Conceptual Design and Analysis of a Small and Low-cost Launch Vehicle

# AE8900 MS Special Problems Report Space Systems Design Lab (SSDL) <br> School of Aerospace Engineering <br> Georgia Institute of Technology Atlanta, GA 

Author
Kohei Taya

Advisor
Dr. John R. Olds
Space Systems Design Lab (SSDL)

April 29, 2005

## Table of Contents

List of Figures .....  .i
List of Tables. ..... ii
Acronyms and Symbols ..... iii
1.0 Introduction ..... 1
2.0 Microcosm Launch Vehicles ..... 2
2.1 Scorpius Family .....  3
2.2 Sprite Launch Vehicle ..... 4
3.0 Approach ..... 7
4.0 Method .....  8
4.1 Design Structure Matrix .....  8
4.2 Aerodynamics Analysis ..... 10
4.2.1 APAS Inputs ..... 10
4.2.2 APAS Run Conditions and Run Setup ..... 12
4.2.3 APAS Results ..... 13
4.3 Propulsion Analysis. ..... 15
4.4 Trajectory Analysis (Part I) ..... 16
4.4.1 POST Inputs ..... 17
4.4.2 POST Results for Original Design (Single Burn) ..... 18
4.4.3 POST Result for Original Design (Two-Burn) ..... 23
4.5 Weight and Sizing Analysis ..... 28
4.6 Trade Study ..... 29
4.6.1 Design of Experiments and Response Surface Methods ..... 29
4.6.2 Optimized Values by Response Surface Method ..... 31
4.7 Refined Vehicle Analysis ..... 33
5.0 Design Comparisons ..... 34
6.0 Conclusions ..... 36
7.0 References ..... 37
Appendix A: APAS Analysis Data ..... 38
Appendix B: POST sample input file ..... 42

## List of Figures

Figure 1: Microcosm Scorpius Family ..... 2
Figure 2: Sprite Configuration ..... 4
Figure 3: Sprite Payload Performance to Circular Orbit at Various Inclinations ..... 6
Figure 4: Design Structure Matrix of Part I .....  9
Figure 5: Design Structure Matrix of Part II .....  9
Figure 6: Sprite Configuration for Aerodynamics. ..... 10
Figure 7: Sprite First Stage APAS Geometry ..... 11
Figure 8: Sprite Second Stage APAS Geometry ..... 11
Figure 9: Sprite Third Stage APAS Geometry ..... 12
Figure 10: 1st stage Cl vs Cd ..... 13
Figure 10: 2nd stage Cl vs Cd ..... 14
Figure 12: 3rd stage Cl vs Cd ..... 14
Figure 13: Altitude vs. Down Range ( $\mathrm{i}=28.5$ [deg] Alt=108 [nm], Single burn) ..... 18
Figure 14: POST Output Altitude vs. Time ( $\mathrm{i}=28.5$ [deg] Alt=108 [nm], Single burn). ..... 19
Figure 15: POST Output Velocity vs. Time ( $\mathrm{i}=28.5$ [deg] Alt=108 [nm], Single burn) ..... 19
Figure 16: POST Output Mass vs. Time ( $\mathrm{i}=28.5$ [deg] Alt=108 [nm], Single burn) ..... 20
Figure 17: Performance of Published and Simulated (Single burn, i $=28.5$ ) ..... 21
Figure 18: Performance of Published and Simulated (Single burn, i $=51.6$ ) ..... 22
Figure 19: Performance of Published and Simulated (Single burn, i $=98.6$ ) ..... 22
Figure 20: Altitude vs. Down Range ( $\mathrm{i}=28.5$ [deg] Alt=108 [nm], Two-burn) ..... 23
Figure 21: POST Output Altitude vs. Time ( $\mathrm{i}=28.5$ [deg] Alt=108 [nm], Two-burn) ..... 24
Figure 22: POST Output Velocity vs. Time ( $\mathrm{i}=28.5$ [ deg ] Alt=108 [nm], Two-burn)... 24
Figure 23: POST Output Mass vs. Time ( $\mathrm{i}=28.5$ [deg] Alt=108 [nm], