-

tivity in SSA increasingly focuses on decision-making in the presence of limited resources,

uncertain information, and a contested space environment. The number of trackable space

objects is continually growing with expanded use of small spacecraft technologies [8] and

increased sensor capabilities. Growing clutter poses safety concerns, accentuated by the

high-profile LEO collision event in 2009 between a COSMOS satellite and an active Irid-

ium satellite [9]. Future SSA sensor tasking needs to focus on providing decision-makers

with “actionable knowledge required to predict, avoid, deter, operate through, recover from,

and/or attribute cause to the loss and/or degradation of space capabilities and services” [4].

Furthermore, establishing protocols and regulations in the use of space depends upon
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Figure 1.1: Monthly number of objects in Earth orbit by object type (NASA Orbital Debris
Quarterly News, February 2018)

the “availability of quantifiable and timely information regarding the behavior of resident

space objects” [4]. Constraints imposed by non-linear orbital dynamics and the disparity

between the number of space objects and the number of sensors hinder the ability to reliably

provide information on maneuvers or other events. Integrating and fusing non-traditional

sensor data is crucial for SSA [10, 7], and increasing emphasis is being placed on algo-

rithms and processes that have an ability to ingest disparate data from many sources and

fuse an understanding of the greater situation of the space domain.

Figure 1.2 shows the distribution of sensors in the Space Surveillance Network (SSN)

that are used regularly to track RSOs in the near-Earth environment (extending beyond

geosynchronous orbit). Tracking techniques used in space surveillance still largely rely

upon models and applications from the 1950s and 1960s [11]. As access to space becomes

more affordable and the space object population increases, the amount of data required

to maintain situational awareness greatly increases [12]. Increased data needs make the
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Figure 1.2: Sensors in the Space Surveillance Network (SSN)

human-in-the-loop involvement in space surveillance particularly troublesome, motivating

the development of autonomous tasking capabilities. For instance, current space object

custody tasking requires human analysis of candidate tasking schedules while incorporating

constraints such as observation conditions (e.g. sky brightness, cloud cover). In the event

that an object is not detected, a human analyst may be required to inspect the observation

conditions visually before declaring lost custody or anomaly. This approach is reactive and

rigid; however, adaptive approaches, such as the Dynamic Data Driven Application System

(DDDAS) paradigm, can create more flexible algorithms that can incorporate additional

data at runtime [13]. This necessitates a more automated approach to data collection and

processing that incorporates auxiliary sensor data to operate in a more predictive manner

and dynamically adjust the algorithm objectives and actions.

The availability of low-cost, high-accuracy, steerable sensors [15] provides an opportu-

nity for improved sensor management, at both the individual sensor and network levels, to

improve SSA knowledge and capabilities [16]. DDDAS-like algorithms operated on these

networks enable predictive data collection to improve capabilities for space object custody,

anomaly detection, new object detection, and resolution of other SSA hypotheses.

The task of gathering evidence to support claims or resolve hypotheses naturally ex-

tends far beyond SSA to awareness and decision-making in any domain. A decision-
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maker’s cognitive frame is determined by the things that are known, things that are not

known, things that cannot be known, and things the decision-maker does not want to know

[17]. Former United States Secretary of Defense Donald Rumsfeld famously articulated a

similar classification in a February 2002 briefing: known knowns, known unknowns, and

unknown unknowns [18]. National security and intelligence professionals have long used

an analysis technique known as the Johari window [19] for classification into categories

for open (known knowns), hidden (unknown knowns), blind (known unknowns), and un-

known (unknown unknowns) information. When it comes to decision-making, knowledge

and non-knowledge are equally constructive; while known threats may lead to negative

outcomes, ignorance is also identified as a distinct kind of danger [17].

Known unknowns result from phenomena which are recognized but poorly understood;

on the other hand, unknown unknowns are phenomena which cannot be expected because

there has been no prior experience or theoretical basis for expecting the phenomena [20].

In operation, sensor effort must be allocated to the resolution of both. Resolving known

unknowns leverages existing understanding to gain more specific knowledge with gathered

evidence. This can be approached with predictive tasking schema, hypothesizing events

and leveraging knowledge of the dynamics and uncertainties to reduce the search space

and gather the most useful information. Unknown unknowns may still manifest as very real

threats, and only very general searching strategies over a wide search space may be used.

This type of tasking is considered reactionary, relying on specific evidence of the event

before it can be further interrogated and resolved. Both approaches attempt to transition

unknown information into the known-known category, as outlined in Fig. 1.3(b).

The application of rigorous evidence fusion techniques that resolve specific threat hy-

potheses has the potential to address data scarcity problems and improve predictive task-

ing for SSA. Modern information fusion techniques, such as evidential reasoning and

Dempster-Shafer theory [21], provide an opportunity for improved hypothesis resolution

SSA sensor tasking is a high-dimensional, multi-objective, non-linear, mixed-integer opti-
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mization problem, so the application of modern high-dimensional and combinatorial opti-

mization techniques enables efficient solution of tractable SSA problems.

Thesis Statement: Formulating the SSA sensor tasking problem to interrogate specific

hypotheses using evidential reasoning yields decision-quality information, enables predic-

tive tasking, and improves decision-maker situation awareness and workload.

1.1 Binary Hypothesis Testing for Anomaly Detection

Timely detection of anomalous events is crucial to responsiveness in follow-up tracking

and post-anomaly orbit characterization [22]. Detecting low-thrust maneuvers is especially

difficult since subtle state changes may propagate into vast state discrepancies [23, 24].

Data association hypothesizes an association between two uncorrelated tracks (UCTs), and

the correlation likelihood can be assessed using numerous methods, including batch least-

squares [23, 25], finite-set statistics [26], and admissible regions [27, 28, 29].

Distance metrics, such as Mahalanobis distance, can also be employed to quantify a

state discrepancy between UCTs [30]. The minimum-fuel control distance metric, in par-

ticular, allows for data association and maneuver detection while incorporating propulsive

effort, allowing reconstruction of the maneuvers [24]. Previous work develops a control

cost distributions distribution and compares the mean maneuver size to the uncertainty in

the control cost distribution [24]. This contribution addresses shortcomings of the original

formulation in the case of non-Gaussian boundary conditions and limits in the error rates

(e.g. false detection, missed detection). Non-Gaussian boundary conditions arise, even

from initially Gaussian uncertainty distributions, due to propagation through non-linear or-

bital dynamics. Gaussian mixtures allow modeling of arbitrary non-Gaussian distributions

while still preserving the computational advantage of modeling distributions as opposed to

particle-filters. Additionally, a binary hypothesis testing formulation allows prescription of

allowable false alarm rates.

Contribution 1: A binary hypothesis testing approach to anomaly detection with non-
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Gaussian boundary conditions for both control distance and Mahalanobis distance metrics.

1.2 Ignorance-Reduction Criterion for Sensor Tasking

In general, the sensor tasking or sensor scheduling problem addresses how to obtain, pro-

cess, and utilize information about the state of the environment [31]. Potential SSA needs

include maintaining catalogs of space object state observations [26, 16], detecting ma-

neuvers or other anomalies [32], and estimating control modes or behavior [33, 4]. The

SSA sensor tasking problem is a high-dimensional, multi-objective, mixed-integer, non-

linear optimization problem, so current approaches focus on tractable sub-problems (e.g.

single objectives or hypotheses, limited target objects, limited sensors). For instance, main-

taining a catalog of space object estimates requires observations of many different space

objects. Information-maximizing methods, as characterized through covariance estimates,

minimize state estimate uncertainty for all catalog objects [34, 26]. Other objectives may

require more data of specific targets or events. Space object association may be handled

by quantifying a state anomaly or maneuver required to associate two uncorrelated tracks

(UCTs) [24, 32], classification methods may employ taxonomies trained on representative

space object feature sets to categorize space objects [35], and attitude or control mode esti-

mation requires many observations of a single object to develop a light curve, a time-history

of photons received from the target space object [97]. These competing objectives are gen-

erally not complementary, especially given limited sensor resources, so different objectives

may prefer different tasking approaches.

Many existing sensor tasking approaches aim to maintain low overall uncertainty (e.g.

information-maximum), but this tasking does not necessarily support the needs of a decision-

maker. This motivates an approach that encodes tasking opportunities and decision-making

priorities as hypotheses that can be interrogated by evidence. If a potential target’s orbit

and operational capabilities (or lack-thereof) are well-known, it might not be necessary to

minimize its associated uncertainty. Conversely, many consecutive follow-ups might be de-
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sired on a newly-acquired object to fully characterize its orbit, or on an object approaching

a congested volume of space (such as a GTO object approaching apogee). Hypothesis-

driven approaches are not new to SSA; for instance, multiple hypothesis testing (MHT)

techniques have been applied to object detection within electro-optical images [36, 37,

38]. Applied to sensor-tasking, hypothesis-driven approaches enable a predictive mode of

tasking to answer specific relevant questions.

Additionally, sensor information must be fused into a coherent understanding of the

environment via association, correlation, and combination [31]. In classical Bayesian ap-

proaches, sensor data is used to form deterministic probabilities placed on event hypotheses

under the assumption that the only possible realizations of this hypothesis are true or false.

However, in complex decision-making contexts, information is not always represented well

in a strictly binary manner, needing to account for uncertain information and ambiguity. An

expert might be able to confirm or refute a given set of hypotheses, but it cannot attribute

belief to any hypotheses for which it is not an expert. For this reason, evidential reason-

ing methods, such as Dempster-Shafer theory, quantify ambiguity, leading to more realistic

modeling of human analyst processes [39, 40, 41]. Dempster-Shafer theory has gained sig-

nificant traction in various applications, including classification [42, 43], monitoring and

fault detection [44, 45], and decision-making [46].

This contribution formulates a tasking criterion based on the reduction of residual ambi-

guity, gathering evidence that yields a more precise understanding of the relevant hypothe-

ses. In comparison to a covariance-based sensor tasking scheme, the ignorance-reduction

approach is able to resolve the anomaly and custody hypotheses to equal quality using far

fewer observations. When the number of actions is constrained to be the same between

the algorithms, ignorance-reduction chooses actions that gather stronger evidence, resolv-

ing the hypotheses quicker and to better quality. Additionally, methods are presented for

reliably encoding and fusing SSA sensor data as evidence experts.

Contribution 2: A sensor tasking ignorance-reduction criterion and a framework using
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SSA sensors as evidence experts to resolve specific hypotheses.

1.3 Evidence-Gathering for Hypothesis Resolution using Judicial Evidential Rea-

soning

The curse of dimensionality is one of the primary criticisms of the Dempster-Shafer ap-

proach [47]; the computational complexity of evidence combination generally increases

exponentially with the number of hypotheses [40]. Approximations [48] and exact im-

plementations [40] have shown linear complexity for hierarchical evidence. Monte-Carlo

methods [49] and consonant methods on chain-like hypothesis structures [50] enable fea-

sible implementations of the Dempster-Shafer formalism. Comparisons of these approxi-

mation methods for decision-making find that there is no definitive “best” approximation

as they often restrict application to cases with low conflict in evidence or collapse the be-

lief intervals into points, eliminating the ability to represent ambiguity [51]. In order to

be applicable in a decision-making scenario, with real operational objectives and time con-

straints, an evidential-reasoning-based tasking framework must be able to support many

hypotheses and reliably support human decision-making cognition.

In command and control scenarios, an elegantly simple but extensively applicable model

of rational human behavior is the Observe-Orient-Decide-Act (OODA) loop [52, 53]. This

ongoing cycle encompasses gathering data from observations, processing the data to under-

stand the situational reality, making decisions from this understanding, and acting on these

decisions [53]. The OODA loop is readily applicable to the hypothesis-based evidence-

gathering problem, as shown in Fig. 1.3(a): measurements are gathered and processed into

belief structures based on the hypotheses of interest.

The ignorance-reduction criterion developed in the previous contribution is well-suited

to resolve relatively low numbers of hypotheses, applicable to the task of maintaining cus-

tody of a subset of satellites. For general operational applications in SSA, with over 1, 000

active assets and nearly 19, 000 total tracked objects, and there may be tens or hundreds of
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(a) OODA loop descriptions. (b) Reactive and predictive tasking.

Figure 1.3: General sensor tasking frameworks

hypotheses of interest for each space object. With so many potential tasking options and

so many hypotheses to investigate, as well as time constraints on responding to some op-

portunities or threats, the computational complexity of a brute-force approach is daunting.

Therefore, the larger sensor allocation problem is decomposed into separate sub-problems

to address each hypothesis, and the sub-problem solutions are combined to quickly find a

near-optimal tasking [54]. This framework also leverages game-theoretic adversarial opti-

mization to improve computational complexity over a brute-force approach.

The developed approach, called Judicial Evidential Reasoning (JER), hinges upon three

primary considerations: hypothesis abstraction, ambiguity aversion, and confirmation bias.

The use of a hypothesis abstraction supports human decision-making strengths of planning

and strategy, off-loading processing work to the algorithm and fusing evidence into intu-

itive hypothesis resolutions. Recognizing the need to account for ambiguity aversion in

decision-making, the use of Dempster-Shafer theory allows for quantification of evidence

ambiguity. Finally, applying a principle of equal effort through an alternating-turn adver-

sarial optimization scheme avoids confirmation bias induced by improper prior beliefs or

evidence uncertainty and ambiguity, avoiding fixation on incorrect propositions.

Contribution 3: A generalized evidence-gathering approach to multi-hypothesis reso-

lution, applied in both non-SSA and SSA scenarios, that efficiently computes near-optimal
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evidence-gathering schedules while accounting for ambiguity and confirmation bias.

1.4 Cognitive Systems Engineering Applied to Decision Support in SSA

In order to be applicable in real operational scenarios, a proposed sensor tasking frame-

work and associated decision-support system must reliably support human cognition and

expertise. In application, the upper and lower bounds of the belief function may not pro-

vide intuitive usefulness in presentation to an analyst or decision-maker. Typically the

belief structure is either converted to a probability distribution (as a Bayesian approxi-

mation of the belief structure) [55] or collapsed to a probability formation that allows a

decision-maker to place bets on each hypothesis given the available evidence using familiar

Bayesian constructs [56, 57]. However, the previous contributions showed the usefulness in

incorporating ambiguity in hypothesis resolution for decision-making in sensor scheduling.

This contribution aims to show the added cognitive benefits of a hypothesis-based tasking

abstraction, as well as the effects of explicitly and rigorously quantifying hypothesis reso-

lution quality on decision-maker behavior.

This work applies cognitive systems engineering practices [58], primarily cognitive

work analysis [59], to identify purposes, capabilities, and constraints in the SSA work do-

main. A work domain analysis identifies capabilities and constraints present within both

the SSA operator’s work domain and the SSA environment as a whole, and a control task

analysis aids in the derivation of a set of decision-support design requirements for informa-

tion fusion and sensor allocation tasks. A prototype decision-support system that leverages

these requirements is also presented and evaluated.

Contribution 4: Application of cognitive systems engineering techniques to derive

requirements for a prototype SSA decision-support system, as well as analysis of operator

situation awareness and workload using this prototype.

10



1.5 Organization and Relevant Literature

The contributions of this work aim to improve SSA decision-making through hypothesis-

based, predictive sensor tasking. Table 1.1 summarizes the relevant literature for each

contribution.

The thesis begins with the cognitive systems engineering analysis from the fourth con-

tribution to provide context on goals and challenges in the SSA work domain before delv-

ing into specific approaches and applications. The third chapter addresses the first contri-

bution, developing a binary hypothesis testing approach for anomaly detection with non-

Gaussian boundary conditions using two different distance metrics: Mahalanobis distance

and control distance. The fourth chapter addresses the second contribution, incorporating

evidential reasoning to fuse SSA sensor data and presents an ignorance-reduction criterion

for sensor tasking. The fifth chapter addresses the third contribution, which extends the

evidential reasoning approach to develop a generalized evidence-gathering framework to

resolve multiple hypotheses while mitigating computational complexity, evidence ambigu-

ity, and confirmation bias. The sixth chapter returns to the cognitive systems engineering

work in the first contribution, leveraging the design requirements to develop a prototype

decision support system for SSA relevant to the hypothesis-based methods in the previous

contributions, investigating decision-maker situational awareness, cognitive support, and

workload.

1.6 List of Publications

The publications resulting from work related to this thesis are listed below in chronological

order, separated by publication type.

Peer-Reviewed Journal Articles

J.1 A. D. Jaunzemis, M. V. Mathew, and M. J. Holzinger, “Control Cost and Maha-

lanobis Distance Binary Hypothesis Testing for Spacecraft Maneuver Detection,”
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Journal of Aerospace Information Systems, 2018, Vol. 15, No. 3, pp. 131-156,

doi:10.2514/1.I010584

J.3 A. D. Jaunzemis, M. J. Holzinger, M. W. Chan, and P. P. Shenoy, “Evidence Gath-

ering for Hypothesis Resolution using Judicial Evidential Reasoning,” Information

Fusion, submitted March 2018.

J.4 A. D. Jaunzemis, K. M. Feigh, M. J. Holzinger, and M. W. Chan, “Cognitive Systems

Engineering Applied to Decision Support in Space Situational Awareness,” Journal

of Cognitive Engineering and Decision Making, to be submitted May 2018

Conference Presentations
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Detection with Gaussian Mixtures and Real Data,” 25th AAS/AIAA Space Flight
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CHAPTER 2

DEVELOPMENT OF REQUIREMENTS FOR SSA DECISION SUPPORT

Research in space situational awareness (SSA) increasingly focuses on gathering and pro-

cessing actionable knowledge, primarily “to predict, avoid, deter, operate through, recover

from, and/or attribute cause to the loss and/or degradation of space capabilities and ser-

vices” [4]. This chapter applies cognitive systems engineering methods to derive require-

ments for decision support in SSA.

2.1 Cognitive Systems Engineering

This section introduces relevant terminology and frameworks in cognitive engineering to

provide a background for the development of requirements for supporting human-in-the-

loop decision-making in SSA.

2.1.1 Situation Awareness

Endsley defines situation awareness as “the perception of the elements in the environment

within a volume of time and space, the comprehension of their meaning, and the projection

of their status in the near future” [5], or, more simply, as “knowing what is going on around

you” [6]. Inherent in Endsley’s definition of situation awareness is an understanding of

what is important [6], so the design of support systems for situation awareness must begin

with establishing goals and purposes of the work domain. Endsley makes an important

distinction between knowledge states and information acquisition processes relevant to the

discussion of situation awareness [6]:

“Situation as defined above is a state of knowledge about a dynamic environ-

ment. This is different than the processes used to achieve that knowledge. Dif-
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ferent individuals may use different processes (information acquisition meth-

ods) to arrive at the same state of knowledge, or may arrive at different states

of knowledge based on the same processes due to differences in the compre-

hension and projection of acquired information or the use of different mental

models or schemata.”

Often, decision support systems are measured for effectiveness based on performance

measurements relating a user’s response to some input conditions. However, as an interme-

diate variable between the input and output of the system, “the measurement of situation

awareness provides far greater diagnosticity than is typically available from performance

measures” [6]. Measurements of situation awareness, along with traditional performance

measures, provide more insight into the operator’s cognitive processes and in-situ under-

standing of the work domain. In general, situational awareness can be quantified as the

degree of correspondence between a set of human judgments and distribution of the true

system or environmental states [100, 101], and similarly SSA is concerned with accurately

estimating the distribution of orbital states (e.g. position and velocity), primarily for near-

Earth objects. In order to be quantifiable, the cognitive process measurements must have

a basis in observable variables: one method uses subjective reports of retrospective mem-

ory, another uses subjectively reported measures of situation awareness [102], and another

uses probes embedded within simulation studies in real-time, interactive contexts, freeze

simulation and query actors on state of controlled system [6, 103]. Therefore, situation

awareness measurement and analysis is typically done through in-situ surveys conducted

during human-in-the-loop experiments [125].

2.1.2 Decision Support Systems

Systems engineers face a difficult design problem in effectively managing complex so-

ciotechnical systems, comprised of both the technological systems and the people or organi-

zations that operate within them [104]. In the late 20th century, Keen presented a road-map
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for decision support system (DSS) research, focusing on utilizing emerging software tools

to build semi-expert artificial intelligence systems and emphasizing the value and role of

experts in DSS [105]. Shim et al. updated Keen’s agenda for the 21st century, highlighting

increased proficiency with technology and an associated expectation of more functionality

in DSS technology [106]. Shim encouraged researchers to identify areas where tools are

needed to transform uncertain and incomplete data, along with qualitative insights, into

useful knowledge, along with further exploiting software and technology tools.

When considering building a DSS, the design approach for the user interface must be

carefully considered. The effectiveness of a decision aid depends on relationships between

the representation, the domain and associated tasks, and the characteristics of the agent

[107]. Designers cannot anticipate all the possible scenarios that could arise and must

therefore design displays that support effective problem solving even when novel or unan-

ticipated scenarios are encountered [107]. To this end, it is important to frame the goal

of such a design task as first helping the user to focus attention on a potentially impor-

tant event and then providing integrated displays that help the user to construct a deeper

understanding of the context [108].

2.1.3 Cognitive Work Analysis

Militello et al. [58] define cognitive systems engineering (CSE) as “an approach to the

design of technology, training, and processes intended to manage cognitive complexity

in sociotechnical systems.” CSE aims to provide the designer with “a realistic model of

how the human functions cognitively” [109]. A multitude of CSE methodologies have

emerged in recent decades to inform system design by modeling human cognitive functions

[104], including cognitive work analysis [110, 59], contextual design [111], hierarchical

task analysis [112], and naturalistic decision-making [113]. Unfortunately, the bulk of

applications of CSE methods in industry has been limited to incorporating the insights as

graphical user interface elements [104].
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One of the more widely-adapted CSE frameworks is cognitive work analysis (CWA),

which is a framework for establishing characteristics and constraints of the work domain

[110, 59]. CWA differs from other types of work analysis by focusing more on how work

may be driven by constraints imposed by the domain and less on how the work is actually

accomplished [59]; in other words, the emphasis is on how the work could be done, not on

how work is done or should be done [114]. It is therefore a useful design tool for a new

system intended to support expert work, defined as the ability to compose a process needed

for a specific task as a sequence of familiar subroutines that are useful in different contexts

[115]. CWA provides an approach to “characterize the constraints that define the cognitive

requirements and challenges, and the knowledge, skills, and strategies that underlie both

expert performance and the error-vulnerable performance of domain practitioners” [116].

The traditional cognitive work analysis, as defined by Vicenti [59], consists of five

phases or dimensions with different analysis boundaries, summarized below. The first

phase, work domain analysis (WDA), analyzes relationships between the purposes, pri-

orities, functions, and resources in the domain. The second phase, control task analysis

(ConTA), analyzes activities in specific situations or tasks. The third phase, strategies

analysis (SA), analyzes strategies for executing an activity. The fourth phase, social or-

ganization and cooperation analysis (SOCA), analyzes the distribution of work amongst

individuals and teams, as well as communication required between these entities. The final

phase, worker competencies analysis (WCA), analyzes the perceptual and cognitive capa-

bilities and limits of humans in the domain. CWA research efforts to date predominantly

implement the first two phases, leading them to be the most matured analysis techniques

[114].

2.2 Work Domain Analysis Applied to SSA

This work begins by applying the first phase of CWA, the work domain analysis, to ana-

lyze the broader purposes of decision support in SSA and the means available to accomplish
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those goals. WDA can be applied in to inform DSS design in a number of ways. For in-

stance, the ecological design approach uses WDA results to inform specific user interface

design solutions [117]. An alternate approach is to use the WDA results to derive require-

ments for supporting complex work in the domain [114]. Since well-understood goals are

central to the development of situation awareness [6], this work follows the latter approach,

applying the principles of WDA to uncover purposes, capabilities, and constraints within

the SSA work domain.

2.2.1 Description of the Work Domain

The work domain relevant to SSA consists of numerous social and technical components.

SSA is particularly concerned with accurately representing the state knowledge of objects

in the space environment to provide better prediction capabilities for threats such as po-

tential conjunction events. Operators in SSA operations centers, such as the Joint Space

Operations Center (JSpOC), often start with limited training in orbital mechanics, sensor

phenomenologies, data fusion, or other relevant SSA fields. The operators are then re-

sponsible for aggregating data on a diverse space object population, ranging from active

satellites to orbital debris, and conduct analyses to predict events (e.g. conjunctions) or

schedule follow-on observations to maintain a catalog of space object state estimates. This

data is gathered from a diverse network of sensors, some or many of which may be con-

trolled by entirely separate entities, which poses difficulties in gathering timely data on

specific events. For instance, sensors in the space surveillance network (SSN) are geomet-

rically diverse (recall Fig. 1.2) and relatively sparse, especially as compared to the number

of RSOs tracked. For instance, collections from an object in low Earth orbit (LEO) from

one particular radar sensor might occur over two 5-minute-long observable passes in one

day. This leaves significant time wherein anomalies (e.g. maneuvers, on-orbit break-ups)

can occur without being directly observed.

In general, the sensor tasking problem addresses how to obtain, process, and utilize
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information about the state of the environment [31]. The SSA sensor tasking problem

is a high-dimensional, multi-objective, mixed-integer, non-linear optimization problem,

and current approaches focus on tractable sub-problems (e.g. single objectives, limited

target objects, limited sensors). Potential SSA sensor tasking needs include maintaining

catalogs of space object state observations [26, 16], detecting maneuvers or other anomalies

[32], and estimating control modes or behavior [71, 72, 4]. These objectives are generally

not complementary, especially given limited sensor resources, and the different objectives

require different tasking approaches.

Discourse and activity in SSA increasingly focuses on decision-making in the pres-

ence of limited resources, uncertain information, and a contested space environment [4].

Therefore, the goal of aggregating all this data is to support SSA decision-making. Support

for decision-making must provide quantifiable and timely evidence of behaviors related to

specific hypotheses (e.g. threats). To support this hypothesis resolution activity, existing

approaches largely focus on collecting observables to identify physical states or param-

eters. However, many complex hypotheses require RSO behavior prediction that takes

into account other RSOs, physics knowledge, and indirect information from non-standard

sources. As such, an active avenue of research in SSA focuses on the use of information

fusion and emerging technologies to ingest varied, sparse datasets to form a coherent story

of the space environment, as well as techniques for better conveying this story to decision-

makers.

Additionally, presenting all relevant information (available sensors, location of target

space objects and the most up-to-date information on them, and active working hypothe-

ses on the space environment) to a decision-maker in SSA creates a big-data and data-

visualization problem. Problematically, the collected data products are also affected by

adverse observation conditions, uncertainties, biases, and unobservable states that may con-

tribute to ambiguity in evidence. Advancements in the fusion of all relevant data, tracking

data and operator information, into a coherent user interface that communicates available
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courses of action provide an avenue for increased intuition in SSA decision-making.

The primary challenges of the SSA work domain can be summarized using dimensions

of complexity adapted from Vicente [59]:

• Large problem space: High number of interacting variables.

• Dynamic: Constantly varying states, potentially long response times between mea-

surement opportunities.

• High-risk: Errors may lead to catastrophic results.

• Social: Multiple organizations, with competing interests in the use of space, vying

for SSA data.

• Distributed: Geographically disparate sensor networks and organizations.

• Uncertainty: Sensor bias, measurement noise, and unobservability result in proba-

bilistic and less-than full-state knowledge.

• Disturbances: Operators are expected to understand anomalous behavior and bring

system back within nominal conditions.

• Automation: Operators expected to monitor and intervene quickly and decisively

in off-nominal conditions.

To derive guidelines that support decision-making and address these complexities, the fol-

lowing sections apply CWA techniques to the SSA domain.

2.2.2 Abstraction Hierarchy

Work domain analyses are employed as the first step of CWA to establish broad understand-

ings and identify constraints that exist within the domain [104]. The result of a WDA is

traditionally a model known as the abstraction hierarchy, which provides a graphical repre-

sentation of linkages between purposes, priorities, functions, and resources of the domain
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Figure 2.1: Abstraction hierarchy model decomposition (Naikar, 2013)

[115, 59]. The abstraction hierarchy assesses the means-ends relationships inherent to the

work domain based on the purposes of the actor(s), but explicitly does not consider the ac-

tions of the actor. In particular, the abstraction hierarchy focuses on structural means-ends

relationships within the objects in the work domain. By representing the work domain

from multiple levels of abstraction, an analyst can view the domain at varying levels of

detail. The functional purpose and other high level abstractions provide broad overviews

of the system and intended goals, whereas the lower level abstractions define attributes of

the physical objects with which the actor interacts.

The structural relationships between elements in adjacent levels of the hierarchy can

be summarized as follows: each level simultaneously provides a means (the “how”) to

elements in the level above, and an end (the “why”) to the level below. The traditional

five levels of decomposition included in an abstraction hierarchy [115] are summarized in

Fig. 2.1, adapted from [118]. Beginning with the overall purposes of the work domain and

progressing down the decomposition levels, the elements in the hierarchy become more

concrete, arriving at the physical characteristics of the domain resources.

The following summaries provide added detail on each level of the decomposition [115,
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114]:

• Functional Purposes: reason(s) or purpose(s) of the system.

• Abstract Functions: principles or priorities of the work domain that are preserved,

conserved, maximized, or minimized (e.g. conservation of energy).

• Generalized Functions: functions that must be present for the functional purpose of

the work domain to be fulfilled.

• Physical Functions: capabilities of the physical elements within the work domain.

• Physical Forms: properties of physical elements within the work domain (e.g. phys-

ical form, configuration).

It is often useful to further decompose the work domain into multiple abstraction hi-

erarchies to separately examine different aspects of the environment and domain activi-

ties at these varying levels of detail. For instance, Burns et al. [119] used a system of

three abstraction hierarchies to model naval command and control, and Miller et al. [104]

used two abstraction hierarchies to separately model the environment and work domain for

extra-vehicular activities (EVA) with time-delay. Similarly, the SSA problem can be ap-

propriately decomposed using two abstraction hierarchies, and the following sections will

discuss the elements of these decompositions in greater detail.

2.2.3 SSA Work Domain Decomposition

The first system examined is the work domain for SSA operators. This decomposition is

adapted from preliminary work [82], constructed through interviews with subject-matter

experts with experience in SSA and decision support. The resulting modified decomposi-

tion is shown in Fig. 2.2.

Functional purposes: The overarching goals of SSA historically related primarily to

maintaining safety of the more-than 1, 300 active satellites in Earth orbit. However, the US
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Air Force has also recognized the space domain to be a valuable asset in maintaining na-

tional security concerns through communications and surveillance. Therefore, the purposes

goals of any decision-support system in SSA can be summed up by ensuring continued safe

operation in the space environment and addressing national security concerns.

Abstract functions: All objects in Earth orbit are subject to orbital dynamics, an active

area of continued research. To a first order approximation, these dynamics are summarized

using laws of Keplerian motion; however, increasing demands on spacecraft capabilities,

and thereby sensing capabilities, necessitates higher-fidelity models that incorporate other

environmental effects such as atmospheric drag and solar radiation pressure. The sensors

used for gathering evidence are also subject to dynamics and phenomenology dependent

upon the type of sensor used. For instance, radar sensors exploit different phenomenologies

than electro-optical sensors, making radar more effective for range and range-rate measure-

ments while electro-optical sensors are more effective for angle and angle-rate measure-

ments. One of the primary tasks of decision-makers in SSA is to assign priorities to drive

operations. In some cases, this means prioritizing data collection of certain assets, such as a

military or communications satellite, over less-critical objects, such as university satellites

or previously well-tracked objects. As the focus of SSA increasingly turns toward decision-

making and gathering actionable information to resolve hypotheses, these hypotheses and

their relative priorities also become an increasing focus of decision-support efforts. SSA

operators must also be concerned with the efficiency of the sociotechnical system work-

flow: sensor and operator resources should neither be under-utilized or over-utilized.

Generalized functions: The primary functions required to successfully perform SSA

activities are listed at the generalized functions level. SSA operators are often concerned

with detecting events or anomalies that occur, a difficult task considering the disparity be-

tween the number of trackable objects and the number of available sensors. Pursuant to the

space asset safety goal, operators are particularly concerned with predicting and avoiding

potential conjunction or collision events. The primary means of gathering information to
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address hypotheses related to the safety and security goals is through sensor allocation,

which leverages both orbital dynamics and sensor phenomenologies to gather and fuse rel-

evant evidence. Operators have many existing methods to choose from when it comes to

processing detections to maintain a catalog of space object data, and techniques for corre-

lating these detections is still an active area of research. The operators must also be aware

of the fact that, due to anomalous events and non-linearities in the dynamical environment,

the accuracy of this information is subject to degradation, requiring further data collection.

Importantly, SSA operations centers are often not comprised of actual spacecraft or sensor

operators. Instead, the SSA operators aggregate and fuse observation information to up-

date the catalogs and predict events, while also generating lists of desired observations to

address decision-making needs. Therefore, the dissemination of this information is crucial

to successful SSA operation.

Physical functions: At the physical functions level, the functional capabilities and con-

straints imposed by the SSA work domain are listed. The computational resources required

to perform associate tracks, update catalogs, and detect or predict events are a primary

consideration toward the functional capabilities of any SSA operations center. Similarly,

the sensor network comprises the capability to gather data to inform these computations.

Signal processing also plays an important role in both the reception of data (e.g. electro-

optical signal processing for detection) and the transmission of information (e.g. alerts or

sensor tasking requests). The personnel available to perform the functions at the gener-

alized function level also add a constraint on SSA operations. Finally, the space object

catalog resources and individual space object ephemerides provide a means of disseminat-

ing information about the space object population. This is primarily accomplished through

public-facing catalogs that do not contain any classified information, such as the US Air

Force’s Space-Track website.

Physical Form: The final level of decomposition lists work domain constraints and

capabilities imposed by physical characteristics of the domain. As mentioned previously,
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the disparity between the number of trackable space objects and the number of sensors

places a significant constraint on SSA operations. Additionally, observational constraints

are imposed by the relative geometries between sensors and space objects, subject to orbital

dynamics. The identification of certain space objects as higher-priority targets (to resolve

hypotheses or improve catalog estimates) helps constrain this problem. Finally, the condi-

tion of the measurement signals imposes added constraints, as uncertainty and bias in state

estimation and measurement processing leads to ambiguity in evidence.

2.2.4 SSA Environment Decomposition

The second system examined is the SSA environment, modeled similar to the correspond-

ing environment hierarchies in the naval [119] and EVA [104] studies. Unlike operators

in the work domain, the environment does not have any functional purpose or goals, so

the top level of the traditional decomposition is omitted. However, there are still many

dynamic elements to the SSA environment that impact decision support design consider-

ations. Due to similarities in the relevant phenomenologies and constraints, the results of

this decomposition, shown in Fig. 2.3, closely resemble the EVA decomposition [104].

Abstract functions: The laws of conservation of mass, momentum, and energy govern

the physical domain of the orbit environment. These predictable laws impose constraints

on everything from spacecraft orbits to sensor capabilities.

Generalized functions: Several physical processes, governed by the laws of conser-

vation in the abstract functions level, affect SSA operations. Orbital dynamics prescribe

the motion of objects in orbit, including spacecraft, debris, and celestial bodies such as

planets and stars. The dynamics of these objects primarily drive data collection by limit-

ing observability to specified time-spans. Atmospheric processes also affect observability

through the quality of the data gathered. Similarly, space weather (such as solar storms or

high-energy particles) can impact both spacecraft and sensor operation. Finally, the capa-

bility to transmit and receive electromagnetic signals provides a basis for observation and
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communication.

Physical functions: In the environment decomposition, elements of the physical func-

tion level pertain to operational environments of the operators’ systems [104]. Both engi-

neered and natural objects constrain the transmission of signals by either producing a signal

for observation, providing a path for data transmission, or obscuring that path to prevent

transmission. The atmosphere provides similarly important constraints on observations

through “atmospheric seeing” as electromagnetic plane waves emitted or transmitted by

objects in space are distorted when passing through the atmosphere. Conversely, the vac-

uum of space provides a more pristine environment for the transmission of electromagnetic

signals, so sensors or assets beyond the atmosphere can avoid some of these constraints.

Physical Form: The environment contains several physical elements that significantly

affect SSA operations. For instance, Earth’s gravitational and electromagnetic fields drive

propagation and safe operation of orbiting assets, providing predictable but still stochastic

dynamics. The solar radiation environment not only affects objects through high-energy

particle radiation, but also through the luminosity of the Sun that illuminates targets and

drives electro-optical observation opportunities. Naturally the locations and types of man-

made objects in the environment can drive observation opportunities for those or other

objects and transmission of data between different parts of the SSA network. Similarly,

the location and types of celestial bodies may transmit or constrain data collection, but

also provide added data points in some measurements: for instance, an electro-optical sys-

tem typically leverages the (nearly) inertially fixed locations of stars to further constrain

angle-measurements. Finally, turbulence and adverse weather play a large role in both

ground-based sensor operation, including signal degradation that affects both scientific and

communication data.
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2.2.5 Insights for SSA DSS Development

The work domain analysis conducted through the abstraction hierarchies above identifies

capabilities and constraints present within both the SSA operator’s work domain and the

SSA environment as a whole. These results can be used to develop relationships and per-

spectives related to important aspects of the combined SSA work domain and environment.

One specific take-away that can be derived from these decompositions is the importance

of data fusion from disparate sensor resources and various signal characteristics, including

considerations for uncertainty, ambiguity, and unobservability. State estimates are only as

good as the quality of the physical data products, so the signal processing and information

fusion must be able to account for these difficult aspects of the SSA observation problem.

More importantly, however, this data must be fused to address actionable decision-maker

needs derived from the SSA domain purposes of asset safety and national security.

A useful insight from this analysis comes from comparing existing sensor allocation

methodologies to the goals of the work domain. Many existing or proposed approaches

focus on minimizing catalog-wide covariance estimates. This involves fusing the data (sig-

nals), generated using the available sensors, to maintain a prescribed covariance accuracy

dependent upon the priority of the asset. This sensor allocation addresses the function of

catalog maintenance, as well as the goal of ensuring space asset safety by improving the

accuracy of conjunction assessments; however, is not necessarily well-suited to resolving

other hypotheses that may pertain to national security or space object safety. In particular,

unless the hypothesis can be directly restated in terms of covariance estimates, an algorithm

predicated on state uncertainty minimization will not be able to prioritize that hypothesis.

Therefore, there is a need for sensor allocation approaches that not only address the catalog

maintenance function, but also directly address other decision-maker hypotheses related to

safety and national security.

Additionally, the proliferation of different sensor technologies means that the physical

form of sensor data is widely varied. In some cases, evidence toward certain hypotheses
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may even be extracted from non-traditional sources such as news articles. An effective

DSS for SSA must be able to ingest data from disparate sources and fuse all that data to

update hypothesis knowledge states that address the decision-maker concerns.

The design insights gleaned from this analysis are summarized as follows:

• Existing sensor allocation methods (e.g. covariance-based tasking) lack robust trans-

lation to domain goals.

• Information fusion must incorporate data from disparate sensor phenomenologies.

For further insight into the development of design requirements for an SSA DSS, this work

continues with the second stage of the cognitive work analysis.

2.3 Control Task Analysis Applied to SSA

Using the results of the work domain analysis, the second phase of the cognitive work

analysis, the control task analysis (ConTA), is conducted to further develop insights for

decision-support requirements. Previous work by the NASA directorate of Human Effec-

tiveness has investigated how new fusion technologies could be incorporated into the SSA

workflow [120, 7], including a ConTA study used to inform designs for several prototype

screens for evaluation by Joint Space Operations Center (JSpOC) operators [121]. The full

results of this analysis are under distribution restriction [121]. In contrast, this work seeks

to derive generalized requirements for SSA DSS development.

2.3.1 Decision Ladders

ConTA emphasizes the actions that the worker should undertake to accomplish a particular

task, while also encouraging flexibility and expertise by not adhering to a strict linear,

procedure-like approach. The decision ladder, a popular choice of control task modeling,

maps information processing actions and states of knowledge throughout a control task to
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model the cognitive processes required to complete the task. Figure 2.4 shows a sample

decision ladder in the style of Rasmussen and Vicente [115, 59].

Beginning in the bottom-left of the ladder, the analysis phase involves ingestion of alerts

and observations to identify the system state. The judgment phase, at the top of the ladder,

models the selection of a particular target goal through the consideration of options and

their consequences. Then, descending toward the bottom-right of the ladder, the planning

phase of the task selects actions to execute based on the stated goals, and the task terminates

in execution that plan. It is important to note that not all control tasks need to utilize the

entirety of the ladder; for instance, some tasks may not involve any planning and execution

so the task can terminate after analysis and judgment. Similarly, not all tasks begin with

an activation or alert and may be best modeled starting from a particular system state, for

instance. In this way, the decision ladder approach avoids enforcing a linear approach to

modeling control tasks.

To further encourage flexibility in task modeling, the decision ladder may include short-

cuts in the form of associative leaps (from one state of knowledge state directly to another)

and shunts (from a state of knowledge directly to a non-adjacent processing activity). In

practice, these shortcuts arise from experience as an expert begins to recognize familiar

situations: the expert is able to employ skill- and rule-based behavior to develop shortcuts

and avoid cognitively expensive tasks in upper portions of the decision ladder, which are

associated with knowledge-based behavior [122, 59]. In the template in Fig. 2.4, an asso-

ciative leap is shown for a case where, once an alert is received, the operator immediately

knows, through experience, the system state and can bypass observation and identification.

Similarly, a shunt is shown for a case where, given a particular system state, the opera-

tor immediately knows, through experience, the appropriate choice of task and can bypass

the judgment phase of control task. These considerations for flexibility are what allow

designers to use decision ladders to support expert work.

The control task decision ladders can be leveraged to generate two different types of

32



Figure 2.4: Control task analysis decision ladder template, adapted from Vicente [59]

design requirements [104, 123, 124]. A cognitive work requirement (CWR) specifies cog-

nitive demands, tasks, and decisions that must be supported by the DSS. An information

relationship requirement (IRR) specifies the context for required data, which translates that

data into the actionable information that the decision-maker requires.

Miller et al. [104] demonstrate how to translate from the states of knowledge in the

decision ladder to CWRs and IRRs. In their study, each state of knowledge generates at

least one CWR, and each CWR has a corresponding IRR. A similar approach is followed

in this work. For each applicable decision ladder state, states of knowledge articulate ques-
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tions relevant to the SSA operator. Each state of knowledge generates a CWR outlining

some functionality the DSS must provide to address this state of knowledge. Similarly, the

CWR generates an IRR more explicitly stating the data products required to generate the

necessary information.

2.3.2 ConTA Application: Information Fusion and Sensor Allocation

Recalling the SSA work domain abstraction hierarchy in Fig. 2.2, any number of these

elements may be identified for further inspection through ConTA. This thesis focuses on

information fusion and sensor allocation to support SSA decision making, so the ConTA

will similarly focus on these functions. Information fusion and sensor allocation may be

related in one decision ladder, as the information fusion function generally relates to the

analysis phase while sensor allocation relates to judgment, planning, and execution.

Additionally, the WDA analysis above identified that the formulation and resolution of

hypotheses can form a means to the ends of maintaining space asset safety and addressing

national security concerns. Therefore, this application of ConTA will focus on the hypoth-

esis resolution abstract function as the means to address these SSA purposes.

The CWRs and IRRs for the information fusion portion of this task (analysis) are shown

in Fig. 2.5. The following sections describe each decision ladder state in more detail to

provide context for the CWRs and IRRs.

Alert: The SSA information fusion process begins by receiving alerts to any new data.

This may come in the form of direct sensor data from previous task execution, resulting

in successful detections and correlations, uncorrelated tracks, or missed detections. Addi-

tionally, data may be derived from alternate sources such as a satellite operator reporting

anomalous behavior or a program that parses articles or databases for keywords. The avail-

ability of any new information that may aid in resolving hypotheses should raise alerts to

operators.

Information: Next, the acquired data must be processed into information that can be
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used to update the system state. This involves careful consideration of the incoming data, as

well as the expected data, to develop mappings to actionable evidence. Available data may

include individual detections from radar or electro-optical sensors, detection and correla-

tion probabilities that can be used to update state estimates, light-curves that can be used

to estimate attitude or control modes, and auxiliary data such as background sky brightness

or atmospheric transmittance. In processing the acquired data, the strength of the evidence

should also be taken into consideration. For instance, a “missed detection” alert may indi-

cate a loss of custody; however, it may also simply indicate poor observation conditions,

in which case the evidence toward any custody hypotheses should be considered vacuous.

The data-to-evidence mappings must be complete enough to account for complex condi-

tions such as the one described above, but also flexible enough to allow for the inclusion of

data and evidence that was not anticipated in the design phase.

System State: Once evidence has been extracted from the acquired data, this evidence

must be fused to update the system states. In a hypothesis-based scheme, this includes

updating prior hypotheses using the new evidence to arrive at posterior hypothesis knowl-

edge states. The DSS should clearly identify which hypotheses are still unresolved, and

as well as any constraints on these remaining hypotheses (e.g. resolution time horizons,

line-of-sight opportunities for sensors).

After the system state has been updated, the information fusion task (the analysis phase

of the decision ladder) is complete. Sensor allocation picks up from this stage to follow

through with judgment, planning, and execution. The CWRs and IRRs for this task are

shown in Fig. 2.6, and details on the decision ladder states are shown below.

Options, Goals, and Chosen Goal: The judgment phase consists of an iterative pro-

cess wherein the overall SSA goals and purposes are considered along with options related

to addressing these goals. The primary goals for SSA operators are to ensure space asset

safety and address national security concerns, and these goals may be modeled as a con-

stantly evolving set of hypotheses and associated priorities as determined by SSA operators
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and decision-makers. Therefore, the DSS must allow operators to use information from the

system state to spawn new hypotheses as necessary. Similarly, operators must be able to

identify and confirm resolved hypotheses to remove them from future tasking considera-

tion, if appropriate. Operators must also consider which hypothesis priorities should be

modified in order to address the overall goal of resolving all the hypotheses within pre-

scribed tolerances. When adjusting the priorities, the consequences of any changes should

be clearly articulated to the decision-maker. This involves forecasting evidence returns

from candidate action sequences and estimating the updated hypothesis state. This itera-

tive process terminates when decision-makers are satisfied with the estimated resolution.

Target: Once the set of goals and priorities have been adjusted satisfactorily, the sensor

allocation continues by determining the evidence required to address the selected goals.

The DSS must consider operational constraints such as sensor availability, line-of-sight,

and observation conditions, as well as organizational constraints (e.g. requesting data from

sensors controlled by other organizations). Therefore, the DSS should identify the evidence

available to address the chosen goals and priorities, as well as the resources required to

gather that evidence. Recall the following design insight from the WDA: the DSS must

be able to ingest and incorporate data from disparate sources. As such, the DSS should be

able to leverage these disparate data sources in task planning.

Task and Procedure: From the available evidence identified in the previous stages, an

optimal set of evidence must be selected that best addresses the prioritized hypotheses. This

generates an action procedure to gather or request the necessary evidence. In addition to

gathering primary data products required for hypothesis resolution, any auxiliary data that

may be used to build context for the data should be considered. Recall that auxiliary data

can play a significant role in the data-to-evidence mapping of the Information phase. Any

required deviations from nominal or previously-issued tasking assignments must also be

clearly articulated to inform operators of required modifications and any expected impacts

on previously planned activities.
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In total, this ConTA of the information fusion and sensor allocation functions generated

14 cognitive work requirements and 14 corresponding information relationship require-

ments.

2.4 Conclusions

By carefully considering the goals of operators in SSA, as well as constraints imposed

by the domain, this application of CSE methods develops several insights and design re-

quirements for decision-support in SSA. The WDA provides insights that existing sensor

allocation and information fusion approaches, primarily predicated on state uncertainty

minimization, do not provide a robust or clear mapping to decision-maker goals of main-

taining space asset safety and addressing national security concerns. This indicates an

opportunity for improvement by allocating sensors to address specific hypotheses related

to these SSA domain goals.

The following chapters will investigate several applications of this hypothesis abstrac-

tion to support SSA goals, developing information fusion and sensor allocation methods

using hypotheses. Chapter 6 will revisit the design requirements generated through the

ConTA to design a prototype DSS for further investigation of the hypothesis-based tasking

approach.
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CHAPTER 3

BINARY HYPOTHESIS TESTING FOR ANOMALY DETECTION

Correlating on-orbit observations and detecting space object maneuvers is a challenging

endeavor in Space Situational Awareness (SSA). Predicting conjunction events is a diffi-

cult task [60], but recent events, such as the Iridium-Cosmos on-orbit collision, highlight

the mutual interest that national and private operators share for accurate object correlation

and maneuver detection capability [9]. Detecting maneuvers is particularly important when

tracking active objects for which no operational information is available, as detecting ma-

neuvers in real-time is required to adequately react to anomalies or possible conjunctions

[22, 61]. Timely detection of maneuvers allows for responsiveness in follow-up tracking,

which is crucial for post-maneuver orbit characterization [22]. This task is especially diffi-

cult in low-thrust maneuvers, where state change is more subtle [23].

This chapter develops an algorithm for spacecraft dynamic anomaly detection using

distance metrics. The control distance metric provides a method for computing the distance

between two state distributions resulting from different uncorrelated tracks (UCTs) [24].

This is accomplished by linearizing about a nominal optimal trajectory connecting the mean

states of the state probability density function (PDFs). Due to the non-linear nature of

the general orbit determination problem, these PDFs can be non-Gaussian, particularly

after propagation for some time [62]. Therefore, this work extends the previous control

distance metric using a Gaussian mixture model (GMM) approximation for application to

non-Gaussian boundary conditions.

This work further modifies the approach to control distance anomaly detection by in-

troducing a binary hypothesis structure, using control cost distributions from both the ma-

neuvered and quiescent (non-maneuvered) trajectories. Using the extended control dis-

tance metric approach, control cost distributions are computed for the binary hypothesis
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pair of a non-maneuvered and a maneuvered trajectory. The control cost PDFs are used

in a binary hypothesis test, subject to a desired false alarm rate, to determine the prob-

ability that an anomaly has occurred. The primary contributions in this chapter are: 1)

a computationally tractable GMM approximation to computing control cost distributions

for non-Gaussian boundary condition probability densities, 2) a binary hypothesis testing

framework for anomaly detection using the control distance metric that permits specifica-

tion of false alarm rates, 3) an analogous binary hypothesis testing framework for anomaly

detection using Mahalanobis distance, and 4) the implementation of these two methods

with quantitative performance comparisons drawn between the control distance metric and

Mahalanobis distance using both synthetic and empirical data. These metrics are compared

using a GEO spacecraft in both North-South and East-West station-keeping test cases.

After development of the novel theoretical contributions, implementation details for

both control distance and Mahalanobis distance detection methods are discussed, followed

by simulation results using synthetic data for a GEO spacecraft performing both North-

South and East-West station-keeping maneuvers. Corresponding results using empirical

data are also presented. Finally, the results from the synthetic and real data simulations are

distilled into potential operational applications.

3.1 Data Association in SSA

Data association algorithms for object correlation and maneuver detection have been well

explored in literature. The data association task hypothesizes an association and attempts

to compute a measure of the probability that the hypothesis is true. Methods often focus on

admissible regions or probabilistic approaches to compare uncorrelated tracks and detect

maneuvers. For instance, Tommei et al. address object correlation and orbit determina-

tion with admissible region-based methods and a virtual debris algorithm that were applied

to optical observations and radar observations [27]. Maruskin et al. also use admissible

regions for object correlation by mapping admissible regions to Delaunay or Hamiltonian
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orbit elements and by comparing an observation with an earlier estimate propagated for-

ward in time [28]. Fujimoto et al. employ highly constrained probability distributions in

Poincare orbit element space, where distributions are defined by admissible-region maps

such that the intersection between admissible regions, or lack thereof, reflects the correla-

tion between respective observations [29].

DeMars et al. approach the SSA data association problem using finite-set statistics for

multi-object estimation. The adaptive entropy-based Gaussian-mixture information syn-

thesis (AEGIS) approach is used to track objects while utilizing finite-set statistics (FISST)

to account for uncertainty, false alarms and missed detections = [26]. Kelecy and Jah apply

batch least-squares and extended Kalman filter based strategies to detect and reconstruct

low thrust finite maneuvers [23]. Huang et al. relate UCTs using a nonlinear least squares

iterative process to optimally estimate maneuvers and correlate objects following a maxi-

mum a posteriori criterion [25].

Likewise, there are many distance or pseudo-distance metrics that may be used to mea-

sure the discrepancy between two state distributions (e.g. Mahalanobis distance) [63].

Problematically, existing metrics do not directly quantify the level of propulsive effort re-

quired to cause the observed state change. The problem of associating UCTs over large

time periods is particularly difficult when resident space objects (RSOs) maneuver during

observation gaps. Even relatively small station-keeping maneuvers at geostationary Earth

orbit (GEO) can result in position discrepancies of many kilometers after an observation

gap. UCT correlation is further confounded by state estimate uncertainties [24]. Since both

the initial and final UCTs are best estimates, with associated PDFs, correlation is difficult

particularly in densely-populated regions of the space environment.

Holzinger et al. propose a minimum-fuel control distance metric to approach data as-

sociation and maneuver detection while considering propulsive effort and reconstructing

maneuvers [64]. Since on-board fuel remains a scarce commodity for operational space-

craft, operators are likely to execute fuel-optimal, or near-fuel-optimal, maneuvers [24].
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Under the assumption of optimal control, multiple deterministic UCTs can be related by

computing the control effort required for a trajectory to meet those boundary conditions.

This approach necessitates the reconstruction of a minimum-fuel trajectory consistent with

the a priori information and new observations. Holzinger et al. have shown, through the

properties of strict positivity, symmetry, and triangle inequality, that control performance

is a metric [24], allowing objective comparisons to other commonly used distance met-

rics. The control cost distributions required can be computed along each relevant trajectory

by considering boundary condition uncertainty [64]. In previous work, a single cost dis-

tribution was developed using the maneuvered trajectory, testing the anomaly hypothesis

by comparing the size of the observed maneuver to the amount of uncertainty in control

cost due to uncertainty in the boundary conditions [64]. This straight-forward approach

encounters problems when attempting to draw conclusions regarding error rates, making

comparisons to other metrics incomplete.

A commonly-used statistical approach in anomaly detection that incorporates error

rates is binary hypothesis testing, wherein integration over a pair of PDFs allows deter-

mination of false alarm and missed detection probabilities. Binary hypothesis testing has

been implemented for anomaly detection in various fields, such as signal processing [65].

One variant of binary hypothesis testing, the Neyman-Pearson approach, devises the most

powerful likelihood-ratio test for a given significance level and threshold [66]. In Neyman-

Pearson detector implementation, these thresholds are selected through analysis of a num-

ber of observations with associated PDFs; however, in applications involving only one

observation, this method reduces to a more basic form of binary hypothesis testing, which

is the case for UCT association where only one PDF is available at each time epoch.

Evaluating metrics for anomaly detection requires selection of a representative sub-

section of the infinite continuum of possible maneuvers. Since optical observations are

primarily useful for space objects at high altitudes, such as GEO, maneuvers relevant to

GEO spacecraft are particularly interesting. Spacecraft in GEO are assigned to specific
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longitude slots for their operational lifetime, but are also subject to a number of pertur-

bations that must be rejected using station-keeping maneuvers. For instance, North-South

station-keeping maneuvers adjust inclination, which is primarily perturbed by third-body

gravitational effects, to maintain an equatorial orbit. East-West station-keeping maneuvers

adjust true longitude (or phase), which is primarily perturbed by Earth oblateness sectoral

harmonics (i.e. J22), to maintain the spacecraft’s GEO slot. These two primary station-

keeping maneuvers form a representative subset of maneuvers that could potentially be

encountered in operation.

3.2 UCT Association Scenario

The following notional scenario is relevant to the task of associating a pair of UCTs to

detect maneuvers. As pictured in Fig. 3.1, an uncorrelated track UCTA at time t0 is

Figure 3.1: Maneuver detection scenario

used to generate a PDF, fA(x(t0)). Using the mean state, xµ(t0) = E [x(t0)], the track

is propagated to time tf under assumed quiescent dynamics, ẋ(t) = f(x(t),u(t) = 0, t),

yielding the propagated mean state xµ(tf ) and its associated PDF fA(x(tf )). Another un-

correlated track at time tf , UCTB, yields its own PDF fB(x(tf )) and mean state x∗µ(tf ) =

E [x∗(tf )]. An optimal maneuvered trajectory is generated connecting the mean states of

the UCTs, xµ(t0) and x∗µ(tf ), under the same dynamics with non-zero control, ẋ∗(t) =
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f(x∗(t),u∗(t), t). This yields the maneuvered trajectory x∗µ(t) and associated control u∗µ(t).

Additional notation is included in Fig. 3.1 to describe the Gaussian components of the state

PDFs.

The anomaly detection algorithm is assembled as shown in Fig. 3.2. The inputs to the

Figure 3.2: Minimum-fuel control distance anomaly detection and characterization frame-
work

algorithm are a pair of UCTs, represented by PDFs at times t0 and tf . The output of the

algorithm is the probability that the anomaly hypothesis is true, PD, indicating whether an

anomaly has been detected. Stated differently, this is the probability that something outside

the modeled quiescent dynamics (e.g. a maneuver) has occurred, under the preliminary

assumption that the two UCTs are associated with the same object. Anomaly probability

is calculated using two different methods, the control distance metric and Mahalanobis

distance, yielding two anomaly probabilities for this study. This allows the analogous

methods to be compared in both anomaly detection sensitivity and error rates.

3.3 Gaussian Mixture Model Approximation for Control Distance Metric

The anomaly detection algorithm begins with a trajectory optimization routine, which uses

mean states of the boundary conditions to generate boundary time-fixed optimal connecting

trajectories. The UCT pair is considered a two-point boundary value problem (TPBVP),

and a trajectory is computed to optimally connect the two UCTs, minimizing a chosen cost

function J . In this study, the trajectory is optimized with respect to the quadratic control

cost, shown in Eq. (3.1) [67]. This particular cost function satisfies the metric properties of
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non-negativity, coincidence, symmetry, and triangle inequality.

J(u(t); t0, tf ) =
1

2

∫ tf

t0

u(τ)Tu(τ) dτ. (3.1)

The quadratic control cost function is ideal for variable specific impulse (VSI) engines,

often used in low-thrust applications. Alternate cost functions could also be implemented,

such as an impulsive cost function, as long as they also satisfy metric properties. In opera-

tion, there is an infinite continuum of possible (optimal or sub-optimal) control trajectories

that operators might use. This trajectory optimization strategy provides a lower-bound on

the required maneuver to transition between the given states, subject to the chosen cost

function. This is similar to a reachability analysis, which imposes an upper-bound on the

reachable state-space given an assumed propulsive capability.

Derivation of the GMM approximation for the control distance metric follows an ap-

proach similar to the Gaussian-restricted derivation [24]. Using the optimal state and

costate trajectory (x∗µ(t), p∗µ(t)), state uncertainties are incorporated to generate an approx-

imate probability distribution of the control distances associated with propagation between

the boundary conditions. This is accomplished by linearizing about the nominal optimal

trajectory and applying perturbations within the boundary condition distributions to de-

velop control cost distributions.

The probability density of a state x in a GMM is defined using the weighted sum of a

set of k multivariate Gaussian, or normal, density functions, as in Eq. (3.2)

f(x; xµ,1,P1, . . . ,xµ,k,Pk) =
k∑
i=1

wif(x; xµ,i,Pi) (3.2)

where f(x; xµ,i,Pi) is the density of state x in the ith Gaussian component of the GMM

and w1, . . . , wk are the GMM weightings such that wi ≥ 0 and
∑k

i=1wi = 1. A multi-

variate random variable, ζ, sampled from this mixture is chosen by first sampling a ran-

dom variable U ∼ Uniform(0, 1). Given U , the jth Gaussian component is selected such
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that U ∈
[∑j−1

i=1 wi,
∑j

i=1wi

]
. Then ζ is sampled from that jth Gaussian component:

ζ ∼ N (xµ,j,Pj). The centroid state, or expectation, of the initial boundary condition

is computed as the weighted average of the mean states of each Gaussian component, as

shown in Eq. (3.3):

xµ(t0) = E [x(t0)] = E

[
n∑
i=1

wixi(t0)

]
=

n∑
i=1

wixµ,i(t0) (3.3)

The centroid state of the final boundary condition can be computed similarly. The centroid

states enable the trajectory to be reduced to a two-point boundary value problem, similar to

the previous technique [64].

The control cost distribution is constructed by linearizing about the optimal trajectory,

(x∗µ(t),u∗µ(t)), connecting the centroid states and sampling initial and final states from the

non-Gaussian boundary conditions, which introduces new perturbing terms. Included in

Fig. 3.1 are notional depictions of the key variables required for the GMM approximation.

The deviation of the mean state of an individual Gaussian component from the centroid

state of its mixture is defined as µi and µj for the initial and final boundary conditions,

respectively. This deviation term adds a new perturbation to the control cost distribution.

The quadratic control cost function, in Eq. (3.4), can be expanded by decomposing the

control effort u(t) into three components as shown in Eq. (3.5):

J =
1

2

∫
u(τ)Tu(τ)dτ (3.4)

u(t) = u∗µ(t) + δuij(t) + δu(t) (3.5)

where u∗µ(t) represents the optimal control associated with the mean trajectory x∗µ(t),

δuij(t) represents the control perturbation due to the µi and µj variations in mean state

of Gaussian initial component i and Gaussian final component j from the centroid states,

and δu(t) represents the control perturbation due to δx0 and δxf , variations in the state
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sampled from boundary condition uncertainty. From Holzinger et al. [24], the optimal

control effort can be written as a function of the costates using Eq. (3.6):

u(t) = − ∂f

∂u

T (
p∗µ(t) + δpij(t) + δp(t)

)
(3.6)

where p∗µ(t) represents the optimal costate associated with the mean trajectory x∗µ(t), δpij(t)

represents the costate perturbation due to µi and µj , and δp(t) represents the costate per-

turbation due to δx0 and δxf . There exists a function Λ(t, t0) ∈ Rn×2n, shown in Eq. (3.7),

that maps variations in initial and final states to variations in the costate at time t, δp(t).

Λ(t, t0) =

[
Φpx(t, t0) −Φpp(t, t0)Φxp(tf , t0)†Φxx(tf , t0)Φpp(t, t0)Φxp(tf , t0)†

]
(3.7)

Note that this function is composed of portions of the state transition matrix partitioned as

δx(t)

δp(t)

 = Φ(t, t0)

δx(t0)

δp(t0)

 (3.8)

=

Φxx(t, t0) Φxp(t, t0)

Φpx(t, t0) Φpp(t, t0)


δx(t0)

δp(t0)

 (3.9)

where Φ(t, t0) is the state transition matrix mapping variations δx and δp to time t about

the optimal trajectory. Also note that, while the pseudoinverse term Φxp(tf , t0)† is not

guaranteed to exist for arbitrary systems, its existence implies controllability through the

optimal control problem. This portion of the state transition matrix determines how vari-

ations in the costates affect the state, or in other words whether the state is controllable.

In this paper, controllability is assumed, so for present purposes the pseudoinverse is also

assumed to exist [24].

Using Λ(t, t0), the components δuij(t) and δu(t) can be computed as shown in Eqns.
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(3.10) and (3.11).

δuij(t) = − ∂f

∂u

T

Λ(t, t0)

µi
µj

 (3.10)

δu(t) = − ∂f

∂u

T

Λ(t, t0)

δxi
δxj

 (3.11)

The following terms are defined for ease of notation:

µij =

µi
µj

 (3.12)

Pij =

Pi 0

0 Pj

 (3.13)

δzij =

δxi
δxj

 (3.14)

Note that µij ∈ R12×1 is a constant vector for each (i,j) boundary condition pair. Similarly,

Pij ∈ R12×12 is a constant matrix for each (i,j) boundary condition pair. The zero-mean

random variable δzij is sampled from the i and j boundary condition uncertainties such

that δxi ∼ N (0,Pi) and δxj ∼ N (0,Pj).

Since δzij is independent of time τ , the approximate quadratic control cost for a single

term of the GMM connecting initial distribution i to final distribution j can be expressed
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as seen in Eq. (3.15) by substituting the definitions in Eqs. (3.16-3.18) into Eq. (3.4).

Jij ≈ J∗ + ω(tf , t0)Tδzij + 2µT
ijΩ(tf , t0)δzij + ω(tf , t0)Tµij (3.15)

+ µT
ijΩ(tf , t0)µij + δzTΩ(tf , t0)δzij

J∗ =
1

2

∫ tf

t0

u∗(τ)Tu∗(τ)dτ (3.16)

ω(tf , t0) =

∫ tf

t0

Λ(τ, 0)T ∂f

∂u
u∗(τ)dτ (3.17)

Ω(tf , t0) =
1

2

∫ tf

t0

Λ(τ, 0)T ∂f

∂u

∂f

∂u

T

Λ(τ, 0)dτ (3.18)

J∗ is the quadratic control cost of the optimal trajectory (x∗µ(t),p∗µ(t)) without boundary-

condition variations. The terms ω(t, t0) and Ω(t, t0) are defined relative to the optimal tra-

jectory (x∗µ(t),u∗µ(t)) connecting the centroid states. Combining terms, the cost Jij in Eq.

(3.15) can be re-written in a format similar to the strictly Gaussian result from Holzinger

et al. [24], as shown in Eq. (3.19).

Jij = J∗ + δJij (3.19)

≈ J∗ + ω(tf , t0)T(µij + δzij) + (µij + δzij)
TΩ(tf , t0)(µij + δzij) (3.20)

where δJij is the variational control cost due to uncertainties in the ith initial and jth final

terms of the boundary conditions. From Holzinger et al. [24] Appendix B, the analytic first

and second moments of the variational control cost, δJij , are:

E [δJij] = µJ,ij ≈ ωTµij + µT
ijΩijµij + Tr [ΩijPij] (3.21)

E
[
δJ2

ij

]
= σ2

J,ij ≈
(
ωT + 2µT

ijΩ
)T

Pij

(
ωT + 2µT

ijΩ
)

+ 2Tr [ΩPijΩPij] (3.22)

The control cost considering all i initial boundary conditions and j final boundary condi-
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tions is then the weighted sum of the individual costs between each i and j:

J ≈ J∗ +

N0∑
i=1

Nf∑
j=1

wiwjδJij (3.23)

where wi is the weight of the ith initial boundary condition and wj is the weight of the jth

final boundary condition. Thus, the analytic expected value of the initial and final Gaussian

sum boundary condition may be written as:

E [J ] ≈ E

J∗ +

N0∑
i

Nf∑
j

wiwjδJij


≈ J∗ +

N0∑
i

Nf∑
j

wiwjE [δJij]

≈ J∗ +

N0∑
i

Nf∑
j

wiwjµJ,ij (3.24)

which leads to the expected value of the total control cost distribution in Eq. (3.25):

µJ ≈ J∗ +

N0∑
i

Nf∑
j

wiwj
(
ωTµij + µT

ijΩµij + Tr [ΩPij]
)

(3.25)

This yields the approximate expected value of the control cost distribution connecting two

GMM boundary conditions, and therefore can be used to approximate control cost distri-

butions for non-Gaussian boundary conditions. Note that, in the case where the boundary

conditions each consist of a single Gaussian component, the summation and weighting

terms drop out and µij = 0, recovering the Gaussian expressions for control cost distribu-

tions from Holzinger et al. [24].

Note that the approximations shown here assume that the Gaussian components are

within the region of convergence of the map Λ(t0, tf ). This assumption is more likely to

be valid when the Gaussian components of the GMM are more closely packed, as is the

case after propagation of an initially Gaussian state estimate. However, if the distance be-
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tween the GMM components increases, this assumption may no longer be valid. In this

case, the formulation may be modified by partitioning the GMM as seen in Fig. 3.3, ap-

proximating the original PDF as a mixture of GMMs. Preliminary work [68] demonstrated

Figure 3.3: Partitioned PDF using multiple trajectories

this intermediate method, linearizing about multiple optimal trajectories computed between

N0 initial and Nf final Gaussian boundary conditions. Similarly, the theory above can be

applied using optimal trajectories connecting N0 initial condition GMMs and Nf final con-

dition GMMs, such that the components of each GMM partition are within the region of

convergence of the relevant Λ(t0, tf ). This approach increases computational complexity

due to the combinatorial nature of this approach, requiring N0 × Nf optimal trajectories,

but is still more efficient than fully non-linearized optimal trajectory sampling. The com-

binatorial method may be preferred based on the boundary conditions provided, and cost

distributions developed using a combinatorial method are still valid for use in the remaining

theory.

3.4 Anomaly Detection using Binary Hypothesis Testing

The existing implementation of control cost maneuver detection forms an anomaly hypoth-

esis using only the control cost distribution from the maneuvered trajectory, computing

the probability that the deterministic optimal control cost is detectable over the uncertainty

[69]. While the cost distribution for the maneuvering hypothesis is well defined from the
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previous method, an opposing distribution for the null hypothesis was not developed. As a

result, the previous method does not allow specification of acceptable error rates, making

comparisons to existing distance metrics, such as Mahalanobis distance, incomplete.

This study modifies the anomaly detection method by applying a binary hypothesis

structure using separate PDFs for the null and alternative hypotheses. In order to apply

binary hypothesis testing, a pair of mutually exclusive hypotheses, a null hypothesis H0

and an alternative hypothesisH1, must be developed along with corresponding probability

density functions, f0(x) and f1(x). Given PDFs for the binary hypotheses, the following

probabilities can be computed:

PFA =

∫ ∞
ν

f0(x)dx (3.26)

PFN =

∫ ν

−∞
f1(x)dx (3.27)

PD =

∫ ∞
ν

f1(x)dx (3.28)

where ν is a selected threshold, PFA is the probability of false alarm (Type I error), PFN

is the probability of false negative or missed detection (Type II error), and PD is the prob-

ability of detection. Noting that each integral shares the same integration threshold ν, the

probabilities in Eqs. (3.27-3.28) can be related by PFN + PD = 1. Also note that, assum-

ing both PDFs have been normalized, Eq. (3.27) is equivalently defined as the cumulative

distribution function (CDF) for the H1 hypothesis, while Eqs. (3.26) and (3.28) are com-

plementary CDFs, or tail distributions. Figure 3.4 notionally depicts the computation of

these probabilities from theH0 andH1 PDFs. The threshold ν is typically selected in order

to match a maximum allowable rate of false alarms, PFA, using the null hypothesis PDF

and Eq. (3.26).

For the anomaly detection problem, the binary hypotheses are formulated as follows:

H0 (Null Hypothesis): Observed trajectory adequately explained by quiescent state prop-

agation with boundary condition uncertainty.
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(a) PFA (b) PFN (c) PD

Figure 3.4: One-sided Binary Hypothesis Testing Illustration

H1 (Alternative Hypothesis): Observed trajectory not adequately explained by quiescent

state propagation with boundary condition uncertainty.

