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SUMMARY

Autonomous rendezvous and docking (AR&D) maneuvers are a key enabling technol-

ogy for many types of space missions. For example, in the realm of small satellites it would

facilitate on-orbit construction of larger assemblies. The volume and mass limit constraints

are a crucial challenge imposed by the form factor. First, the presented work details a three-

phase model predictive control (MPC) algorithm. MPC provides robustness to uncertainties

in the dynamics and utilizes optimal control techniques that can handle state and control

constraints directly. The three phases highlight changing constraint conditions within the

underlying optimal control problem. Second, the work provides a detailed analysis of the

implemented algorithm to changing parameters and tests the overall robustness to actuation

uncertainties. A simulation specific to the AR&D of small satellites was created to assess

the MPC algorithm. Rendezvous to a non-maneuvering target has been considered for both

non-rotating and constant tumbling cases. Finally, hardware emulation is used to verify that

the proposed guidance algorithm is capable of running onboard a flight computer analog.

The computational performance is benchmarked for a couple of parameters to investigate

the effect on performance.

xiv



CHAPTER 1

INTRODUCTION

Autonomous Rendezvous and Docking (AR&D) has been identified by NASA as a key

enabling technology as far back as the 1960’s [1, 2, 3, 4]. Rendezvous maneuvers are

crucial for missions involving spacecraft repair, re-supply and crew exchanges, retrieval of

objects, and on-orbit assembly of larger structures [3]. The need for autonomy in these

maneuvers is a result of increasing mission frequencies, and a desire to improve robust-

ness [5]. An increase in mission frequencies puts strain on ground communication systems

as more spacecraft need ground access, increasing the likelihood of scheduling conflicts

for spacecraft that need ground-in-the-loop guidance, as well as labor costs [5]. Space-

craft that can perform the necessary maneuvers without needing ground contact can avoid

these issues. System robustness is crucial in guidance algorithms due to model uncertainty,

perturbations, measurement noise, and actuator faults [6].

The work presented here considers the use of AR&D for small satellites. Small satellite

AR&D enables missions like the on-orbit assembly of larger constructs, such as a large tele-

scope [7]. On-orbit assembly lowers costs associated with launch and repair. For instance,

small satellites can be launched as rideshares, which is cheaper than being the primary pay-

load. Repairing a large spacecraft is costly, if at all possible. If a piece of a small satellite

assembled structure has malfunctioned, a replacement for the single satellite housing the

malfunctioning part can be launched. The malfunctioning part would undocked from the

assembly and the replacement part performs the AR&D maneuvers to reform the assembly.

However, the benefit of the size of small satellites does not come without its challenges.

Limited commercial thruster options for guidance are available. Additionally, small satel-

lites are a typically volume-limited form factor as is the case with the well-known Cube-

Sat class satellites. This restricts the total available fuel volume to perform the necessary
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AR&D maneuvers.

The types of challenges due to form factor are not an unknown aspect of spacecraft

design. An interesting parallel can be drawn to the history of rendezvous with NASA’s

space shuttle program [8]. New rendezvous techniques and profiles had to be made to ac-

commodate for the differences in thrust capability and limited processing power. However,

processing power has changed dramatically since the early days of the shuttle program

and a much different approach is taken in this paper. Whereas historically rendezvous and

proximity operations have always had an element of human-in-the-loop interaction, this

research removes that element in favor of autonomy as described above.

The AR&D process consists of a controlled trajectory that brings an active spacecraft

(the chaser) into the vicinity of (and eventually contact with) a non-maneuvering object

(the target) while handling the model uncertainties, environmental and actuation distur-

bances, and measurement noise. During the approach trajectory, the chaser must adhere to

constraints on position, velocity, angular rates, and attitude for safe and successful docking.

The challenge of an AR&D guidance algorithm is to then meet these needs while remaining

solvable in real-time on a small flight computer typical of small satellites.

Guidance algorithms and techniques being studied tend to fall within two schools: sta-

bility based and optimal control based [6]. Stability based controllers handle uncertainties

very well, but may have additional parameters that require expert tuning. An example of

stability control is sliding-mode control [9, 10]. Optimal control techniques being studied

include artificial potential functions (APF) [11], differential dynamic programming (DDP)

[12], and model predictive control (MPC) [13, 14, 15, 16]. Of particular interest is guid-

ance using MPC algorithms, because they have a strong capability to handle constraints [6,

13].

In an MPC approach, an optimal control problem is constructed and an optimized con-

trol sequence is found. A portion of the optimal control sequence is then applied until the

optimal control problem is solved again with new state estimate information. The underly-
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ing optimal control problems may be or linear [14, 15] or nonlinear [17]. With nonlinear

programming (NLP) comes increased complexity and specialized solvers [13]. To reduce

computational burden, linear system (time-varying or time invariant) are often employed

[15]. However, these approximations are valid locally and may not be accurate if large

nonlinearities are present. The MPC formulation may also be fixed or variable horizon.

In fixed-horizon MPC, the prediction model looks ahead a specified number of timesteps

at every sampling time, whereas variable-horizon MPC the final time is encoded into the

objective to enforce finite-time completion [15]. The approaches in [18] and [19] use vari-

able horizon MPC and leads to solving a Mixed-Integer Linear Program (MILP) at every

time instance which are hard to solve. Briefly mentioned in [15] is employing variable

horizon by solving a sequence of fixed-horizon problems and taking the lowest cost option.

A variable horizon guidance law that is easier to solve than an MILP formulation has been

proposed in [20].

In [15], a tutorial of using MPC with Linear Time-Invariant (LTI) and Linear Time-

Varying (LTV) models is presented. Different techniques to the MPC objective cost func-

tions such as quadratic and linear cost functions are also shown. When a quadratic cost is

used with a linear model, the optimal control problem becomes a Quadratic Program (QP)

problem. Similarly, if a linear cost is used the problem becomes a Linear Program (LP).

The tutorial also shows how to design a variable horizon formulations through terminal

constraints and the objective cost. Constraints in the optimal control problem such as max-

imum control and approach direction through a Line-of-Sight (LoS) corridor are discussed.

The presented method is general AR&D and is applicable to a cooperating non-rotating

spacecraft. A similar fixed-horizon MPC solution that incorporates a ”keep-out” zone for

avoiding collisions is presented in [14]. This method focuses on the QP cost for its re-

lation to Linear Quadratic Regulator (LQR) control and the classical Clohessy-Wiltshire

(CW) equations are used for an LTI prediction model. The ”keep-out” zone is shown in the

context of avoiding an obstacle during the AR&D maneuver. Weiss utilizes a two-phase

3



guidance that switches MPC formulations in a prescribed box-distance around the target

spacecraft. Additionally, the farther range formulation is a reference-governor approach

where a forced equilibrium set point is included in the optimized variables. This set point

is supposed to improve feasibility of shorter control horizons. However, the values chosen

for the examples are on a scale much more applicable to large spacecraft propulsion sys-

tems and do not show viability in context of low-thrust spacecraft. The QP MPC problem

is expanded on in [16] to allow for docking with a tumbling spacecraft. An LTI model

for the dynamics (through the CW equations) is used for real-time computation. Within

the prediction model, the constraints for the LoS corridor are updated to approximate the

tumbling target motion. There is a focus on the closing section of the maneuver where

the controlled spacecraft is already within approximately 20 m distance to the target and

therefore only has one phase. Instead of using the CW model, an LTV model is used in

[21] for an LTV formulation. This is important for highly elliptical orbits where the CW

equations start to break down in accuracy.

The research presented is valuable because it takes the general rendezvous MPC ap-

proaches and assesses its use for small satellite use. Ideas from the previous works, namely

a phased maneuver with QP focus with a tumbling target, are combined with modifications

to fit the investigated small satellite scenario. The first contribution consists of combining

these works into a working guidance algorithm as well as setting up the testing simulation.

The following contributions deal with verifying and validating the developed algorithm for

small satellite use by checking the robustness and performance. To that end, the guidance is

tested through simulation to check how the performance changes with the MPC parameters

in each phase. A working algorithm is not enough to ensure that an algorithm is ready for

flight on a small satellite. The final contribution aims at answering the question of flight

readiness through hardware emulation.

The constraints in the MPC formulations to be shown may be equivalent to previous

works in form and function, but are unique to small satellites in regard to permissible

4



values and implementation. The values for maximum impulsive ∆v in application of the

algorithm are on the order of <1 N as is typical of small satellite propulsion systems [22].

The thrusters are also not able to be throttled, but produce a fixed amount of thrust when the

valves are opened, which is not true for all propulsion systems. In terms of computational

efficiency, small satellite flight computers are typically single or dual-core ARM processors

with <1 GHz clock speed. The developed algorithm is designed with this limitation in

mind.

To make it small satellite viable, a three-phase guidance algorithm that focuses on com-

putationally efficient control solutions is developed. The three-phase guidance approaches

the problem from a wider perspective than just the closing phase where the chaser and tar-

get spacecraft are tens of meters apart. Three phases are considered instead of two to relax

the problem when the chaser spacecraft is approaching the target from the intended direc-

tion but the constraints for docking may be too strict. The first phase guides the chaser to an

appropriate approach direction. In the second and third phases, the chaser spacecraft closes

in on the target while remaining inside an allowable area. As docking interfaces may have

strict angle-of-approach and velocity requirements it is necessary to relax these constraints

as the chaser closes in during the added second phase, as mentioned previously. Instead of

a forced equilibrium set point in the rendezvous phase, a fixed set point is used to guide the

chaser towards the approach corridor instead of directly to the origin which conflicts with

the safety ”keep out zone” constraint. To remain computationally simple for small satellite

flight computers, the three phases use fixed-horizon QP for their optimal control problems

and the predictive model remains LTI. The developed algorithm is tested for three differ-

ent cases regarding the approach direction of the target: in the transverse (so-called V-bar)

direction, the radial (dubbed R-bar) and for a constantly rotating target.

