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SUMMARY 

As low-cost rocket launch technologies and space resource utilization systems 

emerge, human space exploration is attracting increasing interest from industry, 

government, and academia. To extend the domain of human activity beyond the low-Earth 

orbit and maintain a long-term human presence in cislunar space and eventually Mars, we 

need to build a sustainable and affordable interplanetary space transportation system. It 

requires a campaign-level perspective for space mission design in addition to the 

conventional mission-level perspective. This thesis first proposes an integrated space 

logistics framework to enable concurrent optimization of space transportation scheduling, 

spacecraft sizing, space infrastructure design and deployment. Then, a periodic time-

expanded network is built to resolve the scalability issue in the time dimension for long-

term space exploration missions. After establishing efficient space logistics optimization 

frameworks, we switch our focus to space infrastructure technology trade studies to 

consider space infrastructure design from the subsystem level. A multi-fidelity 

optimization method is introduced to guarantee optimization accuracy while improving 

computational efficiency. Finally, a flexibility management framework is proposed to 

handle uncertainties in space mission planning and operations. Multiple case studies for 

human lunar and Mars exploration campaigns are conducted leveraging the proposed 

methods and frameworks to demonstrate their values and potential impacts. This research 

resolves the grand challenge of space logistics mission design for future large-scale multi-

mission space campaigns. 
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CHAPTER 1. INTRODUCTION 

1.1 Motivation and Objective 

As low-cost rocket launch technologies and space resource utilization systems 

emerge, human space exploration is attracting increasing interest from industry, 

government, and academia. To extend the domain of human activity beyond the low-Earth 

orbit and maintain a long-term human presence in cislunar space and eventually Mars, there 

are at least three fundamental questions to answer regarding space logistics:  

1) How can we design a sustainable and affordable space transportation system? 

2) How can we perform efficient mission planning optimization for large-scale 

multi-mission space campaigns? 

3) How can we handle uncertainties in space mission planning and space 

infrastructure design? 

 These questions relate to broad fields in space system engineering, including space 

vehicle design, space transportation, space resource utilization, and related supporting 

technologies. A series of interdisciplinary design and optimization frameworks and tools 

are critical to performing large-scale space mission planning, optimizing spacecraft and 

space infrastructure designs, and mitigating the impact of uncertainties. The objective of 

this thesis is to fulfill the demands of human space exploration by developing integrated 

space logistics frameworks, focusing on space vehicle design, space transportation 

scheduling, space infrastructure design, and flexibility management by leveraging state-of-

the-art space logistics and space system engineering. 
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 These frameworks are developed based on a network-based space logistics 

optimization model, which considers the space mission planning problem as a multi-

commodity network flow problem. The network-based space logistics approach is a 

common and fundamental model for the proposed frameworks. However, depending on 

the specific application and the problem, they investigate different perspectives of space 

logistics and focus on resolving different challenges. For space vehicle design, a piecewise 

linear approximation method is proposed to consider nonlinear spacecraft design models. 

For long-term space transportation scheduling, a partially periodic time expanded network 

is introduced leveraging the repeating nature of regular transportation missions. For space 

infrastructure design, a new space infrastructure design concept is developed that considers 

infrastructure subsystems’ internal interactions and their external synergistic effects with 

space logistics simultaneously. For flexibility management, a decision rule formulation is 

integrated into the network-based space logistics framework to handle uncertainties in 

space mission planning. 

 An example of the Earth-moon-Mars transportation network model is shown in 

Figure 1. In the network, nodes represent planets or orbits; arcs represent trajectories. 

Spacecraft, propellant, crew, and all other payloads are considered as commodities flowing 

along arcs in the network. 
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Figure 1 - Earth-Moon-Mars transportation network 

The proposed frameworks based on the network-based space logistics model 

significantly enhance the current state-of-the-art of space logistics. This model is an 

important step forward in providing practical space mission planning tools under different 

mission scenarios. It is also particularly useful for space architecture performance 

evaluations for large-scale mission planning, space vehicle design, and flexibility 

management in future space logistics. 

1.2 Research Contributions 

The proposed research seeks to address the practical challenges of large-scale human 

space exploration considering multiple space missions at the same time. The proposed 

methods create new directions in campaign-level mission planning to enable effective 

space system optimization for space vehicle design, space infrastructure deployment, and 

space transportation scheduling in future space exploration. The research activities 
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described in this thesis for the development of integrated space logistics frameworks have 

the following four achievements. 

1.2.1 Contribution 1: Mixed-Integer Nonlinear Programming (MINP) Formulation for 

Integrated Space Logistics and Spacecraft Design 

Chapter 3 establishes the theory and methods to enable effective space mission 

planning for future long-term deep space human exploration. A campaign-level space 

logistics optimization framework that simultaneously considers mission planning and 

spacecraft design is developed utilizing mixed-integer nonlinear programming. In the 

mission planning part of the framework, deployment and utilization of in-orbit 

infrastructures, such as in-orbit propellant depots or in situ resource utilization plants are 

also taken into account. 

This work provides an important step to close the gap in the past literature and 

reveals an integrated optimization formulation, considering both mission planning 

(including in-orbit infrastructure design) and spacecraft design using a mixed-integer 

programming formulation. The developed formulation can be particularly useful for 

evaluating the cost and benefit of cislunar infrastructure and for developing concrete space 

mission schedules for future long-term space exploration. 

1.2.2 Contribution 2: Periodic Time-Expanded Network (TEN) for Regular 

Interplanetary Mission 

Chapter 4 creates a computationally efficient and scalable mission planning 

optimization method for regular space transportation missions, defined as a set of repeating 
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and periodic interplanetary transportation missions over a long time horizon after one or a 

few setup missions. As more long-term human missions to Mars are being conceptualized, 

the need for a sustainable interplanetary transportation system has become increasingly 

prominent. However, planning regular transportation missions with existing space mission 

planning optimization formulations has a limitation in computational scalability in the time 

dimension. The proposed partially periodic time-expanded network can address this 

limitation of the past studies; it is shown to be computationally scalable and capable of 

generating solutions that are practically preferred. Thus, the proposed mission planning 

framework can provide a practical and computationally efficient method for long-term 

interplanetary transportation mission planning. 

1.2.3 Contribution 3: Multi-Fidelity Mission Planning Framework for Infrastructure 

Design and Resource Logistics 

To build a sustainable space transportation system for human space exploration, the 

design and deployment of space infrastructure, such as in-situ resource utilization plants, 

in-orbit propellant depots, and on-orbit servicing platforms, are critical. The design 

analysis and trade studies for these space infrastructure systems require the consideration 

of not only the design of the infrastructure elements themselves but also their supporting 

systems (e.g., storage, power) and logistics transportation while exploring various 

architecture options (e.g., location, technology). Chapter 5 proposes a system-level space 

infrastructure and logistics design optimization framework to perform architecture trade 

studies. A new space infrastructure logistics optimization problem formulation is proposed 

that considers the internal interactions of infrastructure subsystems and their external 

synergistic effects with space logistics simultaneously.  
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The proposed framework has four technical innovations. First, an interdisciplinary 

space infrastructure optimization formulation that considers the internal interactions of 

infrastructure subsystems and their external synergistic effects with space logistics 

transportation simultaneously is proposed. This is a new problem in space logistics for 

high-fidelity space infrastructure trade studies. Second, since the full-size version of this 

proposed problem formulation can be computationally prohibitive for large-scale space 

infrastructure design problems, a new multi-fidelity optimization formulation is developed 

that can provide an approximate solution to the full-size formulation at a significantly 

reduced computational cost with little sacrifice in the solution quality. The idea behind this 

multi-fidelity formulation is to vary the granularity of the commodity type definition over 

the network graph; this technique is referred to as commodity packing based on its physical 

meaning. Third, in order to identify where and when to pack the commodities for the multi-

fidelity optimization formulation, a preprocessing algorithm is introduced for commodity 

packing. This method enables an automated implementation of the multi-fidelity 

formulation in the context of dynamic generalized multicommodity network flow. Fourth, 

the relationship between the solutions of the multi-fidelity, full-size, and prefixed 

formulations is established. This relationship enables us to find the approximate solution 

of the computationally prohibitive full-size formulation with the knowledge about the 

worst possible approximation error. 

1.2.4 Contribution 4: Decision Rules for Flexibility Management 

Chapter 6 develops a flexibility management framework for space logistics mission 

planning under uncertainty through decision rules and multi-stage stochastic programming. 

It aims to add built-in flexibility to space architectures in the phase of early-stage mission 
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planning. The proposed framework integrates the decision rule formulation into a network-

based space logistics optimization formulation model. It can output a series of decision 

rules and generate a Pareto front between the expected mission cost (i.e., initial mass in 

low-Earth orbit) and the expected mission performance (i.e., effective crew operating time) 

considering the uncertainty in the environment and mission demands. The generated 

decision rules and the Pareto front plot can help decision-makers create implementable 

policies immediately when uncertainty occurs during space missions. 

The proposed method provides an important step to make space mission planning 

and architecture design flexible to counter potential uncertainties in space missions. The 

proposed methodology is particularly useful for evaluating the performance of space 

infrastructure design under stochastic mission environments and developing a reliable 

space mission schedule for future campaign-level space exploration. 

1.3 Thesis Overview 

The remainder of this thesis is organized as follows. Chapter 2 provides a literature 

review of the research. Chapter 3 introduces the network-based mission planning 

framework for integrated space logistics optimization. Chapter 4 proposes a periodic time-

expanded network (TEN) for regular interplanetary missions. Chapter 5 establishes a multi-

fidelity mission planning framework to enable system-level infrastructure design. Chapter 

6 creates a flexibility management framework based on decision rules to handle 

uncertainties in space missions. Case studies are also conducted to demonstrate the values 

and performances of the proposed frameworks in each chapter. Chapter 7 concludes the 

thesis with a summary and recommendations for future work.  
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CHAPTER 2. LITERATURE REVIEWS 

2.1 MINP for Integrated space logistics and spacecraft design 

 As space exploration projects become increasingly complex, the campaign-level 

logistics perspective becomes more important for human space mission planning. In many 

past human space programs such as Apollo, every mission was logistically independent 

using a so-called carry-along strategy. This was efficient for short-term missions to a 

relatively close destination. However, for a longer-duration multi-mission space 

exploration campaign, reusable in-orbit infrastructures can be more attractive. For 

example, it can be beneficial to have an in-orbit propellant depot and/or a lunar in-situ 

resource utilization (ISRU) plant to refuel human missions to Mars or near-Earth objects 

(NEOs) in return for their emplacement cost and the required maintenance. There are pros 

and cons for the operation of those infrastructures. Therefore, it is important to perform an 

integrated campaign-level analysis considering both mission planning and infrastructure 

design to evaluate whether it pays off to deploy those infrastructures. 

 In addition, we need a paradigm shift in vehicle design as well. The conventional 

space programs such as Apollo delivered relatively similar payloads to the destination of 

each mission throughout the campaign, and therefore a few identical single-use vehicles 

were sufficient for their logistics. For example, each Apollo vehicle carried a similar 

amount of similar types of commodities (e.g., consumables, scientific payloads) in all 

missions. However, in a longer-duration multimission space exploration campaign with 

infrastructure deployment and utilization, we need to deliver different types and amounts 

of commodities to the destination throughout the campaign. For instance, at the beginning 

of the campaign, the spacecraft may need to carry ISRU plants, whereas later on in the 

campaign, it may need to carry the ISRU-generated propellants and its tank structure. Thus, 
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for such campaign-level mission design, it is critical to study and analyze the optimal fleet 

of multiuse vehicles, where each vehicle is flexible in its assigned function.  

 Many past studies have addressed space logistics mission planning, but few of them 

have considered in-orbit infrastructure design and spacecraft model concurrently at a 

reasonable level of fidelity. One of the most recent studies that analyzed space mission 

optimization is the generalized multicommodity network flow (GMCNF) formulation 

developed by Ishimatsu et al. [1]. Their research modeled the space logistics planning 

problem as a linear programming problem using a graph-theoretic approach, but this 

method did not include the emplacement cost for the in-orbit infrastructures properly. Ho 

et al. improved the GMCNF by proposing a dynamic space logistics optimization 

formulation that removed “time paradoxes” existing in the static network [2], referring to 

the propellant produced by ISRU that could be used before the ISRU plants are deployed. 

In addition to this, Ho et al. considered the emplacement cost of the in-orbit infrastructure. 

However, the infrastructure and spacecraft model used in the analysis was a low-fidelity 

linear model, which could result in an unrealistic solution (e.g., an unrealistically small 

vehicle size). Other space logistic optimization models such as the interplanetary logistics 

model [3], the exploration architecture model for in-space and Earth-to-orbit tool [4], and 

the space system architectures model based on graph theory [5] have been proposed for 

space logistics mission planning, but these studies did not consider the possibilities of using 

propellant depots and ISRU plants, which can be critical for long-term space exploration.  

 On the other hand, various studies have focused on the detailed design of in-orbit 

infrastructures, but few of them have also addressed the global optimization of space 

mission planning concurrently. For example, Oeftering [6] studied detailed cislunar 

infrastructure design and Schreiner [7] performed a detailed system-level ISRU plant sizing 

analysis for the molten regolith electrolysis process. Also, there were numerous 

architectures proposed about on-orbit propellant depots from both technological 
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perspectives [8-10] and economical perspectives [11-13]. However, those studies only 

looked at the design of depot with its local transportation system rather than providing a 

design method considering global optimization for the entire space logistics system. 

 As shown previously, most of the past space logistics literature has not considered 

space mission planning, in-orbit infrastructure, and vehicle design concurrently at a 

reasonable fidelity. In response to this background, an optimization formulation 

considering mission planning, in-orbit infrastructure design, and spacecraft design 

simultaneously is proposed in Chapter 3, aiming to evaluate the cost and benefit of reusable 

in-orbit infrastructures and generalized designed spacecraft. The model is a mixed-integer 

nonlinear programming formulation based on a time-expanded GMCNF model. This 

model significantly advances Ho et al.’s previous model [2] and takes into account higher-

fidelity in-orbit infrastructure design models, including propellant depots and ISRU. We 

also add new constraints for vehicles and crew members. This optimization framework 

consists mainly of two parts: mission planning including infrastructure design, and 

spacecraft design. 

2.2 Periodic TEN for Regular Interplanetary Mission 

 In addition to the concurrent optimization of transportation planning, spacecraft 

design, and space infrastructure design proposed in Chapter 3, another challenge in large-

scale multi-mission campaign design is to handle the long time horizon in a regular 

interplanetary transportation system. One example of such a system is the regular cargo 

route to Mars proposed by SpaceX using fully reusable rockets [14]. These space missions 

are designed to support the setup and periodic resupply for future Mars settlement in a 

similar way as the logistics vehicles for the International Space Station resupply. 

Meanwhile, reusable vehicles and in-orbit infrastructure technologies such as propellant 

depots and in situ resource utilization (ISRU) plants in the cislunar and Martian systems 
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have been proposed to support space exploration sustainably [6]. However, designing a 

long-term regular space transportation system involves greater complexity than designing 

a short-term single mission. Particularly, when we take into consideration the deployment 

and operation of in-orbit infrastructures that are used over many missions (e.g., ISRU 

plants), the analysis needs to consider a long time horizon, and thus requires extensive and 

sometimes prohibitive computational effort with conventional methods. 

 Many past studies have been conducted on the topic of space logistics. The space 

logistics optimization models such as the interplanetary logistics model [3], the Exploration 

Architecture Model for In-Space and Earth-to-Orbit (known as EXAMINE) tool [4], 

SpaceNet [15], and the graph theory-based space system architectures model [5] have been 

proposed for space logistics mission planning. However, these studies either lacked or had 

limited global optimization capability for complex mission design problems that involved 

deployment and utilization of propellant depots and ISRU plants. Moreover, these models 

were not formulated to consider the mission interdependency at the multimission campaign 

level. In response to this background, Ishimatsu et al. proposed a generalized 

multicommodity network flow (GMCNF) to optimize the space mission planning problem 

globally based on a static network [1]. However, due to the linear nature of the static 

network, vehicles could not be tracked through the network and the size of vehicles may 

change during the mission. Cornes and de Weck improved the optimization fidelity through 

mixed-integer linear programming (MILP) and a tracking algorithm [16]. To take into 

account space mission planning, spacecraft design, and in-orbit infrastructure design 

concurrently, Ho et al. [2] and Chen and Ho [17] further improved the GMCNF model by 

considering the time dimension (i.e., time-expanded GMCNF) and proposed an integrated 

space logistics mission planning framework. This framework enabled nonlinear spacecraft 

and in-orbit infrastructure design through the piecewise-linear function approximation. It 

also provided an insight into the significant reduction in the initial mass in low Earth orbit 
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(IMLEO) through a campaign-level design rather than a mission-level design. Although 

these existing mission planning formulations consider the deployment and operation of the 

in-orbit infrastructures concurrently, they have significant limitations in time dimension 

scalability, and thus cannot be applied to long-term space transportation design. In addition, 

these formulations are not suitable to find a sequence of repeating space transportation 

missions. 

 On the other hand, time-expanded networks (TENs) have been widely used in 

different fields, including vehicle and crew scheduling [18], airline fleet assignment [19-

21], and ground transportation [22]. Among the literature, a fully periodic TEN was 

proposed to solve long-term repeating mission planning problems. It has been used in truck 

fleet sizing problems [22] and airline fleet assignment problems [19-21]. However, to take 

advantage of space resources and reduce space exploration mission cost, a space 

infrastructure deployment setup phase is required before the mission entering the repeating 

transportation phase [17]. Therefore, fully periodic TENs cannot be used in the campaign-

level space mission design directly. A similar problem to the setup phase in space missions 

can be found in the literature on airline schedule recovery problems [23, 24], in which a 

TEN was used to consider a period of irregular mission planning and then switching to a 

periodic repeating phase. However, the airline schedule recovery problems mainly focused 

on the recovery period and did not consider the subsequent schedule optimization in the 

periodic phase simultaneously. 

 In response to this background, an interplanetary transportation system mission 

planning optimization framework is proposed in Chapter 4 by constructing a partially 

periodic TEN. The model is constructed based on the network-based space logistics 

optimization framework proposed in Chapter 3, and it has been reformulated to incorporate 

the scalability of the regular transportation missions to make the mission planning 

formulation computationally efficient. This new mission planning framework can also find 
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repeating transportation solutions, which are preferred in practical missions. Thus, the 

proposed mission planning framework can provide a practical and computationally 

efficient method for long-term interplanetary transportation mission planning. 

2.3 Multi-Fidelity Mission Planning Framework for Infrastructure Design and 

Resource Logistics 

 After proposing efficient space logistics optimization frameworks considering both 

transportation planning and space system design concurrently in Chapters 3 and 4, now we 

switch our focus to the design and deployment of space infrastructure systems. They are 

critical elements to support space resource utilization, on-orbit servicing, and 

interplanetary space transportation. Past space infrastructure design literature has analyzed 

the system performance of in-situ resource utilization (ISRU) systems, propellant depots, 

on-orbit servicing platforms, etc. For example, the technical and economic feasibility of 

commercial propellant production by ISRU systems has been examined and demonstrated 

by industry, government, and academic experts [25]. Multiple studies have focused on the 

chemical processes of ISRU reactor and system productivity, such as the hydrogen 

reduction reaction testbeds by NASA [26] and Lockheed Martin [27], the integrated 

carbothermic regolith reduction system by Orbitec Inc. and the Kennedy Space Center [28], 

the integrated molten regolith electrolysis (MRE) reactor modeling method by Schreiner 

[7], and the Mars oxygen ISRU experiment (MOXIE) by Meyen [29]. Besides ISRU, on-

orbit servicing technologies have also been developed in recent years [30,31], its 

commercial potentials and operations have been analyzed in the literature [32-34]. 

However, all these referenced studies mainly analyzed the feasibility and performance of 

the space infrastructure elements, and did not take into account the complex logistics to 

deploy and support those infrastructure systems. 
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 On the other hand, multiple studies focused on space transportation analysis and 

considered space infrastructure design, such as ISRU systems, together with space 

transportation system design. United Launch Alliance proposed the Cislunar-1000 project 

to build a sustainable space economy by taking advantage of lunar water ISRU plants to 

produce oxygen and hydrogen [35]. A series of network-based space logistics optimization 

methods were proposed by Ishimatsu [1], Ho [2], and Chen [17] to solve mission planning, 

space infrastructure design, and spacecraft design problems concurrently. Their results 

showed the long-term benefits of ISRU systems and propellant depots to space exploration 

campaigns. However, in these space logistics optimization methods, referred to as the 

prefixed space infrastructure optimization formulation, the space infrastructure was 

considered as a black box, and the subsystem interactions and mass ratios were determined 

before taking into account space logistics optimization [1,2,36,37]. They ignored the 

interaction between infrastructure subsystems and space transportation mission planning. 

 Due to the inadequate consideration in the connection between space infrastructure 

design and space transportation planning, conventional prefixed space mission planning 

and infrastructure design have only explored a limited design space. For example, 

considering the ISRU system as a black box model would miss the tradeoff between the 

frequency of logistics missions and its impact on ISRU storage system size. Namely, 

frequent transportation missions require smaller storage subsystems but higher operation 

cost and complexity; whereas infrequent transportation missions require larger storage 

subsystems, which can also lead to higher infrastructure deployment cost. The 

consideration of this tradeoff requires the modeling of ISRU infrastructure subsystems and 

its coupling with logistics planning. Furthermore, prefixing the space infrastructure design 

for architecture design can also miss the synergistic effect of space infrastructure 

technologies and the combination of subsystems to achieve a hybrid system design, 

particularly when different infrastructure technologies have common supporting 
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subsystems. An example is an ISRU plant based on the reverse water gas shift reaction 

(RWGS) and Sabatier reaction (SR). The RWGS process can be used concurrently with 

SR to produce sufficient oxygen so that the generated 𝑂𝑂2 and 𝐶𝐶𝐶𝐶4 can be used together as 

propellants optimally. (The oxygen/methane bipropellant has been widely considered as a 

propellant option to support future robotic and human missions in conjunction with ISRU 

systems [38,39].) Because of the similar reactants and reaction environment, the RWGS 

process and the SR process can share the same acquisition subsystem (for 𝐶𝐶𝑂𝑂2 ), 

liquefication & storage subsystem (for 𝑂𝑂2), and power subsystem. Thus, the SR ISRU and 

the RWGS ISRU need to be designed together for optimal performance, and this design 

solution depends on the mission scenarios and the logistics planning (e.g., launch 

frequency, vehicle type/size, available resources from the ground or other sources). To 

resolve this challenge effectively, a general design optimization framework and its methods 

need to be developed to handle the synergistic effect of space infrastructure subsystems 

and the logistics system. 

 To effectively evaluate the impacts of the space infrastructure design to space 

missions with higher fidelity (i.e., considering both system-level and subsystem-level 

tradeoffs), an interdisciplinary space infrastructure optimization framework and its 

optimization methods are proposed in Chapter 5, leveraging network-based space logistics 

modeling. The proposed framework enables an integrated architecture trade study for 

future space infrastructure, considering the coupling between the subsystems design and 

corresponding logistics planning. 

2.4 Flexibility Management for Space Logistics via Decision Rules 

 The frameworks proposed in Chapters 3, 4, and 5 focus on deterministic mission 

operation environments. However, uncertainty is another big challenge in mission planning 

and system design and it cannot be handled effectively leveraging these methods. In 
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traditional space programs like Apollo, each mission was logistically independent. Thus, 

the uncertainties in one mission (e.g., spacecraft flight delays/failures and mission demand 

changes) had a relatively limited impact on subsequent missions, which simplified the 

evaluation of consequences and solutions to handle uncertainties. More recent studies show 

that sustainable space exploration needs to be accomplished by a campaign composed of 

multiple interdependent missions [1,2,17]. Leveraging a campaign enables effective space 

exploration with a combination of different logistics paradigms such as pre-deployment, 

carry-along, and resupply. At the same time, however, mission interdependencies also 

introduce the potential of “cascading failure” behaviors in space exploration, similar to 

those in the interconnected infrastructures in terrestrial civil infrastructure systems [40]. 

Particularly, a rocket launch delay in an earlier mission may significantly impact the 

performance of later missions, such as further launch delays in the future and supply 

shortages to support mission operations. Therefore, there is a growing need to consider the 

uncertainties in launch delay in the campaign design. 

 One example of the impact of complex interdependencies between space missions 

can be found in the International Space Station (ISS) program. The ISS has encountered 

three unexpected mission failures in an 8-month span from October 2014, two caused by 

rocket launch failures (i.e., Orbital Commercial Resupply Service (CRS)-3 and SpaceX 

CRS-7) and one caused by spacecraft flight failure (i.e., Progress 59) [41]. These failures 

resulted in an immediate loss in excess of 6,832 kg cargo and supplies including the first 

of two docking adapters to support the commercial crew program [42-44]. They also led to 

delays in subsequent space missions to identify the reason for the failures and incorporate 

the necessary changes to support the return to flight certification for the launch vehicle or 

spacecraft. The return to flight time was 720 days for the Orbital Antares launch vehicle 

and 285 days for the SpaceX Falcon launch vehicle [41]. Since the ISS program utilized 

multiple cargo suppliers and maintained a level of supply to ensure astronaut safety in the 
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event of an extended disruption, the impact on ISS operations was minimal and there was 

no risk to astronaut safety [45]. However, future large-scale space campaigns are more 

complex than ISS. They can include multiple space stations and habitat resupply missions 

in parallel. To mitigate the impact of the uncertain environment on mission operations, we 

need a systematic methodology to quantitatively identify the level of safety stock balancing 

the mission cost and mission performance while ensuring the safety of astronauts under 

uncertain mission environments.  

 In the space logistics research field, multiple frameworks have been proposed in 

the past to perform efficient space mission planning under deterministic environments. 

These frameworks were established through heuristic methods [3], graph theory [5], 

simulations [15], and multi-commodity network flow models [1,2,17]. However, 

deterministic methods tend to give overly optimistic designs and bias anticipated mission 

performance. Space mission operations following the mission planning results optimized 

under deterministic environments may end up with failure or significant mission cost 

increase if any uncertain event occurs during the space campaign such as spacecraft flight 

delays. 

 The research for design under uncertainty in the space field mainly focused on 

analyzing the impact of uncertainty on space missions, but little work has addressed how 

to counter these uncertainties in the mission planning phase. For example, Shull [46] 

discussed the impact of campaign-level risks, such as flight delay and cancellation, in a 

human lunar exploration architecture. Added flexibility was integrated with the format of 

pre-positioning stockpile and evaluated through sensitivity analysis. Moreover, the threat 

of uncertainty for future human Mars missions was studied by Stromgren et al. [47] using 

the Exploration Maintainability Analysis Tool (EMAT). However, these studies cannot 

generate directly implementable decision strategies for decision-makers to follow in 

response to uncertain events. 
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 Beyond the space research area, various studies have considered the flexibility in 

design from different perspectives, including taxonomy [48], empirical evaluation [49], 

and stochastic programming with real options analysis [50] or decision rules [51]. 

However, these proposed methods cannot be applied directly to our problem of space 

logistics planning under uncertainties in launch delays. First, mathematically, the 

transportation of additional safety stock needs to be taken into account during the logistics 

of other pre-determined mission demands because of the limited time window 

opportunities (e.g., due to the launch environment and orbital dynamics). The decision rule 

formulation needs to be integrated into the space logistics optimization problem. 

Furthermore, there is a conceptual difference between our problem and classical real-

option problems in that our problem involves the uncertainties of the time windows, which 

prevents the decision-makers from responding to the uncertainties in real time. In classical 

built-in flexibility examples, we typically assume that we can respond to the uncertainties 

when they are realized (e.g., expanding the building in response to the increasing demand). 

However, in our problem, the time steps of the decision windows themselves are uncertain. 

Therefore, when there is a launch delay, the impact appears on the mission performance 

immediately, but decision-makers cannot react to it until the delayed launch itself (i.e., 

after the impacts have already occurred). Namely, at the point of decision making, we can 

only prepare for the future and compensate for the previous uncertain event immediately 

before it, rather than reacting to the uncertain event in real time.  

 In response to this background, a decision rule-based flexibility management 

framework is proposed in Chapter 6, leveraging multi-stage stochastic programming. It 

aims to add built-in flexibility to space architectures in the phase of early-stage mission 

planning. Decision rules, also called implementable policies, map the observations of 

uncertainty data to the decisions directly. Thus, the resulting decision rule can be 
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implemented as general decision strategies for decision-makers to follow when stochastic 

events occur. 
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CHAPTER 3. INTEGRATED SPACE LOGISTICS AND 

SPACECRAFT DESIGN 

 The integrated space logistics optimization formulation, aiming to minimize the 

total cost of the whole multi-mission campaign, is developed based on Ho et al.’s time-

expanded generalized multicommodity network flow model [2]. To improve the fidelity of 

the infrastructure modeling, we take into account a higher-fidelity ISRU model based on 

Schreiner’s system-level ISRU plant sizing analysis [7], a high-fidelity spacecraft model, 

and new constraints for crew members. 

 This integrated optimization problem turns out to be a complex mixed-integer 

nonlinear programming (MINP) problem and cannot be solved using the conventional 

formulations proposed by Ishimatsu et al. [1] and Ho et al. [2] due to their linear 

programming natures. The nonconvex nonlinear in-orbit infrastructure design model, 

which is used to describe ISRU in this research, the complex nonlinear spacecraft design 

model, and the quadratic terms in both objective function and constraints make it very 

challenging to solve the problem and find the global optimum directly [3].  

 To handle this challenge, two methods are proposed in this chapter: First, the 

mixed-integer nonlinear programming problem is converted into a mixed-integer linear 

programming problem after approximating the nonlinear model with a piecewise linear 

function and linearizing quadratic terms. In addition, another optimization framework is 

provided based on simulated annealing, which separates the spacecraft model from mission 

planning formulation.  

 An example mission scenario based on multiple Apollo missions is considered, and 

the results show a significant improvement in the initial mass in low Earth orbit by 

campaign-level design as compared with the traditional mission-level design. It is also 
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shown that the mixed-integer linear programming-based method gives better-quality 

solutions than the simulated annealing-based method, although the simulated annealing 

method is more flexible for the extension to a higher-fidelity spacecraft model. 

3.1 Methodology 

 In order to solve the optimization problem efficiently, we developed two different 

methods.  

 The first method to solve this problem is converting the whole problem into a MILP 

problem. The nonlinear ISRU and spacecraft models are approximated by piecewise linear 

functions, to then be converted into a binary mixed-integer programming formulation. The 

remaining quadratic terms in the mission planning formulation are linearized. This MILP 

formulation can always find the approximated global optimum. The detail of this MILP 

optimization method is introduced in Sec. 3.1.2.2. 

 Another developed method solves mission planning and spacecraft model 

separately using simulated annealing (SA). Since the spacecraft model is separated from 

mission planning, no quadratic term exists in the formulation. Only the ISRU model needs 

to be approximated by a piecewise linear function. This SA-based method cannot guarantee 

its global optimality, but it can potentially provide a solution to the problem with a more 

realistic and complex spacecraft model. The detail of this SA-based optimization 

framework is shown in Sec. 3.1.2.3. 

3.1.1 Modeling 

 This section introduces the space logistics, spacecraft, and ISRU modeling 

methods. The space logistics model is developed based on Ho et al.’s time-expanded 

GMCNF [2] while using higher-fidelity spacecraft and ISRU models. The spacecraft model 
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used in this chapter is developed based on Taylor’s integrated transportation system design 

framework [52]. This is a data-based model where all the data comes from preexisting 

spacecraft. The ISRU plant considered in this chapter is an oxygen ISRU developed by 

Schreiner [7] based on their system-level ISRU plant sizing analysis for the molten regolith 

electrolysis process. 

3.1.1.1 Space Logistics Modeling 

 The space logistics problem can be solved as a multicommodity network flow 

problem. In the network, nodes correspond to planets, celestial objects, or orbits; and arcs 

correspond to trajectories. Spacecraft, crew members, scientific instruments, and other 

kinds of payloads are considered as commodities flowing along arcs. The left-hand side of 

Figure 2 shows a network graph of the Earth-Moon-Mars-NEO space logistics model [36, 

53, 54]. A generalized multicommodity network flow formulation has been developed with 

this network graph for space logistics optimization [1, 2]. 
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Figure 2 - Integrated optimization framework ([adapted from [7, 52-54]]) 

The space logistics model in this thesis is developed based on a time-expanded 

GMCNF formulation. Solutions of the time-expanded GMCNF provide schedules that 

determine when to transport which commodity from one node to another. In past research, 

everything that flows over arcs is considered to be one kind of commodity, including crew 

members, consumables, ISRU plants, spacecraft, etc. [1, 2]. This research separates the 

spacecraft from other commodities and its model is considered as a separate module so that 

its nonlinear mixed-integer feature can be included efficiently.  

The following shows the mathematical formulation of time-expanded GMCNF. 

Consider a time-expanded network graph 𝒢𝒢 that is made up of a set of nodes 𝒩𝒩 and a set 

of direct arcs 𝒜𝒜 , including both transportation arcs that connect different nodes and 

holdover arcs that connect the node and itself. Each arc has an index (v, i, j), meaning that 

spacecraft v flies from node i to node j. We assume that the spacecraft set is 𝒱𝒱 . 

Commodities flow over arcs are split into the outflow 𝒙𝒙𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖+  and inflow 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣− , where t is the 

time step. There are also cost coefficients 𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+  assigned to outflows that enable us to 
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consider analytic metrics in the optimization. For mission performance evaluations based 

on non-analytic metrics, such as robustness, postprocessing is required after the mission 

planning optimization. Note that, if we assume there are 𝑝𝑝 types of commodities delivered 

in spacecraft, 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
±  and 𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+  are all 𝑝𝑝 × 1 vectors, where each component shows the flows 

and costs of the corresponding commodity. Therefore, all flows 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
±  are nonnegative. 

Most of the commodities in 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
±  are continuous variables, except for crew members, 

which form a discrete (i.e., integer) variable. Moreover, 𝒙𝒙𝑣𝑣𝑖𝑖𝑗𝑗𝑗𝑗
±  represents those commodities 

delivered by spacecraft. The spacecraft itself is also one kind of commodity denoted by 

𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
± , which is a discrete (i.e., integer) variable. 