Recalling the scenario from Fig. 3.1, the binary distributions for the null and alternate hy-

potheses are drawn from the maneuvering and non-maneuvering trajectories, respectively.

In the event that the null hypothesis is accepted, the change in state between observa-

tions is explained solely by uncertainty in the boundary conditions. Therefore, the associ-

ated control cost PDF f0(J) is derived from a quiescent propagated trajectory:

f0(J) ≈
N0∑
i=1

N0∑
j=1

wiwjN
(
µJ,ij, σ

2
J,ij

)
(3.29)

The GMM approximation for control distance is applied along the quiescent trajectory such

that each initial Gaussian component i = 1, ..., N0 has a corresponding final component

j = 1, ..., N0.

Alternately, if the null hypothesis is rejected, then the change in state between observa-

tions is too large to be adequately explained solely by uncertainty in the boundary condi-

tions. The associated control cost PDF f1(J) is derived from the maneuvering trajectory:

f1(J) ≈
N0∑
i=1

Nf∑
j=1

wiwjN
(
µJ,ij, σ

2
J,ij

)
(3.30)

Note that here the GMM approximation for control cost distribution is applied along the op-

timal trajectory connecting the two input UCT boundary conditions, so the final condition
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(a) Significant overlap, low PD (b) Small overlap, high PD

Figure 3.5: Theoretical scenarios for control cost binary hypotheses

Gaussian components j have changed between Eqns. (3.29) and (3.30).

This formulation was selected by analyzing a number of different theoretical scenarios

to ensure the entire space of possible binary hypotheses revealed the desired behavior, as

illustrated in Fig. 3.5. For instance, in the case of a small maneuver, the null and alternative

hypothesis PDFs will mostly overlap. Since the allowable rate of false alarm, PFA, is likely

to be small, the corresponding threshold ν will cause the anomaly probability PD from Eq.

(3.28) to be small as well. However, in the event that a large maneuver has occurred, the

alternative hypothesis PDF will be shifted far to the right of the null hypothesis PDF. Using

the same PFA and corresponding ν, the anomaly probability PD is large, indicating that a

maneuver has likely occurred.

The following approach applies binary hypothesis testing to spacecraft anomaly detec-

tion using control cost PDFs and prescribed acceptable false alarm and missed detection

rates:

1) Construct control cost PDFs for binary hypotheses, f0(J) and f1(J), using Eqs.

(3.29) and (3.30).

2) Using allowable false alarm rate PFA, compute integration threshold cost ν using Eq.

(3.26).

3) Compute anomaly probability PD using Eq. (3.28) with f1(J) and ν from previous

step.
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Once PD is computed, a final thresholding process can be used to determine whether to

flag as an anomaly.

4a) If threshold detection probability for anomaly is directly prescribed, PD,thresh is

given.

4b) If allowable false negative (missed detection) rate prescribed, PD,thresh = 1− PFN .

5) If PD >= PD,thresh, flag as anomaly.

3.5 Binary Hypotheses for Mahalanobis Distance

The Mahalanobis distance is a measure of the distance between two points within a Gaus-

sian distribution, scaled by the covariance. A metric related to Mahalanobis distance has

been proposed by Hill et al. to identify outliers when comparing UCTs [30]. The particu-

lar metric shown in Eq. (3.31) compares the new PDF at time tf , fB(x) = N (xµ,B,PB)

with a previous estimate propagated to time tf , fA(x) = N (xµ,A(tf ),PA(tf )). In the case

of maneuver detection, PA(tf ) + PB is the distance matrix accounting for the combined

uncertainty of both distributions [30].

dM (xµ,A,xµ,B,PA(tf ) + PB) =

√
(xµ,A − xµ,B)T (PA(tf ) + PB)−1 (xµ,A − xµ,B)

(3.31)

Since Mahalanobis distance has been proposed as a potential data association and

anomaly detection metric, an analogous formulation for binary hypothesis testing is also

developed using Mahalanobis distance. The null hypothesis considers the state distribu-

tion fA(x(tf )), the initial distribution propagated quiescently to time tf . Given a point

sampled from distribution fA at tf , namely xA(tf ) ∼ fA(x(tf )), Eq. (3.32) computes the

Mahalanobis distance from this point to the quiescent distribution fA.

dM |H0 =

√
(xA(tf )− E [xA(tf )])

T P−1
A (xA(tf )− E [xA(tf )]) (3.32)
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The alternative hypothesis considers the state distribution fB(x(tf )) from the new ob-

servation at time tf . Given a point sampled from distribution fB, namely xB(tf ) ∼

fB(x(tf )), Eq. (3.33) computes the Mahalanobis distance from this point to the quiescent

distribution fA.

dM |H1 =

√
(xB(tf )− E [xA(tf )])

T (PA(tf ) + PB)−1 (xB(tf )− E [xA(tf )]) (3.33)

The use of (PA(tf ) + PB) as the distance matrix follows the convention set by Hill et al.

per Eq. (3.31) to describe the distance between maneuvered and quiescent distributions

[30].

Similar to the control cost distance, this interpretation using Mahalanobis distance is

justified by considering the theoretical cases of quiescent propagated state distribution

fA(x(tf )) and new state distribution fB(x(tf )) as shown in Fig. 3.6. Cases I and III refer to

a situation where uncertainty in the initial spacecraft state estimate is high, but uncertainty

in the new estimate is reduced. Cases II and IV refer to a situation where uncertainty in the

initial estimate is low, but uncertainty in the new estimate is significantly larger. In case I,

the propagated distribution envelops the new state distribution, so the Mahalanobis distance

PDFs show significant overlap, yielding a low probability of anomaly. In case II, the new

state distribution envelops the propagated distribution, so there is once again significant

overlap. The mean of the distributions are offset and uncertainty in the new observation

is larger, leading to a non-negligible anomaly probability and indicating that an anomaly

likely occurred between the observations to cause the change. In both cases III and IV, the

state distributions no longer overlap, causing the Mahalanobis distance distributions to be

further separate as well, leading to high anomaly probabilities. In each case, this binary

hypothesis Mahalanobis distance formulation effectively determines the anomaly probabil-

ity as designed, providing an analogous formulation for comparison to the control distance

metric.
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(a) State distributions (b) Mahalanobis distance PDFs

Figure 3.6: Theoretical scenarios for Mahalanobis distance binary hypotheses

For GMM boundary conditions, Li et al. show that minimizing the Kullback-Leibler

divergence yields the distance matrix in Eq. (3.34) [70].

Pµ(x) =

[∑n
i=1wif(x; xµ,i,Pi)P

−1
i∑n

j=1wjf(x; xµ,j,Pj)

]−1

(3.34)

Therefore the Mahalanobis distance analog for GMMs is defined in Eq. (3.35) [70].

dGM(x,xµ; P−1
µ ) =

√
(x− xµ)T P−1

µ (x− xµ) (3.35)

In the case where the GMM only has a single component, Eq. (3.34) reduces to the covari-

ance of the individual distribution, and the standard Mahalanobis distance is recovered.

3.6 Simulated Results

The algorithm as described in Fig. 3.2 is implemented in MATLAB to evaluate its per-

formance and effectiveness. Specific implementation details for each portion of this block

diagram are explained below.
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3.6.1 Trajectory Optimization

Using the input UCT state PDFs, the deterministic two-point boundary value problem be-

tween the expected-value states is formulated into an optimization problem, discretizing the

simulation into a user-defined number of time-steps, which is solved using the constrained

minimization function in MATLAB, fmincon(). The decision variable for this minimization

is a stacked vector of the thrust accelerations at each discrete time instant, and the thrust

accelerations are held constant for each discrete time step. Keplerian dynamics, along with

a number of user-selectable perturbation accelerations (J2, J22, J3, lunar gravitational, and

solar gravitational perturbations), are enforced between steps of the trajectory as equal-

ity constraints to ensure the generated trajectory dynamics are accurate. Since the partial

derivatives of the dynamics with respect to the decision variables (thrust accelerations) are

well known, the gradient of the constraint is supplied to the optimization function to im-

prove convergence. The output of the direct optimization step is a nominal optimal direct

trajectory of states and controls connecting the UCTs, which is refit to an optimal indirect

trajectory of states and costates. The generated optimal trajectory is validated using the

nonlinear dynamics to numerically integrate the proposed control vector and quantify the

error between the integrated final condition and the specified final UCT boundary condi-

tion. In addition, the quiescent trajectory from the initial condition is computed under the

same dynamics with the assumption that no control input is used.

3.6.2 PDF Generation

To accurately construct the control cost PDFs for GMM boundary conditions, a localized

Monte-Carlo-like method is employed to sample from the boundary conditions and ap-

ply the GMM control cost approximation. This is done by selecting one of the boundary

condition Gaussian components from the GMM randomly with a probability based on the

weighting for that particular Gaussian component. Once the Gaussian components are se-

lected for the initial and final states, the deviation µij and covariance Pij terms are known.

59



The zero-mean random variable δzij is selected using the covariance information for the

chosen Gaussian components. With all the required terms gathered, the quadratic cost is

computed using Eq. (3.4). When generating the numerical PDFs, if a negative-valued cost

is generated, that sample is discarded and another sample is drawn. The number of sam-

ples required to construct this distribution depends on the scenario. In this study, the control

cost distribution is sampled nsamp = 10000 times, and the samples are used to construct the

approximate control cost PDF. While exhaustively sampling a 12-dimensional space such

as δzij is computationally restrictive, this lower sampling was shown in previous studies

to be sufficient for reconstructing the 1-dimensional control cost and Mahalanobis distance

distributions in a similar scenario [68]. This process is performed using both the quiescent

and maneuvering trajectories to form both null hypothesis f0(J) and alternative hypothe-

sis f1(J) PDFs. This process could equivalently be performed analytically by forming a

GMM using µJ,ij , and σJ,ij from Eqs. (3.21-3.22) along with wi and wj for each boundary

condition. The localized Monte-Carlo-like approach is chosen for simplicity of implemen-

tation. Mahalanobis distance PDFs are constructed in a similar manner. Samples from each

boundary condition are used in conjunction with Eqs. (3.32-3.33) to develop PDFs for each

hypothesis.

3.6.3 Anomaly Detection

Once PDFs are obtained for each hypothesis, anomaly detection is performed the same

for both control distance and Mahalanobis distance. CDFs for both null and alternative

hypotheses are computed, noting that the lower limit of integration becomes 0 since the

distance cannot be negative.

F0(x) =

∫ x

0

f0(y)dy (3.36)

F1(x) =

∫ x

0

f1(y)dy (3.37)
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Applying Eq. (3.26), the input allowable false alarm rate PFA is used to compute the thresh-

old ν by interpolating on the null hypothesis CDF, F0. Using the threshold ν and applying

Eq. (3.28), the probability of anomaly is computed by interpolating on the alternative hy-

pothesis CDF, F1.

3.7 Gaussian Mixture Model Approximation Validation

The GMM approximation promises a more computationally tractable method for address-

ing non-Gaussian boundary conditions; however, it still must provide an accurate recon-

struction of the uncertainty cost distribution. To validate the GMM approximation of

control cost distributions, a synthetic scenario is constructed for a GEO spacecraft with

a non-Gaussian boundary condition state distribution, represented using GMMs. The or-

bital elements for the boundary conditions are listed in Table 3.1. This particular scenario

is selected to illustrate the ability to generate and handle non-Gaussian control cost distri-

butions using the binary hypothesis testing approach outlined above. The initial condition

occurs 30 minutes before the ascending node passage, and the 3 Gaussian terms vary only

in inclination. The final condition occurs 30 minutes after the ascending node passage,

with 2 Gaussian terms varying only in inclination. Note that the asymmetry in the GMMs

(N0 = 3, Nf = 2) is entirely allowed by the GMM approximation formulation. These

particular boundary conditions represent a 1 hour observation gap wherein the observed

spacecraft has performed a small inclination correction. The 1− σ boundary condition un-

certainties are initialized at 10 meters in position and 10 centimeters-per-second in velocity.

These values are selected to generate multi-modal cost distributions when scaled by α to

emphasize the generality of the analytical contributions.

For validation purposes, an alternate method is used to generate control cost distri-

butions through direct sampling of the boundary conditions and non-linearized trajectory

optimization. For each run, a state is selected at random from the initial and final GMM

boundary conditions. The optimal control between the chosen boundary conditions is com-
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Table 3.1: Boundary condition orbital elements for GMM inclination change

Initial Condition Final Condition
Parameter i = 1 i = 2 i = 3 j = 1 j = 2

Weighting, w 0.34 0.33 0.33 0.5 0.5
Semi-major Axis, a (km) 42164 42164 42164 42164 42164

Eccentricity, e 0 0 0 0 0
Inclination, i (deg) 0.015 0.025 0.035 0.00 0.01

Long. of Asc. Node, Ω (deg) 0 0 0 0 0
Arg. of Periapsis, ω (deg) 0 0 0 0 0

True Anomaly, θ (deg) 352.5 352.5 352.5 7.5 7.5

puted, and the resulting control cost is collected before selecting another pair of boundary

conditions. This process is repeated nsamp = 5000 times to sample the control cost space,

binning the results to construct a control cost PDF. Note that δzij is a 12-dimensional space,

so the curse of dimensionality computationally restricts complete sampling; however, pre-

vious work showed 5000 samples to sufficiently reconstruct the 1-dimensional control cost

distributions [68]. Since this method does not make the simplifying assumption of lin-

earizing about a best-estimate trajectory, it more accurately generates the actual control

cost distribution between the GMM boundary conditions, at the expense of much longer

computation times.

Figure 3.7 shows the normalized PDF and associated CDF resulting from both these

methods. The solid lines indicate the non-linearized propagation, labeled “True,” and the

dashed lines indicate the control cost distribution generated using the GMM approxima-

tion method, labeled “Aprx.” Inspection of the normalized PDFs shows significantly non-

Gaussian control cost distributions, as expected given the separation in the boundary con-

dition components: transitioning from initial component i = 1 to final component j = 1

uses significantly less fuel than from initial component i = 3 to final component j = 1.

Despite the differences in approach, the control cost PDFs and CDFs agree well between

the non-linearized and approximated methods, demonstrating the efficacy of contribution

1: the GMM control cost approximation.

Since the CDFs are nearly identical, the binary hypothesis testing algorithm yields a
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Figure 3.7: Comparison of control cost distributions using the non-linearized and approxi-
mate methods

Table 3.2: Timing comparison for validation scenario

Method Complexity Actual Time (s)
Non-Linearized O(nsamp) 53450

GM Approximation O(c) 2.835

nearly identical probability of anomaly using either method. To further demonstrate the

applicability of contribution 2, the binary hypothesis testing algorithm, a sample calculation

of anomaly probability is illustrated using Fig. 3.7. Assuming an allowable false alarm rate

of 5%, or PFA = 0.05, the threshold ν is calculated from Eq. (3.26) by interpolating on

the H0 CDF to find the cost where F0(J) = 1 − PFA. Given the threshold cost, the false

negative probability is calculated using Eq. (3.27) by interpolating on the H1 CDF, such

that here PFN = F1(ν) = 0.54. Recalling that PD = 1− PFN , the probability of anomaly

for this scenario is therefore PD = 0.46, or 46%.

Given the similarity of the PDFs, the computational complexity savings of the GMM

approximation method offers a significant benefit inherent in the first contribution. Table

3.2 shows the time required to perform the full anomaly detection algorithm for both of

these scenarios. These results are in-line with expectation, as the trajectory optimizer is

expected to be the computational bottleneck. The non-linearized validation method runs

in roughly O(nsamp) time since a trajectory optimization is required for each sample (with
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small variations in the time required for each sample based on the boundary conditions). In

comparison, the GMM approximation method only requires a single trajectory optimiza-

tion, and therefore runs in nearly constant time, or O(c). Therefore, when considering the

computational complexity improvements, the GMM approximation method significantly

outperforms the non-linearized approach while maintaining accuracy in the control cost

PDF and therefore performing similarly in anomaly detection.

In order to test the efficacy of the Mahalanobis distance GMM method proposed, the

same scenario is used to develop PDFs and CDFs for the binary hypotheses using Maha-

lanobis distance. In comparison to the control distance method, the Mahalanobis distance

PDFs from the individual Gaussian components are more distinct, so the combined PDF

forms narrow peaks in an extremely non-Gaussian manner as seen in Fig. 3.8. In partic-

ular, the null hypothesis distribution covers a wide range of Mahalanobis distance values,

since the quiescent propagated distributions are very dissimilar. The wide null hypothesis

distribution causes the distance threshold for 95% anomaly confidence to be large, yielding

an effectively 0% anomaly detection, similar to Case I in Fig. 3.6.

Figure 3.8: Mahalanobis distance distributions for non-Gaussian boundary conditions

Additionally, the Mahalanobis distance GMM formulation is significantly more com-

putationally expensive due to the complicated combined covariance calculation in Maha-

lanobis distance PDF generation. Without this calculation, in the purely Gaussian case,
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Mahalanobis distance is computed quicker than control distance, since Mahalanobis dis-

tance does not require trajectory optimization. Adding in the combined covariance calcu-

lation for non-Gaussian boundary conditions significantly increases computation time over

the control distance method, as shown in Table 3.3.

Table 3.3: Timing comparison by algorithm segment

Algorithm Segment Control Distance (s) Mahalanobis Distance (s)
Trajectory Optimization 1.845 0

PDF Generation 0.762 11.347
Anomaly Testing 0.229 0.225

Total 2.835 11.572

Using the formulations developed in the Theory section, these results demonstrate the

ability to take non-Gaussian boundary conditions and form PDFs and CDFs for use in

binary hypothesis testing. The control distance method proved to be better in the detection

of this particular maneuver, but the following simulation results will delve deeper into

performance of each algorithm in different maneuver detection scenarios.

3.7.1 Inclination Change

Having shown the ability to accurately construct control cost PDFs for non-Gaussian bound-

ary conditions, the anomaly detection algorithm is next evaluated by parameterizing the

problem to assess sensitivity. For the remaining results in this paper, the boundary condi-

tions are simplified to single Gaussian distributions for ease of parameterization and dis-

cussion, but similar simulations could be performed using GMMs as shown above.

A simulated scenario is constructed to emulate an inclination change performed at

GEO, termed a North-South station-keeping maneuver in operations. Typically, satellites at

GEO will be placed into orbit slots and given allowable deviations in the North-South and

East-West directions. This particular scenario employs a 0.02 degree inclination change,

similar in magnitude to that observed in the available real-world data. The goal of this

scenario is to analyze the sensitivity of both the control distance and Mahalanobis dis-
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tance binary hypothesis testing methods to changes in observation gap, uncertainty, and

false alarm rate. Each of these three parameters are varied systematically in simulation for

evaluation.

The observation gap is varied between 10 minutes and 48 hours. Each element of the

6×6 covariance matrix is varied by an uncertainty scaling parameter α. The 1−σ boundary

condition position uncertainty is initialized at 1 meter and varied up to 250 meters using

the scaling parameter α. Likewise, the 1 − σ boundary condition velocity uncertainty

is also varied between 1 centimeter-per-second and 250 centimeters-per-second using the

scaling parameter α. The prescribed false alarm rate is varied between 0.5% and 10%,

or PFA = 0.005 to 0.10. For each combination of observation gap, boundary condition

uncertainty, and prescribed false alarm rate, the anomaly probability is computed using

both the control distance and Mahalanobis distance metrics. This produces a 4-dimensional

dataset, (PD : δt, α, PFA), which is best viewed as a set of contour plots using slices of

constant PFA.

Figure 3.9(a) presents a contour plot for a subset of the control distance sensitivity study

data using a false alarm probability PFA = 0.05. Note that, though the uncertainty scaling

parameter α is varied from 1 ≤ α ≤ 250, a subset of this range (α >= 10) has been plotted

to highlight trends. Toward the left of the uncertainty axis, boundary condition uncertainty

is low, so it is easier to distinguish between the non-maneuvered and maneuvered trajec-

tories; therefore, anomaly probability is high (PD ≈ 1). Increasing boundary condition

uncertainty causes more overlap in the control distance distributions, introducing values

of PD < 1 as the propagated uncertainty is large enough to account for the new observa-

tion. Additionally, a slight increase in anomaly probability can be seen around half-orbit

period observation gaps, which coincides with the furthest out-of-plane difference between

the quiescent and maneuvered trajectories. At these points, boundary condition uncertainty

must be significantly greater to cause overlap between the trajectories, showing increased

sensitivity to the maneuver at that observation condition.
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(a) Control distance (b) Mahalanobis distance

Figure 3.9: Probability of anomaly contours vs uncertainty scaling parameter and observa-
tion gap, simulated inclination change maneuver, PFA = 0.05.

Additional contour plots for different false alarm probabilities can be seen in Fig. A.1 of

Appendix A. Each subfigure shows a contour plot of anomaly probability for a prescribed

false alarm rate, where the darker colors indicate a higher probability of anomaly. Here,

false alarm rates of 0.5%, 1%, 5%, and 10% were used. Direct comparisons can be drawn

between the various contour plots in this study by selecting plots with the same PFA and

selecting a point (α,∆t), comparing the PD value at that point on each of the plots. As

expected, the algorithm declares higher probabilities of anomaly for a fixed observation

gap and uncertainty as the allowable rate of false alarm increases because the threshold for

maneuver detection is lessened. The remainder of the trends are consistent regardless of

false alarm probability, so they are relegated to Appendix A for reference.

Figure 3.9(b) presents the same anomaly probability data using Mahalanobis distance

distributions, with a more complete set of plots featured in Fig. A.2 of Appendix A. Similar

trends observed with control distance can also be noted for Mahalanobis distance: increas-

ing the rate of false positives increases the probability of anomaly, and increasing uncer-

tainty yields lower confidence in anomaly detection. However, Mahalanobis distance also

shows significant variability, specifically with resonances near orbital half-periods (shown

12 and 36 hours for GEO). At these points, the non-maneuvered and maneuvered orbits,
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for H0 and H1 respectively, are at their furthest separation (H0 at its maximum out-of-

plane distance), making the state difference large. Additionally, a smaller spike can be

seen at the orbit periods (24 and 48 hours) where both orbits lie in the equatorial plane,

due to significant velocity vector differences between theH0 andH1 orbits despite similar

positions.

It can be seen that, at some observation gap durations, Mahalanobis distance is signif-

icantly more sensitive to inclination change maneuvers, as evidenced by the higher proba-

bilities of anomaly at higher uncertainty. However, this is not always the case, as at times

the control distance metric and Mahalanobis distance metric are comparable in detection

probabilities. This variation with observation gap time is a dangerous aspect of using Ma-

halanobis distance to develop maneuver detection thresholds. Since Mahalanobis distance

is very dependent upon the observation time, this requires a better understanding and more

careful consideration of the dynamics of the spacecraft and what kind of maneuver it would

perform at what point in the orbit. Control distance, however, is more consistent with time,

allowing the development of a more general-use threshold for the North-South station-

keeping maneuver at GEO. Additionally, the reliability of uncertainty quantification is a

concern when considering the uncertainty sensitivity advantage of Mahalanobis distance.

The Operational Application section below discusses a synergistic implementation using

both control distance and Mahalanobis distance to leverage the advantages of both meth-

ods.

Alternate test cases (omitted from this paper for space and uniformity between exam-

ples) showed that both algorithms were more sensitive to velocity uncertainty than posi-

tion uncertainty. For instance, in the control distance test cases shown here, the algorithm

struggles to detect maneuvers above α = 100, which corresponds to 100 meters in position

uncertainty and 100 centimeters-per-second in velocity uncertainty. Manually changing

the boundary condition uncertainties to include cases lower velocity uncertainty showed

improved anomaly detection performance even at higher position uncertainty.
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3.7.2 Phasing Maneuvers

A similar sensitivity study is conducted for a phasing maneuver at GEO. This maneuver

type is termed East-West station-keeping, as it refers to the satellite maintaining a spe-

cific longitude over the Earth. A 0.1 degree change in longitude is prescribed, selected

to represent drifting completely across a ±0.05 degree GEO slot. The same parameters

(observation gap, boundary condition uncertainty, and false alarm rate) are varied over the

same ranges.

Figures 3.10(a) and 3.10(b) present the probability of anomaly contours for the orbit

phasing maneuver for both control distance and Mahalanobis distance, respectively. More

complete sets of data are featured in Appendix A, Fig. A.3 for control distance and Fig. A.4

for Mahalanobis distance. Once again, some trends hold true for both control distance and

Mahalanobis distance: increasing uncertainty decreases anomaly probability while increas-

ing allowable false alarm rate increases anomaly probability. In this case, however, both

methods show significant variation with observation gap. Performing a 0.1 degree longi-

tude change over 10 minutes requires significantly more fuel than over 24 hours, where the

spacecraft can more effectively utilize natural dynamics and slightly adjust its semi-major

axis to transfer to a different point in the orbit. Therefore, maneuvers of this kind over

small observation gaps are much easier to detect.

An interesting note in this scenario is that control distance either matches or outper-

forms Mahalanobis distance for much of the first orbit period, predicting higher probabili-

ties of anomaly for the same uncertainty, observation gap, false alarm rate triplet. However,

as the observation gap increases, Mahalanobis distance again shows considerable variation,

yielding higher anomaly probabilities than control distance at 34 hours and lower probabil-

ities at 26 hours. Once again, the observation time can be seen to be a significant factor in

anomaly detection for Mahalanobis distance, requiring knowledge of the spacecraft’s posi-

tion in its orbit. For control distance, while it is more sensitive to time for East-West ma-

neuvers than North-South, it still shows improved consistency in medium-duration cases,
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(a) Control distance (b) Mahalanobis distance

Figure 3.10: Probability of anomaly contours vs uncertainty scaling parameter and obser-
vation gap, simulated phasing maneuver, PFA = 0.05.

albeit with lower anomaly sensitivity.

3.8 Empirical Data Results

To complement the simulated scenarios, the algorithm is also tested using real operational

data, the availability of which drove the construction of the simulated inclination change

scenario. The real data, taken from observations of the Galaxy 15 geostationary satellite by

the Wide Area Augmentation System (WAAS), spans a month of operation and includes

Earth-centered Earth-fixed (ECEF) position and velocity, as well as radial, in-track, and

cross-track (RIC) acceleration, as seen by a rotating Hill frame attached to the spacecraft.

WAAS is an extremely accurate navigation system that uses a network of ground-based

reference stations to measure small variations in GPS satellite signals to develop deviation

corrections (DCs). The DCs are then broadcast by GPS satellites to improve position ac-

curacy calculations for WAAS-enabled GPS receivers. The WAAS data is regarded as the

“truth” state since more accurate truth (e.g. maneuver information obtained directly from

the operators) is not available.
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Figure 3.11: Cross-track acceleration for Galaxy 15 satellite, real data

3.8.1 Station-Keeping

Figure 3.11 shows the cross-track acceleration data for the empirical dataset. Inspection

of the acceleration data reveals two large anomalous cross-track acceleration events, can-

didates for North-South inclination station-keeping maneuvers, during days 7 and 22. The

selected maneuver, the peak during day 7, resulted in a 0.03 degree inclination change.

Simulation initial and final conditions are selected corresponding to the desired observa-

tion gap such that the maneuver is always in the middle of the selected time span. For

instance, for a 6 hour observation gap, the initial condition is the spacecraft state 3 hours

before the maneuver, and the final condition is the state 3 hours after the maneuver. The

real-world data is analyzed in a similar manner to the synthetic data by varying observation

gap, boundary condition uncertainty, and prescribed false alarm rate.

(a) Control distance (b) Mahalanobis distance

Figure 3.12: Probability of anomaly contours vs uncertainty scaling parameter and obser-
vation gap, real-data (WAAS) inclination change maneuver, PFA = 0.05.
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The results of the real data sensitivity study are seen in Fig. 3.12(a) and 3.12(b) for

control distance and Mahalanobis distance, respectively. This data is nearly identical to

that of the simulated inclination change scenario, showing the same trends with respect to

all varied parameters. In this scenario, Mahalanobis distance is still more sensitive in its

detection of the maneuver at higher uncertainties. However, control distance remains more

consistent with respect to observation gap, allowing for improved application to arbitrary

space objects without requiring specific knowledge of the object’s spot in its orbit. The

agreement between these results and Fig. 3.9(a) and 3.9(b) lends confidence to the appli-

cability of this approach in an operational setting. Additional results using different false

alarm rates are presented in Appendix A, Fig. A.5 and A.6 for control distance and Maha-

lanobis distance, respectively. As with the synthetic scenarios, increasing PFA lowers the

threshold for anomaly probability calculation and thus increases anomaly probability. The

remaining observation gap and uncertainty trends remain unaffected by PFA.

3.9 Operational Application

The simulation results presented in this paper explore a range of different maneuver and

boundary condition cases; this section condenses these results and provides recommended

operational use cases for each anomaly detection method. In situations where the separa-

tion between the Gaussian components of the Mahalanobis distance GMMs are greater than

their covariances, combined Mahalanobis distance PDFs tend to be segmented (see Fig.

3.8), which significantly reduces the ability to detect anomalies using the Mahalanobis dis-

tance method. Moreover, regardless of the GMM component separations, the Mahalanobis

distance method incurs a significant computation time penalty for non-Gaussian boundary

conditions due to the costly requirement to recompute the relevant covariance at each inter-

mediate propagation time-step. In contrast, the computational burden of control distance is

approximately constant regardless of whether or not boundary conditions are Gaussian. In

the Gaussian case, control distance takes approximately 2- to 3-times as long to compute,
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and Mahalanobis distance is more sensitive in maneuver detection in most but not all cases.

The two methods are complementary; when one performs less effectively, the other remains

sensitive to anomalies. The WAAS data supports results generated by the simulated cases,

providing empirical support for these results.

Based on these observations, the control distance metric is recommended in applica-

tions with non-Gaussian boundary condition uncertainties to avoid significant computation

penalties, as well as poorly conditioned anomaly detection in more-segmented GMM cases.

For Gaussian boundary conditions, Mahalanobis distance is in general more sensitive to

anomalies. However, since neither method always dominates in anomaly detection for

Gaussian boundary conditions, the control distance method could be implemented along-

side Mahalanobis distance without significant computational complexity increase. Imple-

menting control cost in both cases gracefully handles transitions from Gaussian to non-

Gaussian boundary conditions, maintaining performance without introducing significant

computational complexity.

3.10 Conclusions

The control distance metric provides a natural means of associating spacecraft observa-

tions by subsuming the orbital dynamics into the association metric. This effort modifies

the control distance anomaly detection approach to address error-rate shortcomings in the

single hypothesis method and relax Gaussian boundary condition assumptions. The in-

clusion of GMM approximations and a binary hypothesis test approach allow control of

allowable error rates and enable comparisons using anomalous and quiescent hypotheses.

An analogous set of hypotheses is constructed for Mahalanobis distance and extended to

allow for non-Gaussian uncertainties. For both Gaussian and non-Gaussian boundary con-

ditions, simulation results show control distance is able to compute anomaly probabilities

at an operationally acceptable computational cost. The Gaussian test cases show Maha-

lanobis distance to be generally but not uniformly more sensitive to anomalies. However,
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Mahalanobis distance anomaly detection is less consistent with observation gap, and the

Mahalanobis distance approach is less effective in both anomaly detection and compu-

tational complexity with non-Gaussian boundary conditions. This study concludes that,

the control distance method is preferred for use with non-Gaussian boundary conditions,

while both Mahalanobis distance and control distance should be implemented for Gaussian

boundary conditions for added robustness.
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CHAPTER 4

SPACECRAFT CUSTODY MAINTENANCE AND ANOMALY DETECTION

USING EVIDENTIAL REASONING

The previous chapter applies a hypothesis testing approach to improve an existing method

for anomaly detection provided the state estimates have already been updated by successful

detection. This chapter continues an analysis of anomaly detection by applying hypothesis-

based methods to develop a sensor tasking approach to maintain custody, an assigned re-

sponsibility to track a specific subset of space objects.

Applied to sensor-tasking, hypothesis-driven approaches enable a predictive mode of

tasking to answer specific relevant questions. This is to say, formulating specific hypothe-

ses of interest a priori allows for tasking that anticipates events related to these hypotheses.

The decision-making hypotheses inform what evidence is gathered, with preference toward

evidence that resolves the hypotheses quickly. Conversely, reactive tasking uses evidence

gathered to formulate and interrogate hypotheses on what events may have occurred. Both

modes of tasking are necessary for SSA, as not all events may be hypothesized a priori,

requiring reactive tasking. However, a hypothesis-driven sensor tasking approach can also

plan ahead for potential events and gather evidence to predict or detect them earlier, requir-

ing less time and sensor resources to reconstruct and understand events.

Once the data is gathered from the sensors, it must be fused into a coherent under-

standing of the environment via association, correlation, and combination [31]. In classi-

cal Bayesian approaches, sensor data is used to form deterministic probabilities placed on

event hypotheses under the assumption that the only possible realizations of this hypoth-

esis are true or false. However, in complex decision-making contexts, information is not

always best-represented in this strictly binary manner, since some evidence for a particular

hypothesis might also involve ambiguity. An expert might be able to confirm or refute a
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given set of hypotheses, but it cannot attribute belief mass to any propositions for which

it is not an expert. For this reason, evidential reasoning methods such as Dempster-Shafer

theory quantify this ambiguity in hypothesis knowledge, leading to more realistic modeling

of human analyst processes [39, 40, 41]. Allowing attribution of belief mass to subsets of

hypotheses, not only singletons, admits a quantifiable ambiguity in the expert’s knowledge

of that particular hypothesis resolution.

This chapter develops an ignorance-reduction framework for SSA sensor tasking to

gather evidence that quickly resolves hypotheses. The specific contributions of this chapter

are as follows: 1) a decision-making criterion using ignorance to rank decision sets, 2) a

multi-sensor, multi-target tasking approach utilizing the ignorance decision criterion, 3) a

rigorous technique for the formulation of belief structures using SSA sensor data as evi-

dence, and 4) an ignorance-based tasking algorithm to address custody maintenance and

anomaly discrimination using SSA sensor data.

4.1 Dempster-Shafer Theory

Gathered evidence must be fused into a coherent understanding of the environment via as-

sociation, correlation, and combination [31]. Multiple methodologies exist for modeling

and reasoning in uncertain domains to provide graphical and numerical representations of

uncertainty [55]. One prevailing methodology is Bayesian probability theory, which mod-

els knowledge about propositions using true-or-false probabilities. In classical Bayesian

approaches, evidence is used to form deterministic probabilities placed on event hypothe-

ses. However, probability theory struggles to express ambiguity in proposition knowledge,

often due to some ignorance on the part of the expert or evidence source. For this reason,

evidential reasoning methods, such as Dempster-Shafer theory, quantify ambiguity, leading

to more realistic modeling of human analyst processes [39, 40, 41].

For illustration, consider an expert with vacuous knowledge, or total ignorance, on a

proposition. In probability theory, this is often represented using the principle of non-
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information: each state in the proposition state space is assigned equal probability. This

equally-likely probability mass function can also arise naturally when an expert has cer-

tain knowledge that places equal probability on each state. Therefore, the same probability

mass function can represent two very different knowledge states, one with wholly ambigu-

ous information and the other with certain but conflicting evidence, due to the inability to

encode ambiguity in Bayesian probability [55]

Dempster-Shafer theory [39] is a formalism for assigning belief mass to hypotheses

based on available evidence that has gained significant traction in various applications,

including classification [42, 43], monitoring and fault detection [44, 45], and decision-

making [46]. Dempster-Shafer theory is considered more expressive than Bayesian proba-

bility with respect to ambiguity [74], accomplished by allowing assignment of belief mass

to non-singleton propositions. The following sections introduce concepts of Dempster-

Shafer theory relevant to this work. For a more complete discussion on important de-

velopments in Dempster-Shafer theory, Yager and Liu compiled a book of classic works,

reviewed by Dempster and Shafer, on the theory of belief functions [75].

In Dempster-Shafer theory, the possible propositions of a given hypothesis form a set

called the frame of discernment, Ω. Elements of 2Ω, the set of all subsets of Ω, are referred

to as propositions. The frame of discernment must be a set of mutually exclusive and

collectively exhaustive propositions; in other words, exactly one proposition must be true

[39].

4.1.1 Belief Functions

An expert’s subjective belief in each proposition based on the available evidence is repre-

sented through a basic probability assignment (bpa). A bpa m, as defined in Eqn. (4.1),
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maps a belief mass to each possible proposition:

m : A 7→ [0, 1] , A ∈ 2Ω (4.1)∑
A∈2Ω

m (A) = 1 (4.2)

m (∅) = 0 (4.3)

Notationally, {ω1, ω2} is equivalent to {ω1}∪ {ω2}, the disjunctive combination of proposi-

tions ω1 and ω2, or “ω1 or ω2.” The constraint in Eqn. (4.2) enforces the mutually exclusive

and collectively exhaustive properties as the belief masses must sum to one, while the con-

straint in Eqn. (4.3) is similar to Kolmogorov’s axiom of zero probability for the empty

set.

The set of propositions that have non-zero belief mass are the focal set of the associated

bpa. For ease of discussion, a number of common bpas are typically defined based on their

focal sets. A vacuous bpa is one in which all the belief mass is assigned to Ω, such that

m(Ω) = 1, m(A) = 0 ∀A ⊂ Ω. A simple bpa is one in which the focal set consists

of only two elements: the entire frame of discernment Ω and one other proposition, as in

m(A) = p, m(Ω) = 1− p, m(B) = 0∀B ∈ 2Ω \ {A,Ω}.

Using bpas, Shafer defines notions of belief (or support) and plausibility, which form

lower and upper bounds respectively on the probability that a proposition is true given the

available evidence [21]. The belief in, or support for, proposition A ∈ 2Ω is defined in Eqn.

(4.4) as the sum of belief masses attributed to A and its subsets.

Belm (A) =
∑

B|B⊆A

m (B) (4.4)

The plausibility of proposition A ∈ 2Ω is defined in Eqn. (4.5) as the sum of the belief
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masses for propositions that do not explicitly refute A:

Plm (A) =
∑

B|B∩A 6=∅

m (B) = 1− Belm (¬A) (4.5)

where ¬A = Ω \A is the negation of A, or “not A.” The representations of belief mass m,

belief Bel, and plausibility Pl are all interchangeable via the above linear relationships [76].

Also note that, since the proposition Ω (the frame of discernment) represents the disjunctive

(or-wise) combination of an exhaustive set of propositions, its belief and plausibility must

both be equal to one.

4.1.2 Combination Rules

Numerous methods exist for combining bpas from multiple sources to form a fused bpa

[77]. The new bpa behaves just like any other bpa, so a fused estimate of belief and plau-

sibility for each proposition can be obtained. Each combination method exhibits different

properties, so implementation should carefully consider use-cases of the fused belief func-

tion and characteristics of the evidence sources.

A common bpa combination technique is Dempster’s conjunctive rule, which is com-

mutative, associative, and admits the vacuous bpa [39]. Dempster’s conjunctive rule of

combination, shown in Eq. (4.6), is often represented using the ⊕ operator. The belief

mass attributed to proposition A ⊆ Ω after combination of bpas from experts i and j is

given as:

mi⊕j (A) = (mi ⊕mj) (A) =

∑
B∩C=Ami(B)mj(C)

1−K
(4.6)

K =
∑

B∩C=∅

mi(B)mj(C) (4.7)

where K is a term that accounts for conflict between the bodies of evidence.

Evidence conflict occurs when two bpas report belief mass in different propositions. For
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illustration, consider the frame Ω = {x1, x2} and two bpas, m1 and m2, with high belief

mass in x1 and x2, respectively: m1 ({x1}) = 0.9, m1 ({x2}) = 0, m1 ({x1, x2}) = 0.1

and m2 ({x1}) = 0, m2 ({x2}) = 0.8, m2 ({x1, x2}) = 0.2. These bpas are in high conflict

(K = 0.72), and the fused bpas shows less belief mass in in x1 or x2 than either bpa alone:

m1⊕2 ({x1}) = 0.64, m2 ({x2}) = .29, m2 ({x1, x2}) = 0.07. The use of the conflict term

K in Eqn. (4.6) has the effect of distributing conflicting evidence to the null-set, but since

support cannot be attributed to the null-set (in classical Dempster-Shafer theory), this belief

mass is normalized across the relevant propositions [77].

Some uses of Dempster’s rule lead to counter-intuitive results in the presence of ex-

treme conflict, an observation typically referred to as Zadehs paradox [78]. However, the

scenario in Zadeh’s paradox can be resolved by more carefully adhering to Cromwell’s

Rule, i.e. not assigning a probability of exactly zero or one to any particular prior. This

caveat, with the inclusion of the open-world assumption, i.e. admitting that the actual true

event might lie outside the theorized set of possible events, led to the development of the

Transferable Belief Model (TBM) as a derivative of Dempster-Shafer theory [57]. The con-

straints of this particular application allow the classical Dempster-Shafer implementation

to be appropriate without applying TBM.

It is important to note that Dempster’s rule is not idempotent. Subsequent evidence

is assumed to be statistically independent of previous evidence. Therefore, when using

Dempster’s rule, the evidence must be assumed to be distinct; otherwise, repeated evidence

will be heavily weighted in the fused belief mass.

Dempster’s rule is not the only combination rule for bpas. For instance, Yager devel-

oped a related class of combination rules that, like Dempster’s rule, are commutative and

not idempotent, but Yager’s rule is quasi-associative [79, 80]. The primary difference in

Yager’s method is the use of a separate probability structure, the ground probability as-

signment, to pool evidence before conversion to a bpa [77]. Instead of normalizing out

conflict, belief mass from conflicting evidence is attributed to the universal-set, the frame
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of discernment Ω. As such, Yager’s rule is also called the unnormalized Dempster’s rule,

and, indeed, in the case of no conflict both methods yield the same result [77].

Additional combination rules have been developed that do enforce idempotence, which

can be employed for non-distinct bodies of evidence. While the above methods are con-

junctive (AND-based) in the attribution of evidence, alternate methods employ disjunctive

(OR-based) to handle evidence from varying-reliability sources [77].

4.1.3 The Curse of Dimensionality

One primary criticisms of Dempster-Shafer theory involves the curse of dimensionality

[47]; the computational complexity of evidence combination generally increases exponen-

tially with the number of hypotheses [40]. To address these computational complexity

concerns, various approximation methods have been developed. Gordon and Shortliffe ap-

proximate the results of Dempster’s rule in the case where evidence can be arranged in

a hierarchical tree-structure [48], while Shafer and Logan propose an exact implementa-

tion for similar scenarios [40]; both approaches achieve a linear computational complexity.

Wilson proposes a Monte-Carlo algorithm for computing belief on a subset of hypotheses

with computation time that also grows linearly with the number of hypotheses and belief

structures [81], and Kreinovich et al. similarly argue that Monte-Carlo methods allows for

feasible implementations of the Dempster-Shafer formalism [49]. Alternately, consonant

methods employed by Dubois and Prade impose a chain-like formation on the hypotheses,

such that A1 ⊂ A2 ⊂ . . . to simplify the computation of belief intervals [50]. Bauer com-

pared many of these approximation methods in the context of decision-making, finding that

there is no definitive “best” approximation; rather, the approximations often restrict appli-

cation to cases with low conflict in evidence or collapse the belief intervals into points,

which eliminates a major benefit of Demster-Shafer theory in its ability to represent partial

ignorance [51].
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4.1.4 Placing Bets from Evidence

In application, the upper and lower bounds of the belief function may not provide intuitive

usefulness in presentation to an analyst decision-maker. Typically the belief structure is ei-

ther converted to a probability distribution (as in the Bayesian approximations) or collapsed

to “pignistic” probabilities that allow a decision-maker to place a bet on each proposition

given the available evidence [56, 57].

In evidence theory terminology, the creation and combination of belief functions from

evidence occurs at the “credal” level [57]. In the credal level, belief may be applied to sub-

sets of the decision space, which is one of the strengths of the evidence theory approach.

However, since the elements of the hypothesis state-space are, by definition, mutually ex-

clusive and collectively exhaustive, it is known that exactly one singleton proposition must

be true at any given time. Therefore, in order to make decisions based on available evi-

dence, Smets et al. [57] defined a transformation to pignistic probability, which is where

the hypotheses are resolved for decision-making. Pignistic probability is effectively a bet-

ting probability: the probability that a rational human would assign to an option when re-

quired to make a decision given the available evidence. The pignistic probability transform

calculates probabilities from a belief function as shown in Eqn. (4.8):

BetP (A) =
∑
X⊆Ω

|A ∩X|
|X|

m(X)

1−m(∅)
(4.8)

where |X| denotes the number of elements in the set X [57]. This formulation allows

m(∅) 6= 0 since an open-world assumption is made in the Transferable Belief Model,

allowing belief mass to be assigned to the empty set. This transformation can still be used in

closed-world applications of Dempster-Shafer theory by ensuring the frame of discernment

is collectively exhaustive such that m(∅) = 0.
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4.1.5 Binary Hypothesis BPAs

From Eqn. (4.6), it can be seen that the computational complexity of the combination of

two bpas scales quadratically with the number of propositions in the frame of discernment.

The O(n2) nature of Dempster’s rule means it is computationally preferable to restrict the

number of propositions n in Ω. The simplest and most computationally attractive frame of

discernment is therefore a binary frame where the two propositions are simply a null and

alternate proposition: Ω = {ω,¬ω} where the ¬ symbol indicates the negation of ω. Using

predicate logic, a complicated frame of discernment can be decomposed into a number of

subsets of frames, each addressing smaller portions of information. The important aspect to

consider is that the hypotheses must be able to be interrogated through data that is currently

available or actionable. The relevant action can then gather evidence to directly interrogate

this hypothesis, generating a bpa that represents that particular expert.

Utilizing a binary hypothesis structure with Dempster’s conjunctive rule of combina-

tion, Eqn. (4.6), allows the combined bpa to be written simply:

Ki,j = mi(ω)mj(¬ω) +mi(¬ω)mj(ω) (4.9)

mi⊕j(ω) =
mi(ω)mj(ω) +mi(ω)mj(Ω) +mi(Ω)mj(ω)

1−Ki,j

(4.10)

mi⊕j(¬ω) =
mi(¬ω)mj(¬ω) +mi(¬ω)mj(Ω) +mi(Ω)mj(¬ω)

1−Ki,j

(4.11)

mi⊕j(Ω) =
mi(Ω)mj(Ω)

1−Ki,j

(4.12)

This form is a simple operation that can quickly quantify ambiguity in evidence supporting

a particular proposition. The usefulness of quantified ambiguity, or ignorance, will be

discussed in the following section.
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4.2 Ignorance Criterion for Tasking Decisions

Dempster-Shafer and other evidential reasoning theories do not require an expert to report

belief in only singleton propositions. Instead, the focal set can contain any subset of the

frame of discernment, including the entire frame of discernment itself. However, attributing

belief mass to Ω does not increase an analyst’s understanding of the situation. Instead,

it represents a residual ambiguity, indicating that the expert was unable to attribute that

belief to any particular proposition. This admits an ignorance on the part of the expert

that is crucial in modeling realistic, uncertain decision-making environments. Similarly,

contributing belief to any non-singleton subset of propositions admits some ignorance (e.g.

note the indeterminism in the statement: “attribute X belief to either A or B”), since the

expert is saying it is unable to further delineate between those propositions based on its

available evidence.

When considering potential courses of action, the ideal course leads to a state of per-

fect knowledge and no residual ambiguity; in other words, all belief is attributed solely to

singleton propositions. To support the objectives of decision-makers, it must be possible to

interrogate hypotheses with evidence with the goal of confirming or rejecting the hypothe-

ses. This can be alternately formulated as a minimization of ignorance in the hypothesis

state-space.

In a similar way that covariance-reduction techniques aim to approach the truth of the

estimated state (e.g. orbit) given the available data, a tasking scheme focused on ignorance-

reduction will yield the truth-or-falseness of that hypothesis given the available evidence.

Importantly, ignorance minimization provides an unbiased method of tasking as it does not

favor resolution to any particular proposition in the frame of discernment; it does not prefer

tasking that confirms or rejects any specific hypothesis. Instead, it seeks to gather evidence

that leads to the least ambiguous knowledge. This formulation is particularly relevant in

sensing applications such as the SSA sensor tasking problem; the objective is not to seek
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evidence that confirms the nominal state of the space object but rather seek evidence that

most efficiently resolves to the true anomaly-state, whether it is nominal or anomalous.

Given a frame of discernment Ω with n mutually exclusive and collectively exhaustive

propositions, Ω = {ω1, ω2, . . . , ωn}, the ignorance in proposition ωi based on the evidence

in bpa mj is computed as the difference between the belief mass attributed to ωi and belief

mass attributed to any subset of Ω that contains ωi:

Igmj
(ωi) =

∑
ωi⊆A⊆Ω

mj (A)−mj (ωi) (4.13)

=
∑

ωi(A⊆Ω

mj (A) (4.14)

= Plmj
(ωi)− Belmj

(ωi) (4.15)

In the case of binary hypotheses, this math simplifies further since the universal-set

contains only two elements, i.e. Ω = {ω1,¬ω1}.

Igmj
(ω1) = Igmj

(¬ω1) = mj(Ω) (4.16)

In this case, the ignorance in frame Ω associated with bpa mj is simply the belief mass

attributed by mj to the whole frame, since it is the only non-singleton proposition.

4.3 Multi-Sensor Multi-Target Ignorance-Reduction Tasking

The goal in developing this framework is to enable autonomous tasking of a non-homogeneous

set of SSA sensors to investigate a hypothesis for a set of space objects. The selected ac-

tions will drive the ignorance in this hypothesis toward zero, gathering enough evidence to

resolve the hypothesis at the end of the tasking horizon. Note that, while the derivation is

given and later applied using an SSA case study, this tasking framework could be applied

to any arbitrary hypothesis resolution problem to gather ignorance-minimizing evidence.
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The SSA system consists of M sensors and N space objects. At a given time tk, each

sensor i ∈ 1, . . . ,M can execute an action from a finite set of A allowable actions:

S(i)
k =

{
a

(i)
1 , . . . , a

(i)
A

}
(4.17)

The total set of possible action combinations for all M sensors at time tk is then given by

Dk = S(1)
k × . . .× S

(M)
k (4.18)

The action taken by sensor i at time tk is represented by d(i)
k . Therefore, the set of actions

taken by all M sensors at time tk is given by the M -tuple:

Dk =
{
d

(i)
k

}M
i=1

=
{
d

(1)
k , . . . , d

(M)
k

}
∈ Dk (4.19)

The effect of action d(i)
k on the hypothesis knowledge of space object j ∈ 1, . . . , N is

determined using Dempster’s conjunctive rule of combination. Recall that, due to the asso-

ciative and commutative properties of Dempster’s conjunctive rule, multiple independent

pieces of evidence can be combined simply by chaining the combination of their associated

belief mass functions.

m̂
(j)
k:Dk

=
M⊕
i=1

m̂
(j)

k:d
(i)
k

, d
(i)
k ∈ S

(i)
k (4.20)

where m̂(j)

k:d
(i)
k

is the estimated belief-mass function for space object j due to action d(i)
k ∈

S(i)
k taken by sensor i at time k. The updated estimated bpa at time tk for space object j

based on decision set Dk is defined as

m̂
(j)
k|k = m

(j)
k|k−1 ⊕ m̂

(j)
k:Dk

, Dk ∈ Dk (4.21)

where m(j)
k|k−1 is the a priori bpa estimate using evidence from time tk−1 propagated to
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time tk, and m̂(j)
k|k is the a posteriori bpa estimate updated with evidence at time tk. The

estimated hypothesis ignorance at time k based on all available evidence from the set of

actions Dk is denoted Îg
m̂

(j)
k|k

(Ω).

4.3.1 Greedy Minimum-Ignorance Optimization

In this general formulation, the goal is to select decisions that minimize ignorance in the

hypothesis frame Ω = {ω1, . . .} for each of the N space objects. Therefore, the chosen

action should maximally reduce the estimated ignorance over the considered time hori-

zon. Moreover, the chosen set of actions for all sensors at time tk should maximally re-

duce the combined estimated ignorance. Since there are multiple objects, this is a multi-

objective optimization problem. The proposed solution is to apply a set of weightings,

W = {w1, . . . , wN} ,
∑N

j=1wj = 1, based on relative priorities for each of the N space

objects. The optimal decision set at time tk is then given by Eqn (4.22):

D∗k = arg min
Dk∈Dk

N∑
j=1

wj Îgm̂(j)
k|k

(Ω) (4.22)

= arg min
Dk∈Dk

N∑
j=1

wj Îg
(

Ω; m̂
(j)
k|k−1 ⊕ m̂

(j)
k:Dk

)
= arg min

Dk∈Dk

N∑
j=1

wj Îg

(
Ω; m̂

(j)
k|k−1 ⊕

(
M⊕
i=1

m̂
(j)

k:d
(i)
k

))

This formulation selects a decision set to minimize weighted ignorance at the current time

step, otherwise known as greedy optimization.

4.3.2 Receding Horizon Minimum-Ignorance Optimization

A related approach is to optimize the set of decisions over a fixed time span of H steps, us-

ing a receding horizon approach to minimize ignorance at time tk+H . It is well-known that

Dempster’s conjunctive rule of combination is not well-suited to propagating belief struc-

tures through time since the evidence combined must be independent [80]. This approach
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propagates the state estimates through time and computes the belief structure at tk+H based

on the propagated state knowledge, avoiding the need to combine belief structures induced

by dependent pieces of evidence.

Define the set of possible actions for sensor i from time tk to tk+H as:

S(i)
[k,k+H] = S(i)

k × . . .× S
(i)
k+H (4.23)

and define the set of possible action combinations for all M sensors from tk to tk+H as:

D[k,k+H] = S(1)
[k,k+H] × . . .× S

(M)
[k,k+H] (4.24)

Now the set of decision sets taken by all M sensors from tk to tk+H is given by:

D[k,k+H] = {Dg}k+H
g=k ∈ D[k,k+H] = {Dk, . . . ,Dk+H} , H ∈ Z+ (4.25)

The optimal set of decision sets between times tk and tk+H is then given by Eqn. (4.26).

D∗[k,k+H] = arg min
D[k,k+H]

N∑
j=1

wj Îgm̂(j)
k+H|k+H

(Ω) (4.26)

The key difference between Eqns. (4.22) and (4.26) is the estimated bpa m̂(j)
k+H|k+H , which

is evaluated based upon the estimated state at tk+H , which depends upon all actions taken

from tk through and including tk+H . This is reasonable since the goal is to minimize

ignorance at the horizon time tk+H , not the intermediate steps, so the only relevant bpa for

each space object is the one at tk+H . Naturally, if tk+H = tk so that the horizon length

is zero, the receding horizon approach in Eqn. (4.26) collapses to the greedy approach in

Eqn. (4.22).
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4.4 Application to SSA Sensor Tasking

Having derived the ignorance-reduction tasking scheme, this section demonstrates its prac-

tical application using the SSA custody problem as a case-study. In SSA, an assigned

responsibility to track a particular space object is referred to as custody. The sensors given

custody of a space object must periodically observe the object to verify that its state has not

changed. Missed-detection of a space object could be due to any number of causes, includ-

ing cloud cover, background sky brightness, proximity to a bright sky object, poor space

object state predictions, or spacecraft maneuver, to name a few. The latter cause, a con-

trolled maneuver by the space object, is one of many potential “dynamics anomalies” where

the space object state is not adequately predicted by the assumed dynamics. A maneuver,

in particular, requires timely response by decision-makers to reacquire the space object to

maintain custody, update state estimates, or reconstruct the maneuver, which makes dy-

namics anomalies a primary concern. In contrast, missed-detection from other causes (e.g.

cloud cover) does not provide any definitive evidence of anomaly and does not necessarily

constitute re-tasking sensors for re-acquisition.

This section develops the evidence-based framework for this problem and applies the

ignorance-reduction criterion using SSA sensors to resolve the custody and anomaly hy-

potheses. This is intended to be an illustrative application for the ignorance-reduction task-

ing technique, demonstrating methods for developing belief functions and evaluating sensor

actions. In a real-world application, other hypotheses should be considered, including de-

tection of clutter and generation or decay of other objects or debris, but for illustration the

number of hypotheses is limited. Continuing research [82] focuses on further developing

evidential reasoning sensor tasking methods in increasingly-realistic scenarios, including

addressing computational complexity concerns with many more hypotheses.
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4.4.1 Custody and Anomaly Discrimination Framework

Given M sensors tasked with keeping custody of N space objects, the sensors must verify

the orbit state of each object. Each sensor observation has an associated measurement noise

that contributes to state uncertainty. The state uncertainty then grows as the orbit state is

propagated and, as the state uncertainty exceeds the limits of the sensor’s field of view,

the probability of successful detection decreases. This problem is compounded when con-

sidering the possibility of maneuvers or other anomalies between observations. Therefore,

from an uncertainty standpoint, the ideal tasking would be constant observation of each

space object, which is impractical considering observation constraints imposed by orbital

mechanics and the vast number of space objects (typically,N >> M ). Additionally, obser-

vation conditions (e.g. sky brightness, local weather) can lead to unsuccessful observation

attempts.

When a sensor has been tasked to a particular space object, the result of that tasking can

be described as either a successful detection, D, or missed-detection,M. Additionally, at

any particular time the anomaly-state of the space object can be described as either nominal,

N , or anomalousA. The cartesian product of these two binary hypothesis spaces represents

the possible results of a tasking decision, leading to the following frames of discernment:

ΩT = {D ,M} , ΩA = {N , A} (4.27)

Ω = {D ∩ N , D ∩A ,M∩N ,M∩A} (4.28)

where D ∩N means the space object has been detected and its state is nominal, D ∩A

means detected and anomalous,M∩N means missed-detection and nominal, andM∩A

means missed-detection and anomalous. In each binary frame of Eqn. (4.27), the elements

are mutually exclusive and collectively exhaustive, so the combined frame in Eqn. (4.28)

also satisfies these properties.

Given this combined hypothesis space, the proposed goal of the sensor network is
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to ensure detection (D) of each space object so that the sensor network maintains cus-

tody regardless of the anomaly state. Note that the use of predicate logic confirms that

Ω ⊃ {D ∩N , D ∩A} = D; “detection-and-nominal or detection-and-anomalous” is

equivalent to “detection” because N and A are mutually exclusive and collectively ex-

haustive. Similarly, Ω ⊃ {D ∩N ,M∩N} = N , and Ω ⊃ {D ∩ A,M∩A} = A.

Also, note that since ΩT and ΩA are both binary, Ig (D) = Ig (M) and Ig (N ) = Ig (A).

The proposed goal can be stated in terms of evidence theory quantities as minimizing

the ignorance associated with the hypothesis {D ∩ N ,M∩N} = N ; in other words,

the goal is to minimize the ignorance in the anomaly state of the space object. This is

an intuitive interpretation of the goal of custody-based tasking: it cannot be controlled

whether the space object is nominal or anomalous and the sensor tasking should not favor

either result, but it is important to be able to confirm detection in either case. While this

seems to emphasize only the ΩA hypothesis space and ignore the ΩT hypothesis space, its

influence on the resolution of the ignorance in ΩA is made clear in the following section on

incorporating SSA information as Dempster-Shafer belief functions.

4.4.2 SSA Dempster-Shafer Experts

To formulate SSA Dempster-Shafer experts, the SSA sensor data available must be encoded

as bpas, carefully considering the information that each sensor provides for each hypothe-

sis; in particular, does the evidence provide direct support for a proposition (belief), or does

it simply not directly disprove a proposition (plausibility). In order to arrive at accurate hy-

pothesis resolution, the bpas must be rigorously formed and appropriately combined using

evidence combination rules such as Dempster’s conjunctive rule.

In this work, most of the available evidence only provides levels of plausibility on

certain propositions. Recall that bpa m can also be represented as a belief function Bel (·),

or plausibility function Pl (·), and each one can be converted into the other two. The

conversions between each representation are linear functions, so they can all be represented
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using linear algebra [76]. The determined plausibility from each sensor is converted to a

bpa, committing the least belief mass to each relevant proposition [83].

For instance, given the hypothesis space in Eqn. (4.28), plausibility in the hypothesis

D ∩N is computed as the sum of component belief masses: Pl (D ∩N ) = m(D) +

m(N ) + m(D ∩N ). The linear combinations of belief masses to compute plausibilities

can be represented using a transformation matrix between a vector of belief masses m and

a vector of plausibilities p.

p = Tm2pm (4.29)

Pl (D ∩N )

Pl (D ∩A)

Pl (M∩N )

Pl (M∩A)

Pl ((D ∩N ) ∪ (D ∩A))

Pl ((M∩N ) ∪ (M∩A))

Pl ((D ∩N ) ∪ (M∩N ))

Pl ((D ∩A) ∪ (M∩A))

Pl (Ω)



=



1 0 0 0 1 0 1 0 1

0 1 0 0 1 0 0 1 1

0 0 1 0 0 1 1 0 1

0 0 0 1 0 1 0 1 1

1 1 0 0 1 0 1 1 1

0 0 1 1 0 1 1 1 1

1 0 1 0 1 1 1 0 1

0 1 0 1 1 1 0 1 1

1 1 1 1 1 1 1 1 1





m(D ∩N )

m(D ∩A)

m(M∩N )

m(M∩A)

m(D)

m(M)

m(N )

m(A)

m(Ω)



(4.30)

Since the sensors provide evidence in the form of plausibilities, the inverse operation finds

the belief mass assignments: m = T−1
m2pp. The transformation matrix is an identity matrix

augmented with non-zero terms in the off-diagonal, and since each mass-to-plausibility

conversion is unique, the matrix is full rank. Therefore, the matrix is invertible, and belief

masses can be found from plausibilities.

Each sensor’s evidence must be carefully considered to create valid plausibility func-

tions that lead to valid belief mass functions. For instance, if the probability of detection

(based on sky brightness and cloud cover measurements) is one, that does not guarantee a

successful detection (the space object may have maneuvered); however, if the radiometric
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probability of detection is zero, that does guarantee a missed detection but does not resolve

the anomaly hypothesis. Therefore, a Dempster-Shafer expert based on the probability of

detection can only discount plausibility in the detection hypotheses. Similarly, the uncer-

tainty and reachability probabilities can be used to determine the plausibility of detecting

the space object in its nominal or anomalous state.

4.4.3 Tasking

At each time step, each sensor has a set of potential actions as denoted by Eqn. (4.17). In

this example application, the actions include nominal observations or searching observa-

tions, depending on the estimated anomaly state of the space object. Nominal observation

tasks against the space object’s uncertainty volume, while the anomalous object search in-

vestigates the space object’s reachable volume. The objective in the tasking phase is to

execute the actions that minimize the estimated anomaly-state ignorance after a proposed

tasking decision. The contributing factors to consider are the growth of uncertainty and the

observation conditions. If the orbit state uncertainty is allowed to grow unbounded,missed

detection is more likely, so frequently observing the object to reduce covariance is useful in

maintaining custody. If the covariance is too high, a missed-detection may be reasonably

attributed to the nominal cause of state uncertainty-growth. If observation conditions for a

particular sensor are poor at the relevant sky position for a space object, tasking that sensor

to observe the space object does not resolve custody; a missed-detection may be reasonably

attributed to poor detection probability.

In terms of the frame of discernment in Eqn. (4.28), the compounded effect of state

uncertainty and observation conditions on detection in a nominal scenario is captured using
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the following plausibility function:

PlmN
(D ∩N ) = Punc (P, f, γ, ε) · Pdet (τatm, Isky, γ, ε) (4.31)

PlmN
(M∩N ) = 1− Punc (P, f, γ, ε) · Pdet (τatm, Isky, γ, ε)

PlmN
((D ∩N ) ∪ (D ∩A)) = Punc (P, f, γ, ε) · Pdet (τatm, Isky, γ, ε)

PlmN
((M∩N ) ∪ (M∩A)) = 1− Punc (P, f, γ, ε) · Pdet (τatm, Isky, γ, ε)

where P is the state covariance, f is the sensor field of view, τatm is the atmospheric trans-

mittance, Isky is the background sky irradiance, and γ, ε are the sensor’s pointing in azimuth

and elevation angles. The specific models for the probabilities in the above equations are

described in detail in Section 4.5, using a radiometric model for Pdet [15] and uncertainty

and reachability results for Punc and Preach [84, 85]. The propositions that are not ex-

plicitly enumerated in Eqn. (4.31) are assigned Pl (·) = 1 since the available evidence

cannot directly discount these propositions. The plausibility function can be converted to

a bpa using known one-to-one linear mappings [76]. If observation conditions are poor, a

missed-detection does not confirm or refute an anomalous state so the belief mass is as-

signed as ignorance. Similarly, if the state uncertainty volume exceeds the sensor field of

view, a missed-detection does not confirm an anomalous state even in perfect observation

conditions; therefore, the remainder of the belief mass is assigned as ignorance.

A similar analysis can be performed considering maneuvers by examining the reacha-

bility volume of state-space [84, 85]. The formulation is nearly identical, but this time the

belief is applied to the “detected-anomalous” hypothesis:

PlmA
(D ∩A) = Preach (P, umax, f, γ, ε) · Pdet (τatm, Isky, γ, ε) (4.32)

PlmA
(M∩A) = 1− Preach (P, umax, f, γ, ε) · Pdet (τatm, Isky, γ, ε)

PlmA
((D ∩N ) ∪ (D ∩A)) = Preach (P, umax, f, γ, ε) · Pdet (τatm, Isky, γ, ε)

PlmA
((M∩N ) ∪ (M∩A)) = 1− Preach (P, umax, f, γ, ε) · Pdet (τatm, Isky, γ, ε)
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where umax is the maximum control authority of the space object, a quantity that is assumed

known in this work (e.g. obtained from operators) but may also require estimation. The

remainder of the variables are as defined in Eqn. (4.31).

Both plausibility functions are converted to bpas, mN and mA respectively. Fusing

these two bpas estimates the resolution of the hypotheses in Eqn. (4.28) based on a candi-

date tasking option. The ignorance in the anomaly state as a result of this tasking can then

be evaluated.

Ig (N ;mN ⊕mA) = Ig ({D ∩ N ,M∩N} ;mN ⊕mA) (4.33)

The optimal set of tasking decisions is then computed following Eqn. (4.26) to minimize

the estimated weighted total ignorance in space object anomaly state following the candi-

date tasking, subject to weightings induced by relative priority in the anomaly states of the

objects.

The look-angles (γ, ε) for each tasking option are determined by the estimated anomaly

state of the space object. In the event that a space object is believed to be nominal, the mean

state estimate is used to compute the look-angles. However, if the space object is thought

to be anomalous, the look-angles are modified to progressively seek through the reachable

space until it is once again detected. The process of flagging a space object as anomalous is

discussed in the next section, followed by description of the custody reacquisition process.

4.4.4 Anomaly Discrimination

Once the optimal tasking has been determined, this tasking is implemented and the object

is either detected or missed. In the event that a space object is detected, the proposition

D ⊂ ΩT is confirmed and there is direct evidence that can be applied to interrogating

the anomaly hypothesis. Numerous methods exist for the detection of anomalies from

full state estimates. One such method is the Mahalanobis distance: a statistical method
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that computes a multi-dimensional standard deviation between two state distributions [63].

This is governed by Eqn. (4.34):

dMD (xA,xB,P) =

√
(xA − xB)T P−1 (xA − xB) (4.34)

where xA and xB are the mean states of the distributions and P is the distance matrix [63].

Jaunzemis et al. [32] applied this metric in a binary hypothesis test using the following

formulations for the null and alternative propositions (H0 andH1 respectively). In the event

that Gaussian boundary conditions are assumed, the Mahalanobis distance distributions for

each hypothesis are generated using Eqns. (4.35)-(4.36):

dMD,H0

(
X k−1, x̂k|k−1,Pk|k−1

)
= (4.35)√(

X k−1 − x̂k|k−1

)T
P−1
k|k−1

(
X k−1 − x̂k|k−1

)
dMD,H1

(
X k, x̂k|k−1,Pk|k + Pk|k−1

)
= (4.36)√(

X k − x̂k|k−1

)T (
Pk|k + Pk|k−1

)−1 (X k − x̂k|k−1

)
where x̂k|k−1 and Pk|k−1 are the a priori state and covariance estimates propagated to time

tk, x̂k|k and Pk|k are the a posteriori state and covariance estimates incorporating the suc-

cessful detection at time tk, and random vectors are drawn from the Gaussian state dis-

tributions as X k−1 ∼ N
(
x̂k|k−1,Pk|k−1

)
, X k ∼ N

(
x̂k|k,Pk|k

)
[32]. The use of the

combined covariance as the distance matrix in the alternative hypothesis is a modified form

of the Mahalnobis distance to describe the distance between maneuvered and quiescent

(non-maneuvered) distributions [30].

An anomaly bpa can be constructed to resolve the anomaly state of the space object:

mA,k|k(D ∩A) = PA,MD (dMD,H0 , dMD,H1) (4.37)

mA,k|k(D ∩N ) = 1− PA,MD (dMD,H0 , dMD,H1)
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using belief mass directly since direct evidence is available through detection.

Alternate distance metrics may be employed, such as the control-distance method [32].

It should be noted that, since the probabilities of anomaly for Mahanalobis distance and

control distance operate on the same information, and they are not independent evidence

sources. Therefore if both are used, they must be combined into one bpa to be used in

evaluating the resolution of the anomaly hypothesis, as shown in Eqn. (4.37). In this paper,

only the Mahalanobis distance is implemented for anomaly detection. For more details on

computing the anomaly probability, refer to Jaunzemis et al. [32]. Once this final piece

of evidence has been gathered and fused with the existing evidence from the observation

conditions and state uncertainty, a decision must be made on the anomaly state of the

object. In Dempster-Shafer theory, the pignistic belief induces a probability function that

is used to inform decisions from belief structures [57]. Therefore, the pignistic belief in the

anomaly hypothesis is computed, and if it exceeds a threshold, the space object is flagged

as anomalous.

In the event of a missed detection, the missed-detection hypothesis M is confirmed,

but there is no further evidence to apply. The existing evidence is assessed to determine

anomaly state using pignistic belief, and once again if a threshold is exceeded, the space

object is flagged as anomalous.

4.4.5 Custody Reacquisition

If custody has been lost for any reason, a procedure for recovering the space object must be

implemented. If the space object was missed due to poor observation conditions, there is

not necessarily a need to believe an anomaly has occurred, so the preferred response may

be to simply wait until conditions change to attempt another observation. If, however, the

space object should have been detected based on the available SSA sensor data, the network

should flag the space object as anomalous and react accordingly. In Dempster-Shafer terms,

an anomaly is declared when the pignistic belief in anomaly exceeds some threshold.
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After this point, the tasking algorithm must change to re-acquire a potentially maneu-

vered object. If the observation conditions for the nominal location were exceedingly good

but the observation was still missed, the anomaly hypothesis will be resolved to indicate

an anomaly has occurred. This means the anomaly ignorance will already be minimized,

so ignorance reduction will not help in re-acquiring the space object. A solution employed

here is to enter a search mode that assigns a sensor to the anomalous space object based

on the highest likelihood for re-acquisition. This entails interrogating the largest possi-

ble volume of reachable space (i.e. use the largest projected field of view) while ensuring

the attempted observation resolves the custody hypothesis to “detection.” Once the space

object is re-acquired and custody is confirmed, the anomaly can be characterized and the

estimator updated to ensure follow-on observations account for the anomaly.