For the viability contribution, the domain is investigated by changing the initial condi-

tions of the chaser spacecraft. The purpose of this is to check if there are areas of relative

positions that tend to produce infeasible guidance solutions and should be avoided by mis-
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sion planners. Random initial relative conditions were selected to measure the resulting

∆v and time to rendezvous characteristics of the guidance law in relation to their starting

angle and distance from the target.

Next, disturbances from the environment and noises are added to the simulation to ver-

ify the robustness. The noises added are what can be considerable levels in the measure-

ments and propulsion system actuation. The noisy actuation measurements are modelled as

a time-varying system such that it also captures unknown modeling errors. The simulations

are run for the randomly chosen initial chaser starting conditions for numerous simulations

to check the average effect of the noises and disturbances on the algorithm characteristics,

namely ∆v and time to rendezvous.

The developed MPC laws are constrained by hardware limitations in propulsion sys-

tems and flight computers that are common to the type of small satellites being investigated.

The presented work evaluates the performance of the phases for use on typical hardware.

This is done through the use of hardware emulation to remain mission design agnostic,

although the type of processor chosen resembles those found on commercial small satellite

flight computers. The simulation is split into a server-client setup, where the dynamics are

controlled by the server portion running on a desktop computer. The flight software with

the MPC resides is located on the emulated hardware and profiling is used to check the

computation times. This analysis intends to decide if the proposed algorithm is computa-

tionally simple enough to run quickly on this type of hardware.

The first contribution to create an MPC guidance algorithm that meets the constraints

set by an example small satellite scenario is described in Chapter 3. The domain check

and MPC parameters sensitivity contribution are the subject of chapter 4. To validate the

robustness of the algorithms, Chapter 5 presents the discussion on disturbances and noise.

Finally, Chapter 6 focuses on benchmarking the performance of an implementation of the

algorithm to assess its ability to run in a flight-like environment.

6



CHAPTER 2

METHODOLOGY AND TOOLS

This chapter introduces the models and tools used for performing AR&D operations. First,

the linearized equations of relative motion, perturbations, and thruster actuation models are

introduced. Second, an introduction to model predictive control is presented. Finally, the

simulation and optimization tools are briefly discussed.

2.1 Spacecraft Models

This section presents the assumed models used to create the guidance algorithm. First,

the equations of relative motion needed for the MPC prediction step are shown along with

perturbation models. Then, the thruster models used in the guidance testing simulations are

described.

2.1.1 Equations of Relative Motion

The reference frame used for this work is based on a Local-Vertical Local-Horizontal

(LVLH) frame centered at the target spacecraft’s Center of Mass (CoM). The x̂-axis is

directed radially outwards from Earth, with the ŷ-axis in the velocity direction. The ẑ-

axis completes the right hand rule being in the direction of the target orbit angular velocity

vector.
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Figure 2.1: LVLH Reference frame of the target

The classic Clohessy-Wiltshire (CW) equations [23] describe the linearized relative

motion of two spacecraft in orbit about the Earth in the given reference frame. As stated

previously, the choice of these equations is to make the prediction model an LTI system.

An LTI system will allow the MPC optimal control problems to be set up as QP or LP. This

is important for small satellite viability as NLP solvers are not yet as developed in terms

of computational speed [13]. However, linearization has the drawback that the prediction

model is accurate only locally, and in the case of the CW equations this means near circular

orbits (e = 0). Therefore, it is assumed that the target is in a circular orbit about the Earth,

which is not unreasonable for the Low-Earth Orbit (LEO) scenario considered in this paper.

This assumption would not work if the target spacecraft was in a geostationary transfer orbit
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(GTO) or a near-halo rectilinear orbit (NRHO). The CW equations are given by

ẋ (t) = Ãx (t) + B̃u (t) (2.1)

Ã =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3ω2 0 0 0 2ω 0

0 0 0 −2ω 0 0

0 0 −ω2 0 0 0


, B̃ =

 03×3

I3×3

 (2.2)

where ω is the mean motion of the target’s orbit in the Earth-Centered Inertial (ECI) frame.

The state vector x(t) ∈ R6 is defined as x(k) = [ρ(t) ρ̇(t)], where ρ(k) ∈ R3 and

ρ̇(t) ∈ R3 are defined as the components of the relative position and velocity vectors in the

LVLH frame, respectively, at time t ∈ R. The vector u(t) ∈ R3 defines the applied control

to the chaser spacecraft.

The continuous-time model of the CW equations is discretized to give the following

Linear Time-Invariant (LTI) system

x (k + 1) = Ax (k) +Bu (k) (2.3)

where time index k ∈ N0 defines the time tk ∈ R+. From this point on, a subscript k is

used as shorthand to describe a vector at time instant k. It is imperative that the impulsive

invariant discretization method is used so that the control is modeled as impulsive velocity

changes, uk = ∆vk. A typical zero-order hold (ZOH) discretization method may work

well for small sample periods, the impulsive assumption is more appropriate for the longer

maneuvers [15]. The matrix, A, is the state transition matrix over the discrete sample time

∆Ts = tk+1−tk, and the control mapping B = AB̄, so that the state is propagated through

an impulsive velocity change over the sample time ∆Ts.
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While the CW equations are only applicable to circular target orbits, the so-called

Tschauner-Hempel equations and various solutions [24, 25, 26] are used for the linearized

relative motion in elliptical orbits. The Yamanaka-Ankersen (YA) state-transition matrix

[25] can be used as a LTV system of equations for elliptical orbits in place of the CW equa-

tions. It should also be noted that the YA system reduced exactly to the CW equations for

e = 0.

2.1.2 Thruster Force Models

Small satellite propulsion systems may use cold gas, monopropellants, or electric propul-

sion [22]. The discretization method used for the MPC model will be shown to be impulsive

so while electric propulsion has high Isp values for the propellant, the thrust provided is on

the order of µN and is typically too small for an impulsive approximation. Typical values

provided by a cold gas system range from 1-25 mN [22] a monopropellant system provides

between 0.25-1 N [22, 27]. While not perfect, these ranges are a much better fit for an

impulsive assumption. The type of small satellite propulsion considered in this study work

on the basis of ”on/off” control rather than throttleable. The amount of force applied is

either all or nothing, and cannot be throttled between zero and the maximum value. When

commanded on, a thruster will apply a nominal force, Fthr for the duration of the on-time

(or pulse-width), tpulse. The amount of impulse to a system is changed by adjusting the

amount of time that the thruster is on.

Jcmd = Fthr ∗ tpulse (2.4)

As stated previously, the discretization method uses impulsive ∆v assumptions and is

not realistic for this type of actuation due to the finite pulse-width. Additionally, the thruster

valves do not open and close instantaneously so the nominal thrust instead has some ramp-

up and down time. As a result, the realized impulse may not be exactly the same as the
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idealized impulse. These timings are able to be well-defined by experimentation and can

be calibrated out as a constant low bias and have therefore been ignored. Also related is

a limit to how short the pulse may be, leading to the Minimum impulse bit (MIB) that the

thruster can provide. A constraint included in the MPC formulation creates an upper bound

on the thruster on-time to achieve as close to an impulsive-like behavior as desired.

For simplicity, a constant mass for the spacecraft is assumed. This assumption provides

a conservative estimate needed for overall ∆v as realistically the mass of the spacecraft

will decrease with expelled propellant. As an example, assuming a 14 kg CubeSat using

the AF-M315E green monopropellant (recently renamed ASCENT) with an Isp of 220 s,

the needed propellant mass to provide 80 m/s is around 0.5 kg, which is approximately

3.5% of the spacecraft mass.

With the constant mass assumption, thrust applied is F k∆t = m∆vk. The amount of

force that the ith thruster with axis nthr,i needs to provide is simply the amount of force in

the thruster direction, Fk,i = F k · nthr,i. Then, the on-time needed for the ith thruster is

found with

tpulse,i =
Fk,i

Fmax,i

(2.5)

Then, the control applied is related to the provided impulse and chaser spacecraft mass, mc

through

u =


0, tpulse < tMIB

Jcmd/mc, tpulse ≥ tMIB

(2.6)

where tMIB is the pulse width corresponding to the MIB. If the needed pulse width is

smaller than the MIB the control is simply discarded as too small to provide. Another op-

tion is to calculate the pulse width on an opposing thruster such that the resultant thrust

provided is the desired amount, but this would cost more propellant so was not imple-

mented.
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2.2 Model Predictive Control

Optimal control theory is the basis for MPC. A dynamics model predicts future states based

on current state information, and a control input at the current time optimizes the predicted

states [28, 29]. The general optimization problem to be solved is given by:

min
u(t)

J(x(t),u(t)) =

∫ ∞

0

ℓ(x(τ),u(τ)) dτ

s.t. ẋ(t) = f(x(t),u(t))

x(0) = x0

(x(t),u(t)) ∈ Z ∀t ∈ R≥0

(2.7)

where Z ⊆ X × U, X ⊆ R6, and U ⊆ R3. However, solving this minimization problem

is still intractable for most problems, as it is an infinite horizon problem. To make the

minimization more computationally feasible, the cost has been changed to a finite-horizon

with an additional cost for the subsequent infinite interval.

min
uk

J(xk,uk) =
N∑
i=0

ℓ(xi|k,ui|k) + JN(xN |k,uN |k)

s.t. xi+1|k = f(xi|k,ui|k)

x0|k = x(tk)(
xi|k,ui|k

)
∈ Z i = 0...N − 1

xN |k ∈ Xf

(2.8)

It should be noted that the state, control, and constraints are discretized. In general, the

solution to Equation 2.8 is an open-loop control sequence, uk =
{
u0|k,u1|k, ...,uN |k

}
,

and not a feedback control law. The resulting predicted state and open-loop optimal control

sequence are for a finite number of time steps, tk to tk+N , or the prediction horizon as seen

demonstrated in Figure 2.2. The MPC feedback law is constructed by solving Equation 2.8
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online every time step and applying the first element of the control sequence, u0|k. At the

next sample time, the prediction horizon will now be over a new time interval. This is what

makes this type of finite MPC as a moving horizon problem.