Each node i has a demand vector 𝒅𝒅𝑖𝑖𝑖𝑖 , which is the demand or supply of each 

commodity at time step t. In the demand vector, demand is shown by a negative value, 

whereas supply is shown by a positive value. Figure 3 shows an example of a full-time 

expanded network. For instance, the commodity in node k can take one of three paths:  

1) Stay at node k over the holdover arc until t+4;  

2) Be transported to node j at time t, and stay at node j until t+4;  

3) Be transported to node j at time t, and then to node i at time t+2, and stay at node i 

until t+4.  

The optimizer will choose the optimal path of these three.  
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Figure 3 - Full time-expanded network [53] 

For each arc from node i to node j, a positive transit time ∆𝑡𝑡𝑖𝑖𝑖𝑖 is defined. Besides 

transit time, another important parameter of time-expanded GMCNF is the possible 

departure time 𝑊𝑊𝑖𝑖𝑖𝑖 ⊆ [0,𝑇𝑇), which corresponds to the time windows of arc i to j. T denotes 

the maximum time horizon of the campaign-level sequence of space missions. The concept 

of the time window defines whether it allows commodity flows at a specified time step.  

 According to the aforementioned notations, the time-expanded GMCNF can be 

expressed by the following formulation: 

Minimize: 

 𝒥𝒥 = � � (𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+ 𝑇𝑇𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+ + 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣′+ 𝑠𝑠𝑣𝑣𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+ )
(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜𝑡𝑡∈{0…𝑇𝑇−1}

 (1) 

Subject to: 

 � 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+

(𝑣𝑣,𝑗𝑗):(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜

− � 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣�𝑡𝑡−∆𝑡𝑡𝑗𝑗𝑗𝑗�
−

(𝑣𝑣,𝑗𝑗):(𝑣𝑣,𝑗𝑗,𝑖𝑖)∈𝒜𝒜

≤ 𝒅𝒅𝑖𝑖𝑖𝑖    ∀𝑖𝑖 ∈ 𝒩𝒩    ∀𝑡𝑡 ∈ {0 …𝑇𝑇 − 1} (2) 
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 � 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+

𝑗𝑗:(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜

− � 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣�𝑡𝑡−∆𝑡𝑡𝑗𝑗𝑗𝑗�
−

𝑗𝑗:(𝑣𝑣,𝑗𝑗,𝑖𝑖)∈𝒜𝒜

≤ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖′    ∀𝑖𝑖 ∈ 𝒩𝒩  ∀𝑣𝑣 ∈ 𝒱𝒱  ∀𝑡𝑡 ∈ {0 …𝑇𝑇 − 1}  (3) 

 
𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣 �

𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+

𝑠𝑠𝑣𝑣𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+ � = �
𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−

𝑠𝑠𝑣𝑣𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣− �   ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜   ∀𝑡𝑡 ∈ {0 …𝑇𝑇 − 1} 
(4) 

 𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+ ≤ 𝒆𝒆𝑣𝑣𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+    ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜   ∀𝑡𝑡 ∈ {0 …𝑇𝑇 − 1} (5) 

 
�
𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

± ≥ 0𝑝𝑝×1   𝑖𝑖𝑖𝑖 𝑡𝑡 ∈ 𝑊𝑊𝑖𝑖𝑖𝑖

𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
± = 0𝑝𝑝×1   𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

   ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜    ∀𝑡𝑡 ∈ {0 …𝑇𝑇 − 1} 
(6) 

 𝑠𝑠𝑣𝑣 = ℱ(𝒆𝒆𝑣𝑣,𝑓𝑓𝑣𝑣)   ∀𝑣𝑣 ∈ 𝒱𝒱 (7) 

𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
± = �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑝𝑝
�

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

±

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥1 ∈ ℤ≥0, 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝 ∈ ℝ≥0   ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜   ∀𝑡𝑡 ∈ {0 …𝑇𝑇 − 1} 

𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
± ∈ ℤ≥0   ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜   ∀𝑡𝑡 ∈ {0 …𝑇𝑇 − 1} 

𝑠𝑠𝑣𝑣 ∈ ℝ≥0, 𝒆𝒆𝑣𝑣 ∈ ℝ≥0
𝑙𝑙 , 𝑓𝑓𝑣𝑣 ∈ ℤ≥0    ∀𝑣𝑣 ∈ 𝒱𝒱 
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Table 1 - Definition of indices, variables, and parameters. 

Name Definition (dimension) 

Index 

𝑣𝑣 Spacecraft index 
𝑖𝑖, 𝑗𝑗 Node 
𝑡𝑡 Time step 
𝑝𝑝 Commodity index 
𝑙𝑙 Concurrency constraint index 

Variables 

𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
±  Commodity outflows/inflows. Commodities in 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

±  are considered 

as integer or continuous variables based on the commodity type. For 

example, the number of crew members is an integer variable, which 

is 𝑥𝑥1, whereas other commodities (such as propellant, payload, and 

human consumables) are considered as continuous variables, which 

are 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝. (𝑝𝑝 × 1) 

𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
±  Number of spacecraft 𝑣𝑣  flying along arc i to j. Integer variable. 

(scalar) 

𝑠𝑠𝑣𝑣 Structure mass of spacecraft 𝑣𝑣. Continuous variable. (scalar) 
𝒆𝒆𝑣𝑣 Spacecraft design parameters, including payload capacity and 

propellant capacity. Continuous variables. (𝑙𝑙 × 1) 
𝑓𝑓𝑣𝑣 Spacecraft fuel type. Integer variable. (scalar) 

Parameters 

𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+  Commodity cost coefficient. (𝑝𝑝 × 1) 

𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣′+  Spacecraft cost coefficient. (scalar) 

𝒅𝒅𝑖𝑖𝑖𝑖 Demands or supplies of different commodities at each node. (𝑝𝑝 × 1) 

𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖′  Demand or supply of spacecraft 𝑣𝑣 at each node. (scalar) 

𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣 Commodity transformation matrix. ((𝑝𝑝 + 1) × (𝑝𝑝 + 1)) 

𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣 Concurrency constraint matrix. (𝑙𝑙 × 𝑝𝑝) 

𝑊𝑊𝑖𝑖𝑖𝑖 Time window vector. ( 1 × 𝑛𝑛 , where 𝑛𝑛  is the number of time 

windows. It is dependent on space missions) 
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Table 1 lists the definitions of indices, variables, and parameters. The detailed 

descriptions of the objective function and constraints are as follows. 

Equation 1 is the objective function. It gives the value of the initial mass in low 

Earth orbit (IMLEO), which is the cost metric for space logistics in this chapter.  

Equations 2 and 3 are mass balance constraints that limit commodity flows to 

satisfy the demands of all nodes.  

 Equation 4 shows the transformation of commodity flows, such as propellant 

burning, propellant boiloff, ISRU production, and crew consumables. For example, 

impulsive propellant consumption can be expressed as follows: 

 
�

1 0 0
−𝜙𝜙 1 − 𝜙𝜙 −𝜙𝜙

0 0 1
�
𝑣𝑣𝑣𝑣𝑣𝑣

�
payload

propellant
structure mass

�
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

+

= �
payload

propellant
structure mass

�
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

−

 
(8) 

 In equation 8, 𝜙𝜙 is the propellant mass fraction which is defined by the rocket 

equation, 𝜙𝜙 = 1 − exp (− ∆𝑉𝑉
𝐼𝐼𝑠𝑠𝑠𝑠𝑔𝑔0

), where ∆𝑉𝑉 is the change in the vehicle’s velocity along 

the arc, 𝐼𝐼𝑠𝑠𝑠𝑠 is the specific impulse, and 𝑔𝑔0 is the standard gravity. Another example about 

propellant production from ISRU can be expressed as follows: 

�1 𝐹𝐹ISRU(ISRU plant mass)
0 1

� � propellant
ISRU plant mass�𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

+
= � propellant

ISRU plant mass�𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

−
 

(9) 

 In equation 9, 𝐹𝐹ISRU(ISRU plant mass) is the ISRU production rate. It is a function 

of ISRU plant mass, which is introduced in detail in Sec. 3.1.1.3. 

 Equation 5 is a spacecraft concurrency constraint, which corresponds to the upper 

bound of commodity flows limited by spacecraft propellant capacity or payload capacity. 
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In this research, we only consider spacecraft payload and propellant mass capacities as 

concurrency constraints. Therefore, the number of concurrency constraints is equal to two, 

which is indexed by 𝑙𝑙 . For example, the concurrency constraints about payload and 

propellant can be expressed as follows: 

�1 1 1 0
0 0 0 1�𝑖𝑖𝑖𝑖

�

payload
crew

consumables
propellant

�

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

+

≤ �𝐶𝐶𝑣𝑣𝑀𝑀𝑣𝑣
� 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+  

(10) 

where 𝐶𝐶𝑣𝑣 and 𝑀𝑀𝑣𝑣 are the payload and propellant capacity of spacecraft 𝑣𝑣. In past literature, 

Equation 5 could also work as a linear spacecraft model through an inert mass fraction [2]. 

Note that there is an underlying assumption in this formulation that the spacecraft 

capabilities of the components can be additively combined. In reality, the interoperability 

between spacecraft can be significantly more complex. 

Equation 6 is the time window of missions defined by the time window matrix 𝑊𝑊𝑖𝑖𝑖𝑖.  

Equation 7 is the spacecraft design model. It is introduced in detail next, in Sec. 

3.1.1.2.  

The time index of this model is inspired by a biscale time-expanded network by Ho 

et al. [2]. In a biscale network model, nodes are partitioned into clusters such that 

transportation across the same pair of clusters has a common time window [2]. The word 

“biscale” means a larger time-step scale is used among clusters and a smaller time-step 

scale is used at the intracluster level. 

 In this research, based on the biscale time-expanded network, nonuniform time 

steps are used within clusters. If there are time windows within clusters, the time step length 

of the holdover arc is determined by the intervals among the time windows. For example, 
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we have a network defined as shown in Figure 4. Because the time windows of node k only 

open at time t, t+2, and t+8, there are only two holdover arcs for node k. The first one starts 

from time t and ends at t+2; the second one starts from time t+2 and ends at t+8. The time-

step lengths of these holdover arcs are two and six in this example for node k. Nonuniform 

time steps can eliminate redundant time steps and increase computational efficiency. 

 

Figure 4 - Nonuniform time-step time-expanded network. 

3.1.1.2 Vehicle model 

 This chapter uses a data-based spacecraft model developed by Taylor in an 

integrated transportation system [52]. This is a nonlinear regression function based on 

preexisting spacecraft. The relationship among structure mass and the three design 

variables is as follows [52]: 

𝑠𝑠∗ = 2.3931 ∗ 𝐶𝐶 + 𝛼𝛼(𝑓𝑓) ∗ 𝑀𝑀 ∗ �1 −
0.2 ∗ 𝑀𝑀
𝑀𝑀𝑈𝑈𝑈𝑈

� +
0.4189(

𝑀𝑀 ∗ 𝐼𝐼𝑠𝑠𝑠𝑠(𝑓𝑓) ∗ 𝑔𝑔0
𝑡𝑡𝑏𝑏

)0.7764

𝑔𝑔0
 

(11) 

where 𝑠𝑠∗ is structure mass (or dry mass); C is the spacecraft payload capacity; M is the 

propellant capacity; f is the fuel type; 𝑔𝑔0 is the gravitational acceleration on Earth, 9.8 m/s2; 

𝑡𝑡𝑏𝑏 is the spacecraft impulsive burn time that is set as 120 s; 𝑀𝑀𝑈𝑈𝑈𝑈 is the upper bound allowed 

for the propellant tank capacity, which is assumed as 500,000 kg; 𝛼𝛼  and 𝐼𝐼𝑠𝑠𝑠𝑠  are the 
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structural fraction and specific impulse that are determined by fuel type f. Note that 𝛼𝛼 is 

the structure fraction of the spacecraft propellant tank defined in [52]. In this chapter, only 

one kind of propellant liquid oxygen (LOX)/kerosene is considered in the spacecraft model. 

This is because, compared with other propellants, liquid oxygen (LOX)/liquid hydrogen 

(LH2), LOX/kerosene, and Monomethylhydrazine (MMH)/Nitrogen tetroxide (N2O4) 

have relatively high specific impulse 𝐼𝐼𝑠𝑠𝑠𝑠 with a relatively low structural fraction 𝛼𝛼 (see 

Table A1). Considering the abundant availability of oxygen on the moon from ISRU and 

the large boiloff of hydrogen over the long campaign, LOX/kerosene is chosen. 

Table 2 - Spacecraft sizing comparison. 

Spacecraft 

Payload 

Capacity 

C, kg 

Propellant 

Capacity 

M, kg 

Propellant 

Actual 

Structure  

Mass 

 s, kg 

Nonlinear 

Regression  

𝑠𝑠∗, kg 

Photographic 

scaling [5]  

s, kg 

Centaur 0 20,830 LOX/LH2 2,462 [55] 3,131 3,215 
S-IVB 0 107,725 LOX/LH2 12,014 [52] 13,513 16,625 
HTV 6,000 2,000 MMH/N2O4 10,500 [56] 15,001 15,197 
ATV 5,500 2,613 MMH/N2O4 10,300 [57] 13,986 14,257 
Apollo LM DS 500 8,804 N2O4/UDMH 2,770 [52] 2,505 2,566 
Apollo LM AS 250 2358 N2O4/UDMH 1,719 [52] 1,005 687 
Apollo CM 524 0 N2O4/UDMH 4,841 [52] 1,254 1,150 
Apollo SM 60 18413 N2O4/UDMH 6,053 [52] 2,682 5,367 

 The spacecraft data used to develop this spacecraft model is listed in Appendix A. 

A comparison of this spacecraft model with a conventional sizing method is shown in Table 

2 [15, 55-57]. We can find that, as a nonlinear regression model, this spacecraft sizing 

model has a higher fidelity compared with a conventional method such as photographic 

scaling [5] when evaluating some historic spacecraft. However, limited by the accuracy of 

the spacecraft model, this nonlinear spacecraft model output can also diverge from historic 

spacecraft, such as the Apollo lunar module (LM) absent stage (AS), the Apollo command 
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module (CM), and Apollo service module (SM), as shown in Table 2. Note that this 

research does not intend to develop an accurate spacecraft model; instead, this chapter 

proposes the methods for space logistics optimization with a nonlinear spacecraft model as 

an input. The aforementioned spacecraft model is chosen from the literature as an example 

to demonstrate our space logistics optimization method. 

3.1.1.3 ISRU (oxygen) model 

 Only oxygen ISRU is considered in this chapter because oxidizer is a major 

component of spacecraft mass. Studies have shown that oxygen can be produced at a lower 

cost as compared with being delivered directly from Earth [58]. The integrated ISRU 

system developed by Schreiner used a molten regolith electrolysis model and balanced the 

tradeoff between optimal reactor performance and optimal excavator design. The ISRU 

system plant includes the reactor, Yttria-Stabilized Zirconia (YSZ) separator, excavator, 

hopper and feed system, oxygen liquefaction and storage system, and power system. For a 

detailed description of these systems, please see [7, 59]. Because a separate cooler is 

designed to reliquefy oxygen that has boiled off in the storage system [7], the boiloff effect 

of oxygen produced by ISRU is not considered. According to Schreiner’s research [7], the 

ISRU production rate is increasing with the ISRU plant mass. The relationship is shown in 

Figure 5. 
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Figure 5 - The oxygen production level normalized by ISRU system mass [7]. 

It can be expressed as the following function [7]: 

 𝑁𝑁𝑀𝑀 = 8.8exp (−
4241

2405 + 𝑁𝑁𝑜𝑜
) (12) 

where 𝑁𝑁𝑀𝑀 is the oxygen production rate in kilograms of oxygen (𝑂𝑂2) per year per kilogram 

system mass and NO is the oxygen production per year. If we assume ISRU plant mass as 

MO, then 

 𝑁𝑁𝑀𝑀 = 𝑁𝑁𝑂𝑂
𝑀𝑀𝑂𝑂
�  (13) 

 Equation 12 is a regression equation that has a horizontal asymptote as 𝑁𝑁𝑂𝑂 → ∞. 

Based on equation 12 and the data from Schreiner [7], we build another regression equation 

to get 𝑁𝑁𝑀𝑀 = 𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑀𝑀𝑂𝑂), which is shown as follows: 
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 𝑁𝑁𝑀𝑀

= �
  0                                                           𝑖𝑖𝑖𝑖 𝑀𝑀𝑂𝑂 ∈ [0, 400) 

−0.438 + 6.9623 �1 − exp �−
𝑀𝑀𝑂𝑂

812.1563�� + 2.0173 �1 − exp �−
𝑀𝑀𝑂𝑂

3967.2644��    𝑖𝑖𝑖𝑖 𝑀𝑀𝑂𝑂 ∈ [400, 10000) 
 

(14) 

 The comparison between the regression equation [equation 14] and Schreiner’s 

model [7] is shown in Figure 6. It is the relationship between the ISRU system plant mass 

𝑀𝑀𝑂𝑂 and the oxygen production rate 𝑁𝑁𝑀𝑀. Figure 6 shows that equation 14 fits the data of 

Schreiner’s model well. It is used to calculate oxygen production in our space logistics 

model. 

 

Figure 6 - The oxygen production normalized by ISRU system mass. 

 Equation 14 is a piecewise nonlinear function. When 𝑀𝑀𝑂𝑂 < 400, ISRU does not 

function. Because the ISRU system includes the reactor, excavator, storage system, power 

system, etc., if the total mass of the ISRU plant is too low, the integrated ISRU system does 

not contain enough components to start functioning as a unit. The domain of the ISRU 

plant mass 𝑀𝑀𝑂𝑂 in this equation is from 0 to 10,000 kg. From equations 13 and 14, we can 
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get the relationship between the oxygen production every year and the total mass of the 

ISRU plant deployed, which is 𝑁𝑁𝑂𝑂 = 𝑀𝑀𝑂𝑂 ∗ 𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑀𝑀𝑂𝑂). 

3.1.2 Optimization Methods 

 The campaign-level space logistics problem considering nonlinear spacecraft and 

ISRU model is a mixed-integer nonlinear programming (MINP) problem. This section 

introduces the piecewise function approximation method that linearizes the nonlinear ISRU 

and spacecraft models, and then converts them into binary mixed-integer programming 

formulations. Two approaches to solve this MINP problem are proposed. Both methods 

use the piecewise function approximation method for approximating the ISRU model. The 

difference between the two methods lies in how to deal with the nonlinear spacecraft 

model. The first approach converts the whole problem into a MILP formulation, which is 

expected to solve this problem more efficiently. The second approach is developed based 

on simulated annealing. It separates the spacecraft design from the mission planning part, 

which is intended to create the ability to consider higher-fidelity spacecraft models if 

necessary. 

3.1.2.1 Piecewise function approximation method 

 The following shows the method to approximate a single variable nonlinear 

function by a piecewise linear function, and then convert it into a binary mixed-integer 

programming formulation. Considering a nonlinear function, a proper number of 

breakpoints inside the function domain is selected and then connected linearly, as shown 

in Figure 7. This single variable nonlinear function is approximated by a piecewise linear 

function, which can be described as follows: 
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𝑓𝑓(𝑥𝑥): = �

𝑘𝑘1𝑥𝑥 + 𝑐𝑐1,            𝑥𝑥 ∈ [𝑢𝑢1,𝑢𝑢2]
𝑘𝑘2𝑥𝑥 + 𝑐𝑐2,            𝑥𝑥 ∈ [𝑢𝑢2,𝑢𝑢3]

        ⋮
𝑘𝑘𝑁𝑁−1𝑥𝑥 + 𝑐𝑐𝑁𝑁−1,       𝑥𝑥 ∈ [𝑢𝑢𝑁𝑁−1,𝑢𝑢𝑁𝑁]

 

(15) 

for some 𝑁𝑁 ∈ ℤ≥0 : {𝑘𝑘𝑖𝑖}1𝑁𝑁−1 ⊂ ℝ , {𝑐𝑐𝑖𝑖}1𝑁𝑁−1 ⊂ ℝ , and {𝑢𝑢𝑖𝑖}𝑖𝑖=1𝑁𝑁−1 ⊂ ℝ , where 𝑢𝑢𝑖𝑖  is a 

breakpoint. 

 

Figure 7 - Piecewise function and its epigraph as the union of polyhedra. 

To solve this piecewise function in our mixed-integer linear programming model, 

the next step is modeling the piecewise function 𝑓𝑓:𝐷𝐷 ⊂ ℝ → ℝ as a binary mixed-integer 

programming formulation, where 𝐷𝐷 is the domain of 𝑥𝑥. An appropriate approach to do it is 

to model its epigraph  

𝑒𝑒𝑒𝑒𝑒𝑒(𝑓𝑓) = {(𝑥𝑥, 𝑧𝑧):𝑥𝑥 ∈ 𝐷𝐷, 𝑧𝑧 ∈ ℝ,𝑓𝑓(𝑥𝑥) ≤ 𝑧𝑧} 

as shown in Figure 7. The epigraph of a piecewise function can be considered as a union 

of polyhedra 𝒫𝒫. Each polyhedron P corresponds to an interval [𝑢𝑢𝑖𝑖 ,𝑢𝑢𝑖𝑖+1]. Therefore, we 

can rewrite the piecewise function 𝑓𝑓 as follows: 
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 𝑓𝑓(𝑥𝑥): = {𝑘𝑘𝑃𝑃𝑥𝑥 + 𝑐𝑐𝑃𝑃,𝑥𝑥 ∈ 𝑃𝑃,∀𝑃𝑃 ∈ 𝒫𝒫} (16) 

Vielma et al. [60] reviewed and introduced several ways to convert a union of 

polyhedra 𝒫𝒫 into a binary mixed-integer programming formulation, including a convex 

combination model, logarithmic branching convex combination (referred to as log) model, 

a multiple-choice model, an incremental method, etc. As one of the most performant 

formulations, the log model is chosen for the piecewise linear approximation of spacecraft 

and ISRU models in this research. 

Following the theory described by Vielma et al. [60], (𝑥𝑥, 𝑧𝑧) ∈ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑓𝑓)  can be 

represented as the convex combination of points �𝑣𝑣𝑣𝑣,𝑓𝑓(𝑣𝑣𝑣𝑣)� for 𝑣𝑣𝑣𝑣 ∈ 𝑉𝑉(𝑃𝑃) , where 𝑉𝑉 

denotes the set of vertices (i.e., breakpoints) of polyhedron 𝑃𝑃, plus a ray in 𝐶𝐶1+ ≔ {(0, 𝑧𝑧) ∈

ℝ × ℝ: 𝑧𝑧 ≥ 0}. Then a continuous variable 𝜆𝜆 is assumed for each vertex 𝑣𝑣𝑣𝑣 ∈ 𝑉𝑉(𝑃𝑃) and 

for each 𝑃𝑃 ∈ 𝒫𝒫. As a result, a point (𝑥𝑥, 𝑧𝑧) ∈ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑓𝑓) can be represented as  

(𝑥𝑥, 𝑧𝑧) = 𝑟𝑟 + � � 𝜆𝜆𝑃𝑃,𝑣𝑣𝑣𝑣�𝑣𝑣𝑣𝑣,𝑓𝑓(𝑣𝑣𝑣𝑣)�
𝑣𝑣𝑣𝑣∈𝑉𝑉(𝑃𝑃)𝑃𝑃∈𝒫𝒫

 

for 𝑟𝑟 ∈ 𝐶𝐶1+ and  

�𝜆𝜆𝑃𝑃,𝑣𝑣𝑣𝑣�𝑃𝑃∈𝒫𝒫,𝑣𝑣𝑣𝑣∈𝑉𝑉(𝑃𝑃) ⊂ ℝ≥0 

such that 

� � 𝜆𝜆𝑃𝑃,𝑣𝑣𝑣𝑣
𝑣𝑣𝑣𝑣∈𝑉𝑉(𝑃𝑃)𝑃𝑃∈𝒫𝒫

= 1 

Moreover, we can further reduce the number of continuous variable 𝜆𝜆  and 

constraints of the formulation by identifying a binary branching scheme. As a result, we 
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only need to define λ variables associated with the vertices (i.e., breakpoints) in the union 

of polyhedra 𝒫𝒫, rather than for each vertex in each polyhedron 𝑃𝑃. This can reduce the 

number of λ variables significantly because two adjacent polyhedra share the same vertex 

(i.e., breakpoint). 

 Finally, the resulting formulation is given by 

 ∑ 𝜆𝜆𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑥𝑥𝑣𝑣𝑣𝑣∈𝒱𝒱(𝒫𝒫) ,        ∑ 𝜆𝜆𝑣𝑣𝑣𝑣(𝑘𝑘𝑃𝑃𝑣𝑣𝑣𝑣 + 𝑐𝑐𝑃𝑃) ≤ 𝑧𝑧𝑣𝑣𝑣𝑣∈𝒱𝒱(𝒫𝒫)  (17) 

 𝜆𝜆𝑣𝑣𝑣𝑣 ≥ 0   ∀𝑣𝑣𝑣𝑣 ∈ 𝒱𝒱(𝒫𝒫),        ∑ 𝜆𝜆𝑣𝑣𝑣𝑣 = 1𝑣𝑣𝑣𝑣∈𝒱𝒱(𝒫𝒫)  (18) 

 ∑ 𝜆𝜆𝑣𝑣𝑣𝑣 ≤ 𝑦𝑦𝑢𝑢𝑣𝑣𝑣𝑣∈𝐿𝐿𝑢𝑢 ,    ∑ 𝜆𝜆𝑣𝑣𝑣𝑣 ≤ (1 − 𝑦𝑦𝑢𝑢)𝑣𝑣𝑣𝑣∈𝑅𝑅𝑢𝑢 ,   𝑦𝑦𝑢𝑢 ∈ {0,1}   ∀𝑢𝑢 ∈ 𝑈𝑈 (19) 

where {𝐿𝐿𝑢𝑢,𝑅𝑅𝑢𝑢}𝑢𝑢∈𝑈𝑈 is a family of dichotomies, which is a branching scheme of 𝜆𝜆 variables. 

This formulation is called the logarithmic branching convex combination model. The 

branching scheme is introduced by Vielma and Nemhauser [61], and the details of the log 

method can be found in [60]. Using the aforementioned method, an example of building a 

log formulation is shown in the following. 

 For example, the nonlinear function in Figure 7 can be approximated by a piecewise 

function using five breakpoints, given by 

 

𝑓𝑓(𝑥𝑥) ≔ �

𝑘𝑘1𝑥𝑥 + 𝑐𝑐1,   𝑥𝑥 ∈ [𝑢𝑢1,𝑢𝑢2]
𝑘𝑘2𝑥𝑥 + 𝑐𝑐2,   𝑥𝑥 ∈ [𝑢𝑢2,𝑢𝑢3]
𝑘𝑘3𝑥𝑥 + 𝑐𝑐3,   𝑥𝑥 ∈ [𝑢𝑢3,𝑢𝑢4]
𝑘𝑘4𝑥𝑥 + 𝑐𝑐4,   𝑥𝑥 ∈ [𝑢𝑢4,𝑢𝑢5]

 

(20) 

 Then, a point (𝑥𝑥, 𝑧𝑧) in this piecewise function can be expressed as a binary mixed-

integer programming formulation using the log formulation given by 
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 𝑢𝑢1𝜆𝜆1 + 𝑢𝑢2𝜆𝜆2 + 𝑢𝑢3𝜆𝜆3 + 𝑢𝑢4𝜆𝜆4 + 𝑢𝑢5𝜆𝜆5 = 𝑥𝑥 (21) 

 𝑓𝑓(𝑢𝑢1)𝜆𝜆1 + 𝑓𝑓(𝑢𝑢2)𝜆𝜆2 + 𝑓𝑓(𝑢𝑢3)𝜆𝜆3 + 𝑓𝑓(𝑢𝑢4)𝜆𝜆4 + 𝑓𝑓(𝑢𝑢5)𝜆𝜆5 ≤ 𝑧𝑧 (22) 

 𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆3 + 𝜆𝜆4 + 𝜆𝜆5 = 1     ∀𝜆𝜆𝑖𝑖 ≥ 0, 𝑖𝑖 ∈ {1, … ,5} (23) 

 𝜆𝜆1 + 𝜆𝜆5 ≤ 𝑦𝑦1,   𝜆𝜆3 ≤ 1 − 𝑦𝑦1,   𝜆𝜆1 + 𝜆𝜆2 ≤ 𝑦𝑦2,   𝜆𝜆4 + 𝜆𝜆5 ≤ 1 − 𝑦𝑦2,   𝑦𝑦1,𝑦𝑦2 ∈ {0,1} (24) 

3.1.2.2 Mixed-Integer Linear Programming Optimization Framework 

 From the MILP formulation [equations 1-7], we can see that, if the spacecraft model 

is considered together with mission planning, even though it is approximated using a 

piecewise function and then converted into a binary mixed-integer programming 

formulation, there are still quadratic terms. These quadratic terms exist in an objective 

function [equation 1], a commodity transformation constraint [equation 4], and a 

concurrency constraint [equation 5]. The reason is that spacecraft design variables, 𝑠𝑠𝑣𝑣, 𝐶𝐶𝑣𝑣, 

and 𝑀𝑀𝑣𝑣, are also variables in the MILP formulation. These quadratic terms are the products 

of discrete and continuous variables. Because the coefficient matrix of quadratic terms is 

not positive semidefinite, to solve this model, linearizing quadratic terms is a better choice. 

 Consider a nonlinear equation 𝑧𝑧𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑒𝑒𝑣𝑣𝑏𝑏𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, where 𝑒𝑒𝑣𝑣 is a continuous variable 

representing the dry mass 𝑠𝑠𝑣𝑣, payload capacity 𝐶𝐶𝑣𝑣, or propellant capacity 𝑀𝑀𝑣𝑣 of spacecraft 

𝑣𝑣. 𝑏𝑏𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is a binary variable representing whether the 𝑘𝑘𝑡𝑡ℎ spacecraft is flying along the arc 

from i to j at time t. Note that 𝑣𝑣 represents the type of spacecraft, and there are multiple 

spacecraft for the same type. Also, 𝑘𝑘 is the index of spacecraft of the same type. Assuming 

the maximum number of spacecraft 𝑣𝑣 can be used is n, we have 
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 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = � 𝑏𝑏𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑛𝑛

𝑘𝑘=1
 (25) 

 Therefore, using the big-ℳmethod, product 𝑧𝑧𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑒𝑒𝑣𝑣𝑏𝑏𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 can be linearized as 

follows: 

 𝑧𝑧𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≤ ℳ𝑏𝑏𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (26) 

 𝑧𝑧𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≤ 𝑒𝑒𝑣𝑣 (27) 

 𝑧𝑧𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≥ 𝑒𝑒𝑣𝑣 − (1 − 𝑏𝑏𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)ℳ (28) 

 𝑧𝑧𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≥ 0 (29) 

where ℳ is a large constant. 

 As a result, after approximating the nonlinear model of ISRU and spacecraft by 

piecewise function approximation method and linearizing quadratic terms in concurrency 

constraints, all nonlinear terms are converted into linear constraints. The campaign-level 

space logistics optimization problem considering nonlinear spacecraft and ISRU 

production models finally becomes a mixed-integer linear programming problem. 

3.1.2.3 Simulated Annealing (SA) Optimization Framework 

SA is a conventional heuristic optimization method that cannot guarantee or certify 

its global optimality. Typically, it takes a long time to achieve an acceptable solution. This 

SA-based method is inspired by the optimization framework developed by Taylor [52]. 

However, Taylor’s approach cannot take into account infrastructure such as ISRU because 

the mission planning part of the framework uses a shortest-path-based approach. This 
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section improves this method by using an arc-based formulation and solves it as a 

multicommodity network flow. 

The only difference between the MILP-based method and the SA-based method is 

how to deal with the nonlinear spacecraft model. The SA-based approach separates the 

spacecraft model from mission planning. As a result, the spacecraft design variables 𝐶𝐶𝑣𝑣 

and 𝑀𝑀𝑣𝑣 are constant inside the MILP formulation. They are only variables in the separated 

spacecraft model. In other words, the quadratic terms in the MILP formulation disappear. 

The nonlinear ISRU model is still designed concurrently with the mission planning part. It 

is converted into a binary mixed-integer programming formulation through piecewise 

linear approximation. 

Because the spacecraft model is separated, the advantage of the SA approach is that 

it provides the possibility of extending the spacecraft model in an easier manner when 

compared to the method of MILP formulation. 

 

Figure 8 - Flow chart of SA-based approach. 

 A flow chart of SA is shown in Figure 8. The mission planning section is actually 

the evaluation step of simulated annealing. After selecting random neighbors in the 

spacecraft model, the performances of the spacecraft are evaluated by a space logistics 

mission planning optimization utilizing these spacecraft. The best space logistics solution 
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is recorded. The optimization algorithm repeats until a stopping criteria (e.g., convergence, 

computation budget) and then optimal spacecraft parameters and space logistics solutions 

are output. 

3.2 Results and Analysis 

3.2.1 Model Validation 

 This section validates the network model using the Apollo 17 mission as an 

example, where no ISRU and spacecraft design models are considered. Instead, the original 

spacecraft in the Apollo mission is used in mission planning. The Apollo 17 mission can 

be modeled as a four-node network as shown in Figure 9, including the Pacific Ocean 

(PAC), low Earth orbit (LEO), low lunar orbit (LLO), and lunar surface (LS). The time of 

flight (TOF) and ∆V for each transportation arc are also shown in Figure 9. We assume 

that one day is one time step. 

 

Figure 9 - Apollo 17 network model. 

 Note that the propellant cost for transportation from Earth to LEO is not considered 

because the IMLEO is minimized in this research. For a transportation system, the IMLEO 

is a widely accepted measure of the mission cost [1, 3]. In some literature, the financial 

cost is also used as a metric [5]. However, this chapter focuses on limited resource 

utilization and the interaction between mission planning and spacecraft design. To simplify 

the problem, the IMLEO is used as a metric for mission cost in this chapter. 