4.5 SSA Sensor Evidence

In order to apply Dempster-Shafer theory, available SSA sensors must be cast as BPAs,

contributing belief mass to the available hypotheses based on that sensor’s data. In this

paper, the primary sensors are electro-optical (EO) sensors, such as telescopes. The radio-

metric model in Eqn. (4.38) determines the probability of detection of an RSO by an EO

sensor [15].

Pdet (τatm, Isky, γ, ε) =
1

2

[
1− erf

(
SNRalgσn − µso√

2σso

)]
(4.38)

The algorithm-required SNR (SNRalg) is a sensor-specific quantity dependent upon the

algorithm used for RSO detection. The mean and standard deviation of the RSO signal

received by the sensor (µSO and σSO respectively) and the standard deviation of background

noise sources (σSO) can be estimated from data regarding the RSO state and observation

conditions [15]. In this paper, SNRalg is assumed to be given for each sensor and remaining

quantities are estimated using auxiliary sensors, namely atmospheric transmittance (τatm)
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(a) 3D visualization (b) Projection onto image plane

Figure 4.1: Uncertainty and reachability volumes interrogated by field of view

and background sky irradiance (Isky).

4.5.1 Uncertainty and Reachability

A challenge posed by non-deterministic state measurements is the growth of uncertainty.

After propagation, uncertainty in the estimated space object state alone can cause a missed

observation because the uncertainty exceeds the sensor field of view. The probability of

the space object being in the sensor field of view given its uncertainty Punc(P, f, ρ, γ, ε)

can be computed given the state estimate and covariance, the sensor look-angles (γ, ε), the

slant-range to the space object ρ, and the field of view of the sensor f . The probability is

computed as the intersection of the sensor field of view with the uncertainty volume. In

the case of Gaussian uncertainties, the uncertainty volume is an ellipsoid, so the probabil-

ity density contained within the intersection of this ellipsoid with the field of view is the

probability of detection due to uncertainty.

Related to uncertainty is computing the intersection of the sensor field of view with the

reachable volume. This computation uses all the same values and adds the maximum con-

trol authority (umax) to determine the reachable volume, and the probability of the space ob-

ject being in the field of view given its reachable volume is denoted Preach(P, umax, f, ρ, γ, ε).
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Figure 4.2: Reachability trendlines fit to reference data [84, 85]

To compute the reachable distance, various optimal control methods may be employed.

For instance, Holzinger et al. perform this calculation under low-thrust assumptions [84],

and Brew and Holzinger extended this work using continuation methods [85]. Since reach-

ability is not the focus of this work, the results from these papers were simply fit to a

polynomial of the form dmax = atb, where t is the time since last successful observation

and a and b are the trend-fitting parameters. A trend was developed for each the LEO,

GTO, and GEO regimes, with trends shown in Fig. 4.2. To ensure applicability of this

approximation, the same maximum control and initial uncertainties are used in this paper

as were used in the reference studies.

4.5.2 Cloud Detection

One potential nominal (non-anomalous) cause for missed detection is occultation by clouds.

This can be represented in the Coder et al. radiometric model through the use of atmo-

spheric transmittance (τatm).

In order to estimate cloud cover, a hybrid thresholding and optical-flow algorithm was

written for cloud detection using hemispherical All-Sky camera imagery. The thresholding
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captures bright pixels attributed to light reflecting from the clouds back to the All-Sky Sen-

sor, while the optical-flow algorithm is able to capture the more transient, whisp-like layers

of cloud cover. The Horn-Schunk optical flow algorithm operates by assuming brightness

constancy and relatively short motion of objects in the frame, both valid for night-time

cloud detection with relatively short, constant-length exposures. This optical flow algo-

rithm formulates the energy function in Eq. (4.39) subject to a candidate flow field (u, v),

seeking to minimize energy by modifying the flow field through a gradient descent [86].

Pixel-wise gradients (Ix and Iy) are computed using central differencing, and frame-to-

frame derivatives (It) are computed using backward differencing. After a user-defined

convergence criterion is met, the magnitudes of the flow field (u, v) can be evaluated to

determine which pixels contain cloud and which contain empty sky.

E(x, y, t) =

∫ ∫
([Ix(x, y, t)u(x, y, t) + Iy(x, y, t)v(x, y, t) + It(x, y, t)]

2

+ ‖∇u(x, y, t)‖2 + ‖∇v(x, y, t)‖2)dxdy (4.39)

The optical flow algorithm excels at detecting faint, whispy clouds, but does not detect

the flat, bright areas of heavy cloud with either pixel-wise or frame-wise derivatives. There-

fore, in this hybrid implementation, if a particular pixel exceeds either of the brightness or

flow magnitude thresholds, that pixel is deemed to be cloud, constructing a cloud-cover

mask from the image.

Figure 4.3 shows a sample result of this implementation. For practical implementation,

the barrel distortion of the wide field-of-view sensor, highlighted in these sample images,

needs to be corrected. The All-Sky camera used exhibits well-known f-theta barrel dis-

tortion, which allows for simple conversions between distorted (fish-eye) and undistorted

images. In the undistorted image, straight-line motion (such as a cloud moving across the

sky) is rendered correctly in a straight line from frame to frame, which is important for

correct computation of the flow magnitude using optical flow. This necessarily excludes
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(a) Distorted (b) Undistorted (c) Cloud cover overlay

Figure 4.3: All-Sky cloud detection

the corners of the distorted image, but this is acceptable in this application since this corre-

sponds to low-elevation sky positions which are not candidates for tasking.

Since the resultant cloud cover mask is binary, it is blurred by convolving with a 5× 5

Gaussian kernel to produce smoother transitions from cloud to clear sky. The atmospheric

transmittance τatm is then estimated given the azimuth-elevation pair (γ, ε) for the target

sky position.

4.5.3 Sky Brightness

Another potential nominal (non-anomalous) cause for missed detection is background sky

brightness. In the Coder et al. radiometric model [15], this is computed as a photon flux

due to the sky background irradiance and considered as a noise source when computing

SNR and detection probability. The sky irradiance can be measured using a sky brightness

monitor. In this work, the sky brightness monitor measures the irradiance at the zenith

(directly overhead) in units of magnitudes per square arc-second. Garstang provides a unit

conversion useful in sky brightness computations as seen in Eqn. (4.40):

B = 34.08 exp (20.7233− 0.92104V ) (4.40)

102



where B is the sky brightness in nanoLamberts and V is the sky brightness in magnitudes

per square arc-second [87]. The sky brightness at a target elevation can then be computed

from the sky brightness at zenith using Eqns. (4.41)-(4.42):

dopt =
(
1− 0.96 sin2 dzen

)−0.5 (4.41)

B(dzen) = Bzen10−0.4k(dopt−1)dopt (4.42)

where dzen is the angular distance from zenith to the target object (i.e. the complement of

elevation), k is the extinction coefficient in units of magnitudes per air mass, and dopt is the

optical pathlength along the line of sight in units of air masses [88]. The sky brightness

at the target elevation, converted to units of magnitudes per square arc-second using Eqn.

(4.40), is used as the Isky variable in the Coder et al. radiometric model, computing the

photon flux due to background sky brightness (qp,sky, in electrons per second per pixel) as:

Lsky = Φ010−0.4Isky

(
180

π

)2

36002 (4.43)

qp,sky =
Lskyτoptτsπηqep

2

1 + 4N2
(4.44)

where Φ0 is the photon flux density of a zeroth-magnitude object in photons per second per

square meter, τopt is the transmittance due to the primary optics, τs is transmittance due to

secondary optics, ηqe is the quantum efficiency, p is the pixel size in meters, and N is the

binning of the sensor.

4.6 Simulation Results

Using the anomaly and custody problem described above, a multi-sensor, multi-target sim-

ulation is presented to evaluate the validity and applicability of the theoretical results to

realistic SSA scenarios. In this simulation, three electro-optical sensors are tasked with

maintaining custody of five space objects: three in Geostationary Earth orbits (GEO) and
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two in Geostationary transfer orbits (GTO).

The sensors are modeled after existing or under-development SSA sensors, distributed

throughout the western hemisphere with location and optical parameters listed in Table

4.1. The Georgia Tech (GT) sensor is based on the Georgia Tech Space Object Research

Telescope (GT-SORT), a Raven-class telescope located in downtown Atlanta. GT-SORT

features half-meter optics (Officina Stellare Pro RC 500 with focal reducer for f/6 config-

uration) and a 6-megapixel CMOS sensor (Point Grey Grasshopper3) for high-resolution,

small field-of-view (approximately 0.23×0.18 degrees), high frame-rate (up to 20 Hz) SSA

imagery [89]. The Utah State University (USU) sensor is based on the USU Space Situa-

tional Awareness Telescope for Astrodynamics Research (USU-STAR), located at the Bear

Lake Observatory in Utah. USU-STAR is a Raven-class telescope with 10-inch optics (AG

Optical Systems Imaging Dall-Kirkham astrograph) and a 4K CCD sensor (Finger Lakes

Imaging Proline PL 16801), resulting in a larger field-of-view (approximately 1.25× 1.25

degrees). The third sensor is a fictitious one-meter Raven-class optical sensor placed at

the Air Force Maui Optical and Supercomputing site (AMOS) on Haleakala, Maui, with

parameters similar to USU-STAR (e.g. field of view approximately 1.17 × 1.17 degrees).

The quantum efficiency, dark current, and optics transmittance for all three sensors are ap-

proximated using known values from GT-SORT. The required signal-to-noise ratio (SNR)

for the detection algorithm is set at a conservative value of 10 for all three sensors. The

nominal atmospheric transmittance and sky brightness are worst for GT-SORT, due to its

location in downtown Atlanta, and best for the AMOS sensor since it is located on top of

Haleakala.

The space objects are initialized from two-line elements (TLEs) by generating TLEs

for 3 GEO space objects and 2 GTO space objects. The orbit parameters for these sim-

ulated objects are shown in Table 4.2. The orbit shape parameters, semi-major axis and

eccentricity, are selected using representative space objects from each class, GEO or GTO,

using the publicly available space object catalog published by space-track.org. The orbit
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Table 4.1: Simulated sensor locations and optical parameters

1 2 3
City Atlanta, GA Garden City, UT Maui, HI

Abbreviation GT USU AMOS
Latitude (◦N) 33.7756 41.93 20.7083

Longitude (◦W) 84.3963 111.42 156.2571
Altitude (m) 200 1981 3052
Diameter (m) 0.5 0.254 1

Focal Length (m) 3 1.7018 2
Resolution (h × v) 2736× 2192 4096× 4096 4096× 4096

Pixel Size (µm) 4.54 9 10
Quantum Efficiency, ηq (%) 74 74 74

Dark Current, qd (e−/s) 10.88 10.88 10.88
Optics Transmittance, τpτs (%) 76 76 76
Minimum Elevation Req. (◦) 20 20 20

SNR Req. for Detection 10 10 10
Nom. Sky Irrad., Isky

(
mag

arcsec2

)
16.5 18 20

Nom. Atm. Trans., τatm (%) 50 70 70

orientation parameters for the GEO objects are chosen from random uniform distributions

on the following ranges: inclination between zero- and one-degrees, and all others (argu-

ment of perigee, right ascension of ascending node, and mean anomaly) between zero- and

360-degrees. Note that the only constraint enforced in GEO orbit orientation is that the

longitude must be between between 90- and 130-degrees West to ensure visibility by the

simulated sensors. Similarly, orbit orientation parameters for the GTO objects are chosen

from random uniform distributions on the following ranges: inclination ranges between

zero- and five-degrees, and all others (argument of perigee, right ascension of ascending

node, and mean anomaly) between zero- and 360-degrees. The generated TLEs are used to

initialize unscented Kalman filters (UKFs) to track the space object states and incorporate

measurement updates. The estimator utilizes a 2× 2 geopotential model for orbit propaga-

tion dynamics, primarily to capture the perturbing effects of J2 on the GTO space objects.

Additionally, truth-states are generated for each test case using the TLE initial conditions

and a 6 × 6 geopotential model. The resultant nominal orbit configurations can be seen in

Fig. 4.4. Each simulation test case uses the same pseudo-random number generator seed to
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Table 4.2: Simulated space object parameters

1 2 3 4 5
Name GEOSat1 GEOSat2 GEOSat3 GTOSat1 GTOSat2

TLE Date, t0 (UTC) 5/20/2016 5/20/2016 5/20/2016 5/20/2016 5/20/2016
TLE Time, t0 (UTC) 18:00 18:00 18:00 18:00 18:00

Semi-major Axis (km) 42000 42000 42000 25000 25000
Eccentricity 0.001 0.001 0.001 0.7 0.7

Inclination (◦) 0.9195 0.6261 0.8925 3.9307 0.5717
Arg. of Perigee (◦) 199.3991 218.1703 46.3874 294.9229 333.9905

RAAN (◦) 291.0735 251.8371 347.0544 3.8344 66.4339
Mean Anomaly (◦) 248.0162 303.3310 8.9211 206.4718 14.1699

Longitude (◦E) −129.03 −94.4 −105.14 n/a n/a
Radar area (m2) 32.4 32.4 32.4 21.4 21.4

Pos. Unc. σr,0 (km) 10 10 10 1 1
Vel. Unc. σv,0 (km/s) 1 1 1 .1 .1

ensure that the only difference between simulation cases are the true hypothesis resolutions

and the observation conditions.

For the given M sensors and N space objects, there are NM possible network tasking

configurations at each time instant. The inclusion of the option “none of the above” or

NOTA for each sensor increases the number of possible network tasking configurations to

(N + 1)M . NOTA is employed whenever a sensor is inactive due to daytime or adverse

weather, but is also employed when “Other” tasking objectives may be addressed. This

addresses real-world sensor tasking resource demands, where the number of potential hy-

potheses and actions far exceeds the number of sensors. Since this example application

is restricted in scope to remain illustrative, the “Other” category is employed to represent

addressing other hypotheses. If two potential courses of action result in the same hypoth-

esis resolution, the course of action with the least active sensors is chosen to free sensors

for use in addressing other hypotheses or objectives. Considering a receding time horizon

of H steps, the total number of tasking configurations for this sensor network over that

horizon is
(
(N + 1)M

)H
= (N + 1)MH As any of these parameters grows, evaluating each

possible tasking configuration to find the best option, known as the “brute-force” approach,

becomes intractable. For evaluation purposes in this study, the number of objects and sen-
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Figure 4.4: Propagated orbit and sensor geometries (triangles and boxes indicate simulation
initial and final positions, respectively)
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sors under consideration are low (N = 5, M = 3) and the greedy-optimization approach

is used (H = 1), so the brute-force approach is feasible. Additionally, the evaluation of

the minimum-ignorance objective function in this application is fast, so the evaluation for

all (N + 1)MH configurations is completed well within the simulated tasking time-step

(tk+1 − tk = 10 minutes). Continuing research seeks to efficiently explore this candidate

tasking configuration space to address problems with higher dimensionality and added re-

alism, using mixed-integer optimization methods to solve the combinatorial optimization

problem [82].

4.6.1 Case 1: Clear Observation, Nominal Dynamics

In the first test case, sensor tasking is simulated for 24 hours, with 10 minute tasking in-

tervals. An equal weighting is applied to each space object: wi = 1
5
∀ i ∈ 1, . . . , 5. No

maneuvers are prescribed, and observation conditions are clear and dark during the night

hours, with nominal values shown in Table 4.1. The values for the GT sensor indicate

deteriorated observation conditions due to city lights and pollution [15], using average val-

ues obtained from measured GT-SORT sky brightness. The USU and AMOS sensors are

placed in less populated areas, so nominal sky brightness and atmospheric transmittance

are adjusted accordingly. Between sunrise and sunset for each sensor, the background sky

irradiance is set to 1.5 mag
arcsec2

, significantly brighter than even the brightest measured sky

brightness data. This dataset provides the baseline test for the sensor network operating in

all-around nominal conditions and provides an illustrative example for data analysis that

must be understood before examining more complex scenario results.

The sensor tasking schedule is shown in Fig. 4.5(a), formatted similar to a Gantt chart

to indicate how much time is being spent by each sensor on each action (including the

“none of the above” option, or NOTA). The hash-marked sections of the schedule indicate

the times when a space object is unobservable to a particular sensor, which might be due to

excessive sky brightness (e.g. daylight), low atmospheric transmittance (e.g. cloud cover),
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or no line-of-sight (space object below the minimum elevation threshold for observation).

Figure 4.5(b) shows ignorance in the anomaly hypothesis for each space object, as well

as the weighted total sum. Recall that the goal is to minimize the weighted total anomaly

ignorance, so the sensor network selects the actions that minimize this value at each time

step. Figure 4.6 shows the resultant Dempster-Shafer belief structure for each space object.

This includes belief, plausibility, and ignorance in both custody and anomaly, as well as the

pignistic belief (“bet”) associated with each individual proposition: detected and nominal

(D ∩ N ), detected and anomalous (D ∩ A), missed and nominal (M∩ N ), missed and

anomalous (M∩A).

During the first few hours of the tasking window, all three sensors are in daylight, so

the NOTA option is selected since any observations would not provide usable information

(a missed detection is most likely due to excessive sky brightness). During this period,

state uncertainty and reachable distance grows, increasing anomaly ignorance as the 3-σ

uncertainty bounds exceed each sensor’s field of view (as seen in Fig. 4.5(b) and Fig.

4.6). When the space objects become observable, the sensors begin to task against them

and attempt observations to detect and confirm their states. Being the first sensor to exit

daylight, the GT sensor quickly scans all available targets, significantly restraining the

increase in ignorance. When a space object is detected, the associated anomaly hypothesis

ignorance drops as it is resolved to either nominal or anomalous (in this case, always being

resolved to nominal). Additionally, the custody hypothesis is resolved to indicate that

custody is kept, so the pignistic belief in the “detected-nominal” state for that object jumps

to one while the others all drop to zero (see Fig. 4.6). Therefore, successful detection

can be deduced from the Dempster-Shafer belief structures through this change in pignistic

belief.

The GT sensor also revisits each GEO space object to ensure the uncertainty and reach-

ability volumes stay within the field of view. Soon-after, the USU sensor becomes usable

and also aids in re-checking some of the space objects. The use of geometrically-diverse
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electro-optical sensors allows reduction of uncertainty in slightly different axes, further

controlling the growth of anomaly ignorance. Finally, the AMOS sensor becomes usable

and quickly checks GTOSat1, since it is the only sensor that is able to successfully observe

this object. Multiple observations at different points in the GTO object’s orbit also allow

further reduction in state uncertainty and therefore anomaly ignorance.

The ignorance-reduction methods take a relatively limited number of actions against

the relevant space objects because further actions would not lead to improved hypothesis

resolution. After the initial detection of each space object, follow-on observations are not

required immediately, allowing state uncertainty and reachability volumes to grow. Once

the volumes are large enough to start affecting anomaly hypothesis resolution, follow-on

observations are executed. This aspect is a strength of hypothesis-based methods, employ-

ing the minimal sensor resources required to reach the best possible (weighted) hypothesis

resolution and allowing reassignment of extra sensors to other tasks or priorities. This is

important as operational scenarios are significantly more complicated and involve many

more priorities that place a strain on sensor network resources.

It is worth noting that ignorance for each GTO space object grows significantly faster

than ignorance for the GEO space objects due to quicker-growing state uncertainty near

perigee. Ignorance also fluctuates and can reduce naturally (without being tasked by a

sensor) as the space object approaches apogee since the projected field-of-view of each

sensor is wider with an increased slant range.

Toward the end of the simulation, each sensor enters daylight once again and the

anomaly ignorance continues to grow with increased uncertainty. The GEO objects all

show increased anomaly ignorance at this time, which cannot be reduced due to daytime

sky brightness; however, had the sensors taken observations of each space object just before

entering daylight this could have been mitigated. Since the greedy optimization approach

was tested here, the sensor network could not look ahead to see this eventuality. This indi-

cates a limitation of the greedy optimization approach that the receding horizon approach
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can counteract, targeting minimum ignorance at a future time.

In total, each GEO object is tasked and successfully detected a total of four times,

and each GTO object is tasked and successfully detected three times. Overall, the sensor

network is relatively passive since the FOV thresholds are not surpassed quickly, so the

majority of sensor time is spent on the NOTA option in the “other” tasking mode; tasking

to a different target would not cause a loss in ignorance-reduction in any of the hypotheses.

This indicates that this simulated sensor network could handle a significant increase in the

number of tracked targets or hypotheses considered under nominal conditions, or handle

tighter tolerances on allowable uncertainty for the current hypotheses. However, nominal

conditions are too idealistic for application in real-world scenarios, so the following cases

evaluate performance in the case of off-nominal conditions.

4.6.2 Case 2: Unclear Observation, Nominal Dynamics

In the second test case, most parameters are identical to the first case: sensor and space

object parameters (see Tables 4.1 and 4.2), simulation timing, space object weighting, and

nominal observation conditions. However, poor observation conditions are induced at spe-

cific times in the simulation to cause the sensor network to compensate and retask. To

simulate the presence of cloud cover, atmospheric transmittance τatm is reduced to zero

between 18:00-3:00 UTC for the GT sensor and between 7:00-10:00 UTC for the USU

sensor (compare the “unobservable” times between Fig. 4.5(a) and Fig. 4.7(a)).

The result is that the USU sensor is the first to enter clear observation conditions, so

it takes the first pass at detecting all the GEO objects and the one observable GTO object.

As with Case 1, once targets are observable to the GT sensor observations are conducted

successfully. Since the GT sensor has a narrow instantaneous field of view, its observa-

tions reduce state uncertainty significantly. The performance of the AMOS sensor does not

change significantly: it is still the only sensor able to observe GTOSat1, and its detection

of GEOSat3 occurs slightly later due to the delay in initial acquisition caused by weather

111



(a) Sensor tasking schedule

(b) Anomaly ignorance

Figure 4.5: Case 1 - Sensor tasking schedule and anomaly ignorance
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conditions in Atlanta. The added cloud cover in Utah later in the simulation also causes the

AMOS sensor to reacquire GEOSat1.

The ignorance results in Fig. 4.7(b) and Dempster-Shafer belief structure results in Fig.

4.8 are very similar to the results from Case 1: anomaly and custody ignorance are both

kept low once tasking begins, and the pignistic belief in the detected-nominal proposition

D ∩ N remains near one. The total number of detections decreases slightly, with one

less detection of GEOSat3 simply due to impact of weather on detection timing, but the

effect on anomaly ignorance is negligible. The sensor network successfully accounts for a

predicted deterioration in observation conditions and maintains performance similar to the

fully nominal case.

4.6.3 Case 3: Clear Observation, Anomalous Dynamics

In test Case 3, the same simulation parameters from Case 1 are used, but a maneuver is

imposed on GEOSat2 to test the ability for the sensor network to identify the anomaly. The

truth data for GEOSat2 is modified to include a roughly 0.5 degree change in mean anomaly

at the TLE epoch, similar to an East-West station-keeping maneuver. On the first missed

detection, the custody hypothesis shows the miss and the sensor network determines the

observation conditions should not have caused the missed detection. The sensor network

flags the space object as anomalous and initiates a search to reacquire GEOSat2.

Since this occurs early in the simulation, the GT sensor is the only one available for

searching. The GT sensor has a very small field of view, so it does not interrogate much of

the reachable volume with each attempt and continues to miss observations. Meanwhile,

the uncertainty and reachability volumes continue to grow.

Once the anomalous space object is detectable to the wider-field-of-view USU sensor,

reacquisition responsibilities shift and the Utah sensor detects it on the first try. At this point

the anomaly is resolved, and the space object estimator is updated. The anomaly is con-

firmed in a follow-up observation of GEOSat2: the detected-anomalous, D ∩A, pignistic
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belief in Fig. 4.10(b) where it jumps to one.

Through the rest of the simulation, anomaly ignorance is kept in check with follow-

on observations for all the objects. The schedule of observations in Fig. 4.9(a) changes

slightly as a result, but the end-result anomaly ignorance in Fig. 4.9(b) is roughly the same

as in Case 1.

4.6.4 Case 4: Unclear Observation, Anomalous Dynamics

In Case 4, the same simulation parameters from Case 2 are used, and the same maneuver

from Case 3 is applied: roughly 0.5 degree change in mean anomaly for GEOSat2. In this

case, the GT sensor cannot observe it first due to cloudy conditions. The USU sensor is

able to acquire it on the first attempt due to its wider field of view, but the estimator update

from this observation is not sufficient to fully capture the anomaly. This can be seen by

the attempted follow-up observation of GEOSat2 after 9:00 UTC, where the GT sensor

enters a search mode to find it. At this time, the USU sensor is covered by poor observation

conditions, and the AMOS sensor can not observe it due to low elevation. After 10:00

UTC, the USU sensor is available once more, and it reacquires GEOSat2 and captures the

anomaly as seen in Fig. 4.12(b).

As with the other test cases, these changes in observation conditions affects the order

of observations as shown in the schedule (Fig. 4.11(a)). However, the performance as

measured by ignorance (Fig. 4.11(b)) does not change significantly.

4.6.5 Comparison to Covariance-Minimization

A covariance-minimization scheduler was also implemented and tested in the same cases

as above. This scheduler selects the actions that minimize the weighted-sum of the traces of

the covariances at each time step. A subset of these results are shown here for comparison

to ignorance-reduction.

Figure 4.14 shows the covariance-minimizing schedule. Notably, this tasking scheme
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takes far more actions than ignorance-reduction since every successful detection prevents

uncertainty from growing through state propagation. The only times when “other” actions

are taken are when all visible objects are already being tracked by other sensors. However,

Fig. 4.13 shows that the hypothesis resolution is similar to the ignorance-reduction results

in Fig. 4.5. This highlights an important distinction between the methods. Covariance-

minimization will continuously observe objects to reduce covariance, but that reduced co-

variance does not necessarily lead to improved hypothesis resolution. Ignorance-reduction

takes only the actions necessary to resolve the hypotheses, which may be preferred if there

are other secondary objectives or hypotheses to address (“other” actions). Throughout the

sensor-tasking portion of the simulation, covariance-minimization makes 176 tasking ac-

tions compared to 19 actions for ignorance reduction, while achieving the same hypothesis

resolution.

The hypothesis resolutions only differ at the end of the simulation, during the unob-

servable post-sunrise portion. Anomaly ignorance begins to increase again for ignorance-

reduction because state uncertainty increases throughout the unobservable portions of the

simulation. The covariance-minimization approach has lower state covariance at the end

of the observable portion of the simulation, and therefore covariance is lower at the end

of the simulation as well leading to lower anomaly ignorance. This discrepancy can be

rectified for ignorance-reduction using the receding-horizon approach with a sufficiently

long time horizon to capture the ignorance increase. A longer-horizon ignorance-reduction

approach would schedule final pre-sunrise observations to reduce covariance, and thereby

ignorance, at the end of the horizon, as observed in preliminary work on ignorance-based

tasking [90]. Similarly, a receding-horizon covariance-minimization approach may delay

some actions in order to allow covariance to increase while focusing on other priorities. The

delayed actions result in larger single-action reductions in covariance, useful in scenarios

where the number of objects far exceeds the number of available sensors. The drawback

of longer-horizon approaches is the exponential increase in computational complexity, and
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continuing research focuses on addressing computational complexity requirements for sen-

sor tasking problems [82].

The previous comparison is uneven in the amount of information available for hypoth-

esis resolution, since the covariance-minimizing scheme takes many more actions against

the hypotheses. For an information-equivalent comparison, the same case was run while

limiting the covariance-minimization technique to actions only at the same times that the

ignorance-reduction scheme took actions. This simulates that the “other” actions taken

were required to address other objectives, and only a limited number of observations are al-

lowed for these anomaly hypotheses. This added constraint emulates the presence of other

priorities that limit sensor resources without requiring a vast expansion of the simulated

search space. Figure 4.16 shows the resulting sensor schedule, and Fig. 4.15 shows the re-

sulting covariances and hypothesis resolution. In this case, the covariance-minimization

scheme chooses actions which do not resolve the hypotheses with the same clarity as

ignorance-reduction, leading to increased anomaly ignorance throughout the simulation.

This shows that the minimum-uncertainty actions are not necessarily the actions which

lead to the best hypothesis resolution, a result related to the coupling of covariance and

hypothesis evidence.

This trend repeats for all four test cases, so only the baseline (Case 1) and most chal-

lenging (Case 4) scenario results are shown for comparison. For instance, the anomalous

unclear (Case 4) schedule in Fig. 4.18 and results in Fig. 4.17 show identical character-

ization of the anomaly event, using 149 actions for covariance-minimization as compared

to the 18 actions used in ignorance-reduction. Once again, few “other” actions are taken

as each successful detection reduces the covariance, but once the actions are limited the

anomaly discrimination suffers. The limited schedule in Fig. 4.20 and results in Fig. 4.19

also show that, with limited actions, tasking to minimize covariance did not result in bet-

ter hypothesis resolution than tasking to minimize ignorance in these hypotheses. The

covariance-minimization results for Cases 2 and 3 are omitted since the observed trends
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are the same.

The comparison results, summarized in Fig. 4.21, show that ignorance-reduction per-

formed as well as covariance-minimization in resolving the anomaly hypotheses during

the tasking window, even though the covariance minimization approach used many more

actions. In many cases during these simulations, ignorance cannot be further reduced by

follow-on observations (until the uncertainty and reachability volumes have a chance to

grow again through propagation), so in ignorance-based tasking the sensors are allowed to

be assigned to other priorities. In contrast, the state estimate covariance can always be re-

duced with follow-on observations, so covariance-based tasking will always take any avail-

able actions to make incremental improvements. The ignorance-reduction method takes

strong actions toward resolving the hypotheses, and when covariance-minimization is lim-

ited to taking actions at the same times as ignorance-reduction, the covariance-minimizing

actions often resulted in weaker hypothesis resolution. Taking far fewer actions may be

considered a benefit of the ignorance-reduction approach if secondary objectives or hy-

potheses exist that can be investigated through “other” actions, as is likely the case in more

complicated operational contexts.

4.7 Conclusions

Current state-of-the-art sensor tasking for SSA focuses on maximizing information or min-

imizing uncertainty and is largely reactionary. This work proposes a formulation of the

sensor tasking problem that addresses specific hypotheses using Dempster-Shafer theory to

interrogate these hypotheses with sensor evidence. This hypothesis-based approach allows

incorporation of a wide variety of SSA sensors as evidence-based experts to predict hypoth-

esis resolution quality and select the set of actions that minimizes hypothesis ambiguity.

Applied to a space object custody and anomaly discrimination scenario, this framework

is able to generate sensor tasking schedules based on predicted observation conditions

to ensure custody is maintained. This is accomplished through maximizing ignorance-
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reduction in the hypothesis of interest, which selects only tasking combinations that pro-

vide high-quality evidence. Additionally, in the case of missed observations, the frame-

work initiates a search that incorporates the same SSA sensor data to quickly reacquire the

lost space object and characterize the anomaly. The sensor network maintains custody of

the objects and minimizes hypothesis ignorance with limited sensor effort, freeing up the

sensors to perform other activities in-between custody measurements. In comparison to a

covariance-minimization approach, the ignorance-reduction approach performs just as well

in hypothesis resolution with far fewer actions required. When covariance-minimization

actions are limited to the same times as ignorance-reduction, the ignorance-reduction ac-

tions result in better hypothesis resolution. This emphasizes that the minimum-covariance

actions do not always result in optimal hypothesis resolution, depending on the coupling

between hypothesis evidence and covariance.

Taking far fewer actions to achieve similar hypothesis resolution may be considered

a benefit of the ignorance-reduction approach if secondary objectives or hypotheses exist

that can be investigated through “other” actions. In a more complex operational scenario,

there are likely many more space objects and associated hypotheses, placing additional

strain on the sensor network to gather strong evidence in limited actions. The results of

the comparisons show that the ignorance-based approach selects actions that contribute

strong evidence based on hypothesis priorities. In the event that the number of objects (i.e.

evidence) far exceeds the sensor network tasking capabilities, the covariance-minimizing

actions are not guaranteed to result in the same quality of hypothesis resolution. Increased

numbers of objects and potential actions also magnify the computational complexity con-

cerns associated with brute-force resource allocation evaluations, which must be addressed

for operational implementation. The following chapter expands on the use of evidential

reasoning for evidence-gathering to address these and other practical implementation con-

cerns for hypothesis resolutions tasks.
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(a) GEOSat1 (b) GEOSat2 (c) GEOSat3

(d) GTOSat1 (e) GTOSat2

Figure 4.6: Case 1 - Belief assignment

119



(a) Sensor tasking schedule

(b) Anomaly ignorance

Figure 4.7: Case 2 - Sensor tasking schedule and anomaly ignorance
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(a) GEOSat1 (b) GEOSat2 (c) GEOSat3

(d) GTOSat1 (e) GTOSat2

Figure 4.8: Case 2 - Belief assignment results
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(a) Sensor tasking schedule

(b) Anomaly ignorance

Figure 4.9: Case 3 - Sensor tasking schedule and anomaly ignorance
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(a) GEOSat1 (b) GEOSat2 (c) GEOSat3

(d) GTOSat1 (e) GTOSat2

Figure 4.10: Case 3 - Belief assignment results
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(a) Sensor tasking schedule

(b) Anomaly ignorance

Figure 4.11: Case 4 - Sensor tasking schedule and anomaly ignorance
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(a) GEOSat1 (b) GEOSat2 (c) GEOSat3

(d) GTOSat1 (e) GTOSat2

Figure 4.12: Case 4 - Belief assignment results
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(a) Covariance traces (b) Anomaly hypothesis ignorance

Figure 4.13: Case 1: Covariance-minimization

Figure 4.14: Case 1: Covariance-minimization sensor tasking schedule and anomaly igno-
rance
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(a) Covariance traces (b) Anomaly hypothesis ignorance

Figure 4.15: Case 1: Covariance-minimization (limited)

Figure 4.16: Case 1: Covariance-minimization (limited) schedule and anomaly ignorance
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(a) Covariance traces (b) Anomaly hypothesis ignorance

Figure 4.17: Case 4: Covariance-minimization

Figure 4.18: Case 4: Covariance-minimization sensor tasking schedule and anomaly igno-
rance
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(a) Covariance traces (b) Anomaly hypothesis ignorance

Figure 4.19: Case 4: Covariance-minimization (limited)

Figure 4.20: Case 4: Covariance-minimization (limited) sensor tasking schedule and
anomaly ignorance
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(a) Case 1: Nominal, clear (b) Case 4: Anomalous, unclear

Figure 4.21: Anomaly hypothesis ignorance comparison for ignorance-reduction and
covariance-minimization methods.
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CHAPTER 5

EVIDENCE GATHERING FOR HYPOTHESIS RESOLUTION USING JUDICIAL

EVIDENTIAL REASONING

Frequently, decision-making occurs in environments where there is insufficient time to

gather all available evidence before a decision must be rendered, requiring efficient pro-

cesses for prioritizing between candidate action sequences. As with the sensor tasking

problem, evidence-gathering is a high-dimensional, multi-objective, mixed-integer, non-

linear optimization problem; as such, many approaches focus on tractable sub-problems

(e.g. single objectives, limited targets, limited actors).