Figure 2.2: MPC state and control example horizon

2.2.1 Cost Objectives

There exists a variety of possible running cost functions for optimal trajectories depending

on the desired result. The classic quadratic cost for the stage and terminal cost are given by

ℓ(xi,ui) = xT
i Qxi + uT

i Rui (2.9a)

JN(xN ,uN) = xT
NQfxN (2.9b)

From this point, the shorthand ∥x∥2A := xTAx is used to save space. With appropri-

ate weighting, the quadratic cost function can produce smooth trajectories with intrinsic

robustness [15, 13]. Another option is the 1-norm cost function:

ℓ(xi,ui) = ∥Qxi∥1 + ∥Rui∥1 (2.10a)

JN(xN ,uN) = ∥QfxN∥1 (2.10b)
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The 1-norm cost function tends toward sparser ”bang-off/bang-on” style control, which can

reduce fuel consumption compared to quadratic cost. However, it may also be less robust

to uncertainties and disturbances [15].

For variable horizon MPC the stage cost ℓ(xi,ui) must contain a constant term which

will be summed over to represent a penalty on the number of time steps taken [15]. The

error in the state is also removed from the stage cost and there must be a terminal state

constraint.

ℓ(xi,ui) = 1 + ∥Rui∥1 (1-norm) (2.11a)

ℓ(xi,ui) = 1 + ∥Rui∥1 (quadratic) (2.11b)

An alternative way to implement a variable horizon is to solve a sequence of fixed-horizon

problems up to a horizon of Nmax and take the action with the minimum weighted objective.

Since the presented research is interested in minimizing computational effort, the variable

horizon methods were not investigated.

2.2.2 Quadratic Program MPC

The stability and controllability of MPC is discussed in [28] and [29]. Appropriate weight-

ing for the terminal cost term, JN , is globally known for special cases to provide stability.

In particular, it is known for the quadratic cost case which, as stated previously, is similar

to the well-known LQR feedback control law [15, 28] If the state prediction is assumed to

be linear f
(
xi|k,ui|k

)
= Axi|k + Bui|k, Q ≥ 0, and R > 0, then Qf can be shown to

be the solution to the algebraic Riccati equation [28, 29]. The design choices of Q and R

are usually tricky, a trait from the underlying LQR that is inherited by the MPC problem.

Taking the cost to be quadratic also has the benefit that Equation 2.8 is computationally

feasible to be solved online every sample instance. Using the quadratic cost, the full cost
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for our control minimization problem is

J(xk,uk) =
N∑
i=0

(∥∥xi|k
∥∥2

Q
+
∥∥ui|k

∥∥2

R

)
+
∥∥xN |k

∥∥2

Qf
(2.12)

At each time step, Equation 2.12 is minimized to find the optimal control sequence, uk ={
u0|k,u1|k, ...uN |k

}
, subject to constraints on the state and control, which are now dis-

cussed. Since the weighting matrices Q and R are positive-definite, it follows that the cost

is convex. Therefore, if the constraints are also chosen to be convex, the minimization of

Equation 2.12 will be a convex QP which is relatively easy to solve with modern tools.

These constraints may be given as sets of equality or inequality constraints on the state and

control variables.

g (xi,ui) = 0 (2.13a)

h (xi,ui) ≤ 0 (2.13b)

With the assumption of the quadratic cost, linear state update, and convex constraints,

the full convex QP minimization problem for the optimal control sequence at time tk is

min
uk

J(xk,uk) =
N∑
i=0

(∥∥xi|k
∥∥2

Q
+
∥∥ui|k

∥∥2

R

)
+
∥∥xN |k

∥∥2

Qf

s.t. xi+1|k = Axi|k +Bui|k

x0|k = x(tk)

g(xi|k,ui|k) = 0 i = 0, ..., N

h(xi|k,ui|k) ≤ 0

(2.14)

For the case of satellite rendezvous, A and B are taken from Equation 2.1, the CW equa-

tions of relative motion. The optimization in Equation 2.14 forms the basis for each control

optimization setup for the phases in the AR&D problem.
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As stated in 2.1.2, thrusters considered are a type of on/off actuation, which is not well

described by the convex constraints in Equation 2.14. It is possible to set up the MPC

problem to include discrete actuators, but this increases solving complexity as it becomes

a mixed-integer QP. Increased complexity generally results in longer computation times.

Considering the minimization has to complete before every sample time, the mixed-integer

problem is currently not considered to conserve computation effort.

2.3 Spacecraft Dynamics and Environment Simulation

Testing scenarios for the algorithms presented in this work are run using the 42 Spacecraft

Simulation tool independently developed at NASA Goddard Space Flight Center [30]. 42

is an open-source simulation framework for developing formation flying guidance and atti-

tude control laws. Written in C, it provides spacecraft dynamics propagation, sensor mod-

els, and actuation models for a user to develop a flight software-like routine to test a control

algorithm. The framework allows the user to set up the environment as desired in input

files. This includes turning on and off perturbation effects such as atmospheric drag, solar

radiation pressure, and Earth’s oblateness. For the work presented, 42 is used to model the

chaser and target spacecraft with atmospheric drag, and Earth’s oblateness perturbations.

Six thrusters are attached to the chaser spacecraft to give Six Degree-of-Freedom (6DOF)

motion. It should be noted that 42 is just a simulation tool and not expected to run on a

flight system.

42 includes a graphics output for viewing the spacecraft created for the simulation,

Earth, and other celestial bodies. This viewer is useful for watching attitude control and

guidance algorithms in action. Doing so does require a 3D object model that the framework

can use. These models are also necessary for more advanced environmental disturbances

such as atmospheric drag.

The propagation methods within 42 are based off of relative motion. Each spacecraft

is given a reference orbit and a model for propagating the system relative to that orbit is
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used for the spacecraft motion. Relative motion models include Euler-Hill (equivalent to

the CW equations), the Encke method, and the Cowell method.

2.4 Optimization Problem Solver

The minimization QP problems are solved using the CVXGEN [31] solver. CVXGEN

generates custom code in either MATLAB or C for a high-speed QP solver from a convex

QP problem description. Specifically, this paper will be making use of CVXGEN to solve

problems of the type shown by Equation 2.14. The code generation works best for smaller

problems and may fail for large systems due to the size of variables.

2.5 Hardware Emulation

QEMU is an open-source emulator and virtualizer for a variety of processor boards [32].

This tool is used to emulate an ARM processor system used to test the developed algorithm

in a flight-like environment. QEMU is used as a full-system emulator running Linux on

the virtual machine. While the full-system emulation is not exactly cycle-accurate, it is a

baseline for testing on the intended system.

17



CHAPTER 3

AUTONOMOUS RENDEZVOUS USING MPC

General approaches for using MPC for rendezvous and docking operations [14, 13, 15]

with a non-rotating target have been previously developed. In [16], the case of a tumbling

target is considered, and only focuses on the final portion of the rendezvous where the

chaser is already in the vicinity of target spacecraft. The work presented here examines the

whole maneuver starting from a large distance between the chaser and target spacecraft.

This research expands on the efforts in [14, 15, 16] to the whole maneuver with a focus on

adapting the algorithms to one usable onboard a small satellites. To accomplish this, the

developed algorithm centers on QP optimal control and using fixed-horizon methods.

In order to reduce overall computational load, the AR&D scenario was split into three

phases, shown in Figure 3.1, based on the relative distance between the chaser and target

spacecrafts: rendezvous, approach, and closing/docking. Each phase has a different sam-

ple time between control inputs. The sampling time is smaller for closer range phases to

provide finer and faster response as the chaser spacecraft approaches the target. When far

from the target, the chaser does not need to adhere to the same constraints that are needed

during the docking event. For example, the chaser does not need to meet attitude or keep-in

zone constraints when the distance to the target is large. Splitting the maneuver allows the

control sequence optimization constraints to be adjusted or tightened to reduce unnecessary

actuation early in the maneuver.

Since finite horizon MPC uses discrete time steps, the CW equations must be dis-

cretized. In [16], the discretization method used for the control mapping assumes that

the applied control is constant between sampling times. For distances with long sample

times, this may not be feasible. Instead, the proposed guidance algorithm uses the follow-
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Figure 3.1: The 3 Phases of the Guidance Algorithm with the Rendezvous phase keep-out
zone and keep-in cones for Approach and Docking.

ing impulsive invariant discretization

xk+1 = Āxk + B̄uk (3.1)

where A is the usual discretized form Ā = eA∆T , and the control mapping is B̄ = AB.