 Table 3 lists all spacecraft used in Apollo 17, and Table 4 lists the demand and 

supply of the Apollo 17 mission. In this example, two astronauts, along with the scientific 
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experiment equipment, are sent to the lunar surface, and stay there for one day; whereas a 

third astronaut stays in lunar orbit for three days. Then, all three astronauts come back with 

110 kg of lunar samples. For this Apollo 17 mission, the time window is always open. 

Table 3 - Spacecraft used in Apollo 17. 

Spacecraft 
Propellant 

capacity M, kg 
Isp, s 

Payload 

capacity C, kg 

Structure 

mass s, kg 

Saturn V second stage 452,045 421 0 38,415 
Saturn V third stage 107,725 421 0 12,014 
Command module 0 0 524 4,841 
Service module 18,413 314 60 6,053 
LM descent stage 8,804 311 500 2,770 
LM ascent stage 2,358 311 250 1,719 

 

Table 4 - Demand and supply of Apollo 17 mission. 

Payload Type Node Demand Time, day Supply 

Crew,a no. Lunar surface 5 -2 
Crew,a no. Lunar orbit 4 -1 
Crew Return,a no. Lunar surface 6 2 
Crew Return,a no. Lunar orbit 7 1 
Crew Return,a no. Earth 11 -3 
Equipment,b kg Lunar surface 5 -420 
Sample,c kg Earth 11 -110 
Crew, Equipment,b kg Earth 0-11 +∞ 
Sample,c kg Lunar surface 0-11 +∞ 

aCrew and Crew Returning are separated in order to ensure that the crew shall reach the 

moon before returning to Earth. 

bEquipment denotes all scientific experiment equipment for lunar surface activities, 

including a Lunar Roving Vehicle (LRV); 
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cSample denotes all the things we want to bring back from another planet, typically for 

scientific research. 

 

 The optimized solution using the GMCNF model for this example is depicted in 

Figure 10. All commodities are delivered together from LEO. Notice that crew members 

fly back to the Earth by LM descent stage (LMDS) instead of the Apollo command/service 

module (CSM) in the original mission. This is a feasible solution since the payload capacity 

of LMDS is large enough to contain three crew members and 110 kg of lunar samples. The 

size of the propellant tank is also sufficient to support the return directly from lunar orbit. 

This is also an optimal solution because one important function of the CSM is to bring 

crew members and lunar samples back to the Earth. If the LMDS can complete this work, 

the service module would not be used because LMDS has a smaller structure mass which 

means less propellant cost. A similar result is observed in Taylor et al.’s study [3]. Saturn 

V’s third stage performs as a propellant depot after reaching the lunar orbit. The detailed 

mass flows are shown in Figure 11. The consumables in Figure 11 include water, oxygen, 

and food for the crew. 
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Figure 10 - Apollo 17 example. 

 

Figure 11 - Commodity flows in the optimal solution. 

 Table 5 compares the differences of payload and propellant at Earth orbit insertion 

between the optimized Apollo 17 mission and the original mission [62]. Notice that no 

spacecraft design model is considered in this example. The optimized Apollo mission uses 

the same vehicles as the original mission. 
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Table 5 - Mass differences comparison at Earth orbit insertion. 

Spacecraft Class of mass 
Original 

Apollo 17, kg 

Optimized 

Apollo 17, kg 

Saturn V third stage Propellant 96,204 74,758 
Structure mass 12,014 12,014 

Command module Crew member 3*100 — — 
Consumables 124 — — 
Equipment — — 420 

Structure mass 4,841 4,841 
Service module Propellant 18,413 — — 

Structure mass 6,110 — — 
LM descent stage Crew member — — 3*100 

Consumables — — 124 
Equipment 420 — — 
Propellant 8,804 8804 

Structure mass 2,770 2,770 
LM ascent stage Propellant 2,358 — — 

Structure mass 1,719 1,719 
All spacecraft Total mass 154,077 105,750 

 The GMCNF model actually selects a better solution for the Apollo 17 mission. For 

validation purposes, we can manually track what has changed as compared with the 

original mission. Starting from the original Apollo 17 mission, we remove the service 

module, the propellant in LM ascent stage (LMAS), and the propellant to transport these 

commodities to lunar orbit. Then, we add the propellant for the LMDS to support its return 

to Earth. Finally, the initial mass in LEO becomes 105,614 kg. The optimal solution by the 

GMCNF model is 105,750 kg, which is only a 0.1% difference from our manual validation 

results. Thus, we can conclude that the time-expanded GMCNF could find an optimal 

solution and has sufficient accuracy to optimize the space logistic problem. 

3.2.2 Campaign-level Space Logistics Design 
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 This section evaluates and analyzes the performance of the space logistics 

optimization framework for mission planning and spacecraft design. Both ISRU and 

spacecraft design models are taken into account. Moreover, maintenance costs and the 

oxygen boiloff are also considered in this case. This is a MILP problem solved in Python 

by a Gurobi 6.5 solver on an Intel Core i7-4700MQ, quad-core 3.4GHz platform. All the 

following numerical experiments in this chapter are solved on this platform. The piecewise 

linear approximations for nonlinear ISRU and spacecraft models are done through a 

Python-based open-source optimization package named Pyomo.  

 In this section, we first perform optimization for a single space mission as the 

baseline solution. Then, we optimize a campaign, which contains multiple space missions, 

and compare its result with the baseline solution to study the effect of campaign-level space 

logistics design. These space mission optimizations are all completed through the MILP-

based method. Next, we compare the performance of the MILP-based method with the SA-

based method. Finally, we perform sensitivity analyses of ISRU productivity and 

spacecraft design. 

3.2.2.1 Single mission Design with MILP 

 In this part, we optimize a single space mission as the baseline solution. It is used 

to demonstrate the effect of campaign-level space logistics design in the next section. 

Based on the Apollo 17 mission, a new large-scale lunar mission is designed as an example 

for optimization. The demand and supply are shown in Table 6. In this case, 12 crews are 

delivered to the Moon with 4200 kg of equipment and come back with 500 kg samples. 

The assumptions are listed in Table 7 [63, 64]. For this single mission example, the time 

window is always open. 
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Table 6 - Demand and supply of lunar mission. 

Payload Type Node Demand Time, day Supply 

Crew, no. Lunar Surface 5 -12 

Crew Return, no. Lunar Surface 8 12 

Crew Return, no. Earth 13 -12 

Equipment, kg Lunar Surface 5 -4200 

Sample, kg Earth 13 -500 

Crew, Equipment, kg Earth 0-13 +∞ 

Sample, kg Lunar Surface 0-13 +∞ 
 

Table 7 - Summary of parameters and assumptions. 

Parameter Assumed value 

Percentage of oxygen in propellant 71.91% LOX/kerosene 

Oxygen boil-off rate 0.016%/day 

Food consumption rate [63, 64] 1.015 kg/day/crew 

water consumption rate [64] 6.37 kg/day/crew 

oxygen consumption rate [64] 1.18 kg/day/crew 

Crew mass (including space suit) 100 kg/crew 

ISRU maintenance 10%/year 

Spacecraft maintenance 1%/flight 

 The percentage of oxygen in propellant in Table 7 is used to consider the production 

of oxygen ISRU plant and the boiloff effect. Note that the oxygen consumed by crew 

members is very low as compared with the oxidizer in propellant (LOX/kerosene). To 

simplify the problem, the oxygen produced by the ISRU plant is only used for propellant 

oxidizer. 

 The maintenance of ISRU is performed every mission, and the amount of ISRU 

maintenance mass is determined by the ISRU plant mass. In addition, the maintenance of 
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spacecraft is performed in every flight and the amount of needed maintenance mass is 

related to the spacecraft structure mass. 

 The solution of the single mission optimization is listed as follows. Two types of 

spacecraft are considered, and two spacecraft can be used for each type. 

Table 8 - Spacecraft design of a single mission design. 

Spacecraft 

Type 

Payload Capacity,  

C, kg 

Propellant Capacity, 

 M, kg 

Structure Mass, 

 S, kg 

1 2,020 166,481 17,996 
2 2,262 23,891 7,342 

 Table 8 lists the spacecraft design in this case, and the mission planning solution is 

depicted in Figure 12. Because the mission only lasts for 13 days, no ISRU plant is 

deployed on the moon. This solution is also an optimal solution of the conventional carry-

along strategy. All propellant and consumables used in the mission come from the Earth. 

The spacecraft size is also shown in Figure 12, corresponding to the structure mass in Table 

8. Even though the spacecraft are designed to be multiuse without specific functions 

assigned for each type, they still perform different roles in the mission. Spacecraft 1, which 

is relatively larger, is mainly used to deliver equipment. Spacecraft 2, which is smaller, is 

mainly used to deliver crews and samples back from the moon. The detailed mass flows 

are shown in Figure 13, and we can see that the IMLEO of this mission is 439,375 kg. 
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Figure 12 - Single lunar mission solution. 

 

Figure 13 - Commodity flows of single lunar mission. 

3.2.2.2 Campaign-Level Mission Design with MILP 

 This section studies the effect of campaign-level space logistics mission design. 

Three lunar missions are combined together into a campaign. In each mission, 12 crews 

are delivered to the moon with 4200 kg of equipment and come back to Earth with 500 kg 

of lunar samples. All the assumptions remain the same as before. For a multi-mission 

campaign, the time windows are open at the start of each mission, which are determined 

by the mission intervals. It takes about 2000 s to optimize this problem. The solution of 
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campaign-level mission optimization with one year mission intervals is shown in the 

following. 

Table 9 - Spacecraft design of the multi-mission campaign design solution (interval: 

one year). 

Spacecraft 

Type 

Payload Capacity,  

C, kg 

Propellant Capacity, 

 M, kg 

Structure Mass, 

 S, kg 

1 3,978 198,580 24,745 
2 2,262 23,891 7,342 

Table 9 lists the spacecraft design of this case. The mission planning of this campaign 

is depicted in Figure 14. We can see that the size of spacecraft 2 is the same as it in the 

single mission case, as shown in Table 8. The reason is that, like the single mission case, 

spacecraft 2 is mainly used to deliver crews and samples. Because the demands of crews 

and samples do not change, the size of spacecraft 2 does not change. However, the size of 

spacecraft 1 is larger because, in a multi-mission campaign, spacecraft 1 is used to deliver 

not only the equipment but also ISRU plants.  

 The detailed mass flows are listed in Figure 15. From Figure 15, we can see that 

the IMLEO for each mission is decreasing. The first mission has the highest IMLEO 

because the ISRU plant is deployed in this mission. Starting from the second mission, the 

oxidizer used in the spacecraft flying out of the moon is produced by the ISRU plant. It 

relies less on the Earth resource for propellant oxidizer, which is expensive to deliver from 

Earth. As a result, the total IMLEO of this multi-mission campaign is lower than three 

single missions, as can be seen by comparing Figure 13 and Figure 15. If this mission is 

repeated in the fourth year, because there is no need to deploy ISRU plants again, the 

mission cost is still lower than a single lunar mission. 
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a) Mission-I 

 

b) Mission-II 
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c) Mission-III 

Figure 14 - Multi-mission lunar campaign solution (interval: one year). 
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Figure 15 - Commodity flows of the multi-mission lunar campaign solution 

(interval: one year). 

 The mission time intervals determine the total working time of the ISRU plant 

during the campaign. To study the effect of mission interval, the spacecraft structure mass 

and mission planning results with respect to the mission interval are depicted in Figure 16. 
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Figure 16 - Results of multi-mission lunar campaign design with respect to mission 

interval. 

 As shown in Figure 16, the IMLEO first decreases quickly because the mission 

obtains lots of benefits from the oxygen ISRU plant with a longer mission interval. 

However, after the mission interval is longer than 10 years, the IMLEO starts to decrease 

very slowly with the increase of mission interval because the oxygen ISRU can only 

produce propellant oxidizer. No matter how much oxidizer can be produced by the ISRU 

plant, we still need kerosene delivered from Earth. When the mission interval is long 

enough, the benefit from the oxygen ISRU plant diminishes. 

 Furthermore, two types of spacecraft are considered. There is a direct relationship 

between the size of large spacecraft (e.g. spacecraft 1) and the mass of the ISRU plant 

deployed. In Figure 16, the variation pattern of the structure mass of spacecraft 1 matches 

the variation pattern of the ISRU plant mass. Similar to the results in campaign-level 
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mission design, the large spacecraft is mainly used to deliver equipment and the ISRU 

plants. Because the demand for equipment is constant in each mission, the size of large 

spacecraft is mainly determined by the ISRU plants; however, the small spacecraft is 

mainly used to deliver samples and crew members. Even if all spacecraft are designed in a 

general way (i.e., no specified function identified at the start of spacecraft design), the 

solver identifies the functions for each type of spacecraft. 

3.2.2.3 Optimization Method Comparison 

 As discussed in the Methodology section (Sec. 3.1), there are two optimization 

methods proposed in this chapter: the MILP method and the SA optimization framework. 

This section studies the influences of different optimization methods. These methods are 

used to solve the same campaign-level mission design problem defined previously. 

 In the previous section, the nonlinear ISRU model and nonlinear spacecraft model 

are finally converted into a binary mix-integer programming formulation through 

piecewise functions. However, these models can initially be assumed as linear to simplify 

the problem. For the linear ISRU model, we assume that the oxygen production rate is 7.5 

kg of 𝑂𝑂2 per year per kilogram of ISRU system mass. The linear spacecraft model is a 

linear simplification of equation 11, which is assumed as 

 𝑆𝑆 = 2.3931𝐶𝐶 + 0.09𝑀𝑀 (30) 

 The comparison of different optimization methods is shown in Table 10. 
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Table 10 - Comparison of different optimization methods (interval: one year). 

Optimization method 

IMLEO, kg 
Optimization 

Time, s 

MILP 

ISRU model 
Spacecraft 

model 

Nonlinear Nonlinear 1,298,813 2,000 
Nonlinear Linear 1,424,484 1,705 

Linear Nonlinear 1,296,999 2,566 
Linear Linear 1,424,484 1,360 

Simulated annealing ≈1,407,000 ≈4,000 

 The IMLEO of the problem with the linear spacecraft model is much higher when 

compared with the normal case (i.e., all nonlinear). This is because, in the nonlinear 

spacecraft model, the structure mass ratio of a large spacecraft is lower than a small 

spacecraft. The structure mass increases linearly with the spacecraft size in equation 30, 

which is developed based on small spacecraft; thus, the structure mass of a large spacecraft 

based on equation 30 is larger than reality. More propellant is consumed due to the large 

structure mass. On the contrary, the problem with the linear ISRU model has a lower 

IMLEO compared with a nominal scenario. The reason is the production rate of ISRU is 

increasing with the ISRU plant mass. As shown in Figure 6, the ISRU would not work 

before the system mass reaches 400 kg. Then, the production rate is only 2.5 kg of 𝑂𝑂2 per 

year per kilogram of ISRU system mass, with a 400 kg ISRU plant and 5 kg of 𝑂𝑂2 per year 

per kilogram of ISRU system mass with a 1,000 kg plant. To achieve a production rate of 

7.5 kg of 𝑂𝑂2 per year per kilogram of ISRU system mass, more than 3,000 kg ISRU plant 

should be deployed. Thus, the ISRU production rate of a linear ISRU model is typically 

higher than the actual case. 

 The optimization time cost listed in Table 10 is the running time Gurobi solver, 

ignoring the model input time, which is typically 1 or 2 min. Because a MILP problem is 
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generally solved by a linear-programming-based branch-and-bound algorithm, the 

calculation time is influenced by multiple factors, such as mission interval and ISRU or 

spacecraft model. For this four-node network in the space logistics model, considering a 

campaign including three lunar missions, there are approximately 100,000 constraints, 

1,500 integer variables and 5,400 continuous variables. In Table 10, the optimization time 

of all linear MILP methods is 1360 s when the mission intervals are one year. In fact, it 

may take a longer time when the mission intervals change. When we compare this all-linear 

MILP method with our method based on a piecewise linear function and MILP, we can 

find that our methods solve the space logistics problem including nonlinear ISRU and 

spacecraft models without much deterioration of computational efficiency. Our method 

may bring in several binary variables and constraints, but most of the constraints and 

variables come from the mission planning part, which is a GMCNF model. These 

constraints and variables are not influenced by which ISRU or spacecraft model 

considered. Therefore, no matter which ISRU or spacecraft model is considered, the 

optimization time cost of this campaign-level mission solved by the MILP method is at the 

same order of magnitude of approximately 1,500-2,500 s. 

 The same problem is also solved by the SA-based method. It cannot guarantee an 

optimal solution, but it is a good method if the precise global optimum is less important 

and an acceptable local optimum is wanted in a given time horizon. The biggest advantage 

of SA in this problem is that the spacecraft model is separated from the mission planning 

part. As a result, higher-fidelity spacecraft models can easily be considered, such as 

considering the fuel types. Moreover, different spacecraft can easily be assigned different 

functions initially in a separate spacecraft model. 

 The solution of SA is influenced significantly by the cooling strategy and the initial 

value of the problem (e.g., initial spacecraft). The start temperature is set as 10,000 and the 

algorithm will stop after the temperature reaches 0.1. The annealing schedule is an 
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exponential cooling scheme with a cooling rate assumed as 0.985. Thus, there are 762 

iterations in total. The initial spacecraft in this chapter is generated by the spacecraft model 

randomly. Therefore, the final solution of the SA method may vary even for the same 

scenario.  

 The comparison of IMLEO between the MILP method and the SA method in 

different mission intervals is shown in Figure 17. Because finding the optimal strategy to 

minimize IMLEO in space logistics is a minimization problem and the SA method always 

achieves a feasible (and suboptimal) solution, we can observe that the results from SA are 

typically 8-15% higher than the results of the MILP method. The gap is dependent on the 

candidate spacecraft generation method and cooling strategy. 

 We can improve the performance of the SA method by starting from a better initial 

solution with heuristics or optimizing the cooling strategy. Because the spacecraft model 

is separated from the mission planning part, SA is a better choice if a higher-fidelity 

spacecraft model needs to be considered and the precise global optimum is less important 

than finding an acceptable local optimum within the given time. 
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Figure 17 - Comparison of IMLEO results by MILP and SA method. 

3.2.2.4 Sensitivity Analysis 

With the development of technology, ISRU could have a higher production rate and 

the spacecraft could have a lighter structure while maintaining sufficient strength at the 

same time. On the other side, some uncertainty factors may prevent the ISRU system from 

working properly or the spacecraft may be assigned extra structure mass. This section 

studies the sensitivity of this campaign-level mission design to the ISRU productivity and 

the spacecraft structure mass using the MILP method.  

 The considered problem is the campaign-level mission design with three lunar 

missions under the same assumptions as before. The mission interval is one year. The 

IMLEO with respect to ISRU productivity is shown in Figure 18. The baseline is the 

normal ISRU production rate in equation 14. 
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Figure 18 - Results of multi-mission lunar campaign design with respect to ISRU 

productivity (interval: one year). 

 As shown in Figure 18, with the increase of ISRU productivity, the IMLEO of space 

mission is decreasing. When the oxygen ISRU productivity is less than 80% of the normal 

rate, no ISRU plant is deployed. The IMLEO and spacecraft design stay constant until the 

productivity reach 80%. Then, with the increase of ISRU productivity, the IMLEO of the 

whole mission decreases monotonically. When the ISRU productivity reaches 150% of the 

normal production rate, the mass of ISRU plan deployed starts to decrease slowly. The 

structure mass of the large spacecraft (i.e., spacecraft 1) still matches the variation pattern 

of the ISRU plant mass deployed in this case. Although the structure mass of the small 

spacecraft (i.e., spacecraft 2) varies in a certain range. One important note is that the 

increase of ISRU production does not reduce IMLEO unlimitedly. When the ISRU 

productivity is high enough, the mission cost sensitivity to ISRU productivity is very low. 
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With the increase of ISRU productivity, the total IMLEO is decreasing slowly. The reason 

is that the oxygen ISRU plant only produces oxidizer for this mission. The transportation 

still needs kerosene supplied from Earth. 

 If we fix the ISRU productivity at the normal rate, the sensitivity of the IMLEO 

with respect to the spacecraft structure mass is shown in Figure 19. 

 

Figure 19 - Results of multi-mission lunar campaign design with respect to 

spacecraft structure mass (interval: one year). 

 The spacecraft mass ratio shown in Figure 19 is the spacecraft structure mass 

divided by the structure mass in baseline [i.e., equation 11]. Because the spacecraft 

structure mass influences the propellant cost directly, with the increase of spacecraft 

structure mass, the total IMLEO increases significantly. When the spacecraft structure 

mass is low, there is a tradeoff between enlarging the spacecraft for ISRU deployment and 

using small spacecraft without ISRU. When the spacecraft is more than 20% heavier than 
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normal, it is not worth building a large spacecraft for ISRU deployment. As a result, the 

structure mass of small spacecraft starts to increase and the division of roles between two 

types of spacecraft becomes less clear. Both types of spacecraft start to deliver crews, 

equipment and samples. Note that we can still observe that the structure mass of spacecraft 

1 matches the variation pattern of ISRU plant mass if ISRU is deployed in the mission, 

even though the structure mass is also increasing at the same time. 

3.3 Chapter Summary 

 This chapter proposes two optimization methods to solve the space logistics 

problem considering nonlinear spacecraft and nonlinear ISRU models. First, the MILP 

optimization framework is developed based on the GMCNF model. Piecewise functions 

are used to approximate the nonlinear spacecraft and ISRU models as well as to convert 

the models into binary mixed-integer programming formulations. After linearizing the 

remaining quadratic terms, the whole problem is converted into a MILP problem. This 

MILP-based optimization framework can always find the global optimum of the problem 

with approximated nonlinear models. The second method is the SA-based optimization 

framework, which is developed with the concern that a higher-fidelity spacecraft model 

may be considered. In this method, the spacecraft model is separated from the mission 

planning part. This SA-based optimization framework can never guarantee or certify its 

global optimality. 

 To illustrate the effect of both optimization methods, a campaign-level mission 

including three lunar missions is optimized.  

 For the MILP method, the influences of mission interval are studied. The IMLEO 

of the space logistics system first decreases with the increase of mission interval until ISRU 

production cannot provide further benefits to the space logistics system. Moreover, even 

though the spacecraft are all designed as multiuse without specific functions identified 
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initially, they are all assigned specific functions in the result. The large spacecraft are 

typically used to deliver equipment and ISRU plants, whereas the small ones are used to 

deliver crews and samples. Thus, the size of the large spacecraft is directly influenced by 

the mass of ISRU plant deployed in the mission (see Figure 16, Figure 18, and Figure 19).  

 The influences of ISRU and spacecraft model fidelities are also studied, as shown 

in Table 10. A linear ISRU or spacecraft model would not improve the computational 

efficiency because the nonlinear models can be linearized into binary mixed-integer 

programming formulations and most of the variables and constraints come from the 

mission planning part, which is a GMCNF model. Therefore, the MILP method developed 

in this chapter solves the space logistics problem, including nonlinear ISRU and spacecraft 

models without much deterioration of computational efficiency. 

 Besides the MILP method, a heuristic optimization algorithm based on SA is also 

proposed. Compared with the MILP method, the SA method cannot guarantee an optimal 

solution and the quality of the results is strongly dependent on the initial settings. For the 

problem considering a medium-fidelity spacecraft model, the MILP method is always a 

better choice. However, the separated spacecraft model in the SA optimization framework 

makes it easier to consider a higher-fidelity spacecraft model, such as considering fuel 

types and specifically predefined functions of each type of spacecraft. 

 The ISRU productivity and spacecraft structure mass sensitivity are also studied. 

The IMLEO decreases monotonously with the increase of ISRU productivity. The 

spacecraft structure mass is also an important factor in determining the space logistics 

strategy. With the increase of spacecraft structure mass, the IMLEO of the system increases 

significantly. When the spacecraft structure mass is too large, as compared with the normal 

condition, it is too expensive to build a large spacecraft for ISRU deployment and the 

specified functions of different types of spacecraft also become less clear. 
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CHAPTER 4. REGULAR INTERPLANETARY MISSION 

 This chapter proposes a periodic time-expanded network (TEN) to conduct space 

transportation system design and mission planning for regular interplanetary missions. The 

proposed periodic TEN resolves the computational scalability issue in the time dimension 

for the framework proposed in Chapter 3 for long-term human space exploration. The 

generated mission planning results are also shown to be practically preferred. Properties of 

the proposed partially periodic time-expanded network are analyzed, and a case study 

reveals that the total initial mass in the low Earth orbit of regular missions approaches the 

theoretical lower bound as the number of transportation missions increases.  

 The rest of this chapter is organized as follows: Sec. 4.1 introduces the partially 

periodic GMCNF model and its properties. Section 4.2 evaluates the performance of the 

partially periodic GMCNF using a long-term Earth-Mars transportation mission case study 

and compares it with the static and the fully time-expanded GMCNF models. Section 4.3 

discusses the contribution and the conclusion of this chapter. 

4.1 Methodology 

4.1.1 Generalized Multicommodity Network Flow 

As introduced in Chapter 3, the GMCNF model enables the consideration of the 

interdependency among space missions in a long-term space exploration campaign [1]. The 

GMCNF model was first proposed leveraging a static network, which considered 

spacecraft design and space infrastructure design linearly. Following exactly the same 

definition of notations as Chapter 3, but removing the time dimension, we can write the 

static GMCNF formulation as follows. 

Minimize: 
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 𝒥𝒥 = � (𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣+
𝑇𝑇𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣+ + 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣′+ 𝑠𝑠𝑣𝑣𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣+ )

(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜

 (31) 

Subject to: 

 � 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣+

(𝑣𝑣,𝑗𝑗):(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜

− � 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣−

(𝑣𝑣,𝑗𝑗):(𝑣𝑣,𝑗𝑗,𝑖𝑖)∈𝒜𝒜

≤ 𝒅𝒅𝑖𝑖        ∀𝑖𝑖 ∈ 𝒩𝒩 (32) 

 � 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣+

𝑗𝑗:(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜

− � 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣−

𝑗𝑗:(𝑣𝑣,𝑗𝑗,𝑖𝑖)∈𝒜𝒜

≤ 𝑑𝑑𝑖𝑖𝑖𝑖′      ∀𝑖𝑖 ∈ 𝒩𝒩  ∀𝑣𝑣 ∈ 𝒱𝒱 (33) 

 
𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣 �

𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣+

𝑠𝑠𝑣𝑣𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣+
� = �

𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣−

𝑠𝑠𝑣𝑣𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣−
�     ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜 

(34) 

 𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣+ ≤ 𝒆𝒆𝑣𝑣𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣+      ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜 (35) 

 𝑠𝑠𝑣𝑣 = ℱ(𝒆𝒆𝑣𝑣,𝑓𝑓𝑣𝑣)   ∀𝑣𝑣 ∈ 𝒱𝒱 (36) 

𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣
± = �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑝𝑝
�

𝑣𝑣𝑣𝑣𝑣𝑣

±

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥1 ∈ ℤ≥0, 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝 ∈ ℝ≥0     ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜 

𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣
± ∈ ℤ≥0     ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜 

𝑠𝑠𝑣𝑣 ∈ ℝ≥0, 𝒆𝒆𝑣𝑣 ∈ ℝ≥0
𝑙𝑙 , 𝑓𝑓𝑣𝑣 ∈ ℤ≥0    ∀𝑣𝑣 ∈ 𝒱𝒱 

 The static GMCNF model does not consider the time dimension in the problem, 

which may lead to the “time paradox”. For instance, the propellant from an ISRU plant 

may be used before it is generated [2]. To solve this issue, Ho et al. and Chen et al. proposed 

a fully time-expanded network [2, 17] to include the time dimension in the static GMCNF 

model. Using the same notation as the static GMCNF model, a fully time-expanded version 
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of the static GMCNF model can be written as equations 1-7 as shown in Chapter 3. 

Compared with the static GMCNF, there is an additional time window constraint in the 

fully time-expanded GMCNF, which is equation 6. In equation 6, 𝑊𝑊𝑖𝑖𝑖𝑖 is the time window 

vector. The commodity flow is permitted only when the time window is open. 

 The fully time-expanded GMCNF notably improves the space logistics 

optimization fidelity compared with the static GMCNF model. However, it takes a 

significantly longer time to solve the problem as compared to the static GMCNF because 

of the additional time dimension. Numerical experiments in Chapter 3 showed that it takes 

about 2000 seconds to solve an optimization problem for a campaign-level lunar mission 

design, containing three Apollo-like short lunar missions, by the Gurobi 6.5 solver on an 

Intel Core i7-4790 quadcore @3.6 GHz platform. When four lunar missions were 

considered, it took more than 200 hours to solve the problem. This was the time cost to 

optimize the mission planning when only considering the transportation missions within 

the cislunar system. If the subject of interest was the Mars mission, the mission complexity 

and the time scale would increase much more significantly. 

 To solve a long-term space transportation mission planning problem efficiently 

while maintaining the model fidelity, this chapter takes advantage of the regular space 

transportation concept and develops a partially periodic TEN, which is introduced in detail 

in the next section. 

4.1.2 Partially Periodic TEN 

 As shown in Figure 20, the proposed logistics network consists of two general 

phases: an initial setup phase and a periodic steady phase. The initial setup phase of the 

campaign is a one-time event that is dedicated to the construction and deployment of the 

in-space infrastructure that will be later used and maintained during the periodic missions. 

For instance, ISRU systems can provide resources to reduce mission cost and make 
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transportation sustainable. Propellant depots are in-orbit infrastructure systems that can 

refuel spacecraft passing by. 

 After a sufficiently long setup phase, the system enters a periodic steady phase in 

which the system repeats the same transportation missions regularly. Here, we make the 

repeating period longer than the longest transportation arc in the network. For example, for 

Earth-Mars missions, we can consider the repeating period as the launch window cycle to 

Mars (i.e., ~780 days), which is longer than the longest transportation arc in the network 

(i.e., from Earth to Mars ~210 days). Note that this assumption on the length of the 

repeating period can be relaxed easily if necessary. With this repeating period, we can 

simplify the TEN into a partially periodic TEN, which only includes the setup phase and 

one periodic cycle. The idea is to aggregate all the repeating periods into one periodic cycle 

and constrain the inflow and the outflow of that cycle to be equal to each other. In this way, 

the mission planning solution for the first regular cycle becomes identical to all the 

following cycles. As a result, after implementing the partially periodic TEN, we only need 

to solve the mission planning problem for the setup phase and the first regular cycle. The 

result obtained is then feasible for all future cycles. 
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Figure 20 - Partially periodic TEN. 

 Assume that the objective function of the setup phase is 𝐺𝐺𝑠𝑠, whereas the objective 

function of the periodic steady phase is 𝐺𝐺𝑟𝑟. The total number of regular cycles considered 

in the optimization is 𝐾𝐾. The mathematical formulation of this partially periodic GMCNF 

model is shown as follows: 

Minimize: 

𝒥𝒥𝑟𝑟 = 𝐺𝐺𝑠𝑠 + 𝐾𝐾𝐺𝐺𝑟𝑟 (37) 

Subject to: 

𝐺𝐺𝑠𝑠 = � � (𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣+
𝑇𝑇𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+ + 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣′+ 𝑠𝑠𝑣𝑣𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+ )

(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜𝑡𝑡∈{0…𝑡𝑡0−1}

 (38) 
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𝐺𝐺𝑟𝑟 = � � (𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣+
𝑇𝑇𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+ + 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣′+ 𝑠𝑠𝑣𝑣𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+ )

(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜𝑡𝑡∈{𝑡𝑡0…𝑡𝑡0+𝑡𝑡𝑝𝑝−1}

 (39) 

𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
± = 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡+𝑡𝑡𝑝𝑝)

±  ∀𝑡𝑡: 𝑡𝑡 < 𝑡𝑡0 and 𝑡𝑡 + ∆𝑡𝑡𝑖𝑖𝑖𝑖 ≥ 𝑡𝑡0   (𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜 (40) 

𝒚𝒚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
± = 𝒚𝒚𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡+𝑡𝑡𝑝𝑝)

±  ∀𝑡𝑡: 𝑡𝑡 < 𝑡𝑡0 and 𝑡𝑡 + ∆𝑡𝑡𝑖𝑖𝑖𝑖 ≥ 𝑡𝑡0   (𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜 (41) 

𝐺𝐺𝑠𝑠,𝐺𝐺𝑟𝑟 ∈ ℝ≥0 

and 

Equations 2-7 

where 𝑡𝑡0 is the time when the first regular cycle begins and 𝑡𝑡𝑝𝑝 is the length of a regular 

cycle. Equation 37 is the objective function. It is the sum of the IMLEO of the setup phase 

and the regular transportation phase, which are calculated in Equations 38 and 39, 

respectively. 

 Equations 40 and 41 are periodic flow constraints that constrain all the inflows to a 

regular cycle are equal to the outflows, thus guaranteeing the repeating nature of the regular 

cycles. As shown in Figure 20, outflows and inflows are those commodity flows crossing 

the boundaries of regular cycles. A direct way to constrain cycling is by adding terminal 

constraints into the TEN: 

𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
± = 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡+𝑡𝑡𝑝𝑝)

±  ∀𝑡𝑡: 𝑡𝑡 < 𝑡𝑡0 + (𝑘𝑘 − 1)𝑡𝑡𝑝𝑝 and 𝑡𝑡 + ∆𝑡𝑡𝑖𝑖𝑖𝑖 ≥ 𝑡𝑡0 + (𝑘𝑘 − 1)𝑡𝑡𝑝𝑝   (𝑣𝑣, 𝑖𝑖, 𝑗𝑗)

∈ 𝒜𝒜  ∀𝑘𝑘 ∈ {1, 2, 3 … ,𝐾𝐾} 

(42) 
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𝒚𝒚𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
± = 𝒚𝒚𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡+𝑡𝑡𝑝𝑝)

±   ∀𝑡𝑡: 𝑡𝑡 < 𝑡𝑡0 + (𝑘𝑘 − 1)𝑡𝑡𝑝𝑝 and 𝑡𝑡 + ∆𝑡𝑡𝑖𝑖𝑖𝑖 ≥ 𝑡𝑡0 + (𝑘𝑘 − 1)𝑡𝑡𝑝𝑝   (𝑣𝑣, 𝑖𝑖, 𝑗𝑗)

∈ 𝒜𝒜 ∀𝑘𝑘 ∈ {1, 2, 3 … ,𝐾𝐾} 

(43) 

where 𝑘𝑘 is the index of cycles. If we add equations 42 and 43 into the time-expanded 

GMCNF problem, we solve the problem shown in the upper half of Figure 20. Equations 

42 and 43 are terminal constraints that force the system to repeat the same cycle. We can 

remove the redundant variables and constraints by solving the problem shown in the lower 

half of Figure 20 using equations 40 and 41. With equations 40 and 41, we are solving the 

partially periodic GMCNF problem for the setup phase and the first regular cycle, as the 

commodity flow results in the first cycle are applicable for all subsequent regular cycles. 