In addition to the concern of ambiguous evidence, another concern in evidence-gathering

is confirmation bias: a preferential tendency to gather evidence that confirms prior beliefs

[91]. In regimes with uncertainty and ambiguity, this effect also applies by interpreting

ambiguous evidence in favor of prior beliefs. Appropriate hypothesis resolution should ef-

ficiently and conclusively confirm or refute each proposition while avoiding fixation based

on prior information, which may be plagued with uncertainty or ambiguity. Studies have

shown that decision-makers demonstrate several biases in decisions involving probability

judgment [91, 92, 93, 94], so decision-makers must be confident that the evidence-based

hypothesis resolution is strong and impartial before declaring a resolution.

This chapter generalizes the application of evidential reasoning from the previous chap-

ter to a broader evidence-gathering framework for multi-hypothesis resolution, allowing

quantified ambiguity representation. The generalized framework utilizes Dempster-Shafer

theory to address the well-documented decision-making phenomenon of ambiguity aver-

sion. Adversarial optimization techniques are applied to mitigate confirmation bias and

improve computational tractability of the multi-hypothesis resolution problem. The devel-

oped framework, called Judicial Evidential Reasoning, is demonstrated in several simpli-
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fied example cases as well as a more nuanced application to SSA sensor tasking.

5.1 Ambiguity Aversion

It has been shown that human decision-makers overwhelmingly prefer known risks to un-

known risks, making ambiguity a major concern in modeling knowledge states [94]. Ells-

berg’s paradox, re-stated here, is a well-known example that violates Savage’s theory of

subjective expected utility [94]. Consider two urns, each filled with 100 red or yellow

balls. The first urn contains an unknown distribution of red and yellow balls. The second

urn contains an equal distribution of red and yellow balls, 50 of each. The goal is to draw a

red ball from one of the urns, and the human decision-maker is allowed to choose which urn

they draw from. The results of Ellsberg’s study show that humans overwhelmingly chose

to draw from the second urn, which has a known probability distribution, even though the

first urn may contain a favorable distribution of red balls. This is a phenomenon known as

“ambiguity aversion” and is a predictable characteristic of human decision-making in the

face of uncertainty.

The first urn in Ellsberg’s paradox represents a vacuous knowledge state, while the sec-

ond urn represents the equal-probability knowledge state. Using Bayesian probability, both

knowledge states would be represented with the same probability mass function, meaning

the information presented to the decision-maker would not adequately convey information

on the presence or lack of ambiguity that would impact the decision. This highlights a

deficiency in Bayesian probability theory that has a significant impact in human decision-

making contexts, which motivates the use of alternative methodologies such as evidential

reasoning.

5.1.1 Plausibility Transformation for Decision-Making

While the ability to represent ambiguity in belief functions is useful for accurately rep-

resenting knowledge states, a key criticism is that the theory of belief functions lacks a
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coherent decision theory [55]. Multiple methods exist for translating between Dempster-

Shafer belief functions and probability models, allowing the use of Bayesian decision the-

ory. Smets suggested the use of the pignistic transformation [57], but it has been argued

that the pignistic transformation may not be consistent with Dempster’s rule of combina-

tion [55]. An alternative method, the plausibility transformation, is defined in Eqn (5.1)

[55]:

Prplm (x) = K−1Plm ({x}), (5.1)

where K =
∑
x∈Ω

Plm ({x}) (5.2)

Note that the normalization constantK in (5.2) is different from the normalization constant

for Dempster’s conjunctive rule in Eqn. (4.6). The plausibility transformation is consistent

with Dempster’s rule, particularly in situations where pignistic probability is inconsistent

[55].

5.1.2 Entropy for Decision-Making

Another important concept in both probabilistic and evidential reasoning is entropy as an

information content measure. For Dempster-Shafer theory, multiple definitions of entropy

have been proposed, many of which are summarized by Jirousek and Shenoy [74]. Conflict

in the belief structure is measured through Shannon entropy using the plausibility trans-

form, where low conflict means a significant belief mass attributed to a singleton proposi-

tion. Non-specificity captures ambiguity as the entropy associated with non-singleton focal

sets of the bpa using the Dubois-Prade entropy. The Jirousek-Shenoy (J-S) definition of

entropy combines Shannon and Dubois-Prade entropy to capture both conflict and non-

specificity. Minimizing both conflict and non-specificity ensures that the resulting belief

structure is internally consistent (i.e. prefers strong hypothesis resolution over an equally-

probable result) and is non-ambiguous.

133



Table 5.1: Ellsberg’s paradox belief structures and entropy

Urn m ({red}) m ({yellow}) m ({red, yellow}) HS(m) HDP (m) HJS(m)
1 0.5 0.5 0 1 0 1
2 0 0 1 1 1 2

One useful property of J-S entropy is that maximum entropy is only attained by a vacu-

ous bpa, which is the bpa where all belief mass is assigned to the entire frame: m (Ω) = 1.

Including both conflict and non-specificity (or ambiguity) in the entropy calculation allows

for appropriate modeling of the ambiguity aversion phenomenon [74]. Recalling Ellsberg’s

paradox, the first urn is an equally-likely belief structure and the second urn is a vacuous

belief structure:

m1 ({red}) = m1 ({yellow}) = 0.5 , m1 ({red, yellow}) = 0

m2 ({red}) = m2 ({yellow}) = 0 , m2 ({red, yellow}) = 1

The Shannon entropy, Dubois-Prade entropy, and J-S entropy for these belief structures

are shown in Table 5.1. As expected, Shannon entropy shows high conflict for both belief

structures, but Dubois-Prade entropy is only non-zero for the ambiguous distribution, so the

second urn has a higher J-S entropy. The decision-maker wants to minimize conflict and

non-specificity, so selecting urn 1 with the lower J-S entropy is consistent with the result

from Ellsberg’s paradox. Therefore, minimizing J-S entropy can be used as a reliable and

consistent metric for a strong hypothesis resolution.

5.2 Hypothesis Abstraction

Many evidence-gathering approaches (e.g. sensor network tasking) operate on maintaining

a low overall uncertainty (e.g. information-maximum); however, it may not be readily

apparent to a decision-maker how reducing state uncertainty by a certain amount affects

situation awareness or answers decision-making questions. This motivates an approach
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Figure 5.1: Predictive and reactive evidence-gathering.

that encodes decision-making priorities as hypotheses that can be interrogated by evidence-

gathering actions.

Hypothesis-driven approaches enable a predictive mode of evidence-gathering designed

to answer specific questions, using prior knowledge of relevant hypotheses to estimate

information-gain from potential courses of action and propose actions that are predicted to

resolve the hypotheses. This is fundamentally different from reactive approaches, where

the gathered information is used to form hypotheses a posteriori about what caused the

observed behavior. This relationship between hypotheses and information in predictive

and reactive evidence-gathering is illustrated in Fig. 5.1.

Re-framing evidence-gathering in terms of hypotheses supports human decision-making

strengths in abstract-level cognitive tasks required for objective prioritization and goal-

adjustment [11]. Forcing an operator to switch between different levels of the abstraction,

effectively approaching the problem at multiple different levels of detail, leads to increased

frustration and workload and decreased situation awareness [82]. Designing a decision-

support system that directly conveys hypothesis resolution information ensures that the

human decision-maker spends more time on strategic cognitive tasks.

5.3 General Evidence-Gathering Problem Definition

Consider a set of hypotheses and a set of actors tasked with gathering evidence to resolve

these hypotheses over a given T -step time horizon, from tk to tk+T . The finite set of hy-

potheses under consideration can be represented as Ω = {Ω1, . . . ,Ωn}, where Ωi is the

frame of discernment for the ith hypothesis and |Ω| = n ∈ Z+ is the number of hypothe-
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ses. Recall that each hypothesis frame of discernment Ωi ∈ Ω contains a set of mutually

exclusive and collectively exhaustive propositions for resolution of that hypothesis.

At time tk, define the actions available to the sth actor as the finite set As,k. Under the

assumption that each actor can only perform one action at a given time tk, the available

action sets for all m actors in the network at time tk are described through the Cartesian

product:

Ak = A1,k × . . .× Am,k (5.3)

where an action set Ak ∈ Ak denotes a valid set of m actions at time tk and As,k ∈ Ak is a

valid action for actor s from that action set.

Define an actor’s sequence of actions over the time horizon tk+1 to tk+T as the following

ordered list (or T -tuple):

As,1:T = (As,1, . . . , As,T ) , s = 1, . . . ,m (5.4)

Similarly, define a set of action sequences for all actors as the finite set:

A1:T = {A1,1:T , . . . ,Am,1:T} (5.5)

This set contains an action sequence for each of the m actors in the network and thus

fully defines the actions taken by the network over the time horizon. Furthermore, the set

of all valid sets of action sequences (all valid combinations of action sequences) is also

represented by a Cartesian product:

A1:T = A1:T × . . .×A1:T (5.6)

The goal is to select the set of action sequences that minimizes a to-be-defined cost
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function at the end of the T -step receding time horizon. Generically, this cost function may

be represented as follows:

JT : (Ω,W ;A1:T ) 7→ R (5.7)

where W is a user-defined set of weights such that wi ∈ W quantifies the priority of

hypothesis Ωi relative to the other hypotheses in Ω, and T indicates that the cost function is

evaluated at the end of the time horizon, time tk+T . It stands to reason that some hypotheses

will be more important to decision-makers than others, so this weighting is considered a

user-defined (potentially time-varying) parameter. It is not subject to optimization in this

study but is instead treated as a tunable parameter.

Therefore, the generic hypothesis-based evidence-gathering optimization problem is:

A∗1:T = arg min
A1:T∈A1:T

JT (Ω,W ;A1:T ) (5.8)

In other words, the optimal set of action sequences minimizes the cost function JT , eval-

uated at time tk+T subject to the evidence from each action As,· ∈ As,1:T in each action

sequence As,1:T ∈ A1:T for each actor s = 1, . . . ,m. In the following sections, a specific

cost function is developed based on reaching strong (unambiguous and unbiased) hypothe-

sis resolutions.

5.4 Evidence-Gathering for Hypothesis Entropy Reduction

Hypothesis resolution refers to the goal of determining which proposition is true from

the set of propositions in the frame of discernment. Recall that Jirousek-Shenoy entropy

[74] quantifies both conflict and non-specificity in hypothesis knowledge, providing an apt

minimization objective for strong hypothesis resolution.

At a given time tk, each candidate action A ∈ Ak gathers evidence that may be used

to resolve hypotheses. Denote the total amount of evidence gathered through action set

137



Ak as p, noting that a single action may gather multiple distinct pieces of evidence or may

gather no evidence, restricting p to the non-negative integers. The hypothesis-resolution

contribution of a given piece of evidence is represented by the bpa:

mi,j,k : 2Ωi 7→ [0, 1] (5.9)

where the subscript i indicates that this bpa is related to hypothesis Ωi, the subscript j =

1, . . . , p refers to the piece of evidence relevant to this bpa, and the subscript k indicates

the evidence is gathered at time tk. The bpas for all p pieces of evidence can be fused using

Dempster’s rule to arrive at a hypothesis update bpa:

m̃i,k =

p⊕
j=1

mi,j,k (5.10)

Recall that Dempster’s rule is associative and commutative, meaning the combination can

be done sequentially and order doesn’t matter [95]. However, Dempster’s rule is not idem-

potent so the pieces of evidence being combined must be independent to avoid artificially

inflating the effect of a particular piece of evidence. If a particular piece of evidence j

gathered at time tk does not contribute to hypothesis Ωi, then mi,j,k is simply the vacuous

bpa, ensuring that each term in the summation is defined.

Therefore, the resulting knowledge state for hypothesis Ωi, incorporating all evidence

from time from t0 to tk is denoted as:

m+
i,k = m−i,k ⊕ m̃i,k (5.11)

where m+
i,k is the a posteriori knowledge state and m−i,k is the a priori knowledge state for

hypothesis Ωi at time tk based on all evidence gathered prior to tk.
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5.4.1 Normalized Jirousek-Shenoy Entropy

The resolution of hypothesis Ωi based on bpa mi, as measured through Jirousek-Shenoy

entropy [74], is defined as:

HJS (mi) =

(∑
x∈Ωi

PlPmi
(x) log2

(
1

PlPmi

))
+

∑
A∈2Ωi

mi(A)log2 (|A|)

 (5.12)

where the first summation term, related to Shannon entropy, quantifies conflict and the

second summation term, called Dubois-Prade entropy, quantifies non-specificity. Theorem

5.4.1 shows that Jirousek-Shenoy entropy is on the scale [0, 2log2 (|Ωi|)] [74].

Theorem 5.4.1 (Maximum Entropy). Consider a bpa m for discrete random variable X

with frame of discernment ΩX = {x1, . . . , xn}. The maximum value of Jirousek-Shenoy

entropy for m is

HJS(m) = 2log2 (n) (5.13)

Proof. The maximum entropy principle [74] states that the maximum value of entropy is

attained by the vacuous bpa. Therefore, assume m is vacuous:

m(Ωx) = 1, m(x) = 0∀x ∈ 2ΩX \ ΩX (5.14)

The plausibility transformation yields the following plausibility probability function:

PlPm (x) =
1

n
∀x ∈ ΩX (5.15)

Computing the Shannon entropy:

∑
x∈Ωi

PlPmi
(x) log2

(
1

PlPmi

)
= n

(
1

n
log2(n)

)
= log2(n) (5.16)
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Similarly, computing the Dubois-Prade entropy for the vacuous bpa m:

∑
A∈2Ωi

mi(A)log2 (|A|) = log2(n) (5.17)

becausem(A) is non-zero only forA = ΩX , in which case the cardinality |A| = |ΩX | = n.

Maximum Jirousek-Shenoy entropy is therefore the sum: HJS(m) = 2log2 (n).

To use entropy as a cost function while accounting for hypotheses with different num-

bers of propositions, the normalized Jirousek-Shenoy entropy is defined as follows:

H̃JS(mi) =
HJS(mi)

2log2 (|Ωi|)
(5.18)

where mi is the bpa representing knowledge of hypothesis Ωi.

5.4.2 Optimization Formulation

To accomplish the goal of minimizing hypothesis conflict and non-specificity, the normal-

ized entropy defined in Eqn. (5.18) is employed as the cost function to further specify the

optimization problem in Eqn. (5.8).

A∗1:T = arg min
A1:T∈A1:T

|Ω|∑
i=1

wiH̃JS (m̂i,T ) (5.19)

where wi ∈ W are the hypothesis weights used to denote relative priorities such that∑
iwi = 1, and m̂i,T is the estimated bpa for hypothesis Ωi at the end of the time horizon

tk+T . The optimal set of action sequences, A∗1:T , are actions estimated to gather evidence

that minimizes conflict and non-specificity in user-prioritized hypotheses.

5.4.3 Computational Complexity

The general formulation in Eqn. (5.19) suffers from a number of practical issues in imple-

mentation. Most notably, the number of action sequences to evaluate can quickly preclude
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brute-force evaluation of all possible action sequences over the time horizon. Computa-

tional complexity of a brute-force approach to this optimization problem scales with the

number of hypotheses |Ω|, the number of sensors m, the number of valid actions for each

sensor nm, and the time horizon T :

O

(
T∏
t=1

(
m∏
j=1

ns,t

))
(5.20)

where m is the number of actors and ns,t is the number of valid actions for the sth actor

at time tk+t. The upper bound on this complexity is found by defining the worst-case

number of valid actions as n = max (ns,t | s = 1, . . . ,m ; t = 1, . . . , T ), yielding a worst-

case computational complexity:

O
(

(nm)T
)

(5.21)

As expected, computational complexity for a brute-force approach scales exponentially

with the number of valid actions, the number of actors, and the length of the time horizon.

Depending on the resources required to estimate the hypothesis resolution after a set of

action sequences, this algorithm can become computationally restrictive, motivating several

complexity mitigations.

5.5 Implementation Considerations

This section modifies the general optimization approach in Eqn. (5.19) to arrive at a com-

putationally tractable solution by decomposing the problem into individual sub-problems

and applying adversarial optimization techniques to reduce the number of action sequence

evaluations. An additional concern with the entropy-reduction algorithm is the effect of

evidence ambiguity and evidence-gathering bias induced by prior information. Adversarial

optimization is applied to reduce the number of action sequence evaluations and combat
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confirmation bias.

5.5.1 Unbiased Hypothesis Resolution

Confirmation bias is a cognitive phenomenon where prior belief causes fixation on a par-

ticular proposition, causing the human to favor evidence that confirms prior beliefs and

overlook conflicting evidence [91]. In regimes with uncertainty and ambiguity, this effect

also applies by interpreting ambiguous evidence in favor of prior beliefs. Similar to hu-

man cognitive fixation, socio-technical systems might also exhibit confirmation bias. For

instance, a most-probable-first evidence-gathering approach would prioritize actions esti-

mated to gather further evidence to confirm prior knowledge. However, spurious detections

or false alarms may lead to increased belief in the incorrect proposition. In this way, prior

information has the potential to skew future evidence-gathering actions, so technological

fixation may be induced by measurement noise, sensor bias, or other sources of uncertainty.

For illustration, consider a binary frame Ω = {x1, x2} and a prior that places slight

belief in the x1 proposition: m ({x1}) = 0.1, m ({x2}) = 0, m ({x1, x2}) = 0.9. A most-

probable-first approach would focus future actions on confirming {x1}, while ignoring

the (much larger) ignorance in the estimated proposition. If the true resolution of this

hypothesis is actually {x2}, evidence gathered from tasking on the incorrect proposition

({x1}) may be vacuous, causing the knowledge state stagnate. In this case, the most-

probable-first approach stalls as no further evidence is admitted to increase belief in {x2}

and change the proposed tasking.

It is important to avoid fixating on any particular proposition where incorrect priors or

evidence ambiguity may be the cause of any bias, adding a competing objective to the re-

quirement of minimizing hypothesis entropy. Just as fixation should not be ignored in favor

of time optimality, fixation should not be the only focus at the cost of resolving hypothe-

ses within time constraints. Quantifying confirmation bias is an active area of research,

with cognitive sciences researchers using various measures comparing selection of sup-
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porting versus refuting evidence [91, 93]. One such measurement is the difference between

numbers of selected supporting and refuting evidence elements [92], meaning an unbiased

sequence of actions selects equal numbers of supporting and refuting elements.

The proposed approach employs a related heuristic, a principle of equal effort that dis-

tributes resources (e.g. actions, time, money) evenly amongst propositions. An apt analogy

for this heuristic is the fair trial system, wherein the defense and prosecution are given

equal opportunity to present the strongest evidence to confirm or refute a hypothesis. Sim-

ilarly, the proposed framework employs a pair of agents for each proposition, advocate and

critic, which alternate action turns to allow equal opportunity for gathering supporting or

refuting evidence, respectively. Due to strong parallels to the fair trial system, the proposed

framework is called Judicial Evidential Reasoning (JER).

Application of this alternating-turns heuristic encourages resolution guided by evi-

dence, not prior beliefs, biases, or ambiguity. In the event of multiple competing resources,

the principle of equal effort creates an additional multi-objective optimization and unique-

ness of the solution using this heuristic is not guaranteed. However, improved measures

for confirmation bias are an area for future research and could extend the JER approach by

altering the agent-pair action ordering.

5.5.2 Sub-Problem Definition

The primary intuition that allows decomposition of the entropy-reduction approach in Eqn.

(5.19) is that not all sensor actions contribute evidence related to all hypotheses. The sub-

problems can be solved independently (and in parallel), resulting in |Ω| sub-problem action

sequence sets that must be combined into a single optimal set of action sequences.

Consider one of the hypotheses Ωi ∈ Ω and the subset of valid actions relevant to that

hypothesis as As,k,i:

As,k,i ⊆ As,k (5.22)
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where As,k are all the valid actions for sensor s = 1, . . . ,m. Similarly, the action sequences

relevant to hypothesis Ωi over the time horizon tk to tk+Tiare denoted

A1:Ti,i ⊆ A1:Ti (5.23)

By definition, |As,k,i| ≤ |As,k| and |A1:Ti,i| ≤ |A1:Ti |. Note that the time horizon Ti is

allowed to be different for each hypothesis since, in operation, not all hypotheses need to

have the same optimization horizon.

The sub-problem optimization objective is first represented using a generic cost func-

tion specific to each hypothesis:

JTi,i : (Ωi;A1:Ti,i) 7→ R (5.24)

Note that wi is not relevant to this portion of the optimization as the sub-problems are

being solved independently, but it will play a role in the combination of the sub-problem

sequences. The sub-problem optimization problem is defined as:

A∗1:Ti,i
= arg min
A1:Ti,i

∈A1:Ti,i

JTi,i (Ωi;A1:Ti,i) (5.25)

This sub-problem decomposition approach allows for parallel computation of action

sequence sets for each agent-pair. However, if the entropy-reduction cost function is em-

ployed as in Eqn. (5.19), the same concerns related to confirmation bias will arise: an

incorrect prior induces actions against the incorrect proposition, leading to weak or vacu-

ous evidence and weak hypothesis resolution. Therefore, a different optimization approach

is employed for the sub-problems while entropy-minimization is reserved for the combina-

tion of the sub-problem solutions.
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5.5.3 Combating Confirmation Bias

Adversarial optimization techniques are employed to reduce confirmation bias, similar to

the opposing counsel in the judicial system. Approaches such as minimax optimization

have been heavily applied in game theory for turn-based, zero-sum games such as Chess

and GO. In minimax optimization, an agent plans its actions with the knowledge that the

opposing agent will select actions toward the opposite goal. In light of this conflict, both

agents attempt to minimize potential loss in a worst-case scenario. Conversely, for a max-

imizing objective, maximin optimization represents agents maximizing the minimum gain

from a sequence of actions.

Consider a single hypothesis from the set of considered hypotheses at time tk: Ωi ∈ Ω.

Each proposition must be either conclusively confirmed or refuted with evidence, so each

proposition is assigned a pair of JER agents. Therefore, for hypothesis Ωi there are |Ωi|

alternating JER agent-pairs. When the advocate agent is active, its goal is to maximize be-

lief in the proposition {θ}, accomplished using maximin optimization with the plausibility

probability transformation:

A∗1:Ti|{θ} = arg max min
A1:Ti,i

∈A1:Ti,i

Prpl

(
θ;mi|A1:Ti,i

)
(5.26)

wheremi|A1:Ti,i
is the estimated bpa resulting from the proposed action sequenceA1,H . The

plausibility transformation is applied here because of its relationship and consistency with

decision-making. The maximum attainable value for this objective is 1 when proposition

{θ} has full belief, and the minimum attainable value for this objective is 0 when proposi-

tion {¬θ} has full belief. When the critic agent is active, its goal is to maximize belief in

the alternative proposition ({¬θ}) or equivalently minimize belief in the null proposition

({θ}). Therefore, the formulation simply flips to a minimax optimization:

A∗1:Ti|{¬θ} = arg min max
A1:Ti,i

∈A1:Ti,i

Prpl

(
θ;mi|A1:Ti,i

)
(5.27)
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The result of the JER agent-pair schedule optimization is a minimax-optimal action

sequence for each agent-pair. In the next section, these sub-problem action sequences are

combined to arrive at a single optimal schedule. If an agent-pair’s action is selected in the

final schedule for this iteration, that agent-pair flips its active agent for the next time step.

5.5.4 Resolving Combined Schedule Incongruity

After determining optimal schedules for each agent-pair, the schedules must be combined

into a single schedule. Depending on the hypotheses, it is possible or even likely that two

or more agent-pairs will require the same actor for different actions. These incongruities

are resolved by choosing the actions that lead to the strongest hypothesis resolution as

measured by entropy.

Using the set of actions from all sub-problem optimal sequences A∗1:T·,·, all possible

combinations of these actions are used to form candidate congruous action sequences. The

combination schedules are evaluated up to the longest time horizon. The evaluation crite-

rion for selecting the optimal combined schedule is the weighted-sum of entropy:

A∗1,T = arg min
A1:T∈A∗1:T·,·

|Ω|∑
i=1

wiH̃JS

(
mi|A1:T

)
(5.28)

where wi is the weighting for the ith hypothesis, and H̃JS is the normalized J-S entropy as

defined in Eqn. (5.18). Since Jirousek-Shenoy entropy quantifies both conflict and non-

specificity, and the weighting parameters encode decision-maker priorities, the resulting

action sequenceA∗1:T is the action sequence with the strongest priority-weighted resolution.

At worst case, this is the same as a brute-force re-evaluation, but this would require all

hypotheses to have the same applicable action subsets and all possible actions produce an

optimal result for at least one hypothesis. This implies an extreme interdependence between

the hypotheses that is unlikely to occur in operation. In more realistic cases, where at least

some hypotheses are distinct enough to have different applicable actions, this re-evaluation
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is much less computationally complex than brute-force.

5.5.5 Efficient Minimax Optimization

To further reduce the number of action sequences evaluated, the alternating-agent formula-

tion of the sub-problems can be further exploited using adversarial optimization techniques.

Combinatorial optimization techniques often employ methods for intelligently exploring or

pruning expansive decision trees (e.g. branch and bound) to quickly eliminate costly or in-

feasible options.

In naive minimax (or maximin) optimization, the number of sequences evaluated grows

exponentially with the number of valid actions and the search depth, as in Eqns. (5.20)

and (5.21). However, depending on the order in which the tree of action sequences is

traversed, some sequences do not need to be evaluated if they are known never to lead to the

optimal solution. A popular technique to accomplish this is called alpha-beta pruning [96].

Determined by previously evaluated sequences, alpha represents the minimum score that

the maximizing player is already guaranteed, while beta represents the maximum score that

the minimizing player is guaranteed. These values function as thresholds to prune branches

of the search tree that cannot possibly result in the optimal sequence.

The effect of pruning the known sub-optimal branches early is to reduce the number of

required sequence evaluations while still arriving at the same optimal solution as naive min-

imax. In an ideal case, the computational complexity reduces to Eqn. (5.29), a significant

improvement over the brute-force complexity in Eqn. (5.21).

O
(√

(nm)T
)

(5.29)

While this idealized complexity may not be fully realized in application, alpha-beta pruning

is still likely to eliminated unnecessary searches to provide a more efficient minimax search.

Figure 5.2 illustrates the internal logic of an alpha-beta pruning search. Each node
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represents an action and a sample objective-function return resulting from that action in the

minimax approach. The maximizing agent at the middle-depth recognizes that, if it were

to take the second available action (from the left), the minimizing agent has an opportunity

to choose an action to reach an objective function value of 3, possibly less. Since this

is less than the guaranteed 7 from the maximizing agent’s first action, the remainder of

that branch is pruned. Similarly, the minimizing agent recognizes that, at the top-node,

taking the second available action allows the maximizing agent to attain an objective value

of 8, possibly greater. Therefore, the remainder of the right-side of the evaluation tree is

eliminated. This reduces the number of sequence evaluations required from a maximum of

8 (in naive minimax) to just 5.

Figure 5.2: Sample alpha-beta pruning

Section 5.6.1 further illustrates the benefits of alpha-beta pruning in example case 1,

specifically Fig. 5.5. The implemented JER algorithm for this paper uses alpha-beta prun-

ing for efficient minimax optimization.

5.5.6 Hypothesis Pruning via Entropy Stopping Condition

A final computational consideration is the pruning of resolved hypotheses. Once sufficient

evidence has been gathered to resolve a hypothesis, it is beneficial to remove that hypoth-

esis from consideration for future tasking evaluations. Decision-makers should be able to

indicate an acceptable level of conflict and ambiguity, manifesting as J-S entropy thresh-
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olds H̃th (mi) for each hypothesis Ωi. If the entropy for a given hypothesis falls below this

threshold, that hypothesis is considered adequately resolved and action sequences related to

that hypothesis no longer need to be considered. This improves computational complexity

further by removing entire sub-problems from consideration.

5.5.7 Judicial Evidential Reasoning Summary

The three primary considerations of the JER framework, as described in the preceding

sections, are: hypothesis abstraction, ambiguity aversion, and unbiased hypothesis reso-

lution. Employing a hypothesis abstraction enables predictive tasking and supports hu-

man cognition at a strategic and planning level. The use of evidential reasoning, specif-

ically Dempster-Shafer theory, to model hypothesis knowledge allows quantified conflict

and ambiguity together in the entropy measurement. Applying a principle of equal effort

through the alternating-turns heuristic, inspired by the fair trial system, provides impartial

or unbiased hypothesis resolution to guard against confirmation bias while also prioritizing

time-efficient hypothesis resolution. The inclusion of efficient minimax algorithms and a

hypothesis resolution pruning condition further improve computational tractability.

The JER framework developed in the previous sections is summarized graphically in

Fig. 5.3. Algorithm 1 outlines the JER algorithm outer-loop process, termed the JER sched-

ule manager. The manager starts by calling each agent-pair inner-loop process in parallel.

Each agent-pair solves its sub-problem using the alternating-agent minimax optimization

on the plausibility probability transformation, outlined in Alg. 2 using a naive minimax al-

gorithm for ease of description. Recall that the alpha-beta pruning enhancement is simply

an efficient minimax that reduces the search space, so both the naive and alpha-beta imple-

mentations reach the same result. The JER manager combines the sub-problem schedules

and determines the optimal combined action sequence A∗∗ using the total weighted en-

tropy objective. Once the optimal action sequence is determined, the active agent-pairs

(those whose actions are chosen in the optimal sequence) are flipped for the next iteration.
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Algorithm 1 JER manager, subproblem schedule combination
1: tk: current time
2: tT : horizon time
3: wj: weight for hypothesis j
4: A∗i : sub-problem solution for ith JER agent-pair
5: procedure OPTIMIZEACTIONSEQUENCE

6: Solve sub-problem schedules
7: for each agent-pair i do
8: m−i,k ← a priori bpa for relevant hypothesis of agent-pair i at time tk
9: isMaxi ← flag, true if advocate agent is active for agent-pair i at time tk

10: Ai ← []: initialize empty sequence
11: (s∗i , A

∗
i )← EvaluateAgentPair

(
tk, tT , m̂

−
i,k, isMaxi, Ai

)
12: end for
13: Resolve combined schedule incongruity
14: A∗ ← A∗1 × . . .× A∗N : Cartesian product of subproblem sequences
15: A∗u ← unique(A∗): unique combination sequences
16: for each sequence Ai in A∗u do
17: for each hypothesisHj do
18: m̂+

j ← m−j : initialize updated hypothesis estimates
19: end for
20: for each action a in Ai do
21: for each hypothesisHj do
22: m̂j,a ← estimated evidence for hypothesisHj from action a
23: m̂+

j ← m̂+
j ⊕ m̂j,a

24: end for
25: end for
26: Ji ←

∑
j wjH̃JS

(
m̂+
j

)
: total weighted entropy objective

27: end for
28: A∗∗ ← sequence corresponding to minimum total weighted entropy
29: Flip active agent-pairs
30: for each sub-problem sequence A∗i do
31: if any action a in A∗i is in A∗∗ then
32: isMaxi ←!isMaxi
33: end if
34: end for
35: return A∗∗
36: end procedure
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Algorithm 2 JER agent-pair evaluation, recursive naive minimax implementation
1: tk: current time
2: tT : horizon time
3: m̂−k : estimated a priori bpa at time tk
4: isMax: flag, true if advocate is active at tk
5: A: action sequence
6: s: evaluation score, plausibility probability transformation of proposition {θ}
7: procedure EVALUATEAGENTPAIR(tk, tT , m̂−k , isMax, A)
8: if tk >= tT then
9: {θ} ← relevant proposition for this agent-pair

10: return (Prpl ({θ}) , A)
11: else
12: if isMax then
13: s∗ ← − inf
14: else
15: s∗ ← + inf
16: end if
17: A∗ ← A
18: Ak ← candidate actions relevant to this agent-pair at tk
19: tkp ← next time step
20: for each action set A in Ak do
21: A[tk]← A
22: m̂A ← estimated bpa from action set A
23: m̂+ ← m̂− ⊕ m̂A

24: (s , A+)← EvaluateAgentPair(tkp, tT , m̂+
k , !isMax, A)

25: if isMax then
26: if s > s∗ then
27: s∗ ← s
28: A∗[tk : tT ]← A+[tk : tT ]
29: end if
30: else
31: if s < s∗ then
32: s∗ ← s
33: A∗[tk : tT ]← A+[tk : tT ]
34: end if
35: end if
36: end for
37: return (s∗ , A∗)
38: end if
39: end procedure
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Figure 5.3: Judicial Evidential Reasoning algorithm
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The following sections apply the JER algorithm described above to illustrative medical

diagnosis examples as well as a sensor network tasking scenario.

5.6 Examples

This section contains illustrative examples of the JER approach using simplified medical

diagnosis situations. The first example is intended to illustrate the JER agent-pair sub-

problem optimization in detail, and the second example illustrates the combination of mul-

tiple JER agent-pairs to form a unified schedule. In each case, the relevant hypotheses and

propositions are outlined, available tests are outlined as potential actions, and the JER ap-

proach is applied to determine the sequence of tests ordered. Since this is intended to be an

illustrative example, the diagnosis details have been simplified and constraints have been

enforced such that not all actions may be taken within the diagnosis window (i.e. time-

critical decision-making). Section 5.7 contains a more detailed and nuanced application of

JER to a real-world sensor network tasking problem.

5.6.1 Case 1: Single JER Agent-Pair

The first example involves a single hypothesis with two competing (mutually exclusive

and collectively exhaustive) propositions, yielding the following frame of discernment:

{θ,¬θ}. To simplify notation, define the corresponding propositions as: A = {θ} and

¬A = {¬θ}. Since this is a single hypothesis problem with a binary frame of discernment,

only one JER agent-pair is needed, and this example serves to illustrate the JER inner-loop:

minimax optimization using plausibility probability.

Assuming no prior information on the correct resolution (i.e. full ignorance), the prior

belief assignment is vacuous. Three tests are available to inform this diagnosis, but time

and cost constraints limit the number of tests to two. Therefore, the goal is to determine

which two tests result in a strong-but-unbiased resolution. Table 5.2 lists basic probability

assignments (bpas) for each available test, functions of known statistics on the test such
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as false alarm rate. Test 1 is a strong indicator of the confirmation of proposition A but

does not carry information to negate A (or equivalently, confirm ¬A). Similarly, Test 2 is

a strong indicator for confirming proposition ¬A. Both tests have non-zero probabilities

of false alarm, meaning that neither can contribute complete belief to either proposition,

resulting in non-zero belief mass attributed to the frame. Test 3 does operate as an indicator

of both confirmation and negation of A, but provides weaker evidence toward both.

Table 5.2: Example Case 1: Basic probability assignments for diagnostic tests

Test # A ¬A A ∪ ¬A
1 0.7 0.0 0.3
2 0.0 0.7 0.3
3 0.3 0.3 0.4

Fig. 5.4 shows the tree of all possible evaluations, easily visualized due to the low di-

mensionality of this example. Each edge of this tree is a potential test (action), and each

terminating node denotes the plausibility probability of A as a result of the two actions

leading to it. For instance, the left cluster of three terminating nodes represents all pos-

sible action sequences beginning with Test 1. Traversing down the tree, each successive

level alternates the active agent: supporting A or ¬A. This results in a two-step minimax

optimization on Prpl (A). The non-terminating nodes display the chosen node from below

based on the active minimax mode at that step (max or min). Therefore, the minimizing

agent (supporting ¬A) will select the lowest plausibility probability from each cluster of

three terminating actions to populate the middle nodes, and the maximizing agent (sup-

porting A) will select the highest plausibility probability from those three middle nodes to

determine the selected action sequence (highlighted in blue in the figure).

Following test 1 with another test 1 yields an estimated bpa that may strongly indicate

the diagnosis A but does not carry any unique evidence to confirm ¬A. Therefore, if ¬A is

the correct result, performing test 1 twice would not provide a strong result. Following test

1 with test 2 or test 3 results in estimated belief mass attributed to both A and ¬A, resulting

in (at least partial) proposition confirmation regardless of the correct (true) result.
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Fig. 5.4 shows that the unbiased solution in this minimax optimization scheme is Test

1 followed by Test 2, resulting in Prpl (A) = Prpl (¬A) = 0.5. This indicates that both

propositions are given equal opportunity since the prior information (vacuous) did not in-

dicate a preference toward either proposition. This result matches intuition that, in the case

of vacuous prior information, both strong indicator tests should be run to ensure the true

diagnosis is confirmed.

Figure 5.4: Example Case 1: Brute force evaluation tree

In Fig. 5.4, all nine possible test sequences are computed in a brute-force manner.

However, this is not required as alpha-beta pruning provides a more efficient approach

to minimax optimization by eliminating branches of the evaluation tree that need not be

searched based on the previously-searched nodes. Figure 5.5 demonstrates this approach,

reducing the number of sequence evaluations from nine to seven. As expected, alpha-

beta pruning efficiently finds the same end-result as naive brute-force minimax using less

evaluations.

Figure 5.5: Example Case 1: Alpha-beta evaluation tree
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5.6.2 Case 2: Multiple JER Agent-Pairs

The second example involves a single hypothesis with three competing (mutually exclusive

and collectively exhaustive) propositions, yielding the following frame of discernment:

{θ1, θ2, θ3}. Once again, for ease of notation, define the corresponding propositions as:

A = {θ1}, B = {θ2}, C = {θ3}. Since this case contains a non-binary frame of discern-

ment, three JER agent-pairs are needed (one as an advocate for each proposition). Each

agent-pair solves its own minimax sub-problem (as in Case 1), and the sub-problem solu-

tions are combined to resolve incongruity between the sub-problem schedules. Therefore,

this example serves to illustrate the application of the entropy-minimization objective to

resolve schedule incongruity, as well as updating the prior with test results iteratively in

receding-horizon optimization.

As before, the prior belief assignment is assumed vacuous. Three tests are available to

inform this diagnosis, but time and cost constraints limit the number of tests to two. Table

5.3 lists basic probability assignments (bpas) for each available test, functions of known

statistics on the test such as false alarm rate. Each test has two possible outcomes, pass and

fail, which affect the knowledge state based on the test’s evidence and therefore affect the

test bpas. For instance, test 1 is a strong indicator for proposition A, so a pass outcome

gives strong belief for A whereas a fail outcome gives strong belief for B ∪ C = ¬A.

In both cases, though, there is still a non-zero chance of false alarm, so some belief is

still given to the frame as ignorance. Tests 2 and 3 are similar for propositions B and C,

respectively, though test 2 is only moderately strong and test 3 is even weaker.

Table 5.3: Example Case 2: Basic probability assignments for diagnostic tests

Test # A B C A ∪B A ∪ C B ∪ C A ∪B ∪ C
1 (Pass) 0.9 0.0 0.0 0.0 0.0 0.0 0.1
1 (Fail) 0.0 0.0 0.0 0.0 0.0 0.9 0.1
2 (Pass) 0.0 0.7 0.0 0.0 0.0 0.0 0.3
2 (Fail) 0.0 0.0 0.0 0.0 0.7 0.0 0.3
3 (Pass) 0.0 0.0 0.5 0.0 0.0 0.0 0.5
3 (Fail) 0.0 0.0 0.0 0.5 0.0 0.0 0.5

156



For each iteration, each JER agent-pair must solve its own sub-problem, selecting the

two minimax-optimal tests in a similar manner to the previous example case, using the

alpha-beta pruning improvement. Each agent operates under the supposition that its desired

proposition is correct. In other words, the advocate agent for proposition A estimates that

test 1 will return successful while tests 2 and 3 will return failed, attempting to contribute

belief to proposition A. On the other hand, the critic agent for proposition A estimates the

opposite test results, since it is attempting to reduce plausibility of proposition A.

After the sub-problem test schedules are optimized, all unique test sequences are found

from the Cartesian product of these schedules. The estimated bpa result is computed for

each under the assumption of a successful test return, and the sequences are ranked ac-

cording to normalized Jirousek-Shenoy entropy. The test sequence resulting in the lowest

entropy is selected, and its first test action implemented for that iteration. Finally, the agent-

pairs that were active during this iteration (i.e. the agent-pairs that requested the selected

action) are flipped so that, in the next iteration, the critic agent is active first.

When executing the test, the true hypothesis resolution is used to determine success or

failure: in other words, if the true hypothesis resolution is assumed to be A, then test 1

would pass while tests 2 and 3 would fail. The prior bpa is updated through combination

with the resulting test bpa to give the result after one iteration. The procedure above is

repeated for the second iteration using this updated bpa as the prior.

Table 5.4 shows the resulting test sequence and probabilities for each realization of

the hypothesis (using the plausibility transformation) after each iteration. Since the initial

prior is vacuous, the chosen first test in each realization is test 1, matching intuition because

test 1 is the strongest result and therefore minimizes entropy. If proposition A is true, test

1 passes and significant belief is already attributed to A. In the second iteration, test 1

is repeated because, in this case, the entropy will not be significantly decreased by the

contribution of other (weaker) test results. Even though the critic agent is active for A, test

1 is still the strongest potential belief contribution for ¬A, providing the strongest entropy
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reduction. Instead, test 1 passes again, confirming proposition A and minimizing entropy

since A is the probable correct resolution. If either proposition B or C are true, test 1 fails,

resulting in significant ambiguity after the first test. In both cases, the next test selected

is test 2, because it is the strongest remaining test and proposition A has (nearly) been

eliminated. If proposition B is true, test 2 passes and now a significant belief is attributed

to B. If proposition C is true, test 2 fails as well, resulting in a less-significant but still

definitive belief attributed to C: the fail result in test one indicates B or C and the fail

result in test 2 indicates A or C, leaving C as the only logically consistent option. In this

case, the belief attributed to A slightly increases after the second test result, but evidence

still overwhelmingly indicates proposition C.

Table 5.4: Example Case 2: Results based on true hypothesis realization

Truth Tests Prpl (A) Prpl (A) Prpl (C) H̃JS

A
1 - Pass 0.84 0.08 0.08 0.308
1 - Pass 0.98 0.01 0.01 0.055

B
1 - Fail 0.04 0.48 0.48 0.721
2 - Pass 0.02 0.75 0.02 0.389

C
1 - Fail 0.04 0.48 0.48 0.721
2 - Fail 0.07 0.21 0.71 0.468

Once again, this result matches intuition. Since test 3 has the weakest belief contri-

bution and only two tests may be executed, it is never selected. The correct resolution is

determined with high probability through the use of only two tests in each case.

Note that, while this example case did require more test sequence evaluations than

a brute-force implementation, this is only because each available test is relevant to each

agent-pair (for simplicity). Computational complexity of this evaluation scales exponen-

tially with the number of available actions, so in a low-dimensional scenario such as this

example, more available actions may not be an issue. In real-life complex decision-making

scenarios with multiple propositions or hypotheses, it is likely that this computational bur-

den can be significantly reduced by only considering relevant actions for each agent-pair.
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5.6.3 Example Summary

The two example cases presented illustrate both key components of the JER approach.

Case one demonstrates the inner-loop sub-problem resolution using agent-pairs and effi-

cient minimax with the plausibility probability transformation. Case two demonstrates the

outer-loop combination of sub-problem schedules and resolution of incongruities using en-

tropy.

While both cases illustrated use a single hypothesis, multiple hypotheses do not signifi-

cantly change the implementation. New agent-pairs are introduced for the new hypotheses,

The only additional mechanism required is the hypothesis weighting, which is applied in

the schedule incongruity resolution step of the outer-loop. The following section of simu-

lated results illustrates this through a more realistic decision-making scenario with multiple

hypotheses.

5.7 Simulation Results

This section contains a more nuanced application of JER scheduling sensor network actions

to resolve multiple space situational awareness (SSA) hypotheses.

5.7.1 Scenario Description

Operators in a SSA decision-support environment receive notice from a space launch entity

that a planned geostationary transfer orbit (GTO) insertion maneuver has experienced an

anomaly. The anomaly is estimated to have occurred 5 minutes prior to the notification

during a critical orbit-raising maneuver. The objective is to re-acquire the space object and

diagnose the anomaly to regain situation awareness.

Anomalous GTO objects are particularly difficult to characterize as the range prohibits

use of radar, requiring a wide state-space search using electro-optical sensors. Timely re-

acquisition is critical as the spacecraft was nominally bound for Geostationary Earth Orbit
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(GEO), a densely populated orbit regime with many high-value defense and telecommuni-

cations assets. The nominal transfer time from LEO to GEO is just over five hours, placing

additional time-pressure on resolving the anomaly to complete conjunction analyses and

alert other satellite operators. If the anomaly resulted in a GEO-intersecting trajectory, it

is crucial to characterize the new orbit to inform conjunction analyses. Similarly, if the

resultant trajectory remains close to low-Earth orbit (LEO), it becomes a collision risk in a

densely populated orbit regime.

The entire simulation occurs over a 15 minute time span, including the 5-minute delay

between the anomaly event and the beginning of the sensor tasking window. The simulation

time span is limited by observation constraints (e.g. short horizon-to-horizon times in LEO,

eclipse, adverse weather), placing time pressure on the hypothesis resolution. At the end of

this simulation the sensor positions will prohibit gathering further evidence, so the anomaly

must be characterized within 15 minutes of the event.

5.7.2 Dynamics

The nominal transfer orbit geometry is shown in Fig. 5.6. The primary spacecraft begins

in a 1000 km altitude circular parking orbit Space objects are propagated using Keplerian

two-body dynamics to compute lines-of-sight to sensors. The sensor network is comprised

of two 3-degree field-of-view electro-optical sensors, separated by 20 degrees in longitude

for geometric diversity. Observations are simulated using a radiometric model, including

simulated effects for background sky irradiance and atmospheric transmittance (e.g. cloud

cover, atmospheric turbulence) [15] with illumination conditions estimated using a cannon-

ball model.

The sensor-tasking time span is limited by observation constraints (e.g. short horizon-

to-horizon times in LEO, eclipse, adverse weather), placing a 15-minute time limit on the

hypothesis resolution. The sensors may change actions each minute, and a receding time-

horizon of two minutes is used.
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Figure 5.6: Nominal GTO transfer orbit and target GEO orbit.

5.7.3 Belief Function Models

A limited subset of potential failure modes is analyzed for illustrative purposes in this test

case. As shown in Fig. 5.7, the anomaly is characterized at the subsystem level to determine

root-cause. Since multiple point-of-failure events are exceedingly rare, an assumption is

made that the anomaly results from a single point-of-failure, isolating the anomaly to one

of these subsystems.

Figure 5.7: Possible causes for GTO insertion failure

The hypotheses considered for this GTO insertion maneuver anomaly include: propul-

sion status, navigation status, and collision in LEO. To construct JER agent-pairs, each
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hypothesis is further decomposed into frames of discernment:

Ω = Ωman × Ωprop × Ωnav × Ωcoll (5.30)

Hypotheses are considered resolved if the normalized J-S entropy drops below the threshold

value of H̃JS,thr = 0.05.

The following sections describe each hypothesis, and the available evidence, in more

detail.

Propulsion Status

The propulsion status hypothesis, Ωprop, yields a three-element frame:

Ωprop = {ωprop,nom, ωprop,ns, ωprop,exp}

Nominal propulsion status, ωprop,nom, represents the case where the propulsion subsys-

tem is not the cause of the anomaly. The non-start proposition, ωprop,ns, occurs when the

propulsion system fails to fire, leaving the spacecraft in its LEO parking orbit. The explo-

sion proposition, ωprop,exp, occurs when there is a catastrophic failure, resulting in debris in

LEO near the spacecraft’s parking orbit.

Navigation Status

The navigation status hypothesis, Ωnav, yields a binary frame:

Ωnav = {ωnav,n, ωnav,a} (5.31)

Nominal navigation status, ωnav,n, represents the case where the navigation subsystem is

not the cause of the anomaly. Anomalous navigation, ωnav,a, results in an off-nominal

transfer orbit due to pointing error, causing detection of the primary spacecraft off-track
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near the nominal GTO orbit.

Collision in LEO

The collision in LEO hypothesis, Ωcoll, yields the following non-binary frame:

Ωcoll = {ωcoll,none, ωcoll,1, . . . , ωcoll,R}

where R is the number of resident space objects (RSOs) considered. For this illustrative

example, three RSOs (R = 3) will be considered. The “none” proposition, ωcoll,none,

represents the case where a collision has not occurred and therefore is not the cause of the

anomaly. Collision with object j, ωColl,j where j = 1, . . . , R, results in debris in both orbits

as well as missing nominal tracks for both object j and the primary spacecraft. Recall that

explosion also generates debris in the LEO parking orbit, so the missing LEO object j and

debris in its orbit differentiate the hypotheses. Nominal detection of an RSO refutes that

RSO’s collision proposition.

JER Agent-Pairs

The full problem considers each frame described in the decomposition above to investigate

the cause of a maneuver anomaly. Each frame binary frame contributes one JER agent-

pair, while each non-binary frame contributes |Ω·| JER agent-pairs. Therefore, for this

simulation, there are eight JER agent-pairs: three for propulsion status, one for navigation

status, and four for collision in LEO.

5.7.4 Evidence to Belief Function Mappings

Each candidate action is evaluated for its estimated effect on the hypotheses to develop

evidence-to-belief-function mappings. This process is highly problem-specific, requiring

the modeler to consider what each potential successful or missed detection means with
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respect to each hypothesis. For instance, a missed detection of the nominal GTO orbit may

indicate anomaly, but if the estimated electro-optical probability of detection [15] predicted

a low chance of success, that evidence is vacuous and belief mass should be attributed to

ignorance instead.

Additionally, implicit knowledge about relationships between these frames can be im-

posed through conditional bpas [98]. In particular, it is known that, if evidence confirms

that none of the subsystems are nominal, the maneuver status is likely nominal. A small

chance (0.01) is allowed that there may be other causes for maneuver anomaly even if the

modeled causes are nominal to account for mis-modeling of the problem. Similarly, if any

one of the other causes is anomalous, then the maneuver status is likely anomalous.

5.7.5 Case 1: Nominal Maneuver

As a baseline, the true proposition for this first test case is the nominal maneuver status.

The resulting sensor tasking schedule is shown in Fig. 5.8(a), and Fig. 5.8(b) shows the

normalized J-S entropy for each hypothesis. The resolutions of each proposition (belief

and plausibility) are plotted in Figs. 5.9(a), 5.9(b), and 5.9(c).

The schedule in Fig. 5.8(a) indicates actions for each sensor at each time step, overlaid

with target observability and tasking mode information. For sensor 1, only the GTO target

is valid for the first two steps. Its first attempted observation is missed, but the radiometric

model for probability of detection confirms that the observation conditions (target near the

horizon) contributed to this miss.

However, sensor 2 makes several detections early in this simulation, including a task

on the nominal GTO spacecraft that results in combined detection of the GTO object (sup-

porting “nominal” propulsion and navigation statuses) and the collision objects “Coll 0”

and “Coll 2”. These detections result in strong resolution of the respective collision propo-

sitions (see Fig. 5.9(c) at 02:06), followed by successful detection of the “Coll 1” collision

object (at 02:07). Sensor 2 also confirms the propulsion status “nominal” proposition by
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(a) Sensor tasking schedule (b) Hypothesis entropy

Figure 5.8: Case 1: nominal maneuver (baseline)

making a successful detection of the GTO object (at 02:05) and failing to detect the space

object in its LEO parking orbit (at 02:06).

All hypotheses are resolved within the prescribed entropy tolerance within four steps

(see Fig. 5.8(b)), so for the remainder of the simulation (from 02:09 onward) the sensors are

free to perform other actions as necessary, as indicated by the none-of-the-above (NOTA)

option and blue tasking mode. Using the sub-problem decomposition and efficient minimax

search, JER only required a maximum of 271 sequence evaluations (including all agent-

pairs and the combination schedule evaluations) in any iteration, far less than the theoretical

brute-force maximum of 1024 evaluations.

5.7.6 Case 2: Propulsion Non-Start

In this test case, a propulsion anomaly occurs resulting in no maneuver and leaving the

spacecraft in its LEO parking orbit. The resulting sensor tasking schedule and hypothesis
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(a) Propulsion status (b) Navigation status (c) Collision in LEO

Figure 5.9: Case 1: nominal maneuver (baseline), hypothesis resolutions (solid line for
belief, dashed line for plausibility)

entropies are shown in Figs. 5.10(a), and 5.10(b), respectively. The resolutions of each

proposition are plotted in Figs. 5.11(a), 5.11(b), and 5.11(c).

Similar to the baseline test case, strong evidence is available to confirm hypothesis res-

olutions quickly despite observation conditions. The initial observation of GTO by sensor 2

simultaneously misses an expected observation of the GTO object (refuting the “nominal”

propulsion proposition) and detects the spacecraft in its LEO parking orbit (confirming the

“non-start” propulsion proposition). Successful detections of each collision object (includ-

ing the same combined detection of “Coll 0” and “Coll 2” at 02:05) refute each collision

proposition, and the navigation status is confirmed nominal by detection of the primary

spacecraft in LEO.

5.7.7 Case 3: Propulsion System Explosion

In this test case, a propulsion anomaly occurs resulting in an explosion, scattering debris in

the LEO parking orbit. The resulting sensor tasking schedule and hypothesis entropies are
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(a) Sensor tasking schedule (b) Hypothesis entropy

Figure 5.10: Case 2: propulsion non-start

shown in Figs. 5.12(a), and 5.12(b), respectively. The resolutions of each proposition are

plotted in Figs. 5.13(a), 5.13(b), and 5.13(c).

This test case features weaker evidence, resulting in more actions required to reach

adequate hypothesis resolution. The initial missed detections in GTO contribute weak evi-

dence toward anomalous propositions for both the propulsion and navigation statuses. The

sensor network initiates a search in GTO to confirm that the navigation status is not the

cause, searching for the object in an off-nominal GTO state.

In the course of this search, several pieces of debris are detected, contributing evidence

toward both the propulsive explosion and collision propositions. This initially inflates the

belief in a collision with object “Coll 1” that is later refuted through positive detection of

the “Coll 1” object in its nominal orbit. Evidence mounts toward the propulsive explosion

proposition as further debris is detected, the target object is not found in GTO or LEO, and

each collision object is successfully detected. This test case serves as a prime example of
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(a) Propulsion status (b) Navigation status (c) Collision in LEO

Figure 5.11: Case 2: propulsion non-start, hypothesis resolutions (solid line for belief,
dashed line for plausibility)

the unbiased resolution focus of JER, as the prior induced by the initial debris detection is

rejected by further inspection.

5.7.8 Case 4: Collision with Object in LEO

In this test case, the true proposition is a collision in LEO with the object labeled “Coll 0.”

This event generates multiple debris objects in both the LEO parking orbit and the nominal

orbit of the collision object. The resulting sensor tasking schedule and hypothesis entropies

are shown in Figs. 5.14(a), and 5.14(b), respectively. The resolutions of each proposition

are plotted in Figs. 5.15(a), 5.15(b), and 5.15(c).

Similar to the propulsion explosion test case, debris detected in the early observations

contributes belief in a collision, but successful detections of “Coll 1” and “Coll 2” refute

those collision propositions. In this case, debris is detected in both the LEO and “Coll 1”

orbits, which differentiates the explosion and collision propositions, contributing additional

evidence to refute explosion. A navigation anomaly is also ruled out through search of
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(a) Sensor tasking schedule (b) Hypothesis entropy

Figure 5.12: Case 3: propulsion explosion

(a) Propulsion status (b) Navigation status (c) Collision in LEO

Figure 5.13: Case 3: propulsion explosion, hypothesis resolutions (solid line for belief,
dashed line for plausibility)
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(a) Sensor tasking schedule (b) Hypothesis entropy

Figure 5.14: Case 4: collision in LEO

(a) Propulsion status (b) Navigation status (c) Collision in LEO

Figure 5.15: Case 4: collision in LEO, hypothesis resolution
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the GTO orbit, despite an initial slight belief in navigation anomaly. As the simulation

progresses, the evidence builds to strong hypothesis resolutions at the end of the simulation.

5.7.9 Comparison to Entropy-Greedy Scheduler

As a point of comparison, a brute-force entropy-greedy scheduler was implemented for

comparison to the JER approach. The entropy-greedy scheduler evaluates all valid action

sequences over the scheduler horizon and selects the action sequence that minimizes the

weighted-sum entropy. This represents the brute-force solution to the hypothesis-based

evidence-gathering optimization problem in Eqn. (5.8), presented to analyze proposed

computational complexity and bias-related improvements of the JER approach.

The biggest immediate difference between the approaches is the number of sequence

evaluations required. Even in these low-dimensional scenarios, the brute-force evalua-

tion of all possible tasking sequences (two sensors, five targets, two-step horizon) requires

1, 024 sequence evaluations each iteration for all test cases. In comparison, for the nominal

maneuver scenario (Case 1), recall that JER only required a maximum of 271 sequence

evaluations (including all agent-pairs and the combination schedule evaluations) in any

iteration.

While the entropy-greedy scheduler sometimes performs identically to JER in hypoth-

esis resolution (as in Case 1 and 2), it predictably struggles with confirmation bias. The

comparison scenario presented is identical to the propulsion anomaly in Case 3. The re-

sulting sensor tasking schedule and hypothesis entropies are shown in Figs. 5.16(a), and

5.16(b), respectively. The resolutions of each proposition are plotted in Figs. 5.13(a),

5.17(b), and 5.17(c).

As with Case 3 above, detection of debris early in the simulation contributes evidence

toward both the (correct) explosion proposition and the (incorrect) collision propositions.

With JER, the alternating-agent scheme overcomes the incorrect collision prior by search-

ing for confirming evidence for each collision proposition. However, in the entropy-greedy
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(a) Sensor tasking schedule (b) Hypothesis entropy

Figure 5.16: Entropy-greedy scheduler: propulsion explosion

(a) Propulsion status (b) Navigation status (c) Collision in LEO

Figure 5.17: Entropy-greedy scheduler: propulsion explosion, hypothesis resolutions (solid
line for belief, dashed line for plausibility)
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approach, once the other propositions are ruled out and only the “Coll 1” proposition re-

mains, the algorithm is satisfied with its hypothesis resolution. This results in an incorrect

resolution of the collision status hypothesis.

This is a phenomenon also experienced in previous work using DST for sensor task-

ing [99], where the mutually exclusive and collectively exhaustive nature of the proposi-

tions does not always encourage positive confirmation of the hypothesis resolution. The

entropy-greedy results, contrasted with the JER results, further underscore the impact of

the alternating-agent scheme in rejecting confirmation bias.

5.7.10 Discussion

These simulated cases show that the JER algorithm performs as designed, seeking strong

evidence to resolve hypotheses without fixating on any particular proposition. Weak evi-

dence from missed detections results in the algorithm moving to other hypotheses or propo-

sitions that will plausibly produce stronger evidence. Additionally, decomposing the sensor

tasking problem into tractable sub-problems through JER agent-pairs increases the feasible

time horizon, which is computationally constrained in a brute-force approach, even for this

relatively low-dimensional example.

The test cases range from clear scenarios with strong evidence to anomalous scenar-

ios with weak and ambiguous evidence. The nominal maneuver scenario (Case 1) pro-

vides a baseline for comparison, quickly resolving the hypotheses with strong evidence.

The propulsion non-start scenario (Case 2) shows an ability to ingest both weak evidence

(missed detections from GTO) and strong evidence (successful detections in LEO) to ex-

plore the hypotheses efficiently. The propulsion explosion and collision scenarios (Cases 3

and 4) highlight the ability to avoid confirmation bias induced by poor prior knowledge or

ambiguous evidence by continuing to seek evidence to reject the incorrect propositions. In

comparison, the entropy-greedy approach struggled to overcome confirmation bias.
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5.8 Conclusion

The proposed Judicial Evidential Reasoning (JER) evidence-gathering framework arranges

decision-maker questions as rigorously testable hypotheses to enable predictive evidence-

gathering for hypothesis resolution. The use of a hypothesis abstraction supports human

decision-making strengths of planning and strategy, off-loading processing work to the

algorithm and fusing evidence into intuitive hypothesis resolutions. Recognizing the need

to account for ambiguity aversion in decision-making, the use of Dempster-Shafer theory

allows for quantification of evidence ambiguity. Finally, applying the principle of equal

effort through an alternating-turn adversarial optimization scheme avoids confirmation bias

induced by improper prior beliefs or evidence uncertainty and ambiguity, avoiding fixation

on incorrect propositions.

This approach values impartiality in addition to time-efficiency in many-hypothesis

resolution, while breaking the greater evidence-gathering problem into a number of sub-

problems for each hypothesis reduces computational complexity and allows for a receding

horizon optimization of the total schedule. Selecting the final optimal schedules as the

minimum total weighted entropy ensures that the selected actions minimize conflict and

non-specificity according to priorities set by the decision-makers.

The provided example cases illustrate the application of both the JER agent-pairs and

the overall JER schedule manager approach to evidence-gathering. The simulated results

for a GTO insertion maneuver anomaly scenario show that the algorithm performs as ex-

pected: the appropriate hypotheses are confirmed via evidence and in the process the JER

algorithm does not fixate on any particular proposition, instead accruing evidence that

gradually leads to the correct conclusion. The JER approach also compares well against

an entropy-greedy approach that focuses actions on the most-probable propositions only,

avoiding improper hypothesis resolution caused by confirmation bias.

The combined emphasis on hypothesis abstraction, quantifying ambiguity, and avoiding
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confirmation bias in the JER approach enables predictive evidence-gathering for hypoth-

esis resolution. Future work will investigate the human cognitive effects of a JER-like

hypothesis-based evidence gathering approach to further develop decision support systems

that effectively support human-in-the-loop decision-making.
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CHAPTER 6

DEVELOPMENT OF A PROTOTYPE DSS FOR SSA

The cognitive work analysis in Chapter 2 identified a number insights of and design re-

quirements that drive DSS development for SSA applications. The following chapters de-

veloped hypothesis-based applications aimed at addressing SSA goals, culminating in the

development of Judicial Evidential Reasoning (JER) as a generalized evidence-gathering

hypothesis-resolution framework. In this chapter, a subset of derived design requirements

are explicitly addressed in the development and validation of a prototype DSS for SSA. In

particular, the design requirements selected for further analysis are ones that align well with

the main tenets of JER to further investigate how hypothesis resolution supports decision-

making in SSA.

6.1 Design Requirements Addressed

As stated previously, existing methods of sensor tasking in SSA focus on state uncertainty

reduction. While this tasking goal correlates well with some SSA goals (e.g. conjunction

analysis), not all decision-maker questions can easily be mapped to state covariance esti-

mates. Therefore, state uncertainty minimization methods do not provide a reliable means

of tasking to resolve decision-maker hypotheses related to the overarching SSA goals of

space asset safety and national security.

In order to make connections between covariance estimates and other SSA hypotheses,

current methods require decision-makers to do significant knowledge-based reasoning in

the judgment phase (recall the phases of the control task analysis, Fig. 2.4). Specifically,

when evaluating different courses of action, the decision-maker must consider if the co-

variance reduction resulting from a given set of actions also gathers evidence to resolve

the high-priority hypotheses. This requires reasoning on several different levels of the ab-
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straction hierarchy (recall Fig. 2.2: state covariances on the physical function level, sensor

allocation and information fusion on the generalized function level, and hypotheses and

priorities on the abstract function level. These are three very different levels of detail of

the SSA problem, and requiring the decision-maker to move between them quickly (and

especially iteratively, as in the judgment phase) often leads to reduced situation awareness

and increased measures of workload (e.g. effort, mental demand, frustration).

Conversely, a DSS that suggests tasking assignments based directly on resolving hy-

potheses only requires the decision-maker to remain in the abstract function level, consider-

ing trades between priorities for the different hypotheses without having to be directly con-

cerned with the sensor allocation or state measurements. It also frees the decision-maker

to spend more mental effort on formulating hypotheses to directly support the dynamic list

of SSA goals. Humans out-perform automation at abstract tasks such as prioritization, so

this application stands to be a better use of human decision-maker effort and cognition.

This cognitive engineering study aims to investigate that claim: that SSA decision-maker

situation awareness and workload are improved when using a hypothesis-based tasking

algorithm as opposed to a more traditional covariance-based scheduler.

In order to investigate this claim, a prototype DSS was developed that incorporated

a number of the design requirements from the ConTA in Chapter 2. Specifically, due to

the development of the JER framework in the previous chapter, the design requirements

selected are ones which evidential reasoning help to address. The following cognitive work

requirements (CWRs) are considered in this DSS development:

• CWR-3: The DSS shall translate observational data into evidence.

• CWR-6: The DSS shall track hypothesis resolution in comparison to prescribed

thresholds.

• CWR-9: The DSS shall provide capability for operators to adjust hypothesis priori-

ties.
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• CWR-10: The DSS shall assess expected hypothesis resolution based on current

prioritization.

• CWR-13: The DSS shall generate specific actions and requests required to reach the

target hypothesis resolution.

A primary function of hypothesis-based sensor tasking, applied to SSA, is to analyze can-

didate tasking schedules to estimate hypothesis resolution based on the current hypothesis

prioritization (CWR-10). Evidential reasoning approaches are predicated upon develop-

ing mappings from acquired data to evidence, so any evidential reasoning application must

satisfactorily address CWR-3. Through the use of hypothesis entropy, quantifying both

conflict and ambiguity, evidential reasoning provides a means for tracking hypothesis reso-

lution against prescribed thresholds (CWR-6) Additionally, as demonstrated by JER, apply-

ing and adjusting hypothesis weights based on entropy allows decision-makers to prioritize

hypotheses appropriately (CWR-9). Finally, the end result of a hypothesis-based tasking

approach is the list of actions that gather the required evidence to resolve the hypotheses

(CWR-13). Therefore, an evidential reasoning approach to sensor tasking, such as JER,

appropriately addresses these five CWRs.

6.2 DSS Design

This section describes the specifics of the prototype DSS design, including the two sen-

sor tasking schedulers and an overview of the functionality of the simulation environment.

Recall that this study aims to compare a hypothesis-based tasking algorithm with a more

traditional covariance-based scheduler for the purposes of supporting decision-making, sit-

uation awareness, and workload in SSA.
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6.2.1 Sensor Tasking Schedulers

The two algorithms implemented in the prototype DSS are a covariance minimization ap-

proach and an evidential reasoning approach. When using the covariance-based scheduler,

the next sensor actions are selected using Eqn. (6.1) to minimize the weighted-sum of

covariances:

A∗ = arg min
A∈A

N∑
j=1

wj
Tr
[
P+
j

]
aj

(6.1)

where A is the set of valid action sequences at the current time step, N is the number of

space objects, P+
j is the estimated a posteriori state covariance of the jth space object, and

aj is the semi-major axis of the jth space object. The semi-major axis scaling factor is

included to account for naturally larger uncertainties at higher-altitude orbits and prevent

those from dominating the sensor tasking. In this mode, the subject is able to change

weighting parameters to attempt to increase or reduce tasking actions taken on a particular

object.

When using the hypothesis-based scheduler, the next sensor actions are selected using

Eqn. (6.2) to minimize the weighted-sum of hypothesis entropies:

A∗ = arg min
A∈A

H∑
i=1

wiH̃
+
JS (mi) (6.2)

where A is again the set of valid action sequences at the current time step, H is the number

of hypotheses considered, and H̃JS (mi)
+ is the estimated a posteriori normalized Jirousek-

Shenoy entropy for the ith hypothesis as defined in Eqn. (5.18). In this mode, the subject is

able to change weighting parameters to attempt to increase or reduce tasking actions taken

against a particular hypothesis.

In both modes, the subject’s weighting parameters may affect the scheduled sensor

actions; however, the subject is not able to directly assign any space object or hypothesis
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to any sensor. Therefore, if the evidence available is low/weak or the object’s covariance is

already sufficiently small, the subject may not be able to override the algorithm.

6.2.2 Simulation Environment

The prototype DSS was developed in C# using the Unity engine and modeled after existing

SSA support tools such as the Systems Tool Kit (STK) by Analytical Graphics, Inc. (AGI).

Figure 6.1 shows a screen-capture of the prototype SSA DSS. The primary display is a 3D

view of the Earth and all the sensors (purple boxes) and space objects (green boxes). The

operator may use arrow keys or right-click-and-drag motions to rotate the camera around

the Earth. The top-middle panel contains information on the current simulation time and

the time remaining to until the next actions are taken.

The list on the top-right of the screen contains buttons linked to each sensor and space

object. Clicking any of these buttons changes the information panel in the bottom-left to

display data relevant to that sensor (e.g. observation conditions, objects above the horizon)

or space object (e.g. state estimate and uncertainty). This also changes the focus on the

camera to that particular sensor or object, allowing the operator to pivot the camera around

that new focus point. The Earth button in the top-right of the screen can be used to re-focus

the display on the Earth.

Similarly, the list on the middle-right of the screen contains buttons linked to each hy-

pothesis under consideration. Clicking any of these buttons changes the information panel

in the bottom-right to display data relevant to that hypothesis (e.g. current probabilities for

each proposition, entropy, number of actions taken, and related space objects).

In the top-left of the screen, another list displays each sensor in the network and its

current and next tasks. When the time remaining until the next action hits zero, the next

task in each sensor’s cue is triggered. At this point, the 3D display updates the sensor

fields-of-view accordingly, the measurement updates are applied to each space object, and

any gathered evidence is also used to update the hypotheses. Summaries of the actions
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taken and any resulting evidence gathered are shown in the message console below the

tasking list.

The only control that the user has over the scheduler is set of weighting parameters

on either the space objects (for the covariance-based scheduler) or the hypotheses (for the

hypothesis-based scheduler). These weights are controlled using the slider that appears in

the lower-middle of the screen, divided into 11 segments: 0% to 100% in 10% increments.

When using the hypothesis-based scheduler, the slider appears directly to the left of the

hypothesis information panel (as shown in Fig. 6.1). For the covariance-based scheduler,

the slider appears directly to the right of the space object information panel.

6.3 Human-in-the-Loop Data Collection

A human-in-the-loop test was performed using this prototype DSS (see Appendix B for

the approved International Review Board consent form). The specific goal of this test was

to investigate the situation awareness, cognitive support, and workload effects of using a

hypothesis-based sensor-tasking scheduler as compared to a more traditional covariance-

based scheduler. As described in the DSS design section, the test subject’s only control over

the tasking algorithm is through the set of weighting parameters corresponding to relative

priorities on either space objects or hypotheses.

In a one-hour training session, the test participants were given an abbreviated back-

ground on the SSA problem and instructed on the use of the DSS for gathering evidence

using sensor observations to answer a set of questions. Subjects were informed of the dif-

ferences between the two scheduling algorithms and their respective controls. At the end of

the session, each participant completed a qualification test scenario to ensure he/she could

successfully operate the DSS to gather evidence and answer the questionnaires.

Two subsequent data collection sessions were conducted for each participant, one ses-

sion each for the covariance- and hypothesis-based schedulers. To control for learning

effects, each subject was randomly assigned the scheduler type for the first day of testing,
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so that six subjects used the covariance-based scheduler on the first test day and five used

the hypothesis-based scheduler.