This control mapping is such that the state is propagated through an impulsive velocity

change over the sample time ∆T .

3.1 Rendezvous Phase

At relative distances greater than the keep-out zone (up to a few km) and outside of the

approach cone, the algorithm is considered to be in the rendezvous phase. There is low

risk of collision between the two spacecraft and the time between control updates may be

upwards of a couple minutes. Lower sampling times can still be used to shorten the overall

rendezvous time, but come at the cost of expending more fuel. This section describes the
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formulation of the constraints needed in Equation 2.14, as well as modifications to the

objective cost, for the rendezvous phase MPC QP.

3.1.1 Reference Point

As the purpose of the rendezvous phase is to guide the chaser into the approach cone, a

reference point x(s) is added to the quadratic cost terms in Equation 2.12 to drive the chaser

state to this set point. A set point should be within the approach cone, preferably on or near

the boundary of the keep-out zone.

J(xk,uk) =
N∑
i=0

(∥∥∥xi|k − x
(s)
k

∥∥∥2

Q
+
∥∥ui|k

∥∥2

R

)
+
∥∥∥xN |k − x

(s)
k

∥∥∥2

Qf

(3.2)

Without the reference point, the minimization of the cost will attempt to drive the state

of the chaser to the origin (ie. the CoM of the target). This was the case in previous

iterations of this work [33, 34]. While this may be close the end goal, it runs counter to the

purpose of the rendezvous phase and will fight against the keep-out zone constraint which

is explored later in this section.

3.1.2 Terminal Penalty

Additionally, an external penalty on the final state of the chaser spacecraft may be applied

to the cost as

Jpenalty(xk,uk) = λ1T
(
HxN |k

)
+

(3.3)

where 1T is defined as a vector of ones and the operator (·)+ denotes taking only the

positive vector elements. λ ∈ R+ is a weighting on the penalty function. The approach

cone is defined by an n-order polyhedron P = {x ∈ R3 : Hx ≤ 0} where H ∈ Rn×3.

For the purposes of this work, the polyhedron was taken to be of order 4 for simplicity.

Since the penalty was added onto the objective cost and not the state constraints of
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the QP, it is not a strict requirement. This allows for more feasible trajectories, where

the chaser may not be within the approach cone within the first prediction horizon. With

the addition of the reference cost, this external penalty on the terminal state is not strictly

needed, but may help to drive the final state towards a feasible set point. One may choose

to implement one or the other or both of these cost modifications to desired effect.

3.1.3 Convexified Keep-out Constraint

To guide the chaser safely to the rendezvous phase goal, a keep-out zone around the origin

is considered. Without this constraint, the resulting trajectory may attempt to fly-by (or

even through) the target spacecraft towards the rendezvous goal of the approach cone. This

collision avoidance can be modeled as a sphere of keep-out radius, r1

∥∥xi|k
∥∥
2
≥ r1 (3.4)

However, the definition in Equation 3.4 is not convex and does not fit within the desired

convex QP framework. To convexify this constraint, the keep-out zone is approximated

as a set of inequalities that describe a rotating plane on the surface of the sphere [35], as

shown in Figure 3.2.

n̂T
i|kxi|k ≥ r1 i = 0, ..., N (3.5)

The vector n̂i|k defines a normal vector of the plane tangent to the sphere at point rn̂i|k.

Throughout the prediction horizon, the normal vector rotates according to a prescribed rate

so that at time tN the end vector is aligned with the approach cone center axis. This splits

the rotation into N equal angles rotations given by

θk = arccos
xT
0|knN |k∥∥x0|k
∥∥∥∥nN |k

∥∥/N (3.6)

However, if the rate of the plane’s rotation around the keep-out zone is too high, this
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Figure 3.2: Rotating plane constraints to approximate the non-convex keep-out zone.

may lead to infeasible solutions for the chaser’s trajectory [35]. To combat this effect, an

upper limit is set on the rotation rate, which may result in the plane at the end of the pre-

diction horizon not being aligned with the polyhedron axis. During subsequent prediction

horizons, the keep-out planes will continue to rotate towards the desired approach cone

until a horizon where the center axis is reached and can be split into equal angle rotations.

It was found that the target orbit’s mean motion, ωt, was an acceptable upper limit for the

purposes of this work. Slightly different than in [35] is the approach of plane rotation direc-

tions. If the approach cone center axis is within N steps during the prediction, the planes

may rotate either direction. However, if outside this prediction horizon, there is a prefer-

ence for the plane rotation to occur in the direction most closely aligned with the natural

relative orbit motion.
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3.1.4 Rendezvous QP

Using the modified cost function (Equation 3.2), terminal penalty (Equation 3.3), and the

series of inequalities to approximate the keep-out zone (Equation 3.5) in (Equation 2.14)

will yield the QP for the rendezvous phase MPC.

min
uk

J(xk,uk) =
N−1∑
i=0

(∥∥∥xi|k − x
(s)
k

∥∥∥2

Q
+
∥∥ui|k

∥∥2

R

)
+
∥∥∥xN |k − x

(s)
k

∥∥∥2

Qf

+ λ1T
(
HxN |k

)
+

s.t. xi+1|k = Axi|k +Bui|k

x0|k = x(tk)

n̂T
i|kxi|k ≥ r1 i = 0, ..., N

|uk|∞ ≤ umax

(3.7)

3.2 Approach Phase

The policy switches to the mid-range approach phase when the chaser spacecraft enters the

designed approach cone emanating from the target vehicle’s CoM and is on the boundary

of the keep-out zone radius r1. In the approach phase, the sample time, Ts, is decreased for

finer control.

3.2.1 Objective Cost

The running cost of the approach phase is similar to the rendezvous phase with some key

differences. The penalty of the cone constraint is now taken over the entire prediction states

to remain within the approach cone. It is still an external penalty because it was decided that

it is acceptable to violate this cone slightly to ensure feasible solutions. The reference point

was also carried over into this phase due to how well it worked in the rendezvous phase.

The reference point is set to a point within the approach cone just behind the switching
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distance to the docking phase.

J(xk,uk) =
N−1∑
i=0

(∥∥∥xi|k − x
(s)
k

∥∥∥2

Q
+
∥∥ui|k

∥∥2

R

)
+
∥∥∥xN |k − x

(s)
k

∥∥∥2

Qf

+ λ

N∑
i=1

1T
(
Hixi|k

)
+

(3.8)

3.2.2 Constraints

Instead of following a keep-out zone, there is an overshoot constraint that follows the vertex

of the approach cone and does not allow the chaser to enter past a distance of r2 from the

target. This acts as a safety barrier and acts as the switching point for the final phase.

nT
cone,i|kxi|k ≥ r2 i = 0, ..., N (3.9)

As an example, if the target was non-rotating and the desired docking direction was

along the y-axis, then this constraint would reduce to yi|k ≥ r2, which is a hard constraint

on the y-direction of the chaser’s relative position.

3.2.3 Approach QP

The full minimization QP for the approach phase is given by

min
uk

J(xk,uk) =
N−1∑
i=0

(∥∥∥xi|k − x
(s)
k

∥∥∥2

Q
+
∥∥ui|k

∥∥2

R

)
+
∥∥∥xN |k − x

(s)
k

∥∥∥2

Qf

+ λ
N∑
i=1

1T
(
Hixi|k

)
+

s.t. xi+1|k = Axi|k +Bui|k

x0|k = x(tk)

n̂T
cone,i|kxi|k ≥ r2 i = 0, ..., N

|uk|∞ ≤ umax

(3.10)
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3.3 Closing or Final Phase

The final phase starts when the relative distance between the chaser and target spacecrafts

hits the r2 distance within the approach cone. The LoS cone constraint is tightened to the

angle required by the target’s docking mechanism.

3.3.1 Objective Cost

In the previous phases, the state objective was being guided relative to some chosen ref-

erence point within the approach cone. If this reference point is left out then the state

objective is driven to the target’s CoM. To account for a docking port at a known loca-

tion on the target spacecraft that may not correspond to the CoM, the state error from the

docking port position is used as the quadratic objective in the optimization. Additionally,

the LoS cone penalty in the objective function also must be centered at the docking port

position, x(d), in the LVLH frame. Originally, the cone constraint was an external penalty

function in the running cost (as in previous iterations of this work [33, 34]), but has been

removed and made a constraint in the QP problem.

min
uk

J(xk,uk) =
N−1∑
i=0

(∥∥∥xi|k − x
(d)
i|k

∥∥∥2

Q
+
∥∥ui|k

∥∥2

R

)
+
∥∥∥xN |k − x

(d)
N |k

∥∥∥2

Qf

(3.11)

3.3.2 Constraints

The cone constraint is added as a hard constraint that must be satisfied by the solution. In

this manner it serves as the overshoot constraint as well saying that the chaser spacecraft

must be within whatever positional requirements are set by the docking mechanism. The

polyhedron for the docking cone is in general more restrictive than the approach polyhedron

penalty.

H i

(
xi|k − x

(d)
N |k

)
≤ 0 i = 0, ..., N (3.12)
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Another new constraint that has been added to the set of docking constraints is on the

velocity of the chaser spacecraft. This is the so-called ”soft-docking” constraint and is to

limit how fast the chaser can approach the docking port. Using v = ρ̇ and some allowable

max docking velocity vmax:

∣∣vi|k
∣∣
∞ ≤ vmax i = 0, ..., N (3.13)

In [14] there is an exponential velocity decay constraint used in place of an upper ve-

locity limit. However, this was only done on the velocity in the approach direction, when

it should be ensured that the chaser is approaching slowly in any direction.