 Other commodity constraints [i.e., equations 2-7] are the same as the general fully 

time-expanded GMCNF model. 

4.1.3 Properties of Partially Periodic TEN 

4.1.3.1 Computational complexity 

 In this section, we discuss the computational complexity of the GMCNF models, 

which were formulated based on different types of TENs.  

 Assuming that in a fully time-expanded network model, there are 𝑚𝑚 different types 

of spacecraft, 𝑛𝑛 nodes, 𝑝𝑝 commodity types, 𝑙𝑙 types of spacecraft concurrency constraints, 

and 𝑇𝑇 time steps, then the number of nodes and arcs over the fully time-expanded GMCNF 

model are, at most, 𝑛𝑛𝑛𝑛 and 𝑚𝑚𝑛𝑛2𝑇𝑇, respectively. As a result, there are at most 𝑂𝑂(𝑚𝑚𝑛𝑛2𝑝𝑝𝑝𝑝) 

variables and, at most, 𝑂𝑂(𝑚𝑚𝑛𝑛2(𝑝𝑝 + 𝑙𝑙)𝑇𝑇) constraints. If we consider regular space missions, 

assuming a setup phase over 𝑡𝑡0 time steps followed by 𝐾𝐾 transportation mission cycles 

each of which lasts over 𝑡𝑡𝑝𝑝  time steps, 𝑇𝑇 = 𝑡𝑡0 + 𝐾𝐾𝑡𝑡𝑝𝑝 ; then, for a fully time-expanded 
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network model, there are, at most, 𝑂𝑂(𝑚𝑚𝑛𝑛2𝑝𝑝(𝑡𝑡0 + 𝐾𝐾𝑡𝑡𝑝𝑝))  variables and, at most, 

𝑂𝑂(𝑚𝑚𝑛𝑛2(𝑝𝑝 + 𝑙𝑙)(𝑡𝑡0 + 𝐾𝐾𝑡𝑡𝑝𝑝)) constraints. Following the same logic and notations, we can get 

the computational complexity of the static network and the partially periodic network, as 

shown in Table 11. 

Table 11 - Computational complexity comparison. 

TEN Type Variables Constrains 

Static 𝑂𝑂(𝑚𝑚𝑛𝑛2𝑝𝑝) 𝑂𝑂(𝑚𝑚𝑛𝑛2(𝑝𝑝 + 𝑙𝑙)) 
Fully time-expanded 𝑂𝑂(𝑚𝑚𝑛𝑛2𝑝𝑝(𝑡𝑡0 + 𝐾𝐾𝑡𝑡𝑝𝑝)) 𝑂𝑂(𝑚𝑚𝑛𝑛2(𝑝𝑝 + 𝑙𝑙)(𝑡𝑡0 + 𝐾𝐾𝑡𝑡𝑝𝑝)) 
Partially periodic 𝑂𝑂(𝑚𝑚𝑛𝑛2𝑝𝑝(𝑡𝑡0 + 𝑡𝑡𝑝𝑝)) 𝑂𝑂(𝑚𝑚𝑛𝑛2(𝑝𝑝 + 𝑙𝑙)(𝑡𝑡0 + 𝑡𝑡𝑝𝑝)) 

 Compared with the static network, a caveat of the fully time-expanded network is 

that it requires a large number of nodes and arcs, generated by the time dimension, which 

will lead to a large number of variables and constraints. The complexity of the TEN is 

pseudo-polynomial. For the partially periodic network model proposed in this chapter, as 

shown in equations 37-41 and 2-7, the computational complexity is much smaller than the 

fully time-expanded network. With the increase of the number of cycles (i.e., 𝐾𝐾), the 

number of variables and constraints in the fully time-expanded network increases linearly 

(with an offset due to the setup phase). However, the number of variables and constraints 

in the partially periodic network stays the same as the increase in the number of cycles. 

Therefore, for large-scale space transportation mission planning optimization problems 

(e.g., Earth-Mars transportation mission), the partially periodic network has significantly 

less computational workload, thus greatly increasing the time dimension scalability. 

4.1.3.2 Bounds on Optimal Solutions 

 In this section, we discuss the bounds of the partially periodic network model 

solution. For the specific minimization problem considered in this research, we discuss the 
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lower bound of the partially periodic network and the relationship among static, fully time-

expanded, and partially periodic network models. 

 Consider the fully time-expanded GMCNF problem discussed earlier in Chapter 3 

[shown in equations 1-7]. The following arguments show that it can be relaxed to a static 

GMCNF problem by aggregating nodes and arcs. 

 Because the cost coefficient 𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣+  and 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣′+  are constant over time, equation 1 can be 

written as 

𝒥𝒥 = � (𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣+
𝑇𝑇𝑿𝑿𝑣𝑣𝑣𝑣𝑣𝑣+ + 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣′+ 𝑠𝑠𝑣𝑣𝑌𝑌𝑣𝑣𝑣𝑣𝑣𝑣+ )

(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝐴𝐴

 (44) 

where 𝑿𝑿𝑣𝑣𝑣𝑣𝑣𝑣
± = ∑ 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

±
𝑡𝑡∈𝒯𝒯  and 𝑌𝑌𝑣𝑣𝑣𝑣𝑣𝑣

± = ∑ 𝑦𝑦𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
±

𝑡𝑡∈𝒯𝒯 . They are the total commodity flows 

throughout the time horizon along each arc. 

 Equations 2 and 3 can be aggregated over the time horizon and be relaxed to the 

following form: 

� 𝑿𝑿𝑣𝑣𝑣𝑣𝑣𝑣+

(𝑣𝑣,𝑗𝑗):(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜

− � 𝑿𝑿𝑣𝑣𝑣𝑣𝑣𝑣−

(𝑣𝑣,𝑗𝑗):(𝑣𝑣,𝑗𝑗,𝑖𝑖)∈𝒜𝒜

≤ 𝑫𝑫𝑖𝑖        ∀𝑖𝑖 ∈ 𝒩𝒩 (45) 

� 𝑌𝑌𝑣𝑣𝑣𝑣𝑣𝑣+

𝑗𝑗:(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜

− � 𝑌𝑌𝑣𝑣𝑣𝑣𝑣𝑣−

𝑗𝑗:(𝑣𝑣,𝑗𝑗,𝑖𝑖)∈𝒜𝒜

≤ 𝐷𝐷𝑖𝑖𝑖𝑖′       ∀𝑖𝑖 ∈ 𝒩𝒩  ∀𝑣𝑣 ∈ 𝒱𝒱 (46) 

where 𝑫𝑫𝑖𝑖 = ∑ 𝒅𝒅𝑖𝑖𝑖𝑖𝑡𝑡∈𝒯𝒯  and 𝐷𝐷𝑖𝑖𝑖𝑖′ = ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖′𝑡𝑡∈𝒯𝒯 . They are the total commodity demand or 

supply throughout the time horizon at each node. 

 Similarly, equations 4 and 5 can be relaxed as follows: 
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𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣 �
𝑿𝑿𝑣𝑣𝑣𝑣𝑣𝑣+

𝑠𝑠𝑣𝑣𝑌𝑌𝑣𝑣𝑣𝑣𝑣𝑣+
� = �

𝑿𝑿𝑣𝑣𝑣𝑣𝑣𝑣−

𝑠𝑠𝑣𝑣𝑌𝑌𝑣𝑣𝑣𝑣𝑣𝑣−
�    ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜 

(47) 

𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣𝑿𝑿𝑣𝑣𝑣𝑣𝑣𝑣+ ≤ 𝒆𝒆𝑣𝑣𝑌𝑌𝑣𝑣𝑣𝑣𝑣𝑣+    ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜 (48) 

 The time window constraint [equation 6] is relaxed and eliminated through the 

aggregation of commodity flows throughout the time horizon, thus eliminating the 

information about time windows. 

 The resulting formulation [equation 44] with constraints in equations 45-48 and the 

spacecraft design model [equation 7] leads to a static GMCNF problem as a lower (relaxed) 

bound of the fully time-expanded GMCNF problem if both formulations are feasible and 

bounded. This static formulation and the original fully time-expanded GMCNF 

formulation are defined as the corresponding formulations of each other.  

 From the above derivation, the following important theorem has been proved. 

Theorem 1. A lower bound of the optimal objective of a fully time-expanded GMCNF 

problem can be found by solving its corresponding aggregated static GMCNF problem if 

both problems are feasible and bounded. 

 A more detailed proof and a generalization of Theorem 1 have been derived by Ho 

in Ref. [53].  

 From this theorem, it can be seen that a lower bound of a computationally expensive 

fully time-expanded GMCNF problem can be found by a computationally cheaper 

aggregated GMCNF problem if both are feasible and bounded. In other words, 𝒥𝒥𝑠𝑠 ≤ 𝒥𝒥𝑓𝑓, 

where 𝒥𝒥𝑠𝑠 is the optimal solution of a static GMCNF problem and 𝒥𝒥𝑓𝑓 is the optimal solution 
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of its corresponding fully time-expanded GMCNF problem, as shown in equations 31 and 

1, respectively. 

 Now, consider a partially periodic GMCNF problem [shown in equations 37-41 

and 2-7]. The following arguments show that it can be relaxed to a fully time-expanded 

GMCNF problem. 

 First, consider the time-expanded GMCNF formulation with terminal constraints 

[equations 42 and 43]. It is a cycling time-expanded GMCNF problem shown in the upper 

half of Figure 20. We can obtain its formulation by adding terminal constraints [i.e., 

equations 42 and 43] into the fully time-expanded GMCNF problem. Additional terminal 

constraints reduce the solution space of the optimization problem. Therefore, the fully 

time-expanded GMCNF problem provides a lower (relaxed) bound of the cycling time-

expanded GMCNF problem if both formulations are feasible and bounded. 

 Moreover, the cycling time-expanded GMCNF problem shown in the upper half of 

Figure 20 is an equivalent problem to the lower half by replacing the terminal constraints 

of equations 42 and 43 by equations 40 and 41 and removing the redundant variables and 

constraints. As a result, the fully time-expanded GMCNF problem is also a lower (relaxed) 

bound of the partially periodic GMCNF problem [shown in equations 37-41 and 2-7] if 

both formulations are feasible and bounded. Moreover, the partially periodic GMCNF 

problems are not necessarily feasible even when the fully time-expanded GMCNF 

problems are feasible. This partially periodic formulation and the original fully time-

expanded GMCNF formulation are defined as the corresponding formulations of each 

other. 

 From the above derivation, the following theorem has been proved. 
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Theorem 2. A lower bound of the optimal objective of a partially periodic GMCNF 

problem can be found by solving its corresponding relaxed fully time-expanded GMCNF 

problem if both problems are feasible and bounded. 

 In summary, for the optimal solutions of the corresponding static, fully time-

expanded, and partially periodic GMCNF problems, expressed by 𝒥𝒥𝑠𝑠, 𝒥𝒥𝑓𝑓, and 𝒥𝒥𝑟𝑟, there is 

a relationship: 𝒥𝒥𝑠𝑠 ≤ 𝒥𝒥𝑓𝑓 ≤ 𝒥𝒥𝑟𝑟, if all of them are feasible and bounded. 

4.2 Case Study Results and Analysis 

 This section evaluates the performance of the partially periodic network by solving 

a long-term Mars space transportation mission planning problem. The results of the 

partially periodic network are compared with the results from the static and fully time-

expanded networks. 

4.2.1 Mars Transportation Mission 

 Our case study considered in this chapter is a Mars exploration with the cislunar 

transportation system. We model the transportation network as a seven-node network. The 

∆𝑉𝑉 and the time of flight (TOF) are shown in Figure 21. Because the IMLEO is the cost 

metric used in this research, ∆𝑉𝑉 and TOF between Earth and low Earth orbit LEO are not 

considered. Space mission time windows, spacecraft flight ∆𝑉𝑉 and the TOF are determined 

by interplanetary transportation trajectories. In this chapter, we use Hohmann transfer 

orbits as the transportation trajectories and the high-thrust liquid oxygen/ liquid hydrogen 

(LO2/LH2) propulsion system in spacecraft for Mars transportation. The boiloff of liquid 

oxygen and liquid hydrogen in space is also considered. As shown in Figure 21, the 

spacecraft flight can take advantage of aerocapture to reduce the propellant cost. The 

aeroshell and thermal protection system (TPS) can be reused in space. However, after the 

spacecraft reentry to Earth or Mars, the aeroshell and the TPS cannot be reused again; new 
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aeroshell/TPS needs to be launched. The mass of aeroshell/TPS is assumed as 40% of the 

total flight mass according to NASA Design Reference Architecture 5.0 [65]. 

 

Figure 21 - Earth-moon-Mars transportation network model. 

 The scenario considers a set of regular missions that transport cargo from Earth to 

Mars every 780 days when the Earth-Mars system opens its repeating time windows. We 

consider the first Earth-Mars time window as the setup phase and each of the subsequent 

time windows as a regular repeating cycle. The mission demand and supply are shown in 

Table 12. 

Table 12 - Demand and supply of Mars transportation mission. 

Payload Type Node Demand Time, day Supply, kg 

Payload Mars 780 (repeating every 780 days) -51,700 
Payload, propellant, 

ISRU, ISRU 
maintenance spares 

Earth All the time +∞ 
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 The considered ISRU system is a lunar water ISRU for which the productivity is 

assumed as 5 kg propellant/ year/ kg system. The ISRU plant is supplied from Earth. To 

use the ISRU system, the transportation system must deploy ISRU plant first on the Moon 

or Mars. If some ISRU systems are in operation for the mission, the transportation system 

also needs to supply its maintenance spares. We assume that ISRU maintenance requires 

the spares equal to 10% of the system total mass every transportation mission (i.e., every 

780 days). We also assume that two types of spacecraft propulsive stages are designed and 

two spacecraft propulsive stages are available to be launched on Earth for each mission. 

Spacecraft sizing is also part of the trade space and is shown in detail in Sec. 4.2.2. A 

summary of mission parameters and assumptions is shown in Table 13. 

Table 13 - Summary of parameters and assumptions. 

Parameter Assumed value 

Propellant LO2/LH2 [52] 
𝐼𝐼𝑠𝑠𝑠𝑠 420 s [52] 

Type of spacecraft designed 2 types 
Available spacecraft each mission 2 spacecraft each type 

Aeroshell 40% of total mass [65] 
Oxygen boil-off rate 0.016%/day [2, 17] 

Hydrogen boil-off rate 0.127%/day [2] 
Earth-Mars time window 780 days [65] 

ISRU productivity 5 kg propellant/year/kg system [65] 
ISRU maintenance 10%/mission [2, 17] 

 Moreover, to evaluate the effectiveness of a partially periodic GMCNF model, we 

need to set a baseline TEN formulation for comparison. A naive fully time-expanded 

network with uniform time steps (e.g., one day) would be computationally expensive to 

analyze. In this chapter, we use a cluster-based TEN as the baseline [2]. For the 

interplanetary exploration mission, the system can be divided into several clusters (e.g., 

Earth/cislunar cluster and Martian system), in which only the transportation across the 
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boundary of the clusters involves periodic time windows and long flights. In a cluster-

based TEN, we only consider the time window of the space flights between two clusters 

and assume the short space flights inside each cluster as instantaneous transits. This method 

is known to give a good approximation of the optimal solution of the naive formulation 

with a reasonable computational effort [2]. In later analysis cases, both the fully time-

expanded GMCNF and the partially periodic GMCNF model are formulated based on this 

cluster-based TEN formulation, although our theory developed in Sec. 4.1 applies to any 

other TEN formulation as well. 

4.2.2 Spacecraft design model 

 Our space logistics optimization includes spacecraft sizing as part of the trade 

space. For the sizing model of spacecraft, this chapter uses a nonlinear regression model 

developed by Taylor [52] based on preexisting spacecraft elements, which is also 

introduced in Chapter 3 [i.e., equation 11]. Although the original model includes the 

structure for payload, we do not consider that as a part of the spacecraft design model in 

this case study. The payload is enclosed in the aeroshell, which is considered separately. 

We are only designing the propulsive stage using this spacecraft design model. Therefore, 

in the mission assumptions (shown in Table 13), designing two types of spacecraft means 

designing two different sizes of propulsive stages. In addition, due to the MILP nature of 

the proposed optimization method, there is an underlying assumption for the spacecraft 

flowing across the network: the spacecraft capacities can be additively combined and the 

propulsive stages designed are modular and reconfigurable. In reality, the interoperability 

between spacecraft can be significantly more complex. 

 Denoting the spacecraft propellant capacity as 𝑀𝑀, spacecraft fuel type as 𝑓𝑓, and 

structure mass as 𝑠𝑠 , the spacecraft propulsive stage structure mass is a function of 
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propellant capacity and spacecraft fuel type [𝑠𝑠 = ℱ(𝑀𝑀, 𝑓𝑓)], which is shown as follows 

[52]: 

𝑠𝑠 = 𝛼𝛼(𝑓𝑓) ∗ 𝑀𝑀 ∗ �1 −
0.2 ∗ 𝑀𝑀
𝑀𝑀𝑈𝑈𝑈𝑈

� +
0.4189 �

𝑀𝑀 ∗ 𝐼𝐼𝑠𝑠𝑠𝑠(𝑓𝑓) ∗ 𝑔𝑔0
𝑡𝑡𝑏𝑏

�
0.7764

𝑔𝑔0
 

(49) 

where 𝑔𝑔0  is the standard gravitational acceleration on Earth, 9.8 m/s2; 𝑡𝑡𝑏𝑏  is spacecraft 

impulsive burn time, set as 120 s; 𝑀𝑀𝑈𝑈𝑈𝑈 is the upper bound of spacecraft propellant capacity, 

assumed as 500,000 kg, as in Chapter 3, which defines the scope of application of this data-

based spacecraft design model; 𝐼𝐼𝑠𝑠𝑠𝑠 is the specific impulse determined by fuel type 𝑓𝑓; 𝛼𝛼 is 

the spacecraft structural fraction defined in Ref. [52], which is also determined by fuel type 

𝑓𝑓. In this case study, LO2/LH2 is chosen as the spacecraft propellant as an example. As a 

result, according to Appendix A, 𝐼𝐼𝑠𝑠𝑠𝑠 is 420 s and 𝛼𝛼 is equal to 0.079. 

 Although this spacecraft model is nonlinear, We employ the piecewise-linear 

approximation and big-ℳ method proposed in Chapter 3 to convert the space mission 

design problem with the nonlinear spacecraft model into a MILP for efficient mission 

design optimization. 

 Note that, this thesis uses the aforementioned nonlinear spacecraft stage design 

model as an example to illustrate the ability of the proposed space logistics optimization 

method; our method can accommodate other spacecraft design models if necessary. The 

focus of this chapter is on the TEN method, and we do not claim the accuracy of the 

spacecraft design model used. 

4.2.3 Comparison of Optimization Formulations 
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 This problem is solved in Python by the Gurobi 7.0 solver on an Intel Core i7-4790, 

quadcore @3.6 GHz platform. The results of the average IMLEO for each regular space 

transportation mission (i.e., cycle) based on different network models are shown in Figure 

22, and their computational times are shown in Figure 23. The result from the partially 

periodic GMCNF model is compared with the results from the static and fully time-

expanded GMCNF models. The number of missions in Figure 22 and Figure 23 

corresponds to the number of regular cycles after the setup phase because each cycle only 

contains one mission. Note that we only obtain the results for the fully time-expanded 

GMCNF model when the number of space missions is less than four because the 

optimization becomes computationally infeasible with our computational resource when 

the number of missions is large. 

 The results obtained from static, fully time-expanded, and partially periodic 

GMCNF models are compared in Figure 22. As the number of regular space transportation 

missions (i.e., cycles) increases, the average mission IMLEO from both fully time-

expanded and partially periodic GMCNF models are approaching to the result from static 

GMCNF (i.e., lower bound). The result from the fully time-expanded GMCNF model is 

slightly closer to the static GMCNF model result as compared with the partially periodic 

GMCNF model. The reason is that the fully time-expanded GMCNF model does not have 

the periodic and terminal constraints, meaning that each period can have a different 

mission, whereas the partially periodic GMCNF model assumes that the mission repeats 

infinitely. This also matches with our analysis in Sec. 4.1 that proves that, for the optimal 

objective, 𝒥𝒥𝑠𝑠 ≤ 𝒥𝒥𝑓𝑓 ≤ 𝒥𝒥𝑟𝑟.  

 The comparison of computational time among three GMCNF models is shown in 

Figure 23. We can find that, as the number of missions increases, the computational time 

of the fully time-expanded GMCNF model increases dramatically while the computational 

times of the partially periodic and the static GMCNF models remain at a low level. This 
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figure demonstrates that our partially periodic GMCNF model can achieve a better time 

dimension scalability than the fully time-expanded GMCNF model. 

 In summary, we can see that the proposed partially periodic GMCNF model can 

provide a good approximation of the fully time-expanded GMCNF model with a much 

lower computational cost. 

 

Figure 22 - Mission IMLEO comparison among GMCNF formulations. 

 



 83 

 

Figure 23 - Problem-solving time cost comparison among GMCNF formulations. 

4.2.4 Analysis of Partially Periodic GMCNF Results 

 With our developed partially periodic TEN formulation, we can analyze the long-

term space campaign with regular missions more computationally efficiently than 

traditional methods. This section analyzes the results from the partially periodic GMCNF 

model. 

 The mission planning result of ten regular transportation missions to Mars is shown 

in Figure 24. In the setup mission phase, the ISRU system is deployed on the Moon. It 

starts to produce propellant on the Moon to support subsequent space missions. When the 

second Earth-Mars flight time window is open, all spacecraft launched for the Mars 

mission fly to the lunar transfer orbit (LTO) first. Then, some spacecraft fly to the moon to 

transport propellant produced on the moon back to the LTO. The spacecraft used to deploy 

the ISRU system in the setup mission phase assists this propellant transportation. As a 

result, the propellant from Earth only needs to support the flights from the LTO to the low 
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lunar orbit (LLO) in the moon propellant transportation. Other spacecraft flights during 

this propellant transportation are covered by the propellant generated on the moon. After 

being refueled by the propellant from the moon, the spacecraft that stay in LTO temporarily 

during the propellant transportation fly to Mars. This regular space transportation mission 

is repeated, following the same mission planning and spacecraft design. This resulting 

solution can be preferred in practical missions to the global optimal solution with no 

repeating missions due to the simplicity of its repeating mission architecture. The learning 

curve effect, which is not considered in this chapter, can also be incorporated to further 

identify the potential benefits of repeating space missions. 

 

Figure 24 - Mars regular space transportation mission planning (10-mission case). 

 A sensitivity analysis of the campaign performance against ISRU productivity is 

shown in Figure 25, which shows the relationship between average mission IMLEO and 

ISRU productivities for different numbers of missions. It demonstrates that a higher ISRU 

productivity can always lead to a lower mission cost. Moreover, the performance of low-

productivity ISRU is more sensitive to the total number of space missions. In Figure 25, 

when ISRU productivity is 2 kg/yr/kg system, the average mission IMLEO decreases more 

than 25% as the total number of transportation missions considered increases from 1 to 15. 
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However, the average mission IMLEO only decreases by about 14% when the ISRU 

productivity is high (i.e., 8 kg/yr/kg system). This result shows that the impact of a large 

number of missions is especially critical when the ISRU productivity is low. This type of 

analysis is not possible under the previous fully time-expanded network formulation for a 

long-term space campaign due to the scalability issue but is possible with our newly 

developed partially periodic TEN method. 

 

Figure 25 - Relationship between average mission IMLEO and ISRU productivities. 

4.3 Chapter Summary 

 This chapter proposes a computationally efficient interplanetary space 

transportation mission planning optimization framework by constructing a partially 

periodic time-expanded network. It takes advantage of the periodic nature of regular space 

transportation missions, thus resulting in a practical and computationally efficient mission 

planning method. 
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 The analysis and result comparisons with the traditional static and fully time-

expanded GMCNF models show that the partially periodic GMCNF model could solve a 

long-term interplanetary mission planning problem significantly faster than the previous 

mission planning frameworks while maintaining a reasonable level of fidelity. This chapter 

also derives the mathematical properties of the proposed partially static GMCNF 

formulation and its relationship with the traditional static and fully time-expanded GMCNF 

formulation.   

 The proposed work can be useful for future large-scale space transportation 

campaign design, which contains multiple interplanetary transportation missions. 

Moreover, the framework improves the mission planning computational efficiency and 

enables a quick sensitivity analysis on space infrastructures and spacecraft in interplanetary 

transportation missions. The proposed methodology can be further explored to consider the 

mixed cargo/human missions to Mars with consideration of life support systems. 
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CHAPTER 5. INFRASTRUCTURE DESIGN AND RESOURCE 

LOGISTICS 

 The goal of this chapter is to develop an effective interdisciplinary space 

infrastructure optimization framework and its optimization methods, leveraging network-

based space logistics modeling. First, a full-size space infrastructure optimization 

formulation is established to consider all infrastructure subsystems separately throughout 

the space campaign. Because the full-size version of this proposed problem formulation 

can be computationally prohibitive, a new multi-fidelity optimization formulation is 

developed by varying the granularity of the commodity-type definition over the space 

logistics network; this multi-fidelity formulation can find an approximate solution to the 

full-size problem computationally efficiently with little sacrifice in the solution quality. 

The proposed problem formulation and method are applied to the design of in situ resource 

utilization systems in a multi-mission lunar exploration campaign to demonstrate their 

values.  

 The remainder of this chapter is organized as follows. Section 5.1 first introduces 

the prefixed optimization formulation for space infrastructure design (including the 

methods proposed in Chapters 3 and 4), where space infrastructure is considered as a black 

box. Then, Sec. 5.2 discusses the full-size version of the proposed space infrastructure 

optimization problem formulation, taking into account space infrastructure subsystems 

tradeoffs together with space mission planning concurrently. In Sec. 5.3, we propose a 

multi-fidelity optimization formulation and its methods to resolve the computational 

challenge inherent in the full-size formulation. Section 5.4 demonstrates the proposed 

optimization formulations through a multi-mission human lunar exploration campaign case 

study. Finally, Sec. 5.5 summarizes the conclusion of this chapter and discusses future 

work. 
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5.1 Prefixed Space Infrastructure Optimization Formulation 

 The network-based space logistics optimization formulation considers space 

missions as commodity network flow problems as discussed in Chapters 3 and 4, where 

nodes represent planets or orbits and arcs represent trajectories. Vehicles, payloads, 

infrastructure, and crewmembers are all considered as commodities. The inputs of this 

infrastructure optimization formulation are space mission demands and corresponding 

available infrastructure systems to be implemented (i.e., mainly representing ISRU systems 

and their supporting structures in this research). Based on the mission demands and time 

window constraints, this formulation outputs selected infrastructure systems to be 

deployed, including system sizing, plant deployment strategy, system operating 

mechanisms, and further resource logistics processes if mission demands occur at a 

location different from the infrastructure deployment spot. 

 In this space infrastructure optimization problem, space logistics mission planning 

is the main goal for optimization. Space logistics optimization includes space 

transportation scheduling and space infrastructure deployment strategy optimization. The 

space infrastructure subsystem interactions are determined in advance before space 

logistics optimization. The optimizer of this formulation only finds the optimal total mass 

of the space infrastructure, where the mass ratios between subsystems are fixed. 

 Let’s consider a simplified version of the space logistics optimization framework 

introduced in Chapter 3 (i.e., equations 1-7) without spacecraft design. We mainly focus 

on the space infrastructure design in this chapter. As a result, we do not need to define the 

commodity outflow and inflow independently in the formulation. We only need a 

commodity outflow variable, defined as the vector 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣. Note that this 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is the same as 

the commodity outflow variable, 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+ , defined in Chapter 3. Each element of the 

commodity flow variable vector 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 corresponds to one type of commodity, and it can be 
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either continuous or discrete (i.e., integer) depending on the corresponding commodity; the 

former commodity set (i.e., continuous commodity set) is defined as 𝒞𝒞𝑐𝑐 , and the latter 

commodity set (i.e., discrete commodity set) is defined as 𝒞𝒞𝑑𝑑. For example, the number of 

spacecraft and crew members are integers while the mass of propellant and payload are 

continuous. 

 Then, similar to the space logistics optimization formulation as defined in Chapter 

3 (i.e., equations 1-7), the formulation of the prefixed space infrastructure optimization 

formulation can be written as follows. 

Minimize: 

 𝒥𝒥 = � � 𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑇𝑇𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜𝑡𝑡∈𝒯𝒯

 (50) 

Subject to: 

 � 𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
(𝑣𝑣,𝑗𝑗):(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜

− � 𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣�𝑡𝑡−∆𝑡𝑡𝑗𝑗𝑗𝑗�
(𝑣𝑣,𝑗𝑗):(𝑣𝑣,𝑗𝑗,𝑖𝑖)∈𝒜𝒜

≤ 𝒅𝒅𝑖𝑖𝑖𝑖     ∀𝑖𝑖 ∈ 𝒩𝒩  ∀𝑡𝑡 ∈ 𝒯𝒯 (51) 

 𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≤ 𝟎𝟎𝑙𝑙×1   ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜  ∀𝑡𝑡 ∈ 𝒯𝒯 (52) 

 
�
𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≥ 𝟎𝟎𝑝𝑝×1     if 𝑡𝑡 ∈ 𝑊𝑊𝑖𝑖𝑖𝑖
𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝟎𝟎𝑝𝑝×1   otherwise     ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜  ∀𝑡𝑡 ∈ 𝒯𝒯 

(53) 

𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑝𝑝

�

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

,    𝑥𝑥𝑛𝑛 ∈ ℝ≥0  ∀𝑛𝑛 ∈ 𝒞𝒞𝑐𝑐
𝑥𝑥𝑛𝑛 ∈ ℤ≥0  ∀𝑛𝑛 ∈ 𝒞𝒞𝑑𝑑

   ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜  ∀𝑡𝑡 ∈ 𝒯𝒯 

 For the detailed definition of each of the constraints, please refer to the explanation 

in Chapter 3.  
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 One thing to note is that in this prefixed space infrastructure optimization 

formulation, space infrastructure systems, specifically focusing on the ISRU systems in 

this chapter, are considered as integrated systems that cannot be disassembled into different 

subsystems. We ignore the detailed interactions among ISRU subsystems. In this 

optimization, we only take into account its nominal productivity as a function of its total 

structure mass. We use lunar water ISRU as an example. The water ISRU will first extract 

water from lunar regolith and then electrolyze water to generate 𝑂𝑂2 and 𝐻𝐻2. Define the 

commodity flow variables as 

𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �
𝑥𝑥𝑂𝑂2 , kg
𝑥𝑥𝐻𝐻2 , kg
𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼, kg

�

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

 

Then, we can express the ISRU production process for one hour for 𝑂𝑂2 and 𝐻𝐻2 as follows: 

 
�
𝑥𝑥𝑂𝑂2
𝑥𝑥𝐻𝐻2
𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

�
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= �
1 0 𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

𝑂𝑂2

0 1 𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
𝐻𝐻2

0 0 1
�

𝑣𝑣𝑣𝑣𝑣𝑣

�
𝑥𝑥𝑂𝑂2
𝑥𝑥𝐻𝐻2
𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

�
𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

 (54) 

 In equation 54, there are three constraints. The first two constraints represent the 

ISRU production for 𝑂𝑂2  and 𝐻𝐻2  for one hour, where 𝜎𝜎  is the ISRU plant productivity, 

representing the amount of resource generation per hour per unit mass of the ISRU plant. 

The last constraint means the ISRU plant system mass does not change during the 

production process. 

 In this simplified formulation, the concurrency constraint also needs to guarantee 

the non-negativity of the commodity inflow. For the non-negativity of commodity inflow 

variables, we have, 

𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝟎𝟎𝑝𝑝×1 
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which is equivalent to, 

−𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ≤ 𝟎𝟎𝑝𝑝×1 

 In this constraint, the concurrency constraint matrix 𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣  corresponds to the 

negative of the transformation constraint matrix, −𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣 . It guarantees the feasibility of 

commodity transformations during spaceflights or surface system operations. 

 In this space infrastructure optimization formulation, the infrastructure subsystem 

designs are determined in advance. Space logistics optimization only identifies the optimal 

total size of the space infrastructure in space missions and cannot optimize the mass ratio 

between subsystems. It ignores the interaction between space infrastructure subsystems 

and space logistics transportation planning. This formulation is not able to perform 

sufficient trade studies for infrastructure technology selections and identify technology 

gaps. 

5.2 Full-Size Space Infrastructure Optimization Formulation 

 To increase the space infrastructure design fidelity and take into account the 

detailed interactions between space infrastructure subsystems and space logistics 

transportation, this section introduces a newly developed full-size space infrastructure 

optimization formulation that considers all infrastructure subsystems separately throughout 

the space campaign. In this section, we first discuss the integrated ISRU system modeling 

in Sec. 5.2.1. Then, we discuss the implementation of different constraints to enable full-

size infrastructure optimization in space logistics in Sec. 5.2.2. 

5.2.1 ISRU system modeling 

 There are six subsystems considered in this ISRU infrastructure model. The first 

subsystem is reactors, which is the core of ISRU plants. They conduct chemical processes 
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to transform reactants into valuable products, such as water (𝐻𝐻2𝑂𝑂), oxygen (𝑂𝑂2), hydrogen 

(𝐻𝐻2), and methane (𝐶𝐶𝐶𝐶4). The sizing parameter of a reactor is the ISRU resource hourly 

productivity 𝑁𝑁, in the unit of kg/hr. The mass and power consumption sizing models of a 

reactor can be written as equations 55 and 56. Note that, there are some ISRU reactors that 

use rigid solar concentrators to provide thermal energy to the chemical reactions, such as 

the integrated carbothermic reduction system [28] developed by Orbitec Inc. and NASA. 