The data collection methods are similar to a recent DSS evaluation study published to

assess emergency department information displays [125], consisting primarily of question-

naires to assess cognitive support and workload. Before any questionnaire is completed,

the simulation display is replaced entirely by the questionnaire so that the subject cannot

rely on the DSS to answer the questions [6]. The cognitive support and workload ques-

tionnaires were asked at the end of each scenario, and the questions were the same each

time. The cognitive support questionnaire assesses the subject’s opinion on the ability of

each scheduler to support various cognitive objectives. Subject responses to the cognitive

support questions are on an 11-point scale, with 1 being “not at all effective” and 11 being

“extremely effective.” The eight questions asked in this questionnaire are: How effective

was this scheduler’s support for...

• identifying which questions you still need to answer?

• proposing sensor tasking assignments that answer relevant questions?

• allowing modifications of the scheduled tasking assignments as needed?

• identifying which space objects have high state uncertainty?

• identifying which questions have high uncertainty (entropy)?

• assessing the sensor resources required to answer questions?

• assessing the strength of the evidence received?

• adapting to sensor observation conditions?

The workload questionnaire is the widely-used NASA Task Load Index (NASA-TLX)

[126], which assess the subject’s perceived workload. Per NASA-TLX convention, sub-

ject responses are are on a 21-point scale, where lower-rating responses correspond to a
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better perceived workload (e.g. 1 = perfect performance). The six questions asked in this

questionnaire are:

• Mental Demand: How mentally demanding was the task?

• Physical Demand: How physically demanding was the task?

• Temporal Demand: How hurried or rushed was the pace of the task?

• Performance: How successful were you in accomplishing what your task?

• Effort: How hard did you have to work to accomplish your level of performance?

• Frustration: How insecure, discouraged, irritated, stressed, and annoyed were you?

The responses to the performance question range from “perfect” to “failure” while re-

sponses to the remainder of the questions range from “very low” to “very high.”

Together, these questionnaires provide subjective measurements of the cognitive and

workload support provided by each scheduler.

6.4 Test Scenarios

The test participants executed the evidence-gathering tasks in five different scenarios, each

with slight modifications to test responses in different conditions. Running each scenario

with both scheduling algorithms allows for direct comparison between the schedulers in

support for the given hypothesis-resolution tasks. To control for learning effects, the orders

of the tests performed were randomized for each participant. Additionally, the space objects

identifiers were changed for each scenario and between the schedulers so that subjects could

not rely on recollection of the previous evaluation session to answer questions.

Each scenario consists of two or three sensors, each with different background sky

brightness, cloud cover, and atmospheric transmittance that contribute to observation con-

dition quality. Observation conditions of moderate or better allow for successful detec-

tions, but conditions of poor or worse would cause missed detections. Additionally, each
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Table 6.1: Summary of hypotheses and propositions for simulations

Hypothesis Propositions
Close Pass Safe, Collision

Propulsion Status Nominal, Non-Start, Explosion
Navigation Status Nominal, Anomalous

Custody Status Maintained, Lost

scenario consists of five space objects: two in low Earth orbit (LEO), two in medium Earth

orbit (MEO), and one in geostationary Earth orbit (GEO). Finally, each scenario consists

of four hypotheses. The types of hypotheses allowed and their respective propositions are

summarized in Table 6.1.

The following sections provide more detail on each scenario, including sensor obser-

vation conditions, space object initial one-sigma state uncertainties in the local-vertical

local-horizontal (LVLH) frame, and hypothesis priors and strength of evidence available.

Scenario A: In this scenario, three ground-based sensors are available (see Table 6.2)

with observation conditions ranging from moderate to very good. The relevant space object

parameters are listed in Table 6.3, and the relevant hypotheses in Table 6.4. The first two

space objects are in danger of a collision, which must be confirmed by evidence despite

vacuous prior knowledge. The third object navigation status and the fourth object propul-

sion statuses are all nominal, while the GEO object custody status is maintained, all of

which must also be confirmed by evidence. This scenario represents a baseline test case

with moderate evidence strength and no missed-detections due to observation conditions.

Table 6.2: Sensor parameters, scenario A

ID Location Conditions
MSSC-Raven 20.7◦N, 156.2◦W Very Good

UA-Raven 32.2◦N, 111.9◦W Good
GT-Raven 33.7◦N, 84.3◦W Moderate

Scenario B: In this scenario, three ground-based sensors are available once again (see

Table 6.5) though now the GT-Raven observation conditions are too poor for successful

detections. The relevant space object parameters are listed in Table 6.6, and the relevant
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Table 6.3: Space object parameters, scenario A

ID Regime σr (km, LVLH) σv (m/s, LVLH)
A1 LEO 1.0, 2.0, 0.7 0.75, 1.25, 0.20
A2 LEO 5.4, 7.8, 1.2 0.90, 1.05, 0.25
A3 MEO 9.3, 10.2, 3.1 0.66, 0.94, 0.32
A4 MEO 8.2, 9.8, 2.2 0.54, 0.79, 0.21
A5 GEO 15.5, 42.1, 6.8 0.27, 0.95, 0.09

Table 6.4: Hypothesis parameters, scenario A

ID Type Objects Truth Evidence Prior
A1 Close Pass A1, A2 Collision Moderate Vacuous
A2 Navigation Status A3 Nominal Moderate Nominal (slight)
A3 Propulsion Status A4 Nominal Moderate Nominal (slight)
A4 Custody Status A5 Maintained Strong Maintained (slight)

hypotheses in Table 6.7. The first object navigation status is nominal, and its prior has a

slight belief for nominal. The second object propulsion status is a non-start, but the prior

knowledge is vacuous. The third and fourth object are not in danger of a collision, but

this must be confirmed despite vacuous prior knowledge. The fifth object custody status is

maintained, with a slight prior belief for the maintained proposition as well. This scenario

primarily differs from scenario A by including poor observation conditions, causing all

observations from GT-Raven to miss.

Table 6.5: Sensor parameters, scenario B

ID Location Conditions
MSSC-Raven 20.7◦N, 156.2◦W Very Good

UA-Raven 32.2◦N, 111.9◦W Good
GT-Raven 33.7◦N, 84.3◦W Poor

Table 6.6: Space object parameters, scenario B

ID Regime σr (km, LVLH) σv (m/s, LVLH)
B1 LEO 1.0, 2.0, 0.7 0.75, 1.25, 0.20
B2 LEO 5.4, 7.8, 1.2 0.90, 1.05, 0.25
B3 MEO 5.0, 13.0, 2.1 0.45, 0.90, 0.15
B4 MEO 11.2, 18.4, 3.6 0.65, 0.98, 0.35
B5 GEO 15.5, 42.1, 6.8 0.27, 0.95, 0.09
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Table 6.7: Hypothesis parameters, scenario B

ID Type Objects Truth Evidence Prior
B1 Navigation Status B1 Nominal Moderate Nominal (slight)
B2 Propulsion Status B2 Non-Start Moderate Vacuous
B3 Close Pass B3, B4 Safe Strong Safe (slight)
B4 Custody Status B5 Maintained Strong Maintained (slight)

Scenario C: In this scenario, only two ground-based sensors are available (see Table

6.8). The relevant space object parameters are listed in Table 6.9, and the relevant hy-

potheses in Table 6.10. The navigation status for both objects 1 and 4 are nominal, but the

evidence for object 4 is stronger. The propulsion status for object 2 is also nominal, and

the custody status for object 5 is maintained. The primary difference in scenario C is the

presence of an extra space object (object 3) that does not relate to any hypotheses, testing

the operators awareness to focus tasking actions on other objects.

Table 6.8: Sensor parameters, scenario C

ID Location Conditions
MSSC-Raven 20.7◦N, 156.2◦W Very Good

UA-Raven 32.2◦N, 111.9◦W Good

Table 6.9: Space object parameters, scenario C

ID Regime σr (km, LVLH) σv (m/s, LVLH)
C1 LEO 1.0, 2.0, 0.7 0.75, 1.25, 0.20
C2 LEO 5.4, 7.8, 1.2 0.90, 1.05, 0.25
C3 MEO 5.0, 13.0, 2.1 0.45, 0.90, 0.15
C4 MEO 11.2, 18.4, 3.6 0.65, 0.98, 0.35
C5 GEO 15.5, 42.1, 6.8 0.27, 0.95, 0.09

Table 6.10: Hypothesis parameters, scenario C

ID Type Objects Truth Evidence Prior
C1 Navigation Status C1 Nominal Moderate Nominal (slight)
C2 Propulsion Status C2 Nominal Moderate Vacuous
C3 Navigation Status C4 Nominal Strong Nominal (slight)
C4 Custody Status C5 Maintained Moderate Maintained (moderate)

Scenario D: In this scenario, three ground-based sensors are available (see Table 6.11),
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with poor observation conditions at GT-Raven causing missed detections. The relevant

space object parameters are listed in Table 6.12, and the relevant hypotheses in Table 6.13.

Objects 1 and 2 experience a safe close pass, but the prior knowledge of this event is

vacuous. Object 2 also has an anomalous navigation status, though the prior knowledge

incorrectly indicates nominal status. The propulsion status for object 3 is nominal, while

the propulsion status for object 5 is a non-start. The prior knowledge for object 5’s propul-

sion status is also incorrect, with a moderate preference toward nominal. This scenario

once again contains an extra space object (object 4) that does not relate to any hypotheses.

Additionally, since object 2 is associated with two separate hypotheses, this tests whether

the algorithm and operator recognize that this object can be leveraged for strong evidence.

Finally, two of the hypotheses begin with incorrect prior assumptions, testing whether the

operators will still prioritize gathering evidence to resolve these hypotheses.

Table 6.11: Sensor parameters, scenario D

ID Location Conditions
UA-Raven 32.2◦N, 111.9◦W Good
GT-Raven 33.7◦N, 84.3◦W Poor

MSSC-Raven 20.7◦N, 156.2◦W Moderate

Table 6.12: Space object parameters, scenario D

ID Regime σr (km, LVLH) σv (m/s, LVLH)
D1 LEO 1.0, 2.0, 0.7 0.75, 1.25, 0.20
D2 LEO 5.4, 7.8, 1.2 0.90, 1.05, 0.25
D3 MEO 8.2, 9.8, 2.2 0.54, 0.79, 0.21
D4 MEO 9.3, 10.2, 3.1 0.66, 0.94, 0.32
D5 GEO 15.5, 42.1, 6.8 0.27, 0.95, 0.09

Table 6.13: Hypothesis parameters, scenario D

ID Type Objects Truth Evidence Prior
D1 Close Pass D1, D2 Safe Moderate Vacuous
D2 Navigation Status D2 Anomalous Moderate Nominal (slight)
D3 Propulsion Status D3 Nominal Moderate Nominal (slight)
D4 Propulsion Status D5 Non-Start Moderate Nominal (moderate)

188



Scenario E: In this scenario, only two ground-based sensors are available (see Table

6.14) with moderate to very good observation conditions. The relevant space object pa-

rameters are listed in Table 6.15, and the relevant hypotheses in Table 6.16. The first and

second objects experience a safe close pass. The second object’s navigation status must

also be correctly identified as anomalous despite a prior belief in the nominal status. The

fourth object has experienced a propulsive anomaly resulting in explosion, so the detection

of debris is required to correctly resolve this hypothesis. The fifth object’s custody status

must be verified as maintained. Similar to scenario D, this scenario features a limited num-

ber of sensors and two incorrect prior beliefs, as well as an extra object that is not related to

any hypotheses. This scenario stretches the sensor network’s evidence gathering capabil-

ity through limited observability to see how that affects hypothesis resolution and operator

workload.

Table 6.14: Sensor parameters, scenario E

ID Location Conditions
UA-Raven 32.2◦N, 111.9◦W Very Good
GT-Raven 33.7◦N, 84.3◦W Moderate

Table 6.15: Space object parameters, scenario E

ID Regime σr (km, LVLH) σv (m/s, LVLH)
E1 LEO 1.0, 2.0, 0.7 0.75, 1.25, 0.20
E2 LEO 5.4, 7.8, 1.2 0.90, 1.05, 0.25
E3 MEO 9.3, 10.2, 3.1 0.66, 0.94, 0.32
E4 MEO 8.2, 9.8, 2.2 0.54, 0.79, 0.21
E5 GEO 15.5, 42.1, 6.8 0.27, 0.95, 0.09

Table 6.16: Hypothesis parameters, scenario E

ID Type Objects Truth Evidence Prior
E1 Close Pass E1, E2 Safe Moderate Safe (slight)
E2 Navigation Status E2 Anomalous Moderate Nominal (slight)
E3 Propulsion Status E4 Explosion Moderate Nominal (slight)
E4 Custody Status E5 Maintained Moderate Maintained (moderate)
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6.5 Results and Discussion

The data obtained for all 11 test subjects was compiled and analyzed to develop statistical

measures for subjects’ responses. The box-and-whisker plots, as illustrated in Fig. 6.2,

display the first quartile, second quartile (median), and third quartile, as well as the ±1σ

points of the data set. This concisely presents the distribution of responses on a single axis

to allow comparison between scheduling methods and scenarios. Small boxes with short

whiskers indicate clustered responses, while large boxes or long whiskers indicate a wider

distribution and less agreement. Therefore, the values of the response statistics can be com-

pared (i.e. the all three quartiles are better for scheduler 1, indicating better scores) as well

as the distribution of the values (i.e. the response distribution is much wider for scheduler

1, indicating less agreement in responses). Though the response values are subjective, each

subject answers the same questions in each scenario using each scheduler, so comparing

between the distributions normalizes for response scaling differences between test subjects

Figure 6.2: Box-and-whisker plot illustration

6.5.1 NASA-TLX

Figures 6.3 and 6.4, and 6.7 summarize the responses to the NASA-TLX questionnaires.

Strong trends are identified in the mental demand, temporal demand, and effort responses,

indicated by better scores for the hypothesis-based scheduler in Figs. 6.3(a), 6.3(c), and

6.4(b). The hypothesis-based scheduler allowed operators to accomplish their tasks with

lower workload requirements. As expected, physical demand (see Fig. 6.3(b)) for both

schedulers is very low. The responses for performance and frustration are less conclusive.

The subjects’ subjective opinion of their performance at the task varies between scenario, as
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shown in Fig. 6.4(a). Interestingly, the performance response distribution for scenario C is

much wider for the hypothesis-based scheduler, indicating that subjects could not identify

their performance as well in this scenario. This is more indicative of a poor scenario design,

and further results from the cognitive support questionnaire (below) corroborate this view.

Finally, the frustration responses in Fig. 6.4(c) are low, scoring well with both schedulers in

most scenarios. Both schedulers score nearly identically in scenario A, and the hypothesis-

based scheduler scores slightly better in scenarios B, C, and E while the covariance-based

scheduler scores better in scenario D.

While the frustration and performance responses are inconclusive, responses to men-

tal demand, temporal demand, and effort all indicate improved workload while using the

hypothesis-based scheduler. In particular, the performance trends can be further illumi-

nated by the following analysis of the cognitive support responses.

6.5.2 Cognitive Support

Figures 6.5, 6.6, and 6.7 summarize the responses to the cognitive support questionnaires.

For this initial set of tests, the cognitive support results provide limited intuition for com-

parisons between the schedulers but do provide useful insight into the scenario design.

For example, responses to prompts 1 (identifying unresolved questions, Fig. 6.5(a)) and

2 (proposing tasking to answer relevant questions, Fig. 6.5(b)) do not clearly identify any

trends between the schedulers. In scenarios A and B, for instance, the hypothesis scheduler

scores better on both prompts, but scenarios C, D, and E show similar responses for both

schedulers.

Prompt 3 (allowing modifications to schedules, Fig. 6.5(c)) does not appear conclusive

in comparing between schedulers either, but provides useful insight on the scenario design.

The subjects scored the hypothesis scheduler lower in this prompt for both scenarios A

and C, which are scenarios where all three available sensors exhaust the search space of

evidence before the scenario terminates. In this case, the hypothesis scheduler becomes
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unresponsive to changes in certain hypothesis weights because no evidence is available to

gather for those hypotheses, refusing to task on them even if the weight is maximized. It is

interesting to note that this condition was seemingly not noticed in the covariance scheduler,

leading subject to take actions that did not gather useful evidence. This indicates that these

scenarios could be improved to avoid exhausting all evidence for certain hypotheses, and

that the DSS should be improved to more clearly indicate incoming evidence to alert the

users in the covariance-scheduler to vacuous evidence.

Prompts 4 (identifying high state uncertainty, Fig. 6.6(a)) and 5 (identifying high hy-

pothesis entropy, Fig. 6.6(b)) exhibit expected trends. The covariance scheduler mostly

scores better in identifying state uncertainty as the operator must be aware of covariance

values in changing covariance weights. Similarly, the hypothesis scheduler scores better

across the board in identifying hypothesis entropy.

Prompt 6 (assessing resources required to answer questions, Fig. 6.6(c)) indicates

slightly better scores for the hypothesis scheduler, likely because the hypothesis scheduler

directly allocates resources to answer questions. Prompt 7 (assessing strength of evidence

received, Fig. 6.7(a)) also indicates better scores for the hypothesis scheduler, as expected

since the suggested tasking would select strong evidence first. Finally, prompt 8 (adapt-

ing to observation conditions, Fig. 6.7(b)) is mostly inconclusive as comparisons between

scenarios with poor observation conditions (scenarios B and D) and those with good obser-

vation conditions (A, C, and E) do not identify a trend.

Overall, the cognitive support responses confirmed expectations for the state uncer-

tainty, hypothesis uncertainty, and evidence strength questions. However, the lack of con-

clusiveness in the remainder of the responses lends some insight on potential improvements

required in the test scenarios and the overall test apparatus. For instance, clearer indication

of how each proposed action addresses the hypotheses would allow for stronger compar-

isons in how the proposed actions resolve questions. Additionally, scenarios A and C

should be improved to include more evidence to avoid exhausting evidence for any partic-
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ular hypothesis.

6.6 Conclusions

This chapter presents the development and evaluation of a prototype SSA DSS. The DSS

design requirements from the cognitive work analysis in Chapter 2 are revisited to high-

light five cognitive work requirements addressed by a hypothesis-based sensor tasking al-

gorithm using evidential reasoning, such as JER. The components of the prototype DSS are

displayed along with the human-in-the-loop test specifics.

Analysis of the data from these preliminary tests provide indications that the hypothesis-

based approach does improve decision-maker mental demand, temporal demand, and ef-

fort. The cognitive support questionnaire results are less conclusive but instead illumi-

nated important deficiencies in the preliminary test scenarios. Particularly, certain scenar-

ios do not contain enough evidence to limit the number of actions taken, which meant

the hypothesis-based scheduler could collect all the available evidence and then become

unresponsive to changes in tasking.

A second round of testing is planned to build on these findings. The test scenarios

will be revised to contain more varied evidence and ensure that evidence exhaustion does

not occur. Additionally, the 3D orbit display will be deemphasized as it does not directly

relate to the hypothesis-resolution testing goals. Though the design was modeled from ex-

isting SSA software, this particular task does not rely heavily on the 3D visualization, so

it only serves as a distraction from the tasks. Another planned change is to distance the

measured hypotheses and the situation awareness hypotheses, asking decision-makers to

report their awareness of broader events (e.g. which space object most probably experi-

enced a navigation anomaly?). The preliminary SAGAT questionnaires featured too many

level 1 questions, related to perception of elements of the environment, whereas level 2

questions, related to comprehension of the significance of the situation, are desired. This

encourages more knowledge-based reasoning in the judgment portion of the task instead of
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encouraging memorization of the display elements. This is similar to the approach taken

by McGeorge et al. [125]. An objective measure of the operator’s performance will also

be computed by comparing SAGAT responses to the simulation truth data. This measure

is omitted from this preliminary analysis due to oversimplification of the SAGAT ques-

tions resulting in very little variation in objective performance between all scenarios and

schedulers. Inclusion of this objective performance measurement also allows for interesting

comparisons to the operator’s own subjective assessment of task performance as measured

through the NASA-TLX questionnaire.

The revised tests are aimed at verifying situation awareness impacts of the hypothesis-

based tasking approach and clarifying the cognitive support responses, while the prelim-

inary findings indicate improvements in workload. Importantly, both the preliminary and

revised test results should be interpreted with appropriate caveats in light of the limited

complexity of laboratory simulation to avoid misleading or invalid conclusions. The re-

sults should be used primarily to identify trends for the development of more in-depth

human-in-the-loop tests closer to operational scenarios.
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(a) Prompt 1

(b) Prompt 2

(c) Prompt 3

Figure 6.3: NASA-TLX questionnaire response statistics, prompts 1-3
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(a) Prompt 4

(b) Prompt 5

(c) Prompt 6

Figure 6.4: NASA-TLX questionnaire response statistics, prompts 4-6
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(a) Prompt 1

(b) Prompt 2

(c) Prompt 3

Figure 6.5: Cognitive support questionnaire response statistics, prompts 1-3
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(a) Prompt 4

(b) Prompt 5

(c) Prompt 6

Figure 6.6: Cognitive support questionnaire response statistics, prompts 4-6
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(a) Prompt 7

(b) Prompt 8

Figure 6.7: Cognitive support questionnaire response statistics, prompts 7-8
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CHAPTER 7

FUTURE WORK

The work presented in this thesis focuses on improved methods for hypothesis resolution

and decision support in space situational awareness to provide decision-quality informa-

tion, enable predictive tasking, and improve decision-maker situation awareness. The fol-

lowing sections outline promising areas of future research related to this work.

7.1 Non-SSA Applications of JER

The JER approach is intentionally developed for generalized evidence-gathering to resolve

hypotheses. The derivation includes non-SSA examples, but future work should apply

the full methodology to non-SSA hypothesis resolution tasks. The non-SSA examples

included are intentionally simplified to be illustrative, demonstrating the function of both

the JER agent-pair optimization and the sub-problem schedule combination. Therefore,

future work should include more nuanced analyses of these or other non-SSA scenarios to

further validate application outside sensor network tasking.

The medical diagnosis application is a compelling candidate for further development

and validation of the JER approach. Medical diagnosis exhibits many similar constraints

to SSA hypothesis resolution. Time optimality is a concern as early diagnosis is often

a key factor for successful recovery; however, an incorrect or missed diagnosis can be

catastrophic, so positive confirmation of all hypothesis resolutions is a priority as well.

Additionally, medical test and procedure costs are often very high, limiting the number of

actions that may be performed to reach the conclusion. The JER approach was formulated

to address these kinds of constrained evidence gathering tasks, where the number of actions

available or feasible cannot exhaust all the evidence in the search space. A more detailed

and nuanced evaluation of JER used to select diagnostic tests would facilitate translation
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from the relatively small field of SSA to a much larger community.

7.2 Improved Confirmation Bias Metrics in JER

As discussed in the development of JER, confirmation bias measurement is an active field

of study. Current confirmation bias measurements amount to differences in the number or

strength of chosen evidence sources [92, 93], leading to the use of the principle of equal

effort for balancing between advocate and critic agent actions. This approach ensures that

both agents have equal numbers of actions to gather and present the strongest available

evidence. While the approach is ad hoc, it is also necessary to ensure avoid local minima

that might be found in an entropy reduction approach, induced by attempting to confirm

an incorrect prior belief. The alternating agents also allow application of adversarial opti-

mization approaches, which helps reduce computational complexity.

With the principle of equal effort, the current approach of measuring turns for and

against a proposition might be replaced by the amount of time spent on the evidence

search, or the number of pieces of evidence returned from the previous actions. Ideally,

an information-based metric can be developed to compute and display the confirmation

bias inherent in the knowledge state based on previous actions taken and the strength of

evidence. If such a metric is developed, the agent turn-ordering can be adjusted to incor-

porate it: instead of alternating turns, the advocate and critic agent pairs can alternate the

currently-active agent based on the current measured confirmation bias. However, this task

may prove difficult as confirmation bias is typically measured entirely separate from the

actual hypothesis resolution. An actor can be entirely biased toward one proposition and

still reach a high-quality resolution if that proposition happens to be correct: in this case,

the actor is still experiencing confirmation bias. This is why the ad hoc measurements of

confirmation bias use numbers of evidence or subjectively-assigned evidence strengths in

laboratory settings, but improved information-based confirmation bias metrics would allow

for more nuanced agent-pair scheduling without sacrificing confirmation bias.
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7.3 Principle of Equal Effort and Asynchronous Evidence Gathering

Related to the improvement of confirmation bias metrics, the principle of equal effort also

suffers when dealing with highly asynchronous action sequences. If a particular evidence-

gathering actor has a fast action cadence (e.g. a bot that scans news websites and articles for

references of keywords) and another actor has a slow action cadence (e.g. a telescope slew-

ing and making observations), the current formulation of JER would require recomputing

and re-estimating action sequences for both the fast and slow actor. This adds many valid

sequences for evaluation and adversely affects computational tractability of the approach.

One possible approach is to use sub-intervals for different actors by “fixing” longer

time-scale actions and still allow re-evaluation of the short time-scale actions in between.

The set of valid actions would only include actions for the non-fixed actors, reducing the

search space significantly once again. But here again, the confirmation bias measurement

becomes an issue as the principle of equal effort can be affected, especially if the equal

effort objective includes time instead of just number of actions. Additionally, since the fast

agent takes far more actions in the same timespan, even weak evidence gathered by the fast

agent may bias hypothesis resolution. Addressing this asynchronous tasking issue would

enable efficient application of JER in even more real-world situations.

7.4 Further Application of Decision Support Requirements

The decision-support prototype developed using cognitive systems engineering addresses

a number of the derived decision-support design requirements. Future work can extend

upon this prototype to incorporate more decision support design requirements and conduct

further tests on situation awareness and workload.

Currently, a follow-on series of tests incorporating lessons-learned from the first pro-

totype is planned. This revised test will modify the situation awareness questions to in-

vestigate comprehension (i.e. level 2 situation awareness) as opposed to perception (i.e.
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level 1) by abstracting the questions from the available display elements, relying less on

memory-based questions.

Additionally, the prototype UI is being altered to deemphasize the 3-dimensional visu-

alization of the space environment. Though industry-standard software for SSA includes

these types of displays, the added visualization is only a distraction from the relevant situa-

tion awareness questions in this test. By incorporating more complex hypotheses and level

2 situation awareness questions, while also deemphasizing the 3-dimensional visualization,

the follow-on tests aim to provide stronger indications of decision-maker cognitive support

effectiveness.

7.5 Hypothesis Generation and Evidence Mapping

Though the JER approach considers methods for removing resolved hypotheses from con-

sideration, the topic of generating new hypotheses based on available data was not ad-

dressed in this work. Currently, generating the hypotheses and outlining the mappings

that transform sensor evidence into BPAs is a very human-intensive process that involves

outlining the possible resolutions of each decision-making question and rigorously map-

ping the incoming evidence to different propositions. Tools can be designed to aid in this

process, but the abstract reasoning required to derive the relationships between data or ev-

idence and hypothesis resolution is a knowledge-based reasoning task preferably assigned

to the human decision-makers. Future work should investigate methods for supporting hu-

man cognition in forming these abstract relationships and generating new hypotheses with

associated evidence-to-BPA mappings.
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CHAPTER 8

CONCLUSIONS

As research and development efforts in SSA increasingly focus on supporting decision-

making, the methods for information fusion and sensor allocation must adapt to support

decision-making as well. The number of trackable space objects is increasing and, along

with improved sensor technology, contributes to increasing data processing requirements.

Current sensor tasking approaches often rely upon human-intensive techniques developed

over half a century ago, which are infeasible with increasing SSA data requirements. Pro-

posed improvements often focus on minimizing space object state uncertainty, but the re-

lationships between state uncertainty and decision-maker needs are not always readily ap-

parent, motivating this analysis of sensor tasking and decision support in SSA.

Chapter 2 provides background on cognitive systems engineering practices, particularly

cognitive work analysis, and applies these techniques to the SSA domain. Careful consider-

ation of the capabilities and constraints in the SSA work domain and environment leads to

the development of abstraction hierarchies to model linkages between purposes, priorities,

functions, and resources in SSA. The work domain analysis provides insight that exist-

ing sensor allocation and information fusion approaches do not provide a robust or clear

mapping to decision-maker goals of space asset safety and national security. The con-

trol task analysis focuses on the tasks of information fusion and sensor allocation, leading

to the derivation of 14 cognitive work requirements and information relationship require-

ments. Importantly, this study motivates the development of hypothesis-based methods for

information fusion and sensor allocation, which would allow decision-makers to remain at

the abstract levels of prioritizing between difference decision-making goals when selecting

sensor tasking.

Chapter 3 provides a concrete application of hypothesis-based methods to an existing
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problem of spacecraft association and anomaly detection. Using both control distance and

Mahalanobis distance metrics, the existing approach for anomaly detection is extended for

application to non-Gaussian boundary conditions using Gaussian mixture models. The in-

clusion of a binary hypothesis testing approach further improves the existing method by

more realistically modeling the control cost distributions for a non-maneuver and allowing

prescription of allowable rates of false alarm. Control distance is shown to have advan-

tages in anomaly detection consistency over longer observation gaps and computational

complexity, while Mahalnobis distance exhibits higher sensitivity in anomaly detection.

Overall, this study provides an introduction to applications of hypothesis-based methods to

specific SSA tasks.

Chapter 4 continues with spacecraft anomaly detection while also considering the cus-

tody problem. Here, evidential reasoning is motivated through its ability to quantify evi-

dence ambiguity, allowing for more realistic modeling of SSA sensor evidence. This moti-

vates the initial evidential reasoning sensor tasking approach based on reducing hypothesis

ambiguity, or ignorance. Several SSA sensors (i.e. All-Sky cameras, electro-optical sen-

sors) and auxiliary data sources (i.e. weather forecast reports) are cast as Dempster-Shafer

evidence experts and applied in simulated spacecraft custody and anomaly detection cases.

The ignorance-reduction criterion does allow for gathering strong evidence and resolves the

hypotheses as well as a covariance-based method while using far fewer actions. When lim-

iting the number of actions taken by both algorithms to be equal, the ignorance-reduction

method significantly out-performs covariance-minimization in hypothesis resolution.

Chapter 5 generalizes the evidential reasoning application of Chapter 4 to general hy-

pothesis resolution tasks and addresses additional concerns in evidence-gathering for hy-

pothesis resolution. This leads to the development of the Judicial Evidential Reasoning

(JER) framework, which has three primary considerations: hypothesis abstraction, ambigu-

ity aversion, and confirmation bias. The hypothesis abstraction is addressed as in Chapter 4

through the application of evidential reasoning. Ambiguity aversion is a well-documented
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cognitive phenomenon in decision-making wherein decision-makers overwhelmingly pre-

fer to take bets on known probability distributions than unknown or ambiguous distribu-

tions. Bayesian probability theory struggles to capture this difference, casting both distri-

butions as non-informative priors with equal probability. In JER, entropy is used as an op-

timization criterion as it accounts for both internal conflict and ambiguity in the hypothesis

knowledge; reducing both leads to decision-quality hypothesis resolutions. Computational

complexity concerns are addressed by decomposing the multi-hypothesis problem into sub-

problems, greatly reducing the number of sequence evaluations required as compared to

brute force evaluation. The sub-problem decomposition also addresses confirmation bias

through the principle of equal effort, wherein the sub-problem schedules are solved on an

alternating-turn basis to equally distribute evidence-gathering actions between the propo-

sitions. This ensures that prior evidence does not overwhelm the entropy-minimization

process. The sub-problem schedules are combined, resolving incongruities by minimizing

the priority-weighted total entropy. Examples developed for non-SSA applications illus-

trate the function of each component of JER, and the simulated results apply JER to a

multi-hypothesis anomaly resolution task. Balancing the competing objectives of time-

optimality and impartiality enables predictive tasking through JER to resolve hypotheses

despite ambiguous evidence, uncertainty, and incorrect priors.

Finally, Chapter 6 returns to the decision support system requirements to develop a

prototype for SSA. A primary insight from the cognitive work analysis indicates that

hypothesis-based methods allow the decision-maker to reason about sensor tasking op-

tions at the abstract function level, without having to resort to physical function level data

such as space object covariances. By applying a subset of these requirements relevant to

evidential reasoning and the hypothesis-based sensor tasking insights gained through SSA

applications in Chapters 3 through 5, the prototype is designed to improve situation aware-

ness and workload. A human-in-the-loop test is conducted to evaluate differences between

hypothesis- and covariance-based sensor tasking. The preliminary test results indicate that
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the hypothesis-based approach reduces mental demand, temporal demand, and effort in

SSA tasks, and follow-on testing is planned to further investigate the cognitive support and

situation awareness effects of the hypothesis-based approach.

Sensor tasking for SSA is a high-dimensional, multi-objective, non-linear, mixed-integer

optimization problem. The work in this thesis formulates the SSA sensor tasking problem

to interrogate specific hypothesis that support decision-maker needs. The application of ev-

idential reasoning provides a framework for modeling these hypotheses and evidence while

accounting for ambiguity. The specific applications show promise in applying hypothesis-

based approaches to a wide array of SSA and activities, with the overal goal of providing

decision-quality information, enabling predictive tasking, and improving decision-maker

situation awareness and workload in SSA.
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APPENDIX A

ANOMALY DETECTION SENSITIVITY STUDY RESULTS

This appendix contains a larger selection of data from the anomaly detection hypothesis

testing sensitivity studies. Trends using this data are highlighted in the Simulation Results

and Empirical Results sections of Chapter 2.
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(a) PFA = 0.005 (b) PFA = 0.01

(c) PFA = 0.05 (d) PFA = 0.1

Figure A.1: Control distance probability of anomaly contours vs uncertainty scaling pa-
rameter and observation gap, simulated inclination change maneuver.
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(a) PFA = 0.005 (b) PFA = 0.01

(c) PFA = 0.05 (d) PFA = 0.1

Figure A.2: Mahalanobis distance probability of anomaly contours vs uncertainty scaling
parameter and observation gap, simulated inclination change maneuver.
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(a) PFA = 0.005 (b) PFA = 0.01

(c) PFA = 0.05 (d) PFA = 0.1

Figure A.3: Control distance probability of anomaly contours vs uncertainty scaling pa-
rameter and observation gap, simulated phasing maneuver.
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(a) PFA = 0.005 (b) PFA = 0.01

(c) PFA = 0.05 (d) PFA = 0.1

Figure A.4: Mahalanobis distance probability of anomaly contours vs uncertainty scaling
parameter and observation gap, simulated phasing maneuver.
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(a) PFA = 0.005 (b) PFA = 0.01

(c) PFA = 0.05 (d) PFA = 0.1

Figure A.5: Control distance probability of anomaly contours vs uncertainty scaling pa-
rameter and observation gap, real-data (WAAS) inclination change maneuver.
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(a) PFA = 0.005 (b) PFA = 0.01

(c) PFA = 0.05 (d) PFA = 0.1

Figure A.6: Mahalanobis distance probability of anomaly contours vs uncertainty scaling
parameter and observation gap, real-data (WAAS) inclination change maneuver.
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APPENDIX B

SSA DSS HUMAN-IN-THE-LOOP EXPERIMENT MATERIALS

This appendix contains forms and materials from the SSA DSS human-in-the-loop study.

B.1 Informed Consent
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Figure B.1: Human subject study consent form approved by Georgia Tech Institute Review
Board - page 1
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Figure B.2: Human subject study consent form approved by Georgia Tech Institute Review
Board - page 2
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Figure B.3: Human subject study consent form approved by Georgia Tech Institute Review
Board - page 3
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