3.3.3 Docking QP

Using the running cost from Equation 3.11 and the constraints Equation 3.12 and Equa-

tion 3.13 the full docking QP problem can be formed as

min
uk

J(xk,uk) =
N−1∑
i=0

(∥∥∥xi|k − x
(d)
i|k

∥∥∥2

Q
+
∥∥ui|k

∥∥2

R

)
+
∥∥∥xN |k − x

(d)
N |k

∥∥∥2

Qf

s.t. xi+1|k = Axi|k +Bui|k

x0|k = x(tk)

H i

(
xi|k − x

(d)
N |k

)
≤ 0 i = 0, ..., N∣∣ui|k

∣∣
∞ ≤ umax

|v| ≤ vmax

(3.14)

3.4 Constant Rotating Target

In a scenario with a tumbling target, the docking port will not be fixed in the LVLH frame.

Consequently, the LoS cone must also rotate in the LVLH frame in the minimization QP’s.
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For example, assuming a constant rotation about the x-axis, ωB = ωB î, the LoS polyhedron

evolves as a simple rotation about the LVLH x-axis.

Hi+1|k = Hi|kR
T
1 (ωb∆Ts) (3.15)

In Equation 3.7, the approach cone polyhedron H should be taken at time tN in the

prediction horizon. In Equation 3.10 and Equation 3.14, the approach and docking cone

axes ˆncone also must rotate in accordance with the target body rotation.

3.5 Guidance Algorithm

This section describes the full guidance algorithm strategy as presented in algorithm 1.

The algorithm begins in the rendezvous phase at time tk = t0, solving Equation 3.7 for

the optimal control sequence, uk =
{
u0|k,u1|k, ...,uN |k

}
with prediction horizon N = N1

and sample time ts = ts,1. Only the first element in the control sequence, u0|k, is applied to

the chaser. At the next sample instance, if the chaser spacecraft is within the approach cone

the algorithm proceeds to the approach phase. Otherwise, the rendezvous optimal control

sequence calculation is repeated.

The approach phase is similar to the rendezvous phase, but uses Equation 3.10 to solve

for the optimal control sequence. Again, only the first element in the control sequence is

applied. The prediction horizon and sample time are shorter than those of the rendezvous

phase. The shorter times between control allows for quicker response as the chaser closes

in on the target’s position. When the chaser reaches a prescribed distance from the target,

r2, the docking phase begins.

In the final phase, docking, Equation 3.14 is solved for the optimal control sequence.

As with the other phases, the first element of the sequence is the control applied to the

system. The prediction horizon is shortest in this phase. The time between control is also

at its shortest due to the close-proximity to the target where quick control is needed.
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Algorithm 1: AR&D Guidance
Initialize tk = t(0), xk = x(0)
begin phase 1 Rendezvous

Set rendezvous prediction horizon parameters
N ← N1

ts ← ts,1
repeat

Solve (Equation 3.7) for optimal control sequence uk

Apply first control element, u0
k

k ← k + 1
Update state estimate, xk

until xk <= Hxk and ∥xk∥ ≤ r1 // End Rendezvous phase if
inside approach cone

end
begin phase 2 Approach

Set approach prediction horizon parameters
N ← N2

ts ← ts,2
repeat

Solve (Equation 3.10) for optimal control sequence uk

Apply first control element, u0
k

k ← k + 1
Update state estimate, xk

until xk ≤ r2 // End Approach phase
end
begin phase 3 Docking

Set docking prediction horizon parameters
N ← N3

ts ← ts,3
repeat

Solve (Equation 3.14) for optimal control sequence uk

Apply first control element, u0
k

k ← k + 1
Update state estimate, xk

until xk ≤ r3 // End Maneuver
end
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3.6 Simulation and Results

The 42 simulation created to utilize the three-phase MPC algorithm considers two CubeSat

spacecraft in Low-Earth Orbit (LEO). Both are assumed to be 14 kg and 6U in size. The

chaser vehicle is fitted with 500 mN thrusters that are configured to provide thrust in all

axes. Three cases of this scenario are run. The first case utilizes a V-bar (or transverse

direction) approach of the chaser to a non-rotating target. In Case 2, the target is again non-

rotating, but the chaser approaches from the R-bar (or radial) direction. Case 3 considers a

target that is rotating at a constant rate about its Body z-axis, which is initially aligned with

the LVLH z-axis.

The scenarios begin with an initial chaser position approximately 1.7 km from the tar-

get. For the far-range rendezvous phase, the control horizon is N1 = 30 steps with a

time between control of 30 seconds. In the approach phase the time steps are reduced to

ts,2 = 20 seconds and a prediction horizon of N2 = 15. During the docking phase the

LoS cone is tightened for a smaller keep-in zone and the sample time is again reduced to

ts,3 = 5 second intervals with a prediction horizon of N3 = 12. The parameters considered

for the MPC problem of each phase are shown in Table 3.1 and Table 3.2.

3.6.1 V-bar approach (Case 1)

The first scenario considered is a chaser performing a V-bar approach to a non-rotating

target. The axis of the LoS cones and overshoot constraint in the QP’s is taken to be along

the velocity (y-axis) direction. The resulting trajectory of the chaser in the CW-frame is

shown in Figure 3.3a. From Table 3.3 it can be seen that the rendezvous is completed in

around 29 minutes with a total ∆v of 13.28 m/s.
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Table 3.1: Simulation MPC parameters

Parameter Far-Range Mid-Range Close-Range
Ts [s] 30 20 5
N 30 15 12
Q diag{1, 1, 100, 1, 1, 10} I6×6 20I6×6

R 103I3×3 103I3×3 106I3×3

λ 10 10 10
LoS Angle 15 15 deg 8 deg
umax [m/s2] 0.1786 0.1786 0.0357

Table 3.2: Spacecraft Initial Conditions
Parameter Value

Chaser Position in CW Frame (x, y, z)[m] (140,−1580, 60)
Chaser Velocity in CW Frame (vx, vy, vz) [m/s] (−0.90,−0.32, 0)

Docking Port in Target Body Frame (xd, yd, zd) [m] (0.5, 0, 0)
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Figure 3.3: V-bar docking (Case 1) results. (a) In-plane motion of the chaser in the CW
frame. (b) Magnitude of resultant thrust forces during the maneuver.
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Table 3.3: Case 1. V-bar Maneuver Results

Phase Total ∆v [m/s] Time [s]

Far Range 10.24 1169

Mid-Range 2.84 260

Final Approach 0.20 315

Total 13.28 1744

3.6.2 R-bar approach (Case 2)

For Case 2, the chaser performs an R-bar approach to the target. The LoS cones and

overshoot constraint in the control minimization QP are adjusted accordingly. The resulting

trajectory and control thrust magnitudes are shown in Figure 3.4. From Table 3.4, it can be

seen that for this initial state, the R-bar approach takes less time as well as less fuel than

in Case 1. This is expected because the chaser does not have to continue as far around the

target to reach the approach cone.

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

y [km]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

x
 [

k
m

]

(a)

0 5 10 15 20 25 30

Time [min]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

v
 [

m
/s

]

(b)

Figure 3.4: Case 2 simulation (R-bar approach) results. (a) In-plane chaser motion in the
CW frame. (b) Magnitude of resultant thrust forces during the maneuver.
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Table 3.4: Case 2. R-bar Maneuver Results.

Phase Total ∆v [m/s] Time [s]

Far Range 9.19 989

Mid-Range 2.76 280

Final Approach 0.18 310

Total 12.13 1579

3.6.3 Rotating Target (Case 3)

In the last simulation, the target is rotating with a constant rate about its body z-axis. The

location of the docking port is initially aligned in the V-bar (y-axis) direction. The total

amount of ∆v needed is comparable to Cases 1 and 2, as seen in Table 3.5. The biggest

difference lies in the closer approach and docking phases. This is expected as the maneuver

needs to match the docking port’s rotation. The overall implication is that matching a

rotating object does not appear to add a significant amount of ∆v.
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Figure 3.5: Case 3 Target with a constant rotation. (a) In-plane rendezvous maneuver in the
CWH frame with resultant control vectors. (b) Magnitude of resultant thrust forces during
the maneuver.
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Table 3.5: Case 3. Rotating Target Maneuver Results

Phase Total ∆v [m/s] Time [s]

Far Range 8.38 929

Mid-Range 4.04 360

Final Approach 0.25 280

Total 12.67 1569

3.6.4 Rendezvous Cost Comparisons

This section showcases the differences between having the reference point as a part of the

rendezvous phase objective cost (Equation 3.2). An additional comparison is using a 1-

norm running cost objective as in Equation 2.10 and making the rendezvous phase problem

an LP instead of a QP. The full maneuver was simulated three times using the same starting

conditions but with the different rendezvous optimal control problems. The trajectories for

all three maneuvers are shown in Figure 3.6 and the resulting ∆v and tf are displayed in

Table 3.6.

First, shown in red is the QP setup that uses a reference point inside of the approach

cone. This is the result from the V-bar case in the above sections. Without the set point (in

blue), it can be seen that the trajectory is driven to the keep-out zone and is guided around

the zone to the approach cone. Due to the fighting of the optimization to drive the chaser

state to the origin and to adhere to the keep-out zone, the chaser moves slowly around

resulting in a much longer maneuver time of 71.23 min compared to the previous case of

around 29 minutes. The LP formulation in yellow interestingly takes a different direction

towards the approach cone for this particular set of initial conditions. While the maneuver

also takes longer (40.57 min) it does use less ∆v which is the expected result.
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Figure 3.6: Comparison of Rendezvous QP and LP Optimal Control.

Table 3.6: Comparison of Rendezvous Cost Objectives

Cost Strategy Total ∆v [m/s] Time [min]

QP without Set Point 12.65 71.23

QP with Set Point 13.28 29.07

LP 12.74 40.57

Moving forward, this paper assumes a rendezvous setup using the QP optimal control

problem with a set point. However, if desired the LP problem setup may be used for sparser

control to reduce fuel if desired by a mission. The following analyses in later chapters can

be seen for maneuvers with LP problem rendezvous in the appendix.

3.7 Future Considerations

While the well-known CW equations are a good starting point and commonly used, they

assume circular orbits and do not capture effects from disturbances like J2. Including J2
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in the linearized prediction model would benefit the algorithm accuracy. One approach

to consider more elliptical orbits is shown in [36] by using the previously mentioned

Tschauner-Hempel model for relative motion. Another option to consider is the use of the

Schweighart-Sedwick model [37], which is similar to the CW model, but includes effects

of J2. Additionally, there are two schools of thought for improving the handling of uncer-

tainties with MPC: stochastic MPC [38] and tube-based robust MPC [36, 39] that could

be explored for implementation. These types of controllers would benefit the algorithm to

more stability and knowledge about response to disturbances.
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CHAPTER 4

SENSITIVITY TO MPC PARAMETERS

The resulting ∆v and time-to-dock tf are heavily dependent on where the chaser spacecraft

begins the maneuver relative to the target. Additionally, the developed algorithm response

in each phase is dependent on the length of the prediction horizon and the sampling time

for the optimal control problems. The effect of these two parameters on the performance of

the algorithm was investigated for any trends that may help with parameter selection. The

two parameters were chosen for assessment instead of the QP weightings since they have

more of a computational effect of the algorithm, namely the time between solutions and the

computational complexity. For each phase of the algorithm, the sample time of the phase

was varied while holding the other phase sample times and prediction horizons constant.

This sample time varying was repeated for differing prediction horizons.

The tests consisted of 500 chaser initial states that were chosen by random distribution.

The generated points are shown in Figure 4.1 with a note that the x-axis negatives are

towards the top and in the Earth direction. The relative distance is uniformly distributed

between 0.15 − 2.5 km. The relative velocity is perturbed off of the required stable orbit

velocity with a normal distribution of zero mean and 0.5 m/s standard deviation in each

axis.

4.1 Initial Conditions

To test the ending values based on the initial relative starting position the algorithm was

run for the 500 generated points to perform a V-bar maneuver. This simulation was done

with the baseline MPC parameters from Table 3.1. Two parameters were checked for their

importance on the ending ∆v and tf : starting quadrant and radial distance from the target.

The starting quadrant in the LVLH frame is of interest because it affects how far around
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Figure 4.1: 500 Randomly Generated Initial Chaser Positions in the LVLH Frame.

the target the chaser must fly in the rendezvous phase to reach the approach cone. This extra

flying time obviously would increase the time-to-dock, but the question remains by just

how much compared to starting conditions in the same half-plane as the target. Figure 4.2a

colors the initial chaser positions by quadrant while Figure 4.2b shows the ending ∆v and

final maneuver time. The quadrant 3 and 4 positions are, in general, farther to the right

on the plot indicating the expected increased time it takes for the maneuver to finish. The

quadrant 3 and 4 ∆v’s also have high lower bounds indicating that starting the maneuver on

the other half-plane to the docking mechanism is more likely to result in more needed ∆v.

Interestingly, however, the maximum needed ∆v does not seem as affected by quadrant

as the minimum, as it is not uncommon for the quadrant 1 and 2 maximums to also reach

high values. In conclusion, it is not possible to determine a range of expected ∆v and tf on

quadrant alone.

The radial starting distance from the target CoM is an obvious area of interest because

the chaser must travel farther which would take more time and actuation leading to higher

needed ∆v. From the radially segmented results in Figure 4.3, a couple observations are

made. Like the quadrant results, there is a noticeable effect on the minimum ∆v and

tf . Farther starting distances correlate to higher values, as expected. The consequence of
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Figure 4.2: Quadrant colored (a) initial chaser positions and (b) resulting ∆v vs tf .

starting distance is also realizable in the maximum values is also noticeable than changing

the quadrant.
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Figure 4.3: Radially colored (a) initial chaser positions and (b) resulting ∆v vs tf .

From these results, it can be seen how important the selection of starting chaser state

relative to the target is and shows how implementations of the algorithm can test for worse

case scenarios.
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4.2 Rendezvous Phase

The tested sample times for the rendezvous phase are Ts = 20, 30, 40, 50, 60 s. For the

prediction horizons, the chosen values are N1 = 15, 30, 45. The prediction horizon of

N1 = 45 is pushing the ability of CVXGEN’s code generation to the limit and acts as an

upper limit capability. It should be noted that it is expected that longer times in between

control actuations would result in longer times for the rendezvous phase to finish. To

normalize this effect, in addition to ∆v vs tf , the ∆v vs the number of control actuations

needed to complete the rendezvous phase is explored. The results from N1 = 15, 30, 45 are

shown in Figure 4.4, Figure 4.5, and Figure 4.6.
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Figure 4.4: Rendezvous Phase with N1 = 15.

The first parameter to look at is the differences between the sample times. Longer

time between actuations decreases the needed ∆v in the rendezvous phase across all three

tested prediction horizons. The decrease in ∆v does appear to have diminishing returns, as

the difference between Ts,1 = 50 s and Ts,2 = 60 s is not as large as the other intervals.

Additionally, the longer sampling times also decrease the number of needed actuations.

However, it must be noted that this results in longer rendezvous times overall. Another

observation can be made in the spread of the resulting ∆v’s. The faster sampling times have

a wider amplitude range of ∆v when compared to the longer sampling times. However,
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Figure 4.5: Rendezvous Phase with N1 = 30.
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Figure 4.6: Rendezvous Phase with N1 = 45.

the longer sampling times are not without issue as there started to be non-convergence

in the algorithm. When running the simulations, maneuvers were given 200 minutes to

complete as this is more than enough time on average. Failure to complete within this time

is strongly correlated with the rendezvous solution converging to a point on the keep-out

zone boundary, something that is rarely seen in the faster sampling times as well as lower

prediction horizons. For N1 = 30 and Ts,1 = 60 s, 2 out of the 500 test cases failed to

rendezvous within the 200 minute limit. For the N1 = 45 case, the Ts,1 = 50 s test had 1

case fail and the Ts,1 = 60 s test had 6 failures. It is recommended then that sampling times
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between the 30-40s range are best considered for this phase.

Increasing the prediction horizon also has an appreciable effect on the rendezvous re-

sults. From N1 = 15 to N1 = 30 the needed ∆v and tf decreases for all sampling times in

general. The decrease appears to have diminishing returns, as the results between N1 = 30

and N1 = 45 have similar characteristics. Since there does not seem to be an appreciable

decrease in ∆v from the longer horizon, the N1 = 30 should be preferred as it is expected

to have less computational effort, which will be shown in a later chapter.

4.3 Approach Phase

For the approach phase, the sample times tested are Ts = 5, 10, 15, 20, 25, 30 s with pre-

diction horizons of N2 = 5, 15, 30. To test the approach phase, the ending points of the

rendezvous phase with N1 = 30 and Ts,1 = 30 s were selected as the initial conditions.

Similar to the rendezvous results, the time from approach phase start to end and number of

control actuations within the approach phase are studied. The results for N2 = 5, N2 = 15

and N2 = 30 are shown in Figure 4.8, Figure 4.7, and Figure 4.9, respectively.
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Figure 4.7: Approach Phase with N2 = 5.

As with the rendezvous phase, the effect of sampling time on the approach phase is eas-

ily observable. Increasing the time between control actuations lowers the minimum needed
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Figure 4.8: Approach Phase with N2 = 15.
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Figure 4.9: Approach Phase with N2 = 30.

∆v for these test cases. However, the spread of needed ∆v becomes larger with the increas-

ing sample time. This increase in spread with increased sampling time is also observed in

the time of the approach phase. The Ts,2 = 10 s and Ts,2 = 15 s are recommended for

the lowest ∆v needed to range of possible values. It should be noted that for the N2 = 5

horizon that sample times of Ts,2 = 5s did not have feasible solutions.

The ∆v dropped dramatically between N2 = 5 and N2 = 15. Interestingly, for pre-

diction horizon values of N2 = 15 and N2 = 30, there is not an appreciable difference

observed. The resulting ∆v and time characteristics are mostly the same. It is recom-

mended to select the smaller of these two prediction horizons for the lesser computational
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effort needed to solve for the optimal control sequence.

4.4 Docking Phase

For the docking phase, the sample times are Ts = 1, 3, 5, 10 s with prediction horizons

of N3 = 5, 12. The initial conditions for this phase were taken from the ending of the

approach phase using scenarios with N1 = 30, Ts,1 = 30 s, N2 = 15, and Ts,2 = 20 s.
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Figure 4.10: Docking with N3 = 5.
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Figure 4.11: Docking with N3 = 12.

The most obvious observation for the docking phase is the wide gap between needed

control actuations for the varying sampling times, with 1 second intervals needing more
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Figure 4.12: Docking with N3 = 30.

than double the other intervals. The spread of the docking phase time may look compact

within sampling times when looking at the number of control intervals, but this is due

to the scaling. The spread is more easily seen in the time to dock, showing that longer

sampling times need more time. This is most likely attributed to taking longer to correct

the spacecraft to remain within the tight docking corridor. The maximum and minimum

needed ∆v does decrease with longer sampling times as with the other phases. However,

this difference is relatively tiny compared to the ranges of the rendezvous and approach

phases. There is not much difference between the time to dock for sampling times when

compared across prediction horizons.

Based on these observations, shorter prediction horizon in this phase is recommended

for faster docking times. This is similar to the approach phase conclusion where the rela-

tively small change with longer prediction horizon is not very important compared to the

possible computation time increase. Smaller sampling times around Ts,3 = 3− 5 s are also

recommended for minimizing the needed ∆v.
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4.5 Future Considerations

The presented analysis shows the relative differences between the chosen MPC parame-

ters, but may not give the optimal ∆v and tf values for every situation. Other parameters

that can be changed are the weights in the cost objectives of each phase. Studying these

weights would improve the understanding of the overall characteristics and confirm that

these relative findings remain for different weights.
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CHAPTER 5

ROBUSTNESS OF MPC GUIDANCE

A desired property of the developed MPC law is robustness to disturbances. The robustness

is a result of the closed-loop nature of the algorithm. Disturbances may be present in the

dynamics of the system model, sensor measurements, or in the actuators. This chapter

focuses on testing the resilience of the MPC guidance under the effects of unknown state

errors and the provided actuation.

5.1 Actuation Noise

As stated previously ( 2.1.2), the impulse provided by a thruster is related to the commanded

on-time to that thruster. Variations in the ramp-up and ramp-down timings of the valves are

one source of error in the realized impulse. However, these variations are typically very

small compared to the minimum pulse and can be characterized through testing. Another

source of error is in the nominal thrust applied by the thruster. The nominal thrust may

change with factors such as temperature and pressure of the system (Tsys and Psys) as well

as time in between pulses.

Jcmd(t) = Fapplied(Tsys, Psys,∆t) ∗ tpulse (5.1)

Instead of trying to model variations in the applied thrust force due to these sources, the

error in the actual thrust versus commanded thrust was modeled as a time-correlated noise

in the amplitude of the commanded thrust.

Fapplied = Fnom + w(t)Fnom = (1 + w(t))Fnom (5.2)

where w ∈ (−1, 1) is a random variable for the percent change in the nominal thrust force.
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The amplitude error, w(t), is described by the following stable error model developed

by Carpenter and Lee in [40].

ẇ
v̇

 =

−1/τ 1

−ω2
n −2ξωn


w
v

+

ηw
ηv

 (5.3)

This Stochastic Differential Equation (SDE) behaves similarly to a random walk over

a designed length of time. The benefit of using this Gauss-Markov (GM) model is that the

steady-state covariance is asymptotically bounded to avoid cases where the error increases

indefinitely. The GM parameters τ , ωn, and ξ are chosen to match the physics and vari-

ability of the error phenomenons (such as pressure variations). Additionally, ηω and ηv, are

tuned for appropriate covariance amplitudes. While this SDE may not be the most realistic

model for a propulsion system, it allows for testing the algorithm’s abilities to handle errors

in the actuation without attempting to model a whole propulsion system. This encompasses

a variety of error sources, including unknown modeling errors, within one model. A sam-

pling of propulsion amplitude errors using this model are shown in Figure 5.1.

Figure 5.1: Sampling of thruster amplitude errors.
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The black dotted line marks the 3-sigma bounds for the steady-state covariance over

time. As can be seem from the figure, the value tends to stay within the ±7% thrust ampli-

tude error range (within 1σ) which is not unreasonably high.

5.2 Disturbance Models

The 42 spacecraft simulator is capable of simulating perturbations from solar radiation

pressure and third body effects, but these were determined to be much smaller in magnitude

than the effect of Earth’s gravity model and atmospheric drag so they are not covered here.

5.2.1 Earth’s Oblateness

The 42 spacecraft simulator uses the EGM96 reference geoid to provide the spherical har-

monics. For the purposes of the presented work the spherical harmonics up to degree n = 8

and order m = 8 were used to provide gravitational perturbations. The largest effect of

spherical harmonics is the so-called J2 term. The higher degrees and orders are not strictly

needed since they are comparatively smaller compared to J2, but since these magnitudes

can be provided easily by 42 they were implemented.

5.2.2 Atmospheric Drag

Disturbance from atmospheric effects is also considered within the simulation framework.

Spacecraft are modeled as a series of N flat plate objects with area A. Given the velocity of

the atmosphere relative to the spacecraft motion, vvrel, the angle between the jth flat plate

with normal vector nj and the relative atmosphere velocity in the spacecraft body frame B

is given by

θj = arccos

(
njB ∗ vrelB

∥vrelB∥
2

)
(5.4)

Summing the atmospheric drag on each flat plate gives the total atmospheric drag on
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the vehicle:

FaeroB = −1

2
ρatm ∥vrelB∥

2CD

N∑
j=0

Aj max (cos θj, 0) (5.5)

where ρatm is the atmospheric density and CD is the dimensionless drag coefficient.

The flat plate model is based on the 3D model object that is used by the 42 spacecraft

simulator.

5.3 Measurement Noise

For simplicity, an Extended Kalman Filter (EKF) was not created for state estimation for

either the target or chaser spacecraft. Although sensor errors due to bias or misalignment

can be provided in 42, this was not used to provide measurement errors to remain spacecraft

design agnostic in addition to the lack of a true EKF. Instead, zero-mean Guassian noise

with standard deviation σ was added to the relative state to simulate a relative state estimate

prior to use in the MPC algorithms.

ρ̂k = ρk + ηρ|k ηρ|k ∼ N (0,σρ) (5.6)

ˆ̇ρk = ρ̇k + ηρ̇|k ηρ̇|k ∼ N (0,σρ̇) (5.7)

5.4 Monte Carlo Simulation

The robustness of the MPC guidance was tested with the discussed disturbances. Distur-

bances were provided by 42 for Earth’s spherical harmonics and atmospheric drag. The

spherical harmonics used went to degree and order 8 each. The drag coefficients for the

target and chaser spacecraft were CDt = 2.0 and CDc = 1.4, respectively. The actuation

noise parameters are given in Table 5.1 and also corresponds to the samplings in Figure 5.1.

The initial thruster amplitude % error is initialized with a random normal distribution with
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Table 5.1: Actuation Noise Parameters

Parameter Value
τ 3600
ωn 2.6e-4
ξ 1

ηw 3/
√
600

ηv 1.1267e-8

Figure 5.2: Average ∆v vs tf for measurement errors σρ = 5 cm and σρ̇ = 1 mm/s.

zero-mean and 1σ standard deviation.

The chaser initial relative state is selected by random distributions. The relative distance

is uniformly distributed between 0.15−2.5 km. The relative velocity is perturbed off of the

required stable orbit velocity with a normal distribution of zero mean and 0.5 m/s standard

deviation in each axis. For the MPC parameters, the values from Table 3.1 were used.

A set of 100 initial states were selected and each used 60 times to asses the response of

the algorithm. For a first case, measurement errors of σρ = 5 cm and σρ̇ = 1 mm/s were

used. The average ∆v vs final time for the 100 states are shown in Figure 5.2.

The average standard deviation for the ∆v and tf are 4.25 m/s and 19.536 min, respec-
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tively. Most of the increase in ∆v and tf come from the docking phase where the chaser

has a tendency to ”bounce” around as it approaches the docking port. The effect of the

error on the system in this phase is expected to improve with better assumptions on the

measurement and sensor errors during this phase.

5.5 Future Considerations

As stated previously, implementation of stochastic MPC [38] and tube-based robust MPC

[36, 39] could be explored to benefit the algorithm robustness. Additionally, the inclusion

of a true EKF would create a more flight-like scenario. The expected measurement error in

the approach and docking phases most likely would not be the same as for the rendezvous

phase since there would be access to measurements from radio communications and visual

navigation tools. Implementation of this would help reducing the bouncing effect near the

end state of the simulation reducing the simulation ∆v and tf considerably.

Another source of error that could be considered is the control delay. The current

assumption with the MPC model is that the optimal control uk|0 is solved for and instan-

taneously applied at time tk. However, as the next chapter will show, solving the QP’s is

not instantaneous and neither would be the realized actuation. This delay in the control

could have an effect on the robustness of the system. To combat this, control delay could

be added in the QP’s by adjusting the control horizon to start later than the state prediction

horizon.
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CHAPTER 6

DEMONSTRATION OF IMPLEMENTATION FOR FLIGHT SCENARIO

This chapter demonstrates the guidance algorithm as it would run on a small satellite flight-

like hardware and is an expansion on the work done in [41]. To remain hardware agnostic,

an emulation of an ARM processor is used to run the guidance algorithm. As most small

satellite available flight computers contain ARM processors, this type was chosen as the

generic processor to use for emulation. For example, the ClydeSpace Q7S [42], ATI [43],

and ISIS [44] onboard computers contain ARM Cortex-A9 processors [45]. Another popu-

lar solution particularly for universities is to fly a BeagleBone, which in the current iteration

of BeagleBone Black [46] has a processor with an ARM Cortex-A8 CPU [47].

The open-source machine virtualizer, QEMU [32], is used to create the target plat-

form. If needed, this abstraction allows for easy swapping of hardware specifications while

benchmarking performance. The emulation is set up to run in-the-loop providing the actu-

ation commands to a dedicated computer running a 42 server simulation that handles the

dynamics and sensor measurements. This contribution verifies that the developed algo-

rithm can be run on its intended systems and is a valid methodology for use. As shown

in Figure 6.1, a 42 simulation server (the dynamics) runs on the host machine, while the

42 client (the flight software) runs on the virtualized ARM machine. A socket connection

passes necessary state and actuation effort between the server-client programs.
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Figure 6.1: Diagram showing the interprocess communication between the environment
simulation server and the flight software client running on a virtual machine.

The limitations of QEMU are that it may not be entirely cycle-accurate. However, it

provides a preliminary evaluation of running the developed algorithm on an appropriate

system.

6.1 Algorithm Benchmarking

The computational resources needed to solve an MPC problem is related to the problem

size [13]. The problem size is affected by problem parameters such as the length of the

prediction horizon N and the number of constraints. Since the purpose of the presented

guidance algorithm is to run onboard a small spacecraft in real-time, the computation time

must be much less than the MPC sample time. Otherwise, there is the chance that a control

solution will not be prepared within enough time for predicted trajectory accuracy. In other

words, a faster solution time creates less delay in the applied actuation effort. The purpose

of this section is to then benchmark the optimal control problems in each of the three phases

to gain insight into how the complexity affects the computation time.
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Figure 6.2: Algorithm computation time test plan.

Using the server-client simulation setup, a Monte Carlo analysis was performed with

randomized chaser initial conditions. During a maneuver, the computation time of the

CVXGEN optimizer calls at each time step was logged. After completion of the maneuver,

the average solution computation time for each phase was calculated. The Overall com-

putation time statistics for the phases were compiled from 100 simulation runs. The test

plan, shown in Figure 6.2, involves sets of 100 simulations for varying values of prediction

horizon lengths to investigate how this parameter affects the computation time. While it is

not expected to increase complexity, the MPC control interval times were also a parameter

of interest as a matter of sanity checking. From the resulting data, an inference into the

efficacy of running the guidance algorithm on currently available hardware and the amount

of control delay to expect is made.

6.1.1 Rendezvous Phase

For the rendezvous phase, the prediction horizon varies between N1 = 15, 30, 45, while

the approach and docking phase prediction horizons were kept constant at N2 = 15 and

N3 = 12, respectively.
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Figure 6.3: Solution time counts for Rendezvous phase with varying prediction lengths.

In Figure 6.3, the bin width of the rendezvous optimal control problem is 25 ms. As

expected, the prediction horizon length is correlated to longer computation times. However,

there is more spread and unpredictability with smaller prediction horizons, particularly the

N1 = 30 case. The average computation time for the rendezvous phase prediction horizons

of 15, 30, and 45 was 119.18 ms, 270.40 ms, and 863.91 ms, respectively. It should be noted

that for all prediction horizon cases the computation times were all less than a second. This

gives ample time between control updates during the rendezvous phases for all investigated

sample times. Another implication is that there would not be much actuation delay.

The rendezvous phase control intervals were tested to determine if there was an unex-

pected contribution to the problem complexity. A set of 100 scenarios were run for ren-

dezvous control times of Ts = 30, 45, 60 s with a prediction length of N1 = 30. Figure 6.4

confirms that the spread of computation times for each sample time is similar.
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Figure 6.4: Solution time counts for Rendezvous phase with varying control intervals.

6.1.2 Approach Phase

The prediction horizon values tested for the approach phase were N2 = 5, 10, 15. For

this analysis, the initial conditions were taken as the end points for a rendezvous phase

with prediction length of N1 = 30 and Ts,1 = 30 s. As with the rendezvous phase, the

distribution of computation times over 100 samplings for each prediction horizon length

are shown in Figure 6.5.
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Figure 6.5: Solution time counts for Approach phase with varying prediction lengths.

The results of the approach analysis have less range and spread than for the rendezvous

phase. The general trend of increased computation time with increasing prediction horizon

is still prominent. For N2 = 5, the average computation time was 53.40 ms, increasing to

181.55 ms for N2 = 15 and finally to 394.89 ms for the N2 = 30. Recalling back to the

MPC parameter study in Chapter 4, there was not much solution change between N2 = 15

and N2 = 30 and yet the computation time is almost double. This reinforces the idea that

such a high prediction length is inefficient or this phase.

As with the rendezvous phase, the test of sampling times on the complexity was tested

for interval times of Ts,2 = 10, 20, 30 s. As expected, this phase also shows the same spread

and similar distribution for all control interval times. It can be concluded that this sanity

check has confirmed that sample time has no meaningful affect on the problem complexity

and therefore computation time.
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Figure 6.6: Solution time counts for Approach phase with varying control intervals.

6.2 Docking Phase

Lastly, the same analysis was performed for the docking phase. The prediction lengths used

here were N3 = 5, 12, 30. A prediction horizon of 12 was selected instead of 15, because of

the default choice of a control time of 5 s. With 5 s the docking prediction would be looking

then an exact minute ahead which was an arbitrary choice. The results are expected to be

very close to a prediction horizon of 15. The resulting distributions to prediction horizon

length are seen in Figure 6.7. The average computation times were calculated to be 9.1

ms, 30.1 ms, and 98.8 ms for increasing prediction horizon length. These values are all

relatively fast compared to the previous two phases. Recalling that the sensitivity results

were also not affected much by the prediction horizon length, it is suggested that a value is

chosen to meet mission needs and constraints.
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Figure 6.7: Solution time counts for Docking phase with varying prediction lengths.

6.3 Future Considerations

Future considerations consist of finding improved emulation techniques that are cycle-

accurate to confirm the findings of this report [48, 49]. Additionally, a select number of

real hardware could be obtained to confirm the computation time accuracy.
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CHAPTER 7

CONCLUSION

In summary, simulation scenario running an MPC guidance algorithm for the AR&D of

small satellites was created. The simulation was designed with the 42 spacecraft simulator

that includes disturbances from J2 and atmospheric drag. The problem scenario investi-

gated involved two 6U CubeSats with 6DOF propulsion capabilities.

First, a guidance algorithm that splits the maneuver into three MPC phases based on

distance to the target was developed. The optimal control solution within each phase was

designed to be solved quickly by utilizing convex QP formulations. The guidance algo-

rithm was shown to successfully perform an AR&D maneuver by approaching a target

with docking ports in the V-bar and R-bar directions as well as for a target with a constant

rotation.

The sensitivity of the algorithm to initial chaser position relative to the target was in-

vestigated. It was found that radial distance has an appreciable effect on the ∆v and tf

values as expected. Additionally, the effect of the in-plane quadrant of the chaser position

was shown to have an effect on the expected minimum ∆v and tf .

Then, an analysis of the robustness of the algorithm with disturbances attributed to ac-

tuation and measurement errors was discussed. For actuation errors, a SDE model was

used to provide time-varying noise characteristics in the propulsion system. The measure-

ment errors followed a normal zero-mean distribution added onto the relative position of

the chaser to the target. The average deviation in ∆v and final time characteristics for 100

randomly generated chaser relative initial states were calculated over 60 runs. Using mea-

surement errors with position standard deviation σρ = 5 cm and velocity standard deviation

σρ̇ = 1 mm/s, the average deviation in ∆v was 4.25 m/s and 19.54 min in tf .

The last contribution consisted of using hardware emulation with QEMU to analyze
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the computation time needed to solve the optimal control problems in the rendezvous and

approach phases. For the rendezvous phase, increasing the prediction horizon length from

30 to 45 had a very noticeable effect on the computation time, more than doubling the effort.

The increased computation time for longer prediction horizons within the approach and

docking phases were also observed but with less spread overall compared to the rendezvous

tests. In both phases, the computation time remained under a second, which is much less

than the tested sampling times, validating that this algorithm can be run onboard a real

flight system.

Therefore, it has been shown that the use of MPC for the AR&D of small satellites is

a viable strategy and should be considered for use on flight. Limitations of this work exist

in that the shown examples are accurate locally for circular orbits in LEO. The work can

applied to elliptical cases by changing the LTI models to LTV. Improvements can also be

made for robustness through the use of techniques such as tube-based MPC.
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APPENDIX A

EXTRA SENSITIVITY PARAMETER RESULTS

The sensitivity to MPC parameters was shown in Chapter 4 for the rendezvous phase QP

formulation. Here similar results for a rendezvous QP without a reference point (in effect

the origin) and a LP formulation are shown.

A.1 QP with no Reference Point
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Figure A.1: Quadrant colored (a) initial chaser positions and (b) resulting ∆v vs tf .
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Figure A.2: Radially colored (a) initial chaser positions and (b) resulting ∆v vs tf .
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Figure A.3: ∆v vs tf for Maneuver with LP Rendezvous Problem.

A.2 LP Rendezvous
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Figure A.4: Quadrant colored (a) initial chaser positions and (b) resulting ∆v vs tf .
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Figure A.5: Radially colored (a) initial chaser positions and (b) resulting ∆v vs tf .
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Figure A.6: ∆v vs tf for Maneuver with LP Rendezvous Problem.
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