For those reactors that use a special power source, we consider the power architecture as 

part of the reactor in the sizing model and the reactor does not require external power input 

anymore. 

 𝑀𝑀𝑅𝑅𝑅𝑅 = 𝐹𝐹1(𝑁𝑁) (55) 

 𝑃𝑃𝑅𝑅𝑅𝑅 = 𝐺𝐺1(𝑁𝑁) (56) 

 To obtain raw materials as ISRU reactants, we need the second subsystem, 

excavator or acquisition systems, to collect soil/regolith for the soil-based ISRU system or 

𝐶𝐶𝐶𝐶2 for the Martian atmosphere-based ISRU system. We introduce the excavation rate 

𝑚𝑚𝑆𝑆𝑜𝑜𝑖𝑖𝑖𝑖 𝐺𝐺𝐺𝐺𝐺𝐺⁄ , in the unit of kg/hr, as an intermediate variable to decouple the excavation 

schedule and the reactor operating time. It is a function of the ISRU resource productivity 

𝑁𝑁, written as 𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐺𝐺𝐺𝐺𝐺𝐺⁄ = 𝑓𝑓(𝑁𝑁). Based on the excavation rate 𝑚𝑚𝑆𝑆𝑆𝑆𝑖𝑖𝑙𝑙 𝐺𝐺𝐺𝐺𝐺𝐺⁄ , the sizing models 

for excavator/acquisition subsystems can be written as equations 57 and 58. The excavation 

complexity, difficulty, and site specificity vary depending on the target raw materials 

attributes. Using Mars exploration as an example, 95% of the Martian atmosphere is made 

up of 𝐶𝐶𝐶𝐶2. It is everywhere on Mars. Therefore, the reactant excavation of atmosphere-

based ISRU is not a constraint for mission landing site selection on Mars. For the Martian 

soil-based water ISRU system, landing site selection can directly impact the ISRU 

performance. Granular regolith is a type of garden variety soil, which contains 1-3% water 
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concentration. It is easy to excavate and is found in most places on Mars [66]. 

Gypsum/sulfate on Mars has a higher water concentration, 5-10%. However, it is a harder 

material that may require a rock excavator and crushing. Its locations are also limited to 

the equatorial region and mid-latitude area [66]. There is also subsurface ice on Mars, 

which requires drilling devices to collect it. The landing site for Martian icy regolith is 

highly selective. The design of excavator/acquisition subsystems is determined by the 

trade-off between the landing site and ISRU technology selections. 

 𝑀𝑀𝐸𝐸𝐸𝐸 = 𝐹𝐹2�𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐺𝐺𝐺𝐺𝐺𝐺⁄ � (57) 

 𝑃𝑃𝐸𝐸𝐸𝐸 = 𝐺𝐺2�𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐺𝐺𝐺𝐺𝐺𝐺⁄ � (58) 

 The third subsystem is separators that are used to separate products from the reactor 

exhaust gas. The performance and sizing of separators are directly relevant to reactor types, 

exhaust gas components, and operating environments. Therefore, the sizing parameter of a 

separator is the same as the reactor, which is the ISRU resource productivity 𝑁𝑁. The mass 

and power consumption sizing models of separators can be written as equations 59 and 60. 

 𝑀𝑀𝑆𝑆𝑆𝑆 = 𝐹𝐹3(𝑁𝑁) (59) 

 𝑃𝑃𝑆𝑆𝑆𝑆 = 𝐺𝐺3(𝑁𝑁) (60) 

 The fourth subsystem is a hopper/feed/secondary subsystem, which is a supporting 

structure for other ISRU subsystems. Therefore, its sizing is directly determined by other 

subsystem sizing results. To make the ISRU infrastructure design model consistent, we 

also use the ISRU resource productivity 𝑁𝑁 as the sizing parameter. Its mass and power 

consumption sizing models can be written as equations 61 and 62. 
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 𝑀𝑀𝐻𝐻𝐻𝐻 = 𝐹𝐹4(𝑁𝑁) (61) 

 𝑃𝑃𝐻𝐻𝐻𝐻 = 𝐺𝐺4(𝑁𝑁) (62) 

 After resources are produced, it requires storage subsystems to temporarily store 

the resources before they are consumed. The capacity of storage subsystems is determined 

by the maximum amount of produced resources to be stored during space missions. We 

can define the storage length variable 𝐿𝐿, in the unit of days, then the storage subsystem 

capacity should be equal to 𝑄𝑄𝐼𝐼𝐿𝐿𝐿𝐿, where 𝑄𝑄𝐼𝐼 is the daily operating length (hr/day) and 𝑁𝑁 is 

the ISRU hourly productivity (kg/hr). Note that, 𝐿𝐿 is not the same as the total space mission 

duration. It is the time between two space resource logistics missions. Frequent logistics 

missions reduce the value of 𝐿𝐿 , which decreases the capacity requirement on storage 

subsystems. However, frequent missions also increase the propellant consumption and 

operation complexity during spaceflights. On the other hand, occasional space missions 

enlarge the value of 𝐿𝐿 that leads to less propellant consumption in space transportation but 

requires larger storage subsystems to be deployed. This is a trade-off between the space 

logistics operation and the ISRU production operation. Based on the storage capacity 

𝑄𝑄𝐼𝐼𝐿𝐿𝐿𝐿, its mass and power consumption sizing models can be written as equations 63 and 

64. 

 𝑀𝑀𝑆𝑆𝑆𝑆 = 𝐹𝐹5(𝑄𝑄𝐼𝐼𝐿𝐿𝐿𝐿) (63) 

 𝑃𝑃𝑆𝑆𝑆𝑆 = 𝐺𝐺5(𝑄𝑄𝐼𝐼𝐿𝐿𝐿𝐿) (64) 

 The last subsystem is the power subsystem, which is one of the most important 

subsystems in ISRU trade studies. The design and technology selections of a power 

subsystem are relevant to landing site choice, space mission planning, ISRU operation 

mechanism, and ISRU infrastructure sizing. There are two categories of power sources 
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considered in this research. The first power source is nuclear power, including the fission 

surface power system (FSPS) and the large-scale radioisotope thermoelectric generator 

(RTG). This type of power system works continuously regardless of the operating 

environment. Therefore, it is relatively easier to perform trade studies and system sizing 

analysis. The second power source is solar power, which mainly includes the photovoltaic 

(PV) power system whose performance is highly site-sensitive. For example, at the 0-20˚ 

N latitude region of Mars, the peak solar irradiance after shadowing is 450 W/ m2 and the 

period of high activity for solar arrays is 6-7 hr/sol [67]. In this region, solar arrays can 

work throughout the whole year after implementing dust mitigation technologies. In the 

northern polar area of Mars, the peak solar irradiance after shadowing is 150 W/ m2 and 

the period of high activity for solar arrays is 24.6 hr/sol [67]. However, the exploration 

mission can only last for about 90 days during summer in this area because of the limited 

solar source for the rest of the year. Moreover, if the PV power system is the main power 

source and ISRU systems are planned to work during the night, additional energy storage 

systems need to be deployed. They can be batteries or fuel cells. Different attributes of 

power systems and operation environments make the trade studies more complex, 

especially considering their interaction with space logistics mission planning. In the next 

section, we will discuss how to integrate power system trade studies into the space mission 

planning framework. The design parameter of the power subsystem is the total power 

demand of all other ISRU subsystems. Then, the mass sizing model can be written as 

equation 65. 

 𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐹𝐹6(𝑃𝑃𝑅𝑅𝑅𝑅 + 𝑃𝑃𝐸𝐸𝐸𝐸 + 𝑃𝑃𝑆𝑆𝑆𝑆 + 𝑃𝑃𝐻𝐻𝐻𝐻 + 𝑃𝑃𝑆𝑆𝑆𝑆) (65) 

 Based on the aforementioned ISRU subsystem sizing models and their 

dependencies, we can combine them together and obtain an integrated ISRU modeling flow 

chart as shown in Figure 26. The inputs of this integrated model are available ISRU 
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technologies, potential power sources, and the requirement of ISRU daily productivity 𝑁𝑁. 

The outputs are designated ISRU subsystem infrastructure designs and technology 

selections. 

 

Figure 26 - Integrated ISRU modeling flow chart. 

5.2.2 Full-Size Space Logistics Formulation 

The integrated ISRU model as shown in Figure 26 can be combined with the 

network-based space logistics formulation to build a full-size space logistics optimization 

for space infrastructure design. As shown in Figure 27, there are two main components to 

be optimized in the full-size space infrastructure optimization formulation. The first 

component is the same as the prefixed space infrastructure optimization formulation, as 

shown on the right side of Figure 27. It considers space transportation mission planning, 

space infrastructure deployment strategy, and resource logistics after production. The 

second component is the space infrastructure trade studies, as shown on the left side of 

Figure 27. It considers the internal tradeoffs among space infrastructure subsystems and 
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their external interactions with space transportation to provide infrastructure subsystem 

sizing and technology selections. In this chapter, we use ISRU systems as an example of 

multi-subsystem space infrastructure optimization, although the proposed method can be 

generally implemented in different types of space infrastructure design trade studies. There 

are six subsystems considered in the ISRU infrastructure model as introduced in Sec. 5.2.1. 

There can be multiple different reactors, excavators, etc. depending on the ISRU 

technologies. These subsystems are all considered as different commodities in space 

logistics to enable effective analysis of subsystem interactions. 

 

Figure 27 - An example of the full-size space infrastructure optimization 

formulation. 

 The formulation of the full-size space infrastructure optimization formulation is the 

same as the prefixed optimization formulation, as shown in equations 50-53. However, the 

constraints are interpreted and implemented in a different way because each infrastructure 

subsystem is considered separately. In the following parts, we show the additional 
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relationships to be considered to enable system-level space infrastructure trade studies 

together with space logistics optimization. 

5.2.2.1 Objective Function 

 The objective function (i.e., equation 50) is exactly the same as it is in the prefixed 

optimization formulation. The only point to note is that a higher fidelity mission 

performance measurement model is needed in this formulation because each subsystem is 

considered independently. For example, if a cost model is implemented in the objective 

function, then the cost model in the full-size optimization formulation should include the 

detailed cost information for each subsystem and each technology. 

5.2.2.2 Mass Balance Constraint 

 In the mass balance constraint (i.e., equation 51), we need to take into account the 

ISRU resource production process from the subsystem-level. The same lunar water ISRU 

example is used to illustrate the differences in the setting of the transformation matrix 𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣. 

There are multiple technology options to build a lunar water ISRU. In this example, we 

assume that the lunar water ISRU plant is mainly made up of two reactors: the soil/water 

extraction (SWE) reactor and the direct water electrolysis (DWE) reactor. The SWE 

reactor, 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑆𝑆𝑆𝑆𝑆𝑆 , extracts water from lunar or Martian soil. The DWE reactor, 

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝐷𝐷𝐷𝐷𝐷𝐷, electrolyzes water produced by the SWE reactor to generate 𝑂𝑂2 and 𝐻𝐻2.  We 

can define the commodity flow variables as, 

𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑥𝑥𝑂𝑂2 , kg

𝑥𝑥𝐻𝐻2 , kg
𝑥𝑥𝐻𝐻2𝑂𝑂 , kg

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑟𝑟_𝐷𝐷𝐷𝐷𝐷𝐷 , kg
𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑆𝑆𝑆𝑆𝑆𝑆 , kg⎦

⎥
⎥
⎥
⎥
⎤

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
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Then, we can express the ISRU production process for one hour for 𝑂𝑂2, 𝐻𝐻2, and 𝐻𝐻2𝑂𝑂 as 

follows: 

 

⎣
⎢
⎢
⎢
⎡ 𝑥𝑥𝑂𝑂2

𝑥𝑥𝐻𝐻2
𝑥𝑥𝐻𝐻2𝑂𝑂

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝐷𝐷𝐷𝐷𝐷𝐷

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑆𝑆𝑆𝑆𝑆𝑆⎦
⎥
⎥
⎥
⎤

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

=

⎣
⎢
⎢
⎢
⎢
⎡1 0 0 𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷

𝑂𝑂2 0
0 1 0 𝜎𝜎𝐷𝐷𝐷𝐷𝐸𝐸

𝐻𝐻2 0
0 0 1 −𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷

𝐻𝐻2𝑂𝑂 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆
𝐻𝐻2𝑂𝑂

0 0 0 1 0
0 0 0 0 1 ⎦

⎥
⎥
⎥
⎥
⎤

𝑣𝑣𝑣𝑣𝑣𝑣
⎣
⎢
⎢
⎢
⎡ 𝑥𝑥𝑂𝑂2

𝑥𝑥𝐻𝐻2
𝑥𝑥𝐻𝐻2𝑂𝑂

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝐷𝐷𝐷𝐷𝐷𝐷

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑆𝑆𝑆𝑆𝑆𝑆⎦
⎥
⎥
⎥
⎤

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

 (66) 

 In equation 66, there are five constraints in total. The first two constraints represent 

𝑂𝑂2  and 𝐻𝐻2  generations by the DWE reactor for one hour, where 𝜎𝜎  is the reactor 

productivity. The third constraint illustrates 𝐻𝐻2𝑂𝑂 consumption by the DWE reactor and 

production by the SWE process for one hour, where 𝛽𝛽 denotes the consumption rate. Both 

𝜎𝜎  and 𝛽𝛽  are nonnegative values. Note that because of the mass balance of chemical 

reactions, we have 𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷
𝑂𝑂2 + 𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷

𝐻𝐻2 ≤ 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷
𝐻𝐻2𝑂𝑂 . The last two constraints show that the masses 

of the DWE reactor and the SWE reactor do not change during the resource production 

processes. 

5.2.2.3 Concurrency Constraint 

 In the concurrency constraint (i.e., equation 52), besides the spacecraft payload and 

propellant capacities considered during space transportation, the resource storage 

capacities for infrastructure storage systems, the power supply capacities for power 

generation systems, and the energy storage capacities for energy storage systems also need 

to be considered. Among these, the constraint format of resource storage capacities is the 

same as the constraints for spacecraft payload and propellant capacities.  

 In the following, we show two examples of the concurrency constraint in the full-

size optimization formulation. One example is about space infrastructure power supply 
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capacities and another is about energy storage capacities. For space infrastructure power 

supply capacities, we define the commodity flow variables as 

𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =

⎣
⎢
⎢
⎢
⎡ 𝑥𝑥

𝐼𝐼1:  infrastructure system 1, kg
𝑥𝑥𝐼𝐼2:  infrastructure system 2, kg
𝑥𝑥𝐼𝐼3:  infrastructure system 3, kg
𝑥𝑥𝑃𝑃:  power generation system, kg⎦

⎥
⎥
⎥
⎤

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

 

Then, we can express the power supply capacity constraint for infrastructure system design 

as follows, 

 
�𝑃𝑃𝐼𝐼1(1 +

𝑄𝑄𝐼𝐼1 − 𝑄𝑄𝑝𝑝
𝜀𝜀𝑄𝑄𝑝𝑝

) 𝑃𝑃𝐼𝐼2(1 +
𝑄𝑄𝐼𝐼2 − 𝑄𝑄𝑝𝑝
𝜀𝜀𝑄𝑄𝑝𝑝

) 𝑃𝑃𝐼𝐼3(1 +
𝑄𝑄𝐼𝐼3 − 𝑄𝑄𝑝𝑝
𝜀𝜀𝑄𝑄𝑝𝑝

) −𝑃𝑃0�
𝑣𝑣𝑣𝑣𝑣𝑣
�
𝑥𝑥𝐼𝐼1
𝑥𝑥𝐼𝐼2
𝑥𝑥𝐼𝐼3
𝑥𝑥𝑃𝑃
�

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

≤ 0 (67) 

where 𝑃𝑃𝐼𝐼𝑖𝑖 , 𝑖𝑖 ∈ {1,2,3} is the infrastructure power demand of system 𝑖𝑖 (in kW/kg); 𝑄𝑄𝐼𝐼𝑖𝑖 , 𝑖𝑖 ∈

{1,2,3} is the infrastructure operating length per solar day, in the unit of hours; 𝑃𝑃0 is the 

power generation system output power per unit mass (in kW/kg); 𝑄𝑄𝑝𝑝 is the power system 

working time per solar day. If the power system is a fission surface power system (FSPS) 

or a radioisotope thermoelectric generator (RTG), it works continuously during the space 

mission, which means 𝑄𝑄𝑝𝑝 is equal to the length of a solar day. If the power system is a 

photovoltaic (PV) system, it only works during the daytime, which means 𝑄𝑄𝑝𝑝 is equal to 

the daytime length of a solar day at the destination. If the infrastructure system operating 

time is longer than the power system working time per solar day, which means 𝑄𝑄𝐼𝐼𝑖𝑖 > 𝑄𝑄𝑝𝑝, 

an energy storage system (e.g., battery or fuel cell) is necessary to support the infrastructure 

systems. There is an energy loss during the power storage process in battery 

charging/discharging. Therefore, we define an energy storage efficiency parameter, 𝜀𝜀. 

 To identify the size of the energy storage system, a concurrency constraint for 

energy storage capacities is needed. Define the commodity flow variables as 
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𝒙𝒙𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑥𝑥

𝐼𝐼1: infrastructure system 1, kg
𝑥𝑥𝐼𝐼2: infrastructure system 2, kg
𝑥𝑥𝐼𝐼3: infrastructure system 3, kg
𝑥𝑥𝑃𝑃: power generation system, kg
𝑥𝑥𝐸𝐸: energy storage system, kg ⎦

⎥
⎥
⎥
⎥
⎤

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

 

Then, we can express the energy storage capacity constraint as follows 

 

�−𝑃𝑃𝐼𝐼1 −𝑃𝑃𝐼𝐼2 −𝑃𝑃𝐼𝐼3 𝑃𝑃0 −
𝛾𝛾
𝜀𝜀𝑄𝑄𝑝𝑝

�
𝑣𝑣𝑣𝑣𝑣𝑣

⎣
⎢
⎢
⎢
⎡𝑥𝑥

𝐼𝐼1

𝑥𝑥𝐼𝐼2
𝑥𝑥𝐼𝐼3
𝑥𝑥𝑃𝑃
𝑥𝑥𝐸𝐸 ⎦
⎥
⎥
⎥
⎤

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

≤ 0 (68) 

where 𝛾𝛾 is the specific mass of the energy storage system, in the unit of kWh/kg. It shows 

the ability of energy storage per unit mass. 

5.2.2.4 Time Window Constraint 

 The time window constraint (i.e., equation 53) is the same as in the prefixed 

optimization formulation. Typically, the time windows for different space infrastructure 

subsystems are the same. 

5.2.3 Relationship with the Prefixed Formulation 

 It is easy to show that the solution from the prefixed formulation 𝒥𝒥prefixed is an 

upper bound of that from the full-size formulation 𝒥𝒥full_size.  

𝒥𝒥full_size ≤ 𝒥𝒥prefixed 

 This is because the only difference between the two formulations is that the prefixed 

formulation fixes the mass ratios of the infrastructure subsystems, whereas the full-size 

formulation allows the variation of those mass ratios. Thus, the prefixed formulation has 
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an equal or smaller feasible design space than the full-size formulation, and thus provides 

an equal or larger solution. 

5.2.4 Limitations of the Full-Size Formulation 

 The full-size space infrastructure optimization formulation considers all 

infrastructure subsystems as separated commodities during the entire space campaign, and 

this significantly increases the number of commodities in logistics optimization. Generally, 

as a mixed-integer linear programming formulation, which is an NP-hard problem, the 

computational time cost increases exponentially as the problem size increases. Studies 

showed that even for a short lunar exploration campaign (i.e., including three lunar 

missions), the concurrent optimization of space mission planning, spacecraft design, and 

space infrastructure design can make the network-based space logistics optimization 

formulation computationally prohibitive [17]. This caveat can make the full-size 

formulation computationally intractable for long-term space mission planning. In the next 

section, we will propose a new approximate optimization formulation that can achieve a 

significant computational cost saving with little sacrifice in the solution quality. 

5.3 Multi-Fidelity Space Infrastructure Optimization Formulation 

 In response to the computational challenge of the full-size space infrastructure 

optimization formulation, we propose a new approximate optimization problem 

formulation. Our idea is to note the fact that the infrastructure subsystem design trade 

studies only exist at the destination nodes, where these subsystems are deployed; there may 

exist redundant commodity variables and constraints in transportation arcs that can be 

reduced. With this idea, we develop a mechanism to combine the infrastructure subsystem 

variables into fewer commodity variables during space transportation (“packing” process) 

and separate these packed commodities after delivery to the destination nodes 
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(“unpacking” process). Namely, we vary the granularity of the commodity type definition 

over the network graph, resulting in a multi-fidelity space infrastructure optimization 

formulation. This formulation can significantly reduce the number of commodity variables 

and corresponding constraints in space logistics during space transportation and improve 

computational efficiency. 

 The multi-fidelity space infrastructure optimization leverages the theory of 

constraint and variable aggregations for a general mixed-integer linear programming 

formulation. For large and complex engineering problems, we often need to balance the 

accuracy of the model with the cost of computation. Constraint and variable aggregation 

methods have been explicitly or implicitly used in realistic problems, which are typically 

large and complex, to find surrogate models of the original formulations. Zipkin [68, 69] 

performed thorough analyses on solution bounds for linear programming through 

constraint aggregation and variable aggregation, respectively, under certain assumptions 

about the problem, although their assumptions limit their methods’ applicability to our 

problem. In the multicommodity network flow context, Evans et al. [70, 71] developed the 

commodity aggregation for multicommodity capacitated transportation problems to find 

the lower bound. More recently, Ho [53] also developed a formulation based on constraint 

aggregation and variable aggregation to enable an efficient way to reduce the size of the 

time-expanded network for the generalized multicommodity network flow. 

 In this section, we first discuss the general constraint and variable aggregations in 

linear programming. Then, we show how to perform a partial constraint and commodity 

aggregations, referred to as commodity packing based on its physical meaning, over 

particular space transportation arcs to enable a multi-fidelity optimization. We show that 

the solution of this multi-fidelity optimization formulation provides a lower bound of that 

of the full-size optimization formulation. Furthermore, a commodity packing 
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preprocessing algorithm is also developed to enable an automatic decision on where and 

when to pack the commodities. 

5.3.1 Constraint Aggregation and Variable Packing 

 The commodity variable packing is processed in two steps: constraint aggregation 

and variable packing. The first step, constraint aggregation, aggregates the constraints with 

designated packable commodities into shared constraints through an aggregation matrix. 

Then, the second step, variable packing, aggregates the packable commodities into shared 

package commodities. The transportation, transformation, and flow bounds of these 

commodities are considered together through the package commodities. 

5.3.1.1 Constraint Aggregation 

 Consider a general (full-size) linear programming formulation showed as follows. 

Formulation F1 (Full-Size) 

Minimize: 

 𝒥𝒥 = 𝐶𝐶𝓧𝓧 (69) 

Subject to: 

 𝐴𝐴𝓧𝓧 ≤ 𝒃𝒃 (70) 

where  

𝓧𝓧 = �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

� ,𝐶𝐶 = [𝑐𝑐1 𝑐𝑐2 … 𝑐𝑐𝑛𝑛 ],𝐴𝐴 = �

𝑎𝑎1,1 𝑎𝑎1,2 … 𝑎𝑎1,𝑛𝑛
𝑎𝑎2,1 𝑎𝑎2,2 … 𝑎𝑎2,𝑛𝑛
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑚𝑚,1 𝑎𝑎𝑚𝑚,2 … 𝑎𝑎𝑚𝑚,𝑛𝑛

� ,𝒃𝒃 = �

𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑚𝑚

� 
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 We define an “aggregation matrix” 𝐺𝐺  and multiply both sides of the constraint 

equation 70 by G. Then, we can obtain a new formulation as follows, 

Formulation F2 (Constraint Aggregation) 

Minimize: 

 𝒥𝒥 = 𝐶𝐶𝓧𝓧 (71) 

Subject to: 

 𝐺𝐺𝐺𝐺𝓧𝓧 ≤ 𝐺𝐺𝒃𝒃 (72) 

where the aggregation matrix 𝐺𝐺 has a size 𝐾𝐾 × 𝑚𝑚, where 𝑚𝑚 is the number of rows in the 𝐴𝐴 

matrix and 𝐾𝐾 is the number of constraints after aggregation (𝐾𝐾 ≤ 𝑚𝑚), and satisfies the 

following two conditions: 

 Condition 1: The aggregation matrix 𝐺𝐺 has exactly one nonzero entry per column, 

and that entry is positive. 

 Condition 2: The aggregation matrix 𝐺𝐺 has at least one nonzero entry per row, and 

these entries are all positive. 

 For these formulations, we show that a lower bound of the optimal objective of F1 

can be found by solving F2 if both problems are feasible and bounded. 

 We first rewrite the constraint 72 as, 

𝐺𝐺(𝐴𝐴𝓧𝓧 − 𝒃𝒃) ≤ 𝟎𝟎𝐾𝐾×1 
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 The column indices of the positive entries in each row of the aggregation matrix 𝐺𝐺 

define a partition of the corresponding constraints {1,…,m} into 𝐾𝐾  sets. Denote the 

partition as Ω = {𝑆𝑆𝑘𝑘: 𝑘𝑘 = 1, … ,𝐾𝐾}, where 𝑆𝑆𝑘𝑘 is the set of constraint indices in the 𝑘𝑘-th set. 

Define 𝑚𝑚𝑘𝑘 = |𝑆𝑆𝑘𝑘|, which is the number of constraint indices in the 𝑘𝑘-th set. The partition 

satisfies 

�𝑆𝑆𝑘𝑘

𝐾𝐾

𝑘𝑘=1

= {1, … ,𝑚𝑚}  and  𝑆𝑆𝑘𝑘 ∩ 𝑆𝑆𝑘𝑘′ = ∅   ∀𝑘𝑘 ≠ 𝑘𝑘′ 

 Define 𝐺𝐺 =

⎣
⎢
⎢
⎡𝒈𝒈1

𝑇𝑇

𝒈𝒈2𝑇𝑇
⋮
𝒈𝒈𝐾𝐾𝑇𝑇 ⎦

⎥
⎥
⎤
, where each row of the aggregation matrix is a 1 × 𝑚𝑚 weighting 

vector, 𝒈𝒈𝑘𝑘𝑇𝑇, that satisfies 

�
𝒈𝒈𝑘𝑘[𝑗𝑗] > 0   𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝑆𝑆𝑘𝑘
𝒈𝒈𝑘𝑘[𝑗𝑗] = 0   𝑖𝑖𝑖𝑖 𝑗𝑗 ∉ 𝑆𝑆𝑘𝑘

     ∀𝑘𝑘 ∈ {1, … ,𝐾𝐾}  

 To aggregate and relax the constraints, we replace each subset of constraints 𝑆𝑆𝑘𝑘 by 

a single constraint through weighting vectors. As a result, we can write the k-th constraint 

after aggregation for F1 as, 

𝒈𝒈𝑘𝑘𝑇𝑇(𝐴𝐴𝓧𝓧− 𝒃𝒃) ≤ 0 

 This constraint aggregates 𝑚𝑚𝑘𝑘 number of constraints in F1 with indices {𝑗𝑗: 𝑗𝑗 ∈ 𝑆𝑆𝑘𝑘}. 

Because all non-zero entries in the weighting vectors are positive, these constraints are also 

relaxed. By applying the weighing vectors to F1, we can get a relaxed formulation, 

Minimize: 

 𝒥𝒥 = 𝐶𝐶𝓧𝓧 (73) 
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Subject to: 

 

⎣
⎢
⎢
⎡𝒈𝒈1

𝑇𝑇

𝒈𝒈2𝑇𝑇
⋮
𝒈𝒈𝐾𝐾𝑇𝑇 ⎦

⎥
⎥
⎤

(𝐴𝐴𝓧𝓧− 𝒃𝒃) ≤ 𝟎𝟎𝐾𝐾×1 (74) 

By solving the formulation 73-74, which is equivalent to F2, we can get a lower bound of 

F1’s solution. 

5.3.1.2 Variable Packing 

 After the constraint aggregation, we can perform variable packing to further 

improve computational efficiency by reducing the number of variables. The purpose of this 

step is to find a formulation equivalent to F2, but with fewer variables; this step 

corresponds to packing the commodities. Note that, in the following discussion, we only 

consider the aggregation of the continuous commodity flow variables for simplicity.  

 Consider a variable vector as follows, 

𝓧𝓧 = �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

� 

Assume that there exists a set of index set 𝒬𝒬 = {𝑄𝑄𝑢𝑢:𝑢𝑢 = 1, … ,𝑈𝑈}, where each set 𝑄𝑄𝑢𝑢 

includes the packable commodity variable indices to be packed into one package 

commodity 𝑥𝑥𝑢𝑢� = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖∈𝑄𝑄𝑢𝑢 . This index set 𝒬𝒬 satisfies 

�𝑄𝑄𝑢𝑢

𝑈𝑈

𝑢𝑢=1

⊆ {1, … ,𝑛𝑛}  and  𝑄𝑄𝑢𝑢 ∩ 𝑄𝑄𝑢𝑢′ = ∅   ∀𝑢𝑢 ≠ 𝑢𝑢′ 



 108 

 The variable packing operation is defined as replacing the 𝑛𝑛 original variables 𝓧𝓧 

into 𝑈𝑈 new variables 𝓧𝓧�  following the conversion 𝑥𝑥𝑢𝑢� = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖∈𝑄𝑄𝑢𝑢 .  

 In the following, we show that we can find an equivalent formulation after 

performing variable packing if coefficients in F2 satisfy the following two conditions: 

 Condition 3: For each index set 𝑄𝑄𝑢𝑢, there exists a constant 𝑐𝑐𝑢𝑢′  such that 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑢𝑢′  for 

all 𝑖𝑖 ∈ 𝑄𝑄𝑢𝑢; 

 Condition 4: For each index set 𝑄𝑄𝑢𝑢 , there exists a constant vector 𝑅𝑅𝑢𝑢′ =

[𝑟𝑟1′, 𝑟𝑟2′, … , 𝑟𝑟𝐾𝐾′ ]𝑢𝑢𝑇𝑇 such that ∑ 𝑔𝑔𝑘𝑘,𝑗𝑗𝑎𝑎𝑗𝑗,𝑖𝑖
𝑚𝑚
𝑗𝑗=1 = 𝑟𝑟𝑘𝑘′  for all 𝑖𝑖 ∈ 𝑄𝑄𝑢𝑢 and for all 𝑘𝑘 ∈ {1, … ,𝐾𝐾}. 

 Without loss of generality, we consider a case where the last 𝑛𝑛 − 𝑞𝑞 variables are to 

be packed into one package commodity. This corresponds to the case where 𝑄𝑄 = {𝑞𝑞 +

1, … , 𝑛𝑛} and 𝑈𝑈 = 1. Thus, the expected variable vector after packing is 

𝓧𝓧� = �

𝑥𝑥1
⋮
𝑥𝑥𝑞𝑞
𝑥𝑥�

� 

where the package commodity variable 𝑥𝑥� = ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=𝑞𝑞+1 . In the objective function of F2 (i.e., 

equation 71), we have, 

𝐶𝐶𝓧𝓧 = [𝑐𝑐1 𝑐𝑐2 … 𝑐𝑐𝑛𝑛 ] �

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

� = [𝑐𝑐1 … 𝑐𝑐𝑞𝑞 𝑐𝑐𝑞𝑞+1 … 𝑐𝑐𝑛𝑛 ]

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
⋮
𝑥𝑥𝑞𝑞
𝑥𝑥𝑞𝑞+1
⋮
𝑥𝑥𝑛𝑛 ⎦

⎥
⎥
⎥
⎥
⎤

 

From the first condition, we know that 𝑐𝑐𝑖𝑖 = 𝑐𝑐′ for all 𝑖𝑖 ∈ {𝑞𝑞 + 1, … , 𝑛𝑛}. Therefore, we can 

get 
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𝐶𝐶𝓧𝓧 = [𝑐𝑐1 … 𝑐𝑐𝑞𝑞 𝑐𝑐′ … 𝑐𝑐′ ]

⎣
⎢
⎢
⎢
⎢
⎡
𝑥𝑥1
⋮
𝑥𝑥𝑞𝑞
𝑥𝑥𝑞𝑞+1
⋮
𝑥𝑥𝑛𝑛 ⎦

⎥
⎥
⎥
⎥
⎤

= [𝑐𝑐1 … 𝑐𝑐𝑞𝑞 𝑐𝑐′ ]

⎣
⎢
⎢
⎢
⎡

𝑥𝑥1
⋮
𝑥𝑥𝑞𝑞

� 𝑥𝑥𝑖𝑖
𝑛𝑛

𝑖𝑖=𝑞𝑞+1 ⎦
⎥
⎥
⎥
⎤

= [𝑐𝑐1 … 𝑐𝑐𝑞𝑞 𝑐𝑐′ ] �

𝑥𝑥1
⋮
𝑥𝑥𝑞𝑞
𝑥𝑥�

� = 𝐶̃𝐶𝓧𝓧�  

Similarly, in the constraint of F2 (i.e., equation 72), we have  

𝐺𝐺𝐺𝐺𝓧𝓧 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡� 𝑔𝑔1,𝑗𝑗𝑎𝑎𝑗𝑗,1

𝑚𝑚

𝑗𝑗=1
� 𝑔𝑔1,𝑗𝑗𝑎𝑎𝑗𝑗,2

𝑚𝑚

𝑗𝑗=1
… � 𝑔𝑔1,𝑗𝑗𝑎𝑎𝑗𝑗,𝑛𝑛

𝑚𝑚

𝑗𝑗=1

� 𝑔𝑔2,𝑗𝑗𝑎𝑎𝑗𝑗,1

𝑚𝑚

𝑗𝑗=1
� 𝑔𝑔2,𝑗𝑗𝑎𝑎𝑗𝑗,2

𝑚𝑚

𝑗𝑗=1
… � 𝑔𝑔2,𝑗𝑗𝑎𝑎𝑗𝑗,𝑛𝑛

𝑚𝑚

𝑗𝑗=1
⋮ ⋮ ⋱ ⋮

� 𝑔𝑔𝐾𝐾,𝑗𝑗𝑎𝑎𝑗𝑗,1

𝑚𝑚

𝑗𝑗=1
� 𝑔𝑔𝐾𝐾,𝑗𝑗𝑎𝑎𝑗𝑗,2

𝑚𝑚

𝑗𝑗=1
… � 𝑔𝑔𝐾𝐾,𝑗𝑗𝑎𝑎𝑗𝑗,𝑛𝑛

𝑚𝑚

𝑗𝑗=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑛𝑛

� 

From the second condition, we have 𝑅𝑅′ = [𝑟𝑟1′, 𝑟𝑟2′, … , 𝑟𝑟𝐾𝐾′ ] such that ∑ 𝑔𝑔𝑘𝑘,𝑗𝑗𝑎𝑎𝑗𝑗,𝑖𝑖
𝑚𝑚
𝑗𝑗=1 = 𝑟𝑟𝑘𝑘′ for all 

𝑖𝑖 ∈ {𝑞𝑞 + 1, … ,𝑛𝑛} and for all 𝑘𝑘 ∈ {1, … ,𝐾𝐾}. Therefore, we can get 

𝐺𝐺𝐺𝐺𝓧𝓧 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡� 𝑔𝑔1,𝑗𝑗𝑎𝑎𝑗𝑗,1

𝑚𝑚

𝑗𝑗=1
… � 𝑔𝑔1,𝑗𝑗𝑎𝑎𝑗𝑗,𝑞𝑞

𝑚𝑚

𝑗𝑗=1
𝑟𝑟1′

� 𝑔𝑔2,𝑗𝑗𝑎𝑎𝑗𝑗,1

𝑚𝑚

𝑗𝑗=1
… � 𝑔𝑔2,𝑗𝑗𝑎𝑎𝑗𝑗,𝑞𝑞

𝑚𝑚

𝑗𝑗=1
𝑟𝑟2′

⋮ ⋱ ⋮ ⋮

� 𝑔𝑔𝐾𝐾,𝑗𝑗𝑎𝑎𝑗𝑗,1

𝑚𝑚

𝑗𝑗=1
… � 𝑔𝑔𝐾𝐾,𝑗𝑗𝑎𝑎𝑗𝑗,𝑞𝑞

𝑚𝑚

𝑗𝑗=1
𝑟𝑟𝐾𝐾′ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

�

𝑥𝑥1
⋮
𝑥𝑥𝑞𝑞
𝑥𝑥�

� = 𝐴̃𝐴𝓧𝓧�  

By repeating this process, we can pack commodities into multiple package commodities. 

As a result, we achieve a new formulation. 

Formulation F3 (Variable Packing) 

Minimize: 
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 𝒥𝒥 = 𝐶̃𝐶𝓧𝓧�  (75) 

Subject to: 

 𝐴̃𝐴𝓧𝓧� ≤ 𝐺𝐺𝒃𝒃 (76) 

According to the above analysis, the formulation F3 is equivalent to F2.  

 In summary, we have shown how to find a lower-bound formulation through 

constraint aggregation and variable packing for general linear programming problems. It is 

necessary to first find the aggregation matrix 𝐺𝐺 that satisfies the two defining properties 

(i.e., conditions 1 and 2). Then, we need to identify the variables whose coefficients satisfy 

the two variable packing conditions (i.e., conditions 3 and 4). This sequence can be 

generalized to the commodity packing in the space logistics formulation and formulation 

F3 can be generalized to the multi-fidelity formulation. Thus, together with the prefixed 

formulation discussed before, we have the following relationship: 

𝒥𝒥multi_fidelity ≤ 𝒥𝒥full_size ≤ 𝒥𝒥prefixed 

Bounding the computationally prohibitive full-size formulation from both the upper and 

lower sides enables us to find the approximation solution of the computationally 

prohibitive full-size formulation with the knowledge about the worst possible 

approximation error. 

5.3.2 Preprocessing Algorithm for Automatic Commodity Packing 

 Although the previous subsection showed an efficient way to pack the commodities 

in space logistics formulation under certain conditions, we still need a method to identify 

what commodities are able to be packed in each arc and then find the aggregation matrix 
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to aggregate corresponding constraints so that all conditions are satisfied. Therefore, this 

subsection proposes a preprocessing algorithm to compile a multi-fidelity optimization 

formulation automatically for the full-size space infrastructure optimization problem. The 

consequent formulation performs constraint and variable aggregations in a subset of 

network arcs, which achieves a lower bound approximation of the original full-size 

optimization formulation. 

 Considering a full-size space infrastructure optimization problem as shown in the 

formulation 50-53, we can identify the packable commodities leveraging the special 

structure of this formulation. In the mass balance constraints (i.e., equation 51), each 

constraint is designated to guarantee the mass balance of one type of commodity. The 

commodity transformation matrix 𝑄𝑄  defines the interactions between commodities. To 

make the commodities packable, they should have the same transformation coefficients 

with respect to all other commodities. The concurrency constraints (i.e., equation 52) 

provide the commodity flow upper bound by considering the total weights of different 

commodities. For example, the total mass of crew, consumables, instruments, and 

infrastructure elements must be smaller or equal to the spacecraft total payload capacity; 

this constraint has a set of packable commodity weights. Therefore, the packable 

commodities should have the same weight coefficients in all concurrency constraints. After 

identifying the packable commodities, they can be packed directly in the concurrency 

constraints without an aggregation matrix. The time window constraints (i.e., equation 53) 

are also defined specifically for each type of commodity. However, by definition, the time 

window is always the same for different commodities in one specific arc. In summary, 

according to conditions 3 and 4 in Sec. 5.3.1.2, to pack the packable commodities in space 

transportation, the associated coefficients must satisfy the following three commodity 

packing conditions: 
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1) For the objective function, equation 50, the cost coefficients of packable 

commodities need to be equal; 

2) For the mass balance constraint, equation 51, the transformation 

coefficients of packable commodities with respect to all other commodities need to 

be equal; 

3) For all concurrency constraints, equation 52, the weight coefficients of 

packable commodities need to be equal. 

Based on the preceding commodity packing conditions, we can propose a 

preprocessing algorithm to automatically identify the packable commodities and 

aggregation matrices in the original full-size space infrastructure optimization problem. 

The pseudo code of the preprocessing is shown as follows. We assume there are 𝑝𝑝 types of 

commodities in the system. Note that, in this pseudo code, there is a sorting process after 

identifying packable commodity index sets. The reason for this step is to enable flexible 

packing decision; if the users prefer to generate fewer package commodities than the 

number of packable commodity index sets 𝒬𝒬 = {𝑄𝑄𝑢𝑢:𝑢𝑢 = 1, … ,𝑈𝑈} for an arc (i.e., only N 

package commodities, where 𝑁𝑁 ≤ 𝑈𝑈), they can generate the N most impactful package 

commodities in the sorted list, where “most impactful” means it contains the most packable 

commodities. Fewer package commodities, which means fewer commodities are packed, 

leads to a tighter lower-bound of the optimization. 

 To generate the aggregation matrix 𝐺𝐺  for the mass balance constraint and time 

window constraint, we first need to identify the packable commodity index set, denoted by 

𝜁𝜁 as shown in the preprocessing pseudo code. If we assume that we would like to generate 

𝑁𝑁  package commodities, then 𝑁𝑁 = �𝜁𝜁� . Each subset in 𝜁𝜁  represents the corresponding 

packable commodities that will be packed into one package commodity. Suppose that 𝐿𝐿 
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types of commodities are packed into 𝑁𝑁  package commodities, then 𝐿𝐿 = ∑ |𝑆𝑆𝜏𝜏|𝑆𝑆𝜏𝜏∈𝜁𝜁� . 

Therefore, before the commodity packing, the number of variables over each arc is 𝑝𝑝, 

where each variable represents one type of commodity. After the commodity packing, the 

number of variables is 𝐾𝐾 = 𝑁𝑁 + 𝑝𝑝 − 𝐿𝐿, where the first 𝑁𝑁 variables represent the package 

commodities, they contain the information of 𝐿𝐿 types of commodities that are packed; the 

remaining 𝑝𝑝 − 𝐿𝐿 variables represent commodities that are not packed. Note that the mass 

balance constraints and the time window constraints are defined for each commodity 

independently. Therefore, before the commodity packing, the number of mass balance 

constraints or the time window constraints over each arc is also 𝑝𝑝; after the commodity 

packing, the number of these constraints becomes 𝐾𝐾 = 𝑁𝑁 + 𝑝𝑝 − 𝐿𝐿. 

  



 114 

Preprocessing for commodity packing pseudo code 

For ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜  ∀𝑡𝑡 ∈ 𝒯𝒯: 

Step 1. For the cost matrix in the objective function, 𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣: Let Ω1 = {𝑆𝑆𝑘𝑘:𝑘𝑘 =

1, … , 𝑞𝑞} be a partition of the commodity indices {1,…, p} and define 𝑛𝑛𝑘𝑘 = |𝑆𝑆𝑘𝑘|. The 

partition satisfies 

𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑙𝑙] = 𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣[𝑙𝑙′]   ∀𝑙𝑙, 𝑙𝑙′ ∈ 𝑆𝑆𝑘𝑘  ∀𝑘𝑘 

�𝑆𝑆𝑘𝑘

𝑞𝑞

𝑘𝑘=1

= {1, … ,𝑝𝑝}  and  𝑆𝑆𝑘𝑘 ∩ 𝑆𝑆𝑘𝑘′ = ∅   ∀𝑘𝑘 ≠ 𝑘𝑘′ 

Step 2. For the transformation matrix in mass balance constraint, 𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣: Let Ω2 =

{𝑆𝑆𝑓𝑓:𝑓𝑓 = 1, … , 𝑞𝑞′} be a partition of the commodity indices {1,…, p} and define 𝑛𝑛𝑓𝑓 =

|𝑆𝑆𝑓𝑓|. The partition satisfies 

𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣[𝑙𝑙,𝑢𝑢] = 𝐹𝐹𝑣𝑣𝑣𝑣𝑣𝑣[𝑙𝑙′,𝑢𝑢]   ∀𝑙𝑙, 𝑙𝑙′ ∈ 𝑆𝑆𝑓𝑓 ,∀𝑢𝑢 ∈ {1, … ,𝑝𝑝}\{𝑙𝑙, 𝑙𝑙′},   ∀𝑓𝑓 

�𝑆𝑆𝑓𝑓

𝑞𝑞′

𝑓𝑓=1

= {1, … ,𝑝𝑝}  and  𝑆𝑆𝑓𝑓 ∩ 𝑆𝑆𝑓𝑓′ = ∅   ∀𝑓𝑓 ≠ 𝑓𝑓′ 

Step 3. For the concurrency matrix in concurrency constraint, 𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣: Let Ω3 =

{𝑆𝑆ℎ:ℎ = 1, … , 𝑞𝑞′′} be a partition of the commodity indices {1,…, p} and define 𝑛𝑛ℎ =

|𝑆𝑆ℎ|. The partition satisfies 

𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣[: , 𝑙𝑙] = 𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣[: , 𝑙𝑙′]   ∀𝑙𝑙, 𝑙𝑙′ ∈ 𝑆𝑆ℎ  ∀ℎ 

�𝑆𝑆ℎ

𝑞𝑞′′

ℎ=1

= {1, … , 𝑝𝑝}  and  𝑆𝑆ℎ ∩ 𝑆𝑆ℎ′ = ∅   ∀ℎ ≠ ℎ′ 

Step 4. Find all intersection sets  

𝜁𝜁 = {𝑆𝑆𝜏𝜏: 𝜏𝜏 = 1, … ,𝑈𝑈|𝑆𝑆𝜏𝜏 ≠ ∅ and 𝑆𝑆𝜏𝜏 = 𝑆𝑆𝑘𝑘 ∩ 𝑆𝑆𝑓𝑓 ∩ 𝑆𝑆ℎ,∀𝑆𝑆𝑘𝑘 ∈ Ω1,∀𝑆𝑆𝑓𝑓 ∈ Ω2,∀𝑆𝑆ℎ ∈ Ω3} 

Step 5. Identify the packable commodities 
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Pseudo code (continued) 

If 𝜁𝜁 = ∅: 

Step 5.1. There are no packable commodities in this arc. Screen the next arc: 

Go to Step 1.  

Else: 

Step 5.2. Define the cardinality 𝑛𝑛𝜏𝜏 = |𝑆𝑆𝜏𝜏|. 

Step 5.3. Perform sorting in a descending order based on the cardinality for 

∀𝑆𝑆𝜏𝜏 ∈ 𝜁𝜁 and get a new set 𝜁𝜁.  

Step 5.4. Based on the predefined preference, define the number of package 

commodities as 𝑁𝑁 (𝑁𝑁 ≤ 𝑈𝑈), the packable commodity index set as 𝜁𝜁 = {𝑆𝑆𝜏𝜏: 𝜏𝜏 =

1, … ,𝑁𝑁|𝑆𝑆𝜏𝜏 ∈ 𝜁𝜁}. 

Step 6. Find the aggregation matrix for the mass balance constraint and time 

window constraint:  

Step 6.1. Get the number of commodities that will be packed: 𝐿𝐿 = ∑ |𝑆𝑆𝜏𝜏|𝑆𝑆𝜏𝜏∈𝜁𝜁� .  

Step 6.2. Get the number of variables after commodity packing: 𝐾𝐾 = 𝑁𝑁 + 𝑝𝑝 −

𝐿𝐿.  

Step 6.3. For this arc, define 𝐺𝐺 = [𝒈𝒈1𝑇𝑇 𝒈𝒈2𝑇𝑇 … 𝒈𝒈𝐾𝐾𝑇𝑇 ]𝑇𝑇, where each row of the 

aggregation matrix is a 1 × 𝑝𝑝 weighting vector, 𝒈𝒈𝑘𝑘𝑇𝑇, that satisfies 

For ∀𝑘𝑘 ∈ {1, … ,𝑁𝑁} (the first 𝑁𝑁 variables are package commodities): 

�𝒈𝒈𝑘𝑘
[𝑗𝑗] = 1   𝑖𝑖𝑖𝑖 𝑗𝑗 ∈ 𝑆𝑆𝑘𝑘

𝒈𝒈𝑘𝑘[𝑗𝑗] = 0   𝑖𝑖𝑖𝑖 𝑗𝑗 ∉ 𝑆𝑆𝑘𝑘
     𝑆𝑆𝑘𝑘 ∈ 𝜁𝜁  

For ∀𝑘𝑘 ∈ {𝑁𝑁 + 1, … ,𝐾𝐾} (the remaining variables are for commodities that 

are not packed): 

�𝒈𝒈𝑘𝑘
[𝑗𝑗] = 1   𝑖𝑖𝑖𝑖 𝑘𝑘 = 𝑁𝑁 + 𝑗𝑗 − 𝐿𝐿

𝒈𝒈𝑘𝑘[𝑗𝑗] = 0   𝑖𝑖𝑖𝑖 𝑘𝑘 ≠ 𝑁𝑁 + 𝑗𝑗 − 𝐿𝐿 

Step 7. Screen the next arc: Go to Step 1. 
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5.4 Case Study and Analysis 

 This section evaluates the performances of the proposed space infrastructure 

optimization formulations with a case study on a multi-mission human lunar exploration 

campaign, considering ISRU system designs. The mission scenario, including mission 

demand, spacecraft design, and ISRU architecture models, is first introduced in Sec. 5.4.1, 

and then Sec. 5.4.2 evaluates the performance of the formulations. Note that although this 

chapter introduces the formulations in the order of the prefixed, full-size, multi-fidelity 

formulations, the later analysis considers the full-size optimization formulation as the 

baseline and compares the other two formulations against it; this is because the full-size 

optimization is the most accurate and computationally costly one, and we are interested in 

the solution quality and the computational cost of the prefixed formulation (i.e., the upper-

bound formulation) and the multi-fidelity formulation (i.e., the lower-bound formulation). 

5.4.1 Mission Scenario 

 A simple scenario is considered as a case study where all formulations (including 

the full-size formulation) can complete their computation within a reasonable time. We 

consider a cis-lunar transportation system with Earth, low-Earth orbit (LEO), 

geosynchronous equatorial orbit (GEO), Earth-Moon Lagrangian point 1 (EML1), and the 

Moon. The five-node transportation network model and the spaceflight Δ𝑉𝑉  values are 

shown in Figure 28. Note that we do not consider the propellant cost from Earth to LEO 

(i.e., the Δ𝑉𝑉 is considered as zero); instead, Earth is assumed as the main supply node and 

the arc from Earth to LEO is convenient to calculate the space mission cost. Every year, 5 

astronauts fly to the Moon with habitat and equipment. These demands are considered as 

one type of general payload together with a crew cabin. The total mass of the crew cabin 
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and lunar equipment is assumed as 30,000 kg, which is estimated based on the Apollo 

mission [62]. The astronauts stay on the lunar surface for 120 days and then come back 

with lunar samples and materials. The total mass of crew cabin and lunar samples is 

assumed as 5,000 kg and they are delivered back to the Earth at the end of the mission. For 

this mission design, the optimizer needs to decide whether it requires ISRU systems to 

support the transportation, whether the system needs a propellant depot, and where we 

should deploy the depot (i.e., LEO, GEO, or EML1) if needed. We assume that a spacecraft 

can serve as a propellant depot if it stays at a node during the mission [35]. The mission 

demands and supplies are summarized in Table 14. Note that, the mission demands and 

supplies are defined at the same time step for each flight to minimize the number of time 

steps assigned for the transportation. 

 

Figure 28 - Cis-lunar transportation network model. 
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Table 14 - Lunar exploration demands and supplies. 

Payload Type Node Time, day Supply 

Go to the Moon 

ISRU, propellant & food, kg Earth All the time +∞ 

Crew cabin & equipment, kg Earth 240 +30,000 [62] 

Crew cabin & equipment, kg Moon 240 -30,000 [62] 
Back to Earth 

Crew cabin & lunar sample, kg Moon 360 +5,000 

Crew cabin & lunar sample, kg Earth 360 -5,000 

 We need spacecraft to deliver payloads from Earth to the Moon. To simplify the 

analysis, the spacecraft design is not considered as part of the trade space in space logistics 

optimization. Instead, two types of spacecraft with fixed design parameters are considered 

for space transportation. Spacecraft 1 is modeled based on the Advanced Cryogenic 

Evolved Stage (ACES) from United Launch Alliance [35]. It uses liquid hydrogen and 

liquid oxygen (LH2/LOX) as the propellant. The spacecraft structure mass is 5,917 kg and 

the propellant tank capacity is 68,040 kg [35]. Because of the implementation of long-

duration storage technologies in ACES propellant tanks, the LH2/LOX propellant boiloff 

rate is considered as zero during space transportation. Spacecraft 2 is modeled based on the 

lunar surface access module (LSAM) descent stage pressure-fed design from the green 

propellants study. The design parameters are found in the SpaceNet database [72]. It uses 

liquid methane and liquid oxygen (LCH4/LOX) as the propellant. The spacecraft design 

assumptions are listed in Table 15. For simplicity, we assume that both spacecraft can be 

used for all trajectories in the transportation network, including lunar landing and 

ascending. Also, they are considered as single-stage transportation vehicles, but they can 

be combined to form a larger transportation vehicle. 
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Table 15 - Spacecraft design parameters. 

Parameter Assumed value 

Spacecraft 1 
Propellant type LH2/LOX 

Propellant capacity, kg 68,040 [35] 
Structure mass, kg 5,917 [35] 

Propellant 𝐼𝐼𝑠𝑠𝑠𝑠, s 420 
Propellant component mass ratio 𝑂𝑂2:𝐻𝐻2=5.5:1 

Spacecraft 2 
Propellant type LCH4/LOX 

Propellant capacity, kg 40,737 [72] 
Structure mass, kg 6,560 [72] 

Propellant 𝐼𝐼𝑠𝑠𝑠𝑠, s 350 
Propellant component mass ratio 𝑂𝑂2:𝐶𝐶𝐶𝐶4=3.5:1 

 The ISRU infrastructure design model is another essential part of the space 

infrastructure optimization case study. For the lunar exploration campaign considered in 

this chapter, the ISRU architecture design models are listed in Table 16. These models are 

extrapolated from historical ISRU infrastructure design concept literature and prototypes 

by Chen et al. [73].  

 In Table 16, the reference product is used to size the ISRU subsystems. For reactors 

and excavators, the specific power and specific mass mean the power demand and the 

system mass needed to reach 1 kg/hr productivity of the reference product. For storage 

systems and power systems, the specific power and specific mass mean the necessary 

system size to store 1 kg resource, 1 kWh energy or to supply 1 kW power. The soil/water 

extraction process and the excavator are classified based on different soil types, soil @3% 

𝐻𝐻2𝑂𝑂 and soil @8% 𝐻𝐻2𝑂𝑂. Note that the regolith water concentration values assumed here 

are extrapolated from the literature relating to Martian surface soil [73]. They are used as 

example values only here. Because of the difference in lunar regolith composition, the 
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hydrogen reduction process also has different productivity in different regions. Moreover, 

according to the ISRU infrastructure design prototype, we assume that rigid solar 

concentrators provide thermal energy to the HR and CR reactors [28]. They are considered 

as part of the reactors. Therefore, the nominal power demands of the HR and CR reactors 

are zero. In this case, we only consider ISRU systems for 𝑂𝑂2 and 𝐻𝐻2 generation during the 

mission. It is up to the optimizer’s choice whether to use Spacecraft 1 and leverage ISRU 

systems or to use Spacecraft 2 and deliver all necessary propellant from Earth. 

 Besides the ISRU infrastructure sizing models, mission operation management is 

also critical to be considered in space logistics optimization. It includes rocket launch 

frequency, ISRU system maintenance [2, 17], power system working environment, 

degradation, and energy storage efficiencies [67, 74-77]. The mission operation 

assumptions are listed in Table 17. The rocket launch interval determines the frequency of 

mission operation. We define that the mission operation time windows are open for a few 

time steps after each rocket launch opportunity. When the mission operation time windows 

are closed, space flights are not permitted. The ISRU maintenance rate means that every 

year, the mass of maintenance spare demand is equivalent to 10% of the ISRU system total 

mass [2, 17]. 
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Table 16 - ISRU infrastructure design models. [73] 

System Chemistry 

reactions 

Reference 

product 

Specific 

power, kW 

Specific 

mass, kg 

Reactor 
Soil/Water extraction (SWE) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 → 𝐻𝐻2𝑂𝑂 𝐻𝐻2𝑂𝑂, kg/hr @3%: 13.7 

@8%: 7 
@3%: 357 
@8%: 195 

Direct water electrolysis (DWE) 2𝐻𝐻2𝑂𝑂
→ 2𝐻𝐻2 + 𝑂𝑂2 

𝑂𝑂2, kg/hr 5.83 83.3 

Molten regolith electrolysis (MRE) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 → 𝑂𝑂2 𝑂𝑂2, kg/hr 26.94 197.58 
Hydrogen reduction (HR) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐻𝐻2 → 𝐻𝐻2𝑂𝑂 𝐻𝐻2𝑂𝑂, kg/hr 0 @equator: 

228 
@pole: 482 

Carbothermal reduction (CR) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 2𝐶𝐶𝐶𝐶4
+ 2𝐻𝐻2
→ 2𝐶𝐶𝐶𝐶4 + 2𝐻𝐻2𝑂𝑂 

𝐻𝐻2𝑂𝑂, kg/hr 0 520.5 

Soil extraction system 
Excavator for soil @3% 𝐻𝐻2𝑂𝑂 — — Soil, kg/hr 0.004 0.38 
Excavator for soil @8% 𝐻𝐻2𝑂𝑂 — — Soil, kg/hr 0.027 23 

Storage system 
𝑂𝑂2 storage — — 𝑂𝑂2, kg 0.0088 5.15 
𝐻𝐻2 storage — — 𝐻𝐻2, kg 0.0267 3.33 
𝐻𝐻2𝑂𝑂 storage — — 𝐻𝐻2𝑂𝑂, kg 0 40 
𝐶𝐶𝐶𝐶4 storage — — 𝐶𝐶𝐶𝐶4, kg 0.0073 1.67 

Power system 
Photovoltaic (PV) power system — — Power, kW — — 6.8 (@ 1 AU) 
Energy storage system: battery — — Energy, kWh — — 4 
Energy storage system: fuel cell — — Energy, kWh — — 2 

Fission surface power system 
(FSPS) 

— — Power, kW — — 150 

Radioisotope power system (RPS) — — Power, kW — — 124 
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Table 17 - Mission operation parameters and assumptions. 

Parameter Assumed value 

Rocket launch interval, day 120 

ISRU maintenance, system mass/yr 10% [2, 17] 

Solar irradiance (@ 1 AU), kW/m2 1.36 [67] 

PV radiation degradation, /sol 0.014% [74] 

Battery charging efficiency 95% [75] 

Fuel cell energy efficiency 60% [76] 

RPS degradation rate, /yr 1.9% [77] 

 The problem is solved using the Gurobi 8.1 solver through Python on an i9-9900k, 

3.6GHz platform with 32GB RAM. The detailed analysis and discussion of this human 

lunar exploration campaign case study are shown in the next section. 

5.4.2 Comparison of Optimization Formulations 

 This section compares the solution and computational cost of the prefixed 

infrastructure optimization formulation (i.e., the upper-bound formulation), the full-size 

infrastructure optimization formulation (i.e., the baseline formulation), and the proposed 

multi-fidelity optimization formulation (i.e., the lower-bound formulation). We consider a 

lunar exploration campaign with multiple consecutive lunar missions, with a mission 

operation frequency of 120 days. The lunar landing area is in the equatorial region with 

lunar regolith @3% 𝐻𝐻2𝑂𝑂. The initial mass in low-Earth orbit (IMLEO) is used as the 

mission cost metric. It is a widely used mission cost measurement in past space logistics 

optimization literature [1, 2, 17]. As a baseline mission scenario, the FSPS is selected as 

the stationary power supply system on the lunar surface. The PV power system and energy 

storage system are considered as candidate power sources in space. 

 By fixing the number of human lunar missions to three and changing other mission 

scenario parameters, we can evaluate the performance of three optimization formulations 
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under different settings. The ISRU infrastructure design models shown in Table 16 are 

relatively conservative models. With the development of technology and material science, 

ISRU systems can have higher productivity and lower system structure mass. Table 18 

compares the infrastructure optimization formulation performances with respect to ISRU 

productivity. It shows the results when the ISRU productivities are 100%, 125%, and 150% 

of the original design models. The mission cost errors illustrate the mission cost difference 

of solutions with respect to the results of the baseline full-size optimization formulation.  

 In Table 18, we can find that multi-fidelity optimization can provide a very accurate 

approximation of the full-size formulation at a significant computational cost reduction. 

The computation time reduction was more than 60%, whereas the performance loss is 

within 2.5%. This is enabled by packing commodity variables and eliminating 

infrastructure subsystem tradeoffs during space flights. The (small) solution difference 

between the multi-fidelity and full-size formulations is caused by the inability of the multi-

fidelity formulation to distinguish different commodity types when they are packed 

together; for example, when two commodities are packed and then unpacked later on, we 

lose the information about the original mass ratio between these two commodities, which 

can lead to an overoptimistic solution.  

 On the other hand, the upper-bound solutions provided by the prefixed optimization 

formulation are much larger than optimal solutions. The physical meaning of the prefixed 

infrastructure optimization is that it ignores the infrastructure subsystem trade studies and 

their interactions with space mission planning. It considers the infrastructure as an 

integrated system. We can still size the infrastructure; however, the mass ratios between 

infrastructure subsystems are fixed in advance before considering space logistics. 

Therefore, it can provide an upper-bound, feasible solution, which is significantly larger 

than the optimal solution. It is also the fastest method among three infrastructure 
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optimization formulations because it has the least variables and constraints and explores 

the smallest design space. 

Table 18 - Comparison of formulation performances w.r.t. ISRU productivity. 

ISRU 

productivity 

index 

Optimization 

formulation 

Mission cost 

(IMLEO), kg 

Mission 

cost 

errors 

Computation 

time, s 

Computation 

time 

reduction 

100% 
(default) 

Prefixed 
(Upper 
Bound) 

565,622.9 33.7% 110.9 -89.6% 

Full-size 
(Baseline) 422,930.7 — — 1,062.3 — — 

Multi-fidelity 
(Lower 
Bound) 

414,393.7 -2.0% 92.5 -91.3% 

125% 

Prefixed 
(Upper 
Bound) 

528,563.7 33.6% 91.1 -92.0% 

Full-size 
(Baseline) 395,422.6 — — 1,135.7 — — 

Multi-fidelity 
(Lower 
Bound) 

394,302.7 -0.3% 301.9 -73.4% 

150% 

Prefixed 
(Upper 
Bound) 

513,612.6 37.1% 25.7 -95.7% 

Full-size 
(Baseline) 374,732.9 — — 592.2 — — 

Multi-fidelity 
(Lower 
Bound) 

366,229.3 -2.3% 246.8 -58.3% 

 

 We can vary the problem complexity by changing the number of human lunar 

missions or the rocket launch frequency. If we fix the ISRU productivity as normal and 
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increase the number of human lunar missions from 3 to 4 and 5, the mission planning 

results are shown in Table 19. It shows that the mission cost errors of the multi-fidelity 

optimization with respect to the full-size optimization are within 2%. Both the multi-

fidelity optimization and the prefixed optimization formulations are significantly faster 

than the full-size optimization formulation (i.e., >90% computation time reduction). 

Table 19 - Optimization formulation performance comparison. 

Number of 

human lunar 

missions 

Optimization 

formulation 

Mission cost 

(IMLEO), kg 

Mission 

cost 

errors 

Computation 

time, s 

Computation 

time 

reduction 

3 
(default) 

Prefixed 
(Upper 
Bound) 

565,622.9 33.7% 110.9 -89.6% 

Full-size 
(Baseline) 422,930.7 — — 1,062.3 — — 

Multi-fidelity 
(Lower 
Bound) 

414,393.7 -2.0% 92.5 -91.3% 

4 

Prefixed 
(Upper 
Bound) 

671,716.3 31.3% 321.3 -96.7% 

Full-size 
(Baseline) 511,476.6 — — 9,607.4 — — 

Multi-fidelity 
(Lower 
Bound) 

509,792.9 -0.3% 439.8 -95.4% 

5 

Prefixed 
(Upper 
Bound) 

774,626.1 29.7% 693.8 -98.4% 

Full-size 
(Baseline) 597,300.8 — — 42,675.8 — — 

Multi-fidelity 
(Lower 
Bound) 

596,347.8 -0.2% 2,074. 1 -95.1% 
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 We can also fix the number of human lunar missions to three and the ISRU 

productivity as normal, then change the launch frequency to evaluate its impact on ISRU 

infrastructure design, especially the storage system design. As there is a 120-day long 

human lunar exploration at the end of each year, the human lunar mission begins on day 

240 in each year. By varying the rocket launch frequency interval to 60, 120 (default), or 

240 days, there are 3, 1, or 0 extra cargo mission opportunities before each human lunar 

mission. The formulation performance comparison under different launch frequencies is 

shown in Table 20.  

 Table 20 shows that the performance of the multi-fidelity optimization formulation 

is stable. The mission cost errors are always within 2% compared with the optimal solutions 

from the full-size optimization formulation. If we observe the computation times in Table 

19 and Table 20, we can analyze a general trend in the computational time saving by the 

multi-fidelity formulation. In Table 19, as the number of human lunar missions increases, 

the computation time reduction of the multi-fidelity formulation increases slightly from 

91% to 95%. In Table 20, as the rocket launch opportunity interval decreases (i.e., from 

240 to 60), the time steps considered in the optimization increase significantly, and the 

computation time reduction of the multi-fidelity formulation increases from 70% to more 

than 95%. These observations show that the proposed multi-fidelity optimization 

formulation achieves a large computational time saving compared with the full-size 

formulation for complex space mission design problems. 
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Table 20 - Comparison of formulation performances w.r.t. the launch frequency. 

Launch 

frequency, day 

Optimization 

formulation 

Mission cost 

(IMLEO), kg 

Mission 

cost 

errors 

Computation 

time, s 

Computation 

time 

reduction 

240 

Prefixed 
(Upper 
Bound) 

697,800.9 65.0% 7.1 -94.8% 

Full-size 
(Baseline) 422,930.7 — — 135.9 — — 

Multi-fidelity 
(Lower 
Bound) 

414,393.7 -2.0% 39.9 -70.6% 

120 

(default) 

Prefixed 
(Upper 
Bound) 

565,622.9 33.7% 110.9 -89.6% 

Full-size 
(Baseline) 422,930.7 — — 1,062.3 — — 

Multi-fidelity 
(Lower 
Bound) 

414,393.7 -2.0% 92.5 -91.3% 

60 

Prefixed 
(Upper 
Bound) 

480,705.3 13.7% 604.9 -98.2% 

Full-size 
(Baseline) 422,926.5 — — 33,383.0 — — 

Multi-fidelity 
(Lower 
Bound) 

414,388.1 -2.0% 1,581.9 -95.3% 

 

 Moreover, the results also show that the launch frequency and the sizing of 

infrastructure storage systems need to be considered concurrently to find the optimal 

infrastructure design. With a higher launch frequency, a smaller storage system is needed 

because resources produced by the infrastructure can be delivered to other destinations 
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through spacecraft when mission time windows are open. Keeping this intuition in mind, 

the storage system design in the prefixed optimization formulation is pre-set to be able to 

store the exact amount of resources produced between two mission time windows. For 

example, if the launch frequency is 240 days, then the storage system in the prefixed 

optimization formulation is exactly able to store the resources produced in 240 days. In 

Table 20, the mission cost results by the full-size and the multi-fidelity optimization 

formulations show that the launch frequency has a limited influence on mission costs for 

this mission scenario. However, the mission cost from the prefixed optimization 

formulation decreases significantly as the launch frequency increases, which leads to a 

decrease in infrastructure storage system size. This result shows that this mission scenario 

may prefer small infrastructure storage systems.  

 To confirm this hypothesis, we conduct a sensitivity analysis on the ISRU storage 

system sizing under the default launch frequency (i.e., 120 days). The results are shown in 

Table 21. We find that as we decrease the storage system size, the mission costs obtained 

through the prefixed optimization formulation decrease dramatically until the storage 

system is too small to make the mission feasible. Note that our full-size formulation’s 

solution is still much better than any of the prefixed formulations tested here. This result 

shows that our proposed interdisciplinary space infrastructure optimization methods can 

optimize the ISRU storage size as well as any other ISRU subsystems by concurrently 

capturing the detailed interactions between each infrastructure subsystem and space 

transportation mission planning in an optimal way. The optimal subsystem designs cannot 

be achieved by considering space infrastructure design independently in advance and 

treating it as a black box in space logistics. 
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Table 21 - Sensitivity analysis of ISRU storage system sizing. 

Optimization 

formulation 

ISRU 

storage 

system size 

Mission cost 

(IMLEO), kg 

Mission 

cost 

errors 

Computation 

time, s 

Computation 

time 

reduction 

Prefixed 
(Upper Bound) 

100% 565,622.9 33.7% 110.9 -89.6% 
80% 524,412.9 24.0% 41.5 -96.1% 
60% 494,243.2 16.9% 37.2 -96.5% 
40% 467,241.3 10.5% 59.4 -94.4% 
20% 444,414.1 5.1% 151.2 -85.8% 
0% infeasible — — — — — — 

Full-size 
(Baseline) — — 422,930.7 — — 1,062.3 — — 

Multi-fidelity 
(Lower Bound) — — 414,393.7 -2.0% 92.5 -91.3% 

 

5.5 Chapter Summary 

 This chapter proposes a system-level space infrastructure and logistics mission 

design optimization framework to perform architecture trade studies. A new space 

infrastructure logistics optimization problem formulation is proposed that considers 

infrastructure subsystems’ internal interactions and their external synergistic effects with 

space logistics simultaneously. A natural implementation of this formulation is referred to 

as the full-size formulation, which explores a larger trade space and thus provides the same 

or a better (i.e., lower-cost) solution than the prefixed formulation. However, the inherent 

limitation of this full-size formulation is its prohibitive computational cost for complex 

systems. In response to this challenge, another new multi-fidelity optimization formulation 

is developed by varying the granularity of the commodity type definition over the network 

graph. The developed multi-fidelity formulation can find an approximation lower-bound 
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solution to the full-size problem computationally efficiently with little sacrifice in the 

solution quality.  

 A multi-mission human lunar exploration campaign case study shows the consistent 

improvement of the multi-fidelity optimization formulation in computational efficiency. 

For the tested cases, the multi-fidelity optimization formulation found solutions that are 

within 2-3% of those of the full-size optimization formulation with a significant 

computational time reduction (>90% for the majority of the tested cases). The sensitivity 

analysis of launch frequency demonstrates the value of the proposed interdisciplinary 

infrastructure optimization method. 
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CHAPTER 6. FLEXIBILITY MANAGEMENT VIA DECISION 

RULES 

 The space logistics mission planning frameworks proposed in Chapters 3, 4, and 5 

mainly focus on the transportation operation and system performance under deterministic 

environments.  These methods tend to give overly optimistic designs and bias anticipated 

mission performances under stochastics mission operation environments. To handle this 

issue, this chapter proposes a flexibility management framework for space logistics 

leveraging decision rules and multi-stage stochastic programming. In this research, 

decision rules are formulated focusing on the uncertainties of rocket launch delays. 

However, the proposed decision rule formulation can also be easily extended to integrate 

with other space logistics optimization methods and handling different types of uncertainty 

sources. A case study on crewed space station resupply missions is established to 

demonstrate how flexible space mission designs achieve greater mission performance 

under uncertainty as compared to mission concepts developed under deterministic 

assumptions. 

 The remainder of this chapter is organized as follows. Section 6.1 first introduces 

the problem setting and proposes the formulation of decision rules for space logistics 

mission planning problems. The performance of the proposed flexibility management 

framework is then demonstrated in Sec. 6.2 through a space station resupply mission 

example. Finally, Sec. 6.3 concludes the chapter.  

6.1 Methodology 

6.1.1 Problem Setting 



 132 

 In this chapter, we consider a problem of space logistics mission planning under 

uncertain rocket launch delay. The logistics requirement is to support persistent scientific 

missions/experiments on space stations by regular rocket launches. However, the rocket 

launch may delay, which would impact the operation of space missions. We assume that 

the space missions/experiments to be supplied are time-sensitive so that the supply shortage 

influences the operating time of these missions within the planned mission period. The 

total length of the mission period is fixed regardless of the launch delay, which means the 

mission duration cannot be extended even if it is temporarily paused due to the shortage of 

scientific instruments and maintenance spares. Thus, a temporary supply shortage reduces 

the time that astronauts can spend on the experiments or maintenance, resulting in less 

available operating time to support the mission performance. Note that this assumption is 

not always true for any space missions. For space missions with a specific time window, 

the mission can be non-extendable; whereas some space experiments may be extended with 

no or little penalty, such as educational activities. In reality, the penalty may also be in the 

format of extra cost instead of the operating time loss. In this chapter, we presume this 

assumption to simplify the analysis process of the mission planning and the structure of 

decision rules. 

 To mitigate such operating time loss, we can launch more supplies in earlier 

launches and maintain them as safety stocks for later missions. These safety stocks are 

buffers to temporarily support space activities. Launching more safety stocks can decrease 

the operating time loss but increase mission costs in earlier space missions. Therefore, the 

decision maker's goal is a tradeoff between the mission cost and performance (i.e., 

operating time loss)1. The amount of safety stock for each rocket launch is the outcome of 

decisions. Note that the focus of this research is on the scientific experiment cost and 

 
1 Crew time also has been used as a metric of space missions in some previous literature such as SpaceNet 

[15].  
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performance; the crew consumables or other mandatory supplies are assumed to be 

sufficiently stocked on the stations and thus are not considered as part of the tradeoff. 

 

Figure 29 - How delay and safety stock influence space missions (an example). 

 Figure 29 shows one example of how the rocket launch delay and safety stock 

influence space missions in our problem. Consider a case where there is a rocket launch 

every 100 days to ISS. For this example, we assume ISS needs materials to support an in-

space experiment that is consumed at a rate of 1 kg/day. If all supply missions are launched 

as planned, each rocket will deliver 100 kg of material to ISS, which is enough to support 

a 100-day duration space mission. If there is a 50-day delay in the second and the third 

launches as shown in Figure 29, we only need to launch 50 kg of material to support the 

rest space experiment in each launch. However, because of the shortage of material on ISS, 

the space experiment is paused during the 50-day delays. If there is no safety stock on ISS, 

two 50-day delays result in the suspension of the space experiment for 100 days due to the 

lack of supply. Our space mission is still terminated on the originally scheduled end date. 

As a result, the actual time for the experiment, which is originally planned as 300 days 

long, only runs for 200 days because of the shortage of materials. This results in 100 days 

of operating time loss due to the crew not having the material available to run the science 

experiment for the full 300 days duration. If we launched more material in the first and the 

second rocket launches, the safety stock can partially support the space experiments and 

decrease the operating time loss when a rocket launch delay occurs in subsequent missions. 
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However, the mission costs for the first and the second rocket launch increase to launch 

these additional safety stock materials. 

6.1.2 Scenario Generation Model 

 The scenario generation model provides launch dates for the cargo and crew to 

support mission requirements as uncertainty inputs. The launch delay model is prescribed 

as a continuous cumulative probability function created from available data. To limit the 

number of possible mission outcomes to a computationally manageable number, we 

perform inverse transform sampling to generate uncertainty mission scenarios based on the 

continuous launch delay probability function. In the later case study, we consider the case 

where each launch delay is independent, but the approach can be applied to dependent 

launch delays as well. Because we conduct a random sampling method, the probability of 

realization for each possible outcome is equivalent. If there are 𝑛𝑛 scenarios in total, then 

the probability is 1/𝑛𝑛 for each mission scenario. 

6.1.3 Flexibility Management Background and Overview 

 To manage space mission operations under complex uncertain mission scenarios, 

we need to incorporate uncertainty mitigation methods in space logistics optimization. 

Multiple analytical tools have been introduced in past literature to deal with uncertainties 

in engineering fields, such as the backward induction and dynamic programming by 

Buurman et al. [78], the optimization-based hybrid real options analysis by Jiao [79], and 

the simulation-based decision analysis by de Neufville et al. [80]. However, these methods 

provide decisions as outcomes of the model. There is no general decision strategy for 

managers to follow when a different scenario appears throughout the system life cycle. On 

the other hand, the decision rule, also called implementable policy, maps the observations 

of uncertainty data to the decisions. Cardin et al. [51] showed that for a highly structured 
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problem, optimization based on decision rules can provide a good approximation of 

optimal solution that is typically found by real option analysis techniques, while the 

solutions of decision rule were more practical and intuitive for decision-makers to use in 

practical applications. Numerical experiments on waste-to-energy systems in past literature 

showed that decision rules-based methods can find a very close solution to traditional 

uncertainty analysis methods with a significantly reduced computational time required 

[51]. These results also showed that decision rules are suitable to analyze complex systems 

with multiple sources of uncertainties. Multiple decision strategies can also be considered 

concurrently.  

 The decision rule is a gradient-free direct policy search method. Compared with the 

value-based method in reinforcement learning, direct policy search solves the problem by 

searching the policy space directly without the value estimation of states or state-action 

pairs. For certain problems, including the space logistics problem considered in this 

research, where we have a clear idea about what the nature of policy representations might 

look like, constructing good policies is often easier than modeling good state functions. 

Another benefit of the decision rule method is that it does not rely on gradient information. 

It can be explicitly integrated with the space logistics mission planning framework through 

mixed-integer linear programming, where a global optimum can be achieved. Compared 

with other stochastic sequential decision-making approaches, considering uncertainties via 

decision rules also avoids the dramatic increase of computational complexity. 

 There are multiple types of decision rules that are suitable for different uncertainty 

problems. Four classes of decision rules were identified and studied by Garstka and Wets 

via case examples [81], including zero-order, linear, safety-first, and conditional-go 

decision rules. A detailed introduction about decision rules is provided in Ref. [51] and 

[81]. The conditional-go decision rule has been used in generation expansion planning 

problems [82]; whereas the linear decision rule has been used in electrical reserve operation 
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problems [83]. In this research, we focus on the uncertainty from rocket launch delays, 

which is contrary to traditional uncertainty in other engineering fields [51, 81-83]. When a 

rocket launch delay occurs, we have already missed the opportunity to respond to this 

situation. We have to make decisions in previous launches to counter the uncertainty before 

we observe the delay.  

 To identify the influence of launch delay on mission objectives and determine the 

amount of safety stock for each launch, the decision rule in rocket launch delay problems 

is formulated based on a combination of the conditional-go decision rule and the linear 

decision rule through integer programming (IP). The amount of safety stock is the decision 

variable. The conditional-go decision rule identifies whether previous safety stock on board 

is enough to counter the launch delay and the penalty of launch delay to the mission 

performance. The linear decision rule finds the additional supply needed to be launched in 

the upcoming mission. The developed decision rule can also be used in other uncertainties 

in space logistics problems, such as spacecraft flight or docking delay and demand change 

in space missions. 

 To balance mission cost and mission performance for flexibility management, we 

consider a multi-objective optimization solved through the weighted sum method. The 

initial mass in low-Earth orbit (IMLEO) and crew operating time loss are used as the 

metrics for mission cost and mission performance. IMLEO is widely used as a space 

logistics mission cost metric in previous studies, such as space logistics mission planning 

frameworks [1, 2, 17] and the Mars mission design reference architecture by NASA [65]. 

The crew operating time loss, as discussed earlier, is used to represent space mission 

performance. More specifically, the operating time loss is calculated as the summation of 

the crew time loss for each commodity, representing its dependence on both the length of 

launch delays and the crew time task assignment. For example, astronauts may spend a 

different length of time on scientific experiments and maintenance. The consumption rate 
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of scientific instruments and maintenance spares may also be different. Therefore, for the 

same length of supply shortage, the lack of scientific instruments or maintenance spares 

can cause different lengths of operating time loss. 

 The flexibility management framework can be expressed as the following 

optimization problem.  

Minimize: 

 � 𝑞𝑞𝜉𝜉𝒥𝒥𝜉𝜉�𝒙𝒙𝜉𝜉�
𝜉𝜉∈𝒦𝒦

+ 𝜑𝜑� 𝑞𝑞𝜉𝜉𝒵𝒵𝜉𝜉(𝑹𝑹
𝜉𝜉∈𝒦𝒦

) (77) 

Subject to: 

 𝑓𝑓(𝒙𝒙𝜉𝜉 ,𝑹𝑹,𝒚𝒚) ≤ 0 (78) 

 𝑔𝑔�𝒙𝒙𝜉𝜉 ,𝑹𝑹,𝒚𝒚� = 0 (79) 

where 𝒥𝒥𝜉𝜉  is the mission cost function for mission scenario 𝜉𝜉  from the space logistics 

problem; 𝒵𝒵𝜉𝜉 represents the operating time loss for mission scenario 𝜉𝜉 due to the lack of 

supplies determined from the decision rule formulation. The decision variables 𝒙𝒙𝜉𝜉 and 𝑹𝑹 

denotes the space transportation commodity flow and the safety stock for space logistics 

and decision rule, respectively. Note that 𝒙𝒙𝜉𝜉 and 𝑹𝑹 are dependent on each other through 

the constraints, and so need to be optimized concurrently. In the constraints, 𝒚𝒚 represents 

other variables in mission planning that do not directly impact the value of objectives. In 

this problem, the mission cost 𝒥𝒥𝜉𝜉 , space logistics decision variable 𝒙𝒙𝜉𝜉, and the mission 

performance 𝒵𝒵𝜉𝜉 all depend on the mission scenario 𝜉𝜉, while the decision rule variable 𝑹𝑹 is 

independent of mission scenarios as it is a general implementable policy that can be applied 
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to any scenario. We define a mission scenario set 𝒦𝒦, then the probability for each scenario 

is 𝑞𝑞𝜉𝜉 = 1 ‖𝒦𝒦‖⁄ . 

 In equation 77, 𝜑𝜑  is the weighting coefficient to determine how important the 

mission performance is compared with the mission cost. If 𝜑𝜑 is infinity, decision-makers 

will prepare for the worse scenario, where safety stock levels reach maximum for each 

launch. By changing the weighting coefficient 𝜑𝜑, we can get Pareto front solutions between 

the expected IMLEO 𝒥𝒥  and the expected operating time loss 𝒵𝒵  based on different 

strategies. Note that we claim the solutions as the Pareto front since all the decision rule 

solutions obtained by the weighted sum method are all on the Pareto-optimal front. 

However, the weighted sum method cannot guarantee to find all Pareto-optimal solutions, 

particularly in the case of a nonconvex objective space. We use the weighted sum method 

because the objective function keeps linear that guarantees a global optimum of the 

optimization. Moreover, it also avoids extra constraints to ensure computational efficiency. 

The constraints equations 78 and 79 are general constraint expressions for space logistics 

and decision rules that will be introduced in detail in the following sections. 

 In the following sections, we first introduce the space logistics optimization model 

to calculate 𝒥𝒥  based on mission demands and decision rules. Then, we introduce the 

proposed decision rule method to determine 𝒵𝒵 based on the stochastic mission operation 

environment. Finally, we integrate decision rules into space logistics mission planning 

through the optimization problem equation 77 and establish the flexibility management 

framework. 

6.1.4 Mission Cost Evaluation through Space Logistics 

 This section introduces the space logistics model to calculate the mission cost (i.e., 

IMLEO) 𝒥𝒥 . The space logistics section in the flexibility management framework is 
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developed based on network-based multi-commodity flow models as introduced in 

Chapters 3, 4, and 5. In this chapter, we follow the same definitions of notations in the 

space logistics optimization formulation. In addition, we also need to define a set of 

scenarios 𝒦𝒦 (index 𝜉𝜉), where each scenario 𝜉𝜉 has a probability of 𝑞𝑞𝜉𝜉  (i.e., ∑ 𝑞𝑞𝜉𝜉𝜉𝜉∈𝒦𝒦 = 1) to 

occur. The decision variable for space logistics optimization is the commodity flow 

variable 𝒙𝒙𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉, representing the commodity flow from node 𝑖𝑖 to node 𝑗𝑗 using spacecraft 𝑣𝑣 

at time 𝑡𝑡  in the scenario 𝜉𝜉 . For each scenario 𝜉𝜉 , we need a demand parameter 𝒅𝒅𝜉𝜉𝜉𝜉𝜉𝜉 , 

representing demands or supplies of different commodities in node 𝑖𝑖 at time 𝑡𝑡.  

 Besides the pre-planned mission demands and supplies defined in 𝒅𝒅𝜉𝜉𝜉𝜉𝜉𝜉 , we also 

need another demand variable 𝒖𝒖𝜉𝜉𝜉𝜉𝜉𝜉, representing additional commodities required to be 

delivered to maintain the level of required safety stocks for each rocket launch. It is an 

interface variable to connect space logistics optimization and decision rules. The value of 

this variable is positive only at the node of space stations. We define a subset of the node 

set 𝒩𝒩 for space stations, 𝒩𝒩� . Therefore, we have 

𝒖𝒖𝜉𝜉𝜉𝜉𝜉𝜉 = �
𝟎𝟎𝑝𝑝×1 if 𝑖𝑖 ∈ 𝒩𝒩\𝒩𝒩�
𝒖𝒖𝜉𝜉𝜉𝜉𝜉𝜉, otherwise   

where the value of 𝒖𝒖𝜉𝜉𝜉𝜉𝜉𝜉, when 𝑖𝑖 ∈ 𝒩𝒩� , is determined by the decision rule for each space 

station. 

Then, the formulation for space logistics optimization under uncertainties is shown 

as follows. 

Minimize: 

 � 𝑞𝑞𝜉𝜉𝒥𝒥𝜉𝜉
𝜉𝜉∈𝒦𝒦

= � 𝑞𝑞𝜉𝜉(� � 𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑇𝑇𝒙𝒙𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉
(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜𝑡𝑡∈𝒯𝒯

)
𝜉𝜉∈𝒦𝒦

 (80) 
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Subject to: 

 � 𝒙𝒙𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉
(𝑣𝑣,𝑗𝑗):(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜

− � 𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝒙𝒙𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉�𝑡𝑡−∆𝑡𝑡𝑗𝑗𝑗𝑗�
(𝑣𝑣,𝑗𝑗):(𝑣𝑣,𝑗𝑗,𝑖𝑖)∈𝒜𝒜

≤ 𝒅𝒅𝜉𝜉𝜉𝜉𝜉𝜉 − 𝒖𝒖𝜉𝜉𝑖𝑖𝑡𝑡     ∀𝑖𝑖 ∈ 𝒩𝒩  ∀𝑡𝑡

∈ 𝒯𝒯  ∀𝜉𝜉 ∈ 𝒦𝒦 

(81) 

 𝐻𝐻𝑣𝑣𝑣𝑣𝑣𝑣𝒙𝒙𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉 ≤ 𝟎𝟎𝑙𝑙×1    ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜  ∀𝑡𝑡 ∈ 𝒯𝒯  ∀𝜉𝜉 ∈ 𝒦𝒦 (82) 

 
�
𝒙𝒙𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉 ≥ 𝟎𝟎𝑝𝑝×1   if 𝑡𝑡 ∈ 𝑊𝑊𝜉𝜉𝜉𝜉𝜉𝜉
𝒙𝒙𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉 = 𝟎𝟎𝑝𝑝×1   otherwise     ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜  ∀𝑡𝑡 ∈ 𝒯𝒯  ∀𝜉𝜉 ∈ 𝒦𝒦 

(83) 

𝒙𝒙𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉 ∈ ℝ≥0
𝑝𝑝×1    ∀(𝑣𝑣, 𝑖𝑖, 𝑗𝑗) ∈ 𝒜𝒜  ∀𝑡𝑡 ∈ 𝒯𝒯  ∀𝜉𝜉 ∈ 𝒦𝒦 

In this formulation, equation 80 is the objective function, which calculates the 

expected mission cost, where 𝑞𝑞𝜉𝜉 = 1 ‖𝒦𝒦‖⁄ . When evaluating the expected IMLEO, the 

cost coefficients for the launch arcs are set as one, while the rest are set as zero. Equation 

81 is the mass balance constraint that limits commodity flows to satisfy the demands. The 

second term 𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝒙𝒙𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉�𝑡𝑡−∆𝑡𝑡𝑗𝑗𝑗𝑗�  represents commodity transformations during space 

transportation and space mission operations, including propellant burning, crew 

consumables, and resource generations by space infrastructures. The additional supply 𝒖𝒖𝜉𝜉𝜉𝜉𝜉𝜉 

is the interface variable connecting space logistics and decision rules. Equation 82 is the 

spacecraft concurrency constraint, which defines the upper bound of commodity flows 

limited by the spacecraft propellant capacity and the payload capacity. 𝑙𝑙 is the number of 

concurrency constraints considered in mission planning. Equation 83 is the time window 

constraint defined by the time window vector 𝑊𝑊𝜉𝜉𝜉𝜉𝜉𝜉. 

6.1.5 Operating Time Loss Evaluation through Decision Rules 
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 This section introduces the decision rule method to determine the mission 

performance metric (i.e., crew operating time loss) 𝒵𝒵 . For a flexibility management 

problem for multiple space stations, decision rules need to be established independently 

for each space station. For simplicity, in this section, we only show the decision rule 

formulation for one space station. The decision rules for multiple space stations and the 

combination with space logistics will be discussed in the next section. Thus, we omit the 

node index in the additional supply variable and rewrite it as 𝒖𝒖𝜉𝜉𝜉𝜉. 

 For a space station, we define a set of rocket launches ℒ (index 𝜃𝜃). The safety stock, 

denoted by 𝑹𝑹𝜃𝜃 for the rocket launch 𝜃𝜃, is the decision rule variable to be optimized. The 

decision rule can be expressed as “launch up to 𝑹𝑹𝜃𝜃 kg safety stock in rocket launch 𝜃𝜃 −

1”. After observing the delay in rocket launch 𝜃𝜃 − 1, when the system is available to launch 

a rocket again, decision-makers prepare safety stock for the next mission. Now, since 

launch delay 𝜃𝜃 − 1 has already occurred, decision-makers know the amount of remaining 

stock 𝑩𝑩𝜉𝜉(𝜃𝜃−1) at the destination, where 𝜉𝜉 is the index of uncertainty scenario. Based on the 

decision rule variable 𝑹𝑹𝜃𝜃, which is the safety stock we have to maintain for launch 𝜃𝜃, we 

can determine the additional supply 𝒖𝒖𝜉𝜉𝜉𝜉  that should be launched in addition to the 

necessary mission demand in launch 𝜃𝜃 − 1, which is 𝑹𝑹𝜃𝜃 − 𝑩𝑩𝜉𝜉(𝜃𝜃−1). However, there is a 

possibility that the remaining stock 𝑩𝑩𝜉𝜉(𝜃𝜃−1) is larger than 𝑹𝑹𝜃𝜃, where no additional supply 

is needed. Therefore, the expression of additional supply is 𝒖𝒖𝜉𝜉𝜉𝜉 = max (𝑹𝑹𝜃𝜃 −

𝑩𝑩𝜉𝜉(𝜃𝜃−1),𝟎𝟎𝑝𝑝×1), where 𝑡𝑡 is the time index in space mission planning formulation. This 

expression works when 𝑡𝑡 is the time step at which launch 𝜃𝜃 − 1 happens. Then, for each 

mission scenario 𝜉𝜉, we know the available safety stock prepared for launch 𝜃𝜃, defined as 

𝒓𝒓𝜉𝜉𝜉𝜉 = max (𝑹𝑹𝜃𝜃,𝑩𝑩𝜉𝜉(𝜃𝜃−1)) . The available safety stock 𝒓𝒓𝜉𝜉𝜉𝜉  can also be written as 𝒓𝒓𝜉𝜉𝜉𝜉 =

𝒖𝒖𝜉𝜉𝜉𝜉 + 𝑩𝑩𝜉𝜉(𝜃𝜃−1). Based on the available safety stock for each scenario 𝜉𝜉, we can calculate 

the length of the supply shortage 𝒉𝒉𝜉𝜉𝜉𝜉 for each launch delay, in the unit of days. In this 
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research, we measure mission performance through the total operating time loss 𝒵𝒵, which 

can be then calculated based on 𝒉𝒉𝜉𝜉𝜉𝜉. The optimization framework eventually outputs 𝑹𝑹𝜃𝜃 

as the decision rule result. Decision-makers can make decisions directly and immediately 

after a launch delay occurs based on the value of 𝑹𝑹𝜃𝜃. 

 Besides the aforementioned notations, we also need to define the following 

parameters for the decision rule formulation. 

 𝒄𝒄′′ = operating time loss weighting coefficient for different commodities. 

 𝐷𝐷𝜉𝜉𝜉𝜉 = length of the launch delay, days. 

 𝜼𝜼 = commodity consumption rate, kg/day. 

 𝝍𝝍 = commodity shortage penalty. 

 Then, the decision rule optimization can be formulated as follows. 

Minimize: 

 � 𝑞𝑞𝜉𝜉𝒵𝒵𝜉𝜉
𝜉𝜉∈𝒦𝒦

= � 𝑞𝑞𝜉𝜉� 𝒄𝒄′′𝑇𝑇𝒉𝒉𝜉𝜉𝜉𝜉
𝜃𝜃∈ℒ𝜉𝜉∈𝒦𝒦

 (84) 

Subject to: 

 
�
𝒖𝒖𝜉𝜉𝜉𝜉 = max (𝑹𝑹𝜃𝜃 − 𝑩𝑩𝜉𝜉(𝜃𝜃−1),𝟎𝟎𝑝𝑝×1)   𝑖𝑖𝑖𝑖 𝑡𝑡 = 𝜁𝜁(𝜃𝜃 − 1)

𝒖𝒖𝜉𝜉𝜉𝜉 = 𝟎𝟎𝑝𝑝×1   otherwise      ∀𝑡𝑡 ∈ 𝒯𝒯   ∀𝜃𝜃 ∈ ℒ  ∀𝜉𝜉 ∈ 𝒦𝒦 
(85) 

 𝒉𝒉𝜉𝜉𝜉𝜉 = max (�𝐷𝐷𝜉𝜉𝜉𝜉𝟏𝟏𝑝𝑝×1 − (𝒖𝒖𝜉𝜉𝜉𝜉 + 𝑩𝑩𝜉𝜉(𝜃𝜃−1)) ⊘𝜼𝜼� ∘ 𝝍𝝍,𝟎𝟎𝑝𝑝×1)      ∀𝜃𝜃 ∈ ℒ   ∀𝑡𝑡

= 𝜁𝜁(𝜃𝜃 − 1)   ∀𝜉𝜉 ∈ 𝒦𝒦 

(86) 
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 𝑩𝑩𝜉𝜉𝜉𝜉 = max((𝒖𝒖𝜉𝜉𝜉𝜉 + 𝑩𝑩𝜉𝜉(𝜃𝜃−1)) − 𝐷𝐷𝜉𝜉𝜉𝜉𝜼𝜼,𝟎𝟎𝑝𝑝×1)      ∀𝜃𝜃 ∈ ℒ  ∀𝑡𝑡 = 𝜁𝜁(𝜃𝜃 − 1)   ∀𝜉𝜉 ∈ 𝒦𝒦 (87) 

𝑹𝑹𝜃𝜃,𝒖𝒖𝜉𝜉𝜉𝜉,𝒉𝒉𝜉𝜉𝜉𝜉 ,𝑩𝑩𝜉𝜉𝜉𝜉 ∈ ℝ≥0
𝑝𝑝×1    ∀𝜃𝜃 ∈ ℒ  ∀𝜉𝜉 ∈ 𝒦𝒦 

 Equation 84 is the objective function, which calculates the expected operating time 

loss, where 𝑞𝑞𝜉𝜉 = 1 ‖𝒦𝒦‖⁄ . Equation 85 determines the value of the interface variable 𝒖𝒖𝜉𝜉𝜉𝜉. 

It connects the additional supply 𝒖𝒖𝜉𝜉𝜉𝜉  in launch 𝜃𝜃 and the remaining stock 𝑩𝑩𝜉𝜉(𝜃𝜃−1) after 

launch 𝜃𝜃 − 1 with the expected safety stock 𝑹𝑹𝜃𝜃 for mission 𝜃𝜃. 𝑡𝑡 = 𝜁𝜁(𝜃𝜃 − 1) is the rocket 

launch time index function, which outputs the time step of each rocket launch. This 

function converts the time index 𝑡𝑡 in the space logistics formulation into the rocket launch 

index 𝜃𝜃 in the decision rule section. Equation 86 calculates the operating time loss because 

of the shortage of certain commodities. Note that, ⊘ and ∘ are Hadamard operators. They 

are the division and product of each element with the same indices between two matrices. 

These two matrices should have the same dimension. If the safety stock is sufficient to 

support the space mission during delays, 𝐷𝐷𝜉𝜉𝜉𝜉𝟏𝟏𝑝𝑝×1 − (𝒖𝒖𝜉𝜉𝜉𝜉 + 𝑩𝑩𝜉𝜉(𝜃𝜃−1)) ⊘𝜼𝜼  is negative, 

which then enforces the operating time loss to be zero. Equation 87 calculates the level of 

remaining stock. If the safety stock is not sufficient to support a launch delay, the remaining 

supplies 𝑩𝑩𝜉𝜉𝜉𝜉 are zeros. But if there are enough available safety stock 𝒓𝒓𝜉𝜉𝜉𝜉 = 𝒖𝒖𝜉𝜉𝜉𝜉 + 𝑩𝑩𝜉𝜉(𝜃𝜃−1) 

to support the mission during a launch delay, there are some remaining supplies after this 

delay. The remaining commodities become part of the safety stock for the next launch. 

 Note that, even though the constraints in the above decision rule optimization 

formulation are all equality constraints, they are all nonlinear functions. To solve this 

problem effectively, we can linearize the constraints by introducing two binary variable 

vectors 𝝁𝝁1,𝜉𝜉𝜉𝜉 and 𝝁𝝁2,𝜉𝜉𝜉𝜉 to represent whether there is enough safety stock to support the 

mission operation and whether additional supplies are needed for a specific rocket launch 

mission, respectively. 
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𝝁𝝁1,𝜉𝜉𝜉𝜉 = �
0  if  𝐷𝐷𝜉𝜉𝜉𝜉 ≤ (𝒖𝒖𝜉𝜉𝜉𝜉 + 𝑩𝑩𝜉𝜉(𝜃𝜃−1)) ⊘𝜼𝜼
1  if  𝐷𝐷𝜉𝜉𝜉𝜉 > (𝒖𝒖𝜉𝜉𝜉𝜉 + 𝑩𝑩𝜉𝜉(𝜃𝜃−1)) ⊘𝜼𝜼 

𝝁𝝁2,𝜉𝜉𝜉𝜉 = �
0  if  𝑩𝑩𝜉𝜉(𝜃𝜃−1) ≤ 𝑹𝑹𝜃𝜃
1  if  𝑩𝑩𝜉𝜉(𝜃𝜃−1) > 𝑹𝑹𝜃𝜃

 

 Define a large constant scalar ℳ, the decision rule formulation can be linearized 

as follows. 

Minimize: 

 � 𝑞𝑞𝜉𝜉𝒵𝒵𝜉𝜉
𝜉𝜉∈𝒦𝒦

= � 𝑞𝑞𝜉𝜉� 𝒄𝒄′′𝑇𝑇𝒉𝒉𝜉𝜉𝜉𝜉
𝜃𝜃∈ℒ𝜉𝜉∈𝒦𝒦

 (88) 

Subject to: 

 

⎩
⎪
⎨

⎪
⎧
�

𝒖𝒖𝜉𝜉𝜉𝜉 ≥ 𝑹𝑹𝜃𝜃 − 𝑩𝑩𝜉𝜉(𝜃𝜃−1)
𝒖𝒖𝜉𝜉𝜉𝜉 ≤ ℳ𝝁𝝁2,𝜉𝜉𝜉𝜉 + 𝑹𝑹𝜃𝜃 − 𝑩𝑩𝜉𝜉(𝜃𝜃−1)

𝒖𝒖𝜉𝜉𝜉𝜉 ≤ ℳ(𝟏𝟏𝑝𝑝×1 − 𝝁𝝁2,𝜉𝜉𝜉𝜉)
   if 𝑡𝑡 = 𝜁𝜁(𝜃𝜃 − 1)

𝒖𝒖𝜉𝜉𝜉𝜉 = 𝟎𝟎𝑝𝑝×1   otherwise

      ∀𝑡𝑡 ∈ 𝒯𝒯   ∀𝜃𝜃 ∈ ℒ  ∀𝜉𝜉 ∈ 𝒦𝒦 

(89) 

 
�

𝒉𝒉𝜉𝜉𝜉𝜉 ≥ �𝐷𝐷𝜉𝜉𝜉𝜉𝟏𝟏𝑝𝑝×1 − (𝒖𝒖𝜉𝜉𝜉𝜉 + 𝑩𝑩𝜉𝜉(𝜃𝜃−1)) ⊘𝜼𝜼� ∘ 𝝍𝝍
𝒉𝒉𝜉𝜉𝜉𝜉 ≤ ℳ�𝟏𝟏𝑝𝑝×1 − 𝝁𝝁1,𝜉𝜉𝜉𝜉� + �𝐷𝐷𝜉𝜉𝜉𝜉𝟏𝟏𝑝𝑝×1 − (𝒖𝒖𝜉𝜉𝜉𝜉 + 𝑩𝑩𝜉𝜉(𝜃𝜃−1)) ⊘𝜼𝜼� ∘ 𝝍𝝍

𝒉𝒉𝜉𝜉𝜉𝜉 ≤ ℳ𝝁𝝁1,𝜉𝜉𝜉𝜉

     ∀𝜃𝜃

∈ ℒ  ∀𝑡𝑡 = 𝜁𝜁(𝜃𝜃 − 1)   ∀𝜉𝜉 ∈ 𝒦𝒦 

(90) 

 
�

𝑩𝑩𝜉𝜉𝜉𝜉 ≥ (𝒖𝒖𝜉𝜉𝜉𝜉 + 𝑩𝑩𝜉𝜉(𝜃𝜃−1)) − 𝐷𝐷𝜉𝜉𝜉𝜉𝜼𝜼
𝑩𝑩𝜉𝜉𝜉𝜉 ≤ ℳ𝝁𝝁1,𝜉𝜉𝜉𝜉 + (𝒖𝒖𝜉𝜉𝜉𝜉 + 𝑩𝑩𝜉𝜉(𝜃𝜃−1)) − 𝐷𝐷𝜉𝜉𝜉𝜉𝜼𝜼

𝑩𝑩𝜉𝜉𝜉𝜉 ≤ ℳ�𝟏𝟏𝑝𝑝×1 − 𝝁𝝁1,𝜉𝜉𝜉𝜉�
      ∀𝜃𝜃 ∈ ℒ  ∀𝑡𝑡 = 𝜁𝜁(𝜃𝜃 − 1)   ∀𝜉𝜉 ∈ 𝒦𝒦 

(91) 
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�
𝐷𝐷𝜉𝜉𝜉𝜉𝟏𝟏𝑝𝑝×1 − (𝒖𝒖𝜉𝜉𝜉𝜉 + 𝑩𝑩𝜉𝜉(𝜃𝜃−1)) ⊘𝜼𝜼 ≥ℳ(𝝁𝝁1,𝜉𝜉𝜉𝜉 − 𝟏𝟏𝑝𝑝×1)

𝐷𝐷𝜉𝜉𝜉𝜉𝟏𝟏𝑝𝑝×1 − (𝒖𝒖𝜉𝜉𝜉𝜉 + 𝑩𝑩𝜉𝜉(𝜃𝜃−1)) ⊘𝜼𝜼 ≤ℳ𝝁𝝁1,𝜉𝜉𝜉𝜉
      ∀𝜃𝜃 ∈ ℒ   ∀𝑡𝑡

= 𝜁𝜁(𝜃𝜃 − 1)   ∀𝜉𝜉 ∈ 𝒦𝒦 

(92) 

 
�
𝑩𝑩𝜉𝜉(𝜃𝜃−1) − 𝑹𝑹𝜃𝜃 ≥ ℳ(𝝁𝝁2,𝜉𝜉𝜉𝜉 − 𝟏𝟏𝑝𝑝×1)

𝑩𝑩𝜉𝜉(𝜃𝜃−1) − 𝑹𝑹𝜃𝜃 ≤ ℳ𝝁𝝁2,𝜉𝜉𝜉𝜉
      ∀𝜃𝜃 ∈ ℒ  ∀𝜉𝜉 ∈ 𝒦𝒦 

(93) 

𝑹𝑹𝜃𝜃,𝒖𝒖𝜉𝜉𝜉𝜉,𝒉𝒉𝜉𝜉𝜉𝜉 ,𝑩𝑩𝜉𝜉𝜉𝜉 ∈ ℝ≥0
𝑝𝑝×1   𝝁𝝁1,𝜉𝜉𝜉𝜉,𝝁𝝁2,𝜉𝜉𝜉𝜉 ∈ {0,1}𝑝𝑝×1   ∀𝜃𝜃 ∈ ℒ  ∀𝜉𝜉 ∈ 𝒦𝒦 

In this formulation, all constraints become linear constraints. They are equivalently 

linearized constraints of the original nonlinear equality constraints. The additional 

constraints equations 92 and 93 determines the value of binary variables 𝝁𝝁1,𝜉𝜉𝜉𝜉 and 𝝁𝝁2,𝜉𝜉𝜉𝜉. 

6.1.6 Flexibility Management Framework for Space Logistics 

 Substituting the formulations to calculate 𝒥𝒥 and 𝒵𝒵 proposed in Sec. 6.1.4 and Sec. 

6.1.5 into equation 77, we combine decision rule with space logistics and obtain a 

flexibility management framework for space logistics mission design under uncertainties, 

shown as follows. 

Minimize: 

 � 𝑞𝑞𝜉𝜉𝒥𝒥𝜉𝜉
𝜉𝜉∈𝒦𝒦

+ 𝜑𝜑� 𝑞𝑞𝜉𝜉𝒵𝒵𝜉𝜉
𝜉𝜉∈𝒦𝒦

= � 𝑞𝑞𝜉𝜉(� � 𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑇𝑇𝒙𝒙𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉
(𝑣𝑣,𝑖𝑖,𝑗𝑗)∈𝒜𝒜𝑡𝑡∈𝒯𝒯

))
𝜉𝜉∈𝒦𝒦

+ 𝜑𝜑� 𝑞𝑞𝜉𝜉� 𝒄𝒄′′𝑇𝑇𝒉𝒉𝜉𝜉𝜉𝜉
𝜃𝜃∈ℒ𝜉𝜉∈𝒦𝒦

 

(94) 

Subject to: 
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Constraint set 1 (space logistics model) 

equations 81-83 

Constraint set 2 (decision rule) 

For each space station ∀𝑖𝑖 ∈ 𝒩𝒩�  

equations 89-93 

 Equation 94 is the objective function. The first term calculates the value of expected 

mission cost 𝒥𝒥 (i.e., IMLEO) and the second term calculates the expected value of mission 

performance 𝒵𝒵 (i.e., operating time loss).  

 This framework models the space logistics problem considering uncertainties as a 

MILP formulation. It is a single objective optimization formulation with weighted sum 

objectives. The flexibility management framework introduced in this section is suitable to 

be directly used for mission design under uncertainties in rocket launch delay and 

spacecraft flight delay. It can also be extended to consider other traditional uncertainty 

factors in space logistics problems.                                                                                                                                                                                                                                                                                                                                                                            

 In the next section, the performance of this flexibility management framework for 

space logistics is evaluated based on a space station resupply mission case study. 

6.2 Case Study: Space Station Resupply Logistics 

6.2.1 Space Station Resupply Mission Background 

 In this chapter, the performance of the flexibility management framework is 

evaluated based on a crewed space station resupply example mission in a lunar orbit. The 
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mission scenario is developed based on the data of past resupply missions for ISS and the 

planned Gateway concept [84]. 

6.2.1.1 Mission Demand 

The example mission planning case study is a one-year multi-mission logistics to 

the space station. The case study considers a crew of four with four missions per year: two 

missions with cargo and crew and two missions with cargo only. A crew rotation will be 

performed during each crew mission. Each group of crew stays on the space station for six 

months. The goal of flexibility management is to satisfy the cargo demand for space 

activities while guaranteeing astronaut safety during space station operations. The 

estimated yearly cargo needs for the space station is up to 16,750 kg based on ISS 

pressurized cargo needs defined in the CRS2 Request for information [85]. The crew 

consumable requirement is defined as 17.1 kg/day for 4 crew based on NASA Design 

Reference Architecture 5.0 [65]. The remaining cargo is split between science and 

maintenance cargo. A review of the recent NASA CRS mission overviews (12/6/2015 

through 6/13/2017) shows a nearly even split between science (37.2%) and maintenance 

cargo mass (36.4%) of the total cargo [43, 86-94] detailed in Table 22. For this example 

mission case study, it is expected that the initial maintenance needs of the considered lunar 

orbital station will be lower than the ISS assuming that it is significantly smaller than the 

ISS. Therefore, the prescribed cargo split is 66% for science and 33% for maintenance for 

the example scenario. The consumption rate for the science and maintenance cargo is 

assumed to be evenly distributed over the mission duration of one year.   

We also need to set penalties for the shortage of science instruments and 

maintenance spares to measure the influences of rocket launch delays and determine the 

operating time loss. This penalty is relevant to the importance of commodities to the 

mission operation. We assume astronauts will spend 80% of their time performing 
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scientific experiments and 20% of their time performing maintenance on the space station. 

Thus, one day shortage of scientific instruments will lead to a 0.8 day operating time loss, 

while one day shortage of maintenance spares will lead to a 0.2 day operating time loss. 

We will perform a sensitivity analysis to evaluate the impact of the crew operating time 

assignment later. Based on these assumptions, our goal is to find the optimal amount of 

safety stock to reduce operating time loss while balancing the mission cost at the same 

time. 

Table 22 - ISS CRS Cargo Manifest Mass by Category (Dec. 2015 to Jun. 2017). 

Category Mass, kg % of total 

Crew Supplies 4,893 26.4 
Science Investigations 6,881 37.2 

Other 6,746 36.4 
Total (Including Packaging) 19,334.1  100 

The orbit of the space station is considered to be the Near Rectilinear Halo Orbit 

(NRHO). It takes about 5 days to fly from LEO or back to LEO. The total ∆𝑉𝑉 from LEO 

to NRHO is 3.53 km/s, while the ∆𝑉𝑉 from NRHO to LEO is 3.51 km/s [95]. 

 Based on the consumption rates of science instruments, maintenance spares, and 

crew consumables introduced above, the demands and supplies of this space station 

resupply mission are listed in Table 23. The mission plan is shown in Figure 30. 

This research focuses on decision rule optimization and analysis. Therefore, for 

simplicity, in this case study, no spacecraft design is considered and an existing spacecraft, 

Centaur, is used throughout the mission. Centaur is the upper stage for United Launch 

Alliance’s Atlas V rocket, with a 2,316 kg structure mass and 20,830 kg propellant capacity 

[55]. It uses liquid oxygen and liquid hydrogen as the propellant, with a specific impulse 

of 450.5 seconds. 
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Table 23 - Demand and Supply of the Resupply Mission. 

Payload Type Node Demand Time, day Supply 

Crew, no. Earth 0, 182 4 
Crew, no. Space Station 0, 182 -4 

Science instrument, kg Space Station 0, 91, 182, 273 - 1729 
Maintenance spares, kg Space Station 0, 91, 182, 273 - 891 
Crew consumables, kg Space Station 0, 91, 182, 273 - 1556 

Crew, no. Space Station 183, 365 4 
Crew, no. Earth 183, 365 -4 

Science, maintenance, and 
crew consumables, kg Earth 0-365 +∞ 

 

 

Figure 30 - Space Station Resupply Mission Plan. 

6.2.1.2 Rocket Launch Delay Scenarios 

Launch vehicle delay is one of the main uncertainty inputs for the flexibility 

management framework. For this case study, we build a cumulative distribution function 

(CDF) for rocket launch delay based on the available dataset in the format of a doubly 

truncated exponential function as shown in Appendix B, where the maximum delay is 

considered to be 90 days (i.e., the assumption is that if the delay is longer than 90 days, 

e.g., due to launch vehicle failures, we would replan the missions with a new optimization.) 



 150 

For a multi-mission space campaign, we assume that the rocket launch delays are 

independent for each mission. The argument for this assumption is that rocket launches are 

typically scheduled to optimize cargo transportation following specific mission 

requirements and there can be multiple transportation service providers for a campaign. 

Thus, we perform inverse transform sampling for each rocket launch mission and combine 

generated launch delay sampling sets together to form mission scenarios. 

For result analysis, the resulting decision rules and space logistics planning are 

evaluated using different sets of operating mission scenarios than those used for 

optimization. This is to ensure the generality of the resulting decision rules. Furthermore, 

when we generate the Pareto front of the expected mission cost and the expected mission 

performance, we evaluate all solutions on the Pareto front based on a common set of 

evaluation mission scenarios for a fair comparison. 

6.2.2 Space Station Resupply Mission Analysis and Results 

 In this section, we analyze the performance of the proposed flexibility management 

framework and the regular pattern of decision rules for a space station resupply campaign. 

For this case study, the multi-stage stochastic problem is solved under uncertainty mission 

scenarios generated by the method as introduced above. Each scenario contains the launch 

delay information of four rocket launches.  

 In Figure 31, we first compare the Pareto fronts generated through different 

numbers of operating mission scenarios. The decision rules achieved through these mission 

scenario samples are evaluated based on the common evaluation sampling set with 256 

mission scenarios. Results show that the sample size does not have much impact on the 

shape of the Pareto front. Thus, for computation efficiency, in the following analysis, we 

use a sample set with 128 operating mission scenarios to solve for decision rules and a 

different sample set with 256 evaluation scenarios to generate the Pareto front. 
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The decision rule strategies are also compared with traditional deterministic design 

strategies in Figure 31. When the mission performance weighting coefficient 𝜑𝜑 = 0 , 

decision-makers only focus on the mission cost of the campaign. It is equivalent to the 

“design for the best case” scenario, where uncertainties are neglected during mission 

planning and the objective is to minimize the mission cost. It is the design with the most 

optimistic forecast. As the value of 𝜑𝜑 increases, mission performance becomes dominant 

in mission planning. The expected operating time loss decreases while the expected 

mission cost increases. When 𝜑𝜑 reaches infinity, decision-makers only focus on mission 

performance. It is equivalent to the “design for the worse case” scenario, where mission 

uncertainty is the only concern during mission planning and the objective is to minimize 

the operating time loss. As a result, the safety stocks are prepared to counter the longest 

possible launch delay scenario (i.e., 90 days delay in this case study). It is the design with 

the most conservative forecast. The design points considering the best and the worse 

uncertainty scenarios are at two ends of the Pareto front. They are the anchor points for the 

Pareto front. 
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Figure 31 - Expected Operating Time Loss vs. Expected IMLEO Pareto Front. 

 Moreover, it is also interesting to observe how the slope of the Pareto front changes 

as 𝜑𝜑 increases. When the value of 𝜑𝜑 is small, as the decrease of the operating time loss, the 

mission cost increases almost linearly. However, when 𝜑𝜑  becomes large enough, the 

decreasing of the operating time loss leads to a much faster increase in the mission cost. 

To understand this slope change in the Pareto front, we conduct a sensitivity analysis to 

observe the variance of resultant decision rules with different values of 𝜑𝜑, as shown in 

Figure 32.  

 In Figure 32, we only consider the logistics of cargo missions. One rocket launch 

represents one cargo transportation mission. The safety stock starts from rocket launch 

index 2 because we assume there is no initial safety stock available for the first rocket 

launch. This figure shows that when the value of 𝜑𝜑 is small (e.g., 100), the required safety 

stock for each launch decreases linearly as the procedure of the space campaign. This is 

because the redundant supplies that are not consumed for the earlier launches can be used 

for later missions. Thus, more safety stock will be transported in earlier missions. However, 
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there is an upper bound for the safety stock, where it is enough to support the longest launch 

delay for each mission. As the increase of 𝜑𝜑, safety stocks for the first few launches reach 

the upper bound (~2,600 kg) first. For the same amount of safety stock, it has less and less 

potential to counter the operating time loss. This is where the Pareto front bending begins. 

When 𝜑𝜑 is above 5000, only the safety stocks for the last few launches have not been fully 

filled. Increasing safety stock leads to negligible improvement in mission performance. 

The Pareto front approaches a vertical line eventually. 

 

Figure 32 - Decision Rule Result Variance. 

The impact of the number of missions is also illustrated in Figure 32. We keep the 

launch frequency and mission demands but elongate the time horizon of the space 

campaign. In this case, we only consider cargo missions without the logistics of the crew. 
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Longer space campaign provides larger potentials to the safety stock in the first few 

missions to counter the operating time loss in later missions. This means that the Pareto 

front bending begins later for a long-term space station operation campaign, as shown in 

Figure 33. This figure shows the expected mission cost and mission performance on 

average per cargo mission. For different numbers of missions with similar mission 

demands, the slope of the Pareto front is the same when 𝜑𝜑 is small. As 𝜑𝜑 increases, the 

Pareto front for shorter space campaign with fewer space missions starts to bend first. 

Eventually, the Pareto fronts all end up being vertical lines. The delayed bending of the 

Pareto front represents that decision-makers can reduce the operating time loss without a 

significant increase in the mission cost. Moreover, longer space campaigns also further 

reduce the average mission cost and improve average mission performance. 

 

Figure 33 - Pareto Fronts Comparison with Respect to the Number of Launches. 

Crew time assignment is another important factor that impacts the decision rules 

and the shape of the Pareto front. Its impact on the Pareto front is also correlated with the 



 155 

material consumption rate. By default, we assume 80% of the crew operating time is used 

for scientific experiments and 20% of the time is used for maintenance. By varying the 

percentage of the crew operating time used for science, we conduct a sensitivity analysis 

on the crew operating time assignment. The result is shown in Figure 34. For this case 

study, the consumption rate for scientific experiments is twice of that for maintenance. 

Therefore, if 66% of the crew operating time is assigned for science, where science 

instruments and maintenance spares can support the same length of space station operation 

per unit mass, the Pareto front is the least convex, as shown in Figure 34. On the other 

hand, if the material with the lower consumption rate (i.e., maintenance spares) is dominant 

in supporting space station daily operations, the Pareto front contains a sharp turn when 

balancing mission cost and mission performance. For these Pareto fronts, we can identify 

an area of the “knee region”. For multi-objective optimization, a set of solutions on the 

Pareto-optimal front are called “knees” when a small improvement in one objective would 

lead to a large deterioration in at least one other objective [96]. Focusing on the search of 

the “knee region” can generate a smaller set of solutions that are more likely to be preferred 

by decision-makers during mission planning. As shown in Figure 34, outside this region, 

any improvement of mission performance leads to a dramatic increase in mission cost, and 

any decrease in mission cost leads to a dramatic deterioration of mission performance. 

When one of the materials is dominant in supporting space station daily operations, the 

“knee region” becomes smaller. 
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Figure 34 - Pareto Fronts for Different Percentages of Crew Operating Time for 

Science. 

6.3 Chapter Summary 

 This chapter proposes a flexibility management framework to add built-in 

flexibility in space logistics mission planning through decision rules and multi-stage 

stochastic programming. It is formulated as an optimization problem with weighted sum 

objectives balancing mission cost and mission performance. Space logistics optimization 

is developed through a network-based commodity flow model. The decision rule 

formulation is established by combining condition-go and linear decision rule formats to 

take into account the level of available safety stock before each launch and determine the 

amount of additional supply to be delivered together with pre-determined mission 

demands. A mission planning Pareto front is generated as the output to analyze the tradeoff 

between mission cost and mission performance.  
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An example mission scenario about space station resupply is established to evaluate 

the performance of the proposed framework considering the rocket launch delay 

uncertainty. Results show that the relationship among safety stocks, expected mission cost, 

and expected mission performance can be analyzed with the proposed framework and 

illustratively presented on the Pareto front between the expected mission cost (i.e., initial 

mass in low-Earth orbit) and the expected mission performance loss (i.e., effective crew 

operating time loss). Changes in space mission demands, time horizon, mission operation 

patterns can be directly illustrated through the variation of the Pareto front. These 

observations of the Pareto front show the value of the proposed flexibility management 

framework. For decision-makers, the decision rule results and Pareto front achieved by the 

framework can help improve the understanding of impacts from stochastic mission 

operation environments and make directly implementable strategies to counter 

uncertainties. 

The proposed framework can be extensively applied to problems with multiple 

different uncertainty sources, including demand changes, spacecraft flight delays, and 

infrastructure performance uncertainties, and the logistics for multiple destinations at the 

same time. Further applications can also be explored to consider large-scale human 

exploration and the implementation of other mitigation methods rather than only relying 

on the redundant supply. 
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CHAPTER 7. CONCLUSION 

7.1 Thesis Summary 

The goal of this thesis is to develop a series of space logistics optimization 

frameworks to resolve the grand challenges in multi-mission space campaign design for 

future large-scale space exploration. This thesis starts from an integrated space logistics 

optimization framework in Chapter 3 to enable concurrent optimization in space 

transportation scheduling, spacecraft design, and space infrastructure design. A piecewise-

linear approximation method is proposed to handle nonlinear spacecraft and space 

infrastructure sizing models. As a result, the original mixed-integer nonlinear programming 

formulation is converted into a mixed-integer linear programming formulation, where the 

computational efficiency is significantly improved and the optimality gap can be 

guaranteed. 

The integrated space logistics optimization formulation proposed in Chapter 3 takes 

a step forward in multi-mission space campaign design, but it also brings a scalability issue 

to the time dimension for long-term space exploration. In response to this challenge, a 

periodic time-expanded network is proposed in Chapter 4. It is developed by leveraging 

repeatability in multi-mission space campaign operations. The proposed framework can 

generate mission planning solutions with significantly less computation time compared to 

the full time-expanded network methods with solutions that are also preferred practically.  

In Chapter 5, the focus switches to integrated architecture trade studies for space 

infrastructure technologies. Based on the network flow model proposed in Chapter 3, a 

full-size space infrastructure optimization framework is first proposed to take into account 

subsystem-level interactions between ISRU subsystems and their external synergistic 

effects with the space logistics system. Because the full-size optimization framework can 
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be computationally prohibitive due to the significant increase in variables and constraints 

from infrastructure subsystems, a multi-fidelity optimization framework is then proposed 

by varying the granularity of the commodity-type definition over the space transportation 

network. This method can lead to an approximate solution to the full-size problem in a 

computationally efficient manner with little sacrifice to the quality of the solution. 

Frameworks and methods proposed in Chapters 3, 4, and 5 resolve the grand 

challenge of space logistics in multi-mission space campaign design, long-term space 

mission design, and space infrastructure trade studies, but mainly in deterministic mission 

operation environments. In Chapter 6, a flexibility management framework is established 

to handle uncertainties in space mission planning and operations. It is developed based on 

decision rules and multi-stage stochastic programming. The proposed decision rules focus 

on the uncertainties in rocket launch delay. However, the proposed methods can be used to 

handle the general stochastic mission operation environment. The generated decision rules 

can also be used as direct implementable policies for decision-makers whenever an 

uncertainty event occurs. 

For all the frameworks and methods proposed in this thesis, case studies on multi-

mission lunar exploration campaigns and Mars exploration missions are conducted to 

demonstrate the values of proposed methods and evaluate their performances. The 

proposed formulations in this thesis provide important steps to enable effective 

interdisciplinary space logistics optimization for future large-scale space exploration. 

7.2 Broader Applications 

The transportation planning and system design frameworks proposed in this thesis 

presume a space exploration environment. All the case studies conducted also mainly focus 

on space transportation planning in space flights to the moon or Mars. However, 

applications of the proposed methods are not limited to space transportation and logistics. 
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The integrated space logistics optimization framework can also be used for future multi-

agent system design and performance evaluation for planetary surface exploration. Multi-

agent planetary exploration is an emerging field that has attracted more and more attention. 

Technologies and algorithms have been developed to explore, detect, and exploit resources 

within certain areas through the collaboration of multiple agents.  However, more studies 

are needed to consider detailed material flows and space infrastructure operational 

coordinations among agents and systems. The interdisciplinary space logistics frameworks 

developed in this thesis can be used to handle the existing challenges in planetary surface 

exploration fields.  

Beyond the space field, the proposed space logistics optimization frameworks are 

also very useful to both traditional terrestrial transportation and air transportation domains. 

For example, the integrated space logistics optimization framework proposed in Chapter 3 

can be used in terrestrial transportation planning when system design and sizing are also 

part of the decision space. The periodic time-expanded network proposed in Chapter 4 

brings a new perspective to airline schedule recovery problems by considering the recovery 

period and the subsequent schedule at the same time. The multi-fidelity optimization 

framework introduced in Chapter 5 is also useful for architecture technology trade studies 

in general logistics and transportation optimization problems. 

7.3 Future Work 

 Going forward, multiple directions are possible to continue research on 

astrodynamics and space system optimization in both methodology and application areas. 

The research can also branch out to investigate uncertainties, parallel computing, intelligent 

space systems, and on-orbit servicing. 

 On the astrodynamics side, integrated trajectory analysis and transportation 

planning is an important step to improve the mission design fidelity and explore a larger 
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trade space, such as the consideration of high-thrust and low-thrust trajectory analysis and 

the phasing of orbits. Current methods consider the entire orbit as a node, which ignore the 

impact of orbital resonances and optimal synchronization on transportation planning and 

trajectory evaluations. More studies are needed to closely look at the timing and phasing 

of orbital maneuvers during the transportation. 

On the space architecture design and system engineering side, multiple areas need 

further analysis, including demand forecasting, inventory management, stochastic 

programming, cooperation and coordination in logistics, etc. Although many approaches 

that address problems in terrain transportation or the airline industry have been proposed, 

little has been implemented in space transportation. Future methodology development 

needs to be done leveraging state-of-the-art operations research, space system engineering, 

control theory, and machine learning. The developed space logistics methodology in this 

thesis can be further extended to contribute to the establishment of a sustainable space 

transportation system for cislunar space exploration and beyond. In addition to high-level 

mission planning framework development, we also need to explore its application in the 

early stage mission concept generation, autonomous supply chain management, and the 

transportation platform design considering both low-thrust and high-thrust space vehicles. 

Another important direction is to focus on fundamental research in transportation 

science to handle uncertainties in space mission design and operations. The uncertainty 

sources are not limited to the rocket launch delay discussed in Chapter 6. It may also 

involve transportation flight delay, mission demand change, or ISRU system performance 

uncertainty after deployment. Further studies are crucial to understanding interactions and 

propagations between different uncertainty events in the transportation network. This type 

of research is not only useful to space logistics but also beneficial to traditional terrestrial 

and air transportation. The consideration of uncertainties also triggers the demand for large-

scale computing and parallel computing to handle a significantly larger design space. It is 
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critical to understand how to parallelize mission planning optimization leveraging its 

particular structure. 

In addition, intelligent space logistics is also an interesting direction to explore. 

System automation and robotics have been widely used in terrain and space programs. 

However, few studies have focused their implementations on logistics and supply chain 

management. Intelligent space logistics can create sustainable and reliable large-scale 

space transportation systems to improve mission operation efficiency, mitigate the impact 

of uncertain events, and guarantee astronaut safety. Considering space autonomous 

systems from the perspective of space logistics enables system-level evaluation and 

technology trade studies for the performance and impact of intelligent systems. 

Finally, the proposed frameworks for space logistics in this thesis have the potential 

to support the development of on-orbit servicing. It is an emerging field that has attracted 

more and more attention from space agencies and commercial entities. Technologies have 

been developed to refuel, repair, manipulate, and assemble new satellites or space vehicles 

in orbit. However, little has been addressed at the detailed material flow level which is a 

key step to transit on-orbit servicing from concept and experiment to reality. Research can 

focus on methodology development and its application evaluation from the material flow 

level for on-orbit servicing leveraging interdisciplinary space logistics frameworks. More 

investigations need to be conducted to enable effective mission planning and architecture 

design in on-orbit servicing, considering the complex interactions among transportation 

elements (i.e., launcher, servicer, and storage depot), the constraints (i.e., time windows, 

trajectories, budget, and resources), and supply chain management (i.e., maintenance 

spares, components, propellant, and material flow monitoring). 

In summary, space logistics research tries to enable holistic evaluations and 

technology trade studies throughout the entire life cycle of a multi-mission space 
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exploration campaign. As more space agencies and commercial entities participate in 

human space exploration, space logistics research is becoming increasingly impactful. 
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APPENDIX A. PARAMETRIC SPACECRAFT MODEL 

 This appendix lists preexisting spacecraft parameters upon which the spacecraft 

model of Taylor was based on Ref. [52]. Table A1 lists the fuel type and corresponding 

function values, and Table A2 lists the spacecraft parameters. 

Table A1 - List of fuel and corresponding parameters used for spacecraft models. [52] 

Fuel Type ID 𝐼𝐼𝑠𝑠𝑠𝑠, s α 

LOX/kerosene 1 330 0.045 
LOX/LH2 2 420 0.079 

N2O4/UDMH 3 310 0.08 
LCH4/LOX 4 318 0.958 
MMH/N2O4 5 307 0.226 
GOX/Ethanol 6 300 3.9353 
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Table A2 - List of spacecraft data used for spacecraft model. [52] 

Spacecraft name 

Fuel 

identification 

(ID) 

Propellant 

mass, kg 

Payload 

mass, kg 

Structural 

mass, kg 

Saturn V third stage 2 107,725 0 12,014 
Apollo command module (CM) 3 0 524 4,841 
Apollo service module (SM) 3 18,413 60 6,053 
Apollo LM DS 3 8,804 500 2,770 
Apollo LM AS 3 2,358 250 1,719 
Lunar crew exploration vehicle 
(CEV) CM 6 363 500 8,034 

Lunar CEV SM 5 7,222 0 3,027 
Altair DS 2 28,932 2,200 6,182 
Altair AS 4 5,257 100 4,964 
Earth departure stage (EDS) 2 226,693 0 22,500 
Altair Cargo Carrier 0 0 15,000 1,000 
Soyuz TM 3 900 255 7,250 
Soyuz TMA 3 900 355 7,220 
Progress M 3 900 2,350 7,450 
Progress M1 3 900 1,800 7,150 
Zvezda service module 0 0 10,000 20,000 
STS-stage 2 (orbiter) 2 12,412 18,000 78,498 
Soyuz-stage 2 (upper) 1 22,845 0 2,355 
Proton-stage 2 3 46,562 0 4,115 
ISS CEV CM (3 crew + cargo) 6 2,000 400 8,008 
ISS CEV CM (6 crew) 6 2,000 0 8,079 
ISS CEV (pressurized cargo) 0 0 3,500 7,683 
ISS CEV SM 4 2,033 0 3,997 
ATV: Automated transfer 
vehicle 5 2,613 5,500 10,470 

HTV:H-II Transfer Vehicle 5 2,000 6,000 10,000 
ISS CEV CM Prop 5 2,000 400 8,008 
EDS (75 mt) 2 129,500 0 19,986 
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APPENDIX B. PROBABILITY DISTRIBUTION GENERATION FOR 

THE CASE STUDY 

The launch vehicle delay distribution used in the case study is a hypothetical 

distribution created based on ISS past data. This Appendix includes the data source and 

how the used distribution is generated from the data. 

The data source for the ISS USOS mission launch data is the ISS Flight Plan from 

the Flight Planning Integration Panel (FPIP) and includes ISS flights from the NASA CRS 

program, European Space Agency (ESA), and Japan Aerospace Exploration Agency 

(JAXA). The ISS Flight Plans provide a multi-year look ahead at planned mission dates 

for ISS activities including the CRS and international partner missions. While the complete 

revision history of the ISS Flight Plans is not publicly available, these plans are frequently 

incorporated in other NASA presentations related to ISS status and planning. 

For each revision of the ISS Flight Plan at a defined baseline plan date, the planned 

launch for each ISS mission in the multi-year planning window is defined. These data 

provide insight into changes to the near and long-term missions over planning periods 

approaching the actual launch date. The actual launch dates for each of the ISS USOS 

missions were obtained from the NASA website [41]. For each ISS USOS mission, the 

number of days from the baseline planning date to the planned launch date was compared 

to the number of days the mission was delayed from the planned launch date for launches 

planning within 1 year of the planning, the resulting data is shown in Figure B1. The data 

provided in Table B1 contains 21 launches spanning from March 2013 to February 2017 

and 16 ISS Flight Plans spanning from November 2012 to January 2017 [97-99] (See Table 

B1). It is important to note there are more data points in Figure B1 than ISS USOS missions 

because there are multiple revisions of the ISS Flight Plan between the first planning date 
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for a given mission and the final planning date for the mission prior to launch. Additionally, 

the data in Figure B1 includes the total delay between the planned mission date and the 

actual launch date and does not include any segregation of data for different reasons for 

launch delays. 

Table B1 - Summary of FPIP Planning Dates. 

FPIP Dates 

11/13/2012 [97, 98] 

3/26/2013 [98] 

7/17/2013 [99] 

10/15/2013 [98] 

11/25/2013 [98] 

2/6/2014 [98] 

4/23/2014 [98] 

7/3/2014 [98] 

8/8/2014 [98] 

9/25/2014 [98] 

12/8/2014 [98] 

2/20/2015 [98] 

10/26/2015 [98] 

2/18/2016 [98] 

9/20/2016 [98] 

1/20/2017 [98] 
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Figure B1 - Historical Error in CRS Launch Date Planning (within 1 Year of 

Planned Launch). 

The data in Figure B1 shows an expected trend that as the mission planning date is 

closer to the planned launch date, the accuracy of the planned launch date improves. 

Additionally, variation in the launch delay increases as the number of days between the 

mission planning date and the launch date increases. The data points with delays exceeding 

350 days are associated with return to flight missions for Orbital ATK and SpaceX after 

the Orb-3 and SpX-7 launch failures, respectively, and the HTV4 and HTV5 missions from 

JAXA. 

For a multi-mission space station resupply campaign, based on the available data, 

the launch delay for each mission is assumed to be independent in the scenario generation. 

There are two reasons for this assumption. Firstly, the ISS Flight Plan provides mission 
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plans based on planned ISS needs well in advance of the actual mission date. As the ISS 

planning is adjusted based on ISS needs, the mission dates may shift to optimize cargo 

delivery to maximize total delivered mass, providing the best value for NASA and the 

taxpayer. Secondly, the CRS program has two launch providers, so if one provider 

experiences a significant launch delay, NASA can reorganize launches to minimize delay 

in providing cargo to the ISS. 

Because the launch delays are assumed as independent for each mission, we only 

need to discuss the launch delay model for one mission first and implement it directly to 

other missions in the campaign. In this case study, we assume four missions per year as a 

campaign; so we only use the data within a 90-day planning period for the launch vehicle 

delay model. For simplicity in this case study, we consider 90 days as the longest possible 

delay; we assume that if the delay is longer than 90 days, we would replan the missions 

with a new optimization. The data for the 90-day planning window is shown in Figure B2. 

The cumulative density function of launch delay (in the number of days) within a 90-day 

planning window is determined from the data in Figure B2. The resulting discrete 

probability is a curve fit to find a continuous function to represent the launch delay. The 

resulting curve fit is a doubly, truncated exponential curve shown in Figure B3. Based on 

the launch delay cumulative density function as shown in Figure B3, we can do the inverse 

transform sampling to generate uncertainty scenarios input for the space station resupply 

mission example. 
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Figure B2 - Historical Error in CRS Launch Date Planning (within 90 days of 

planned launch). 

 

Figure B3 - Launch Delay Cumulative Distribution Function.   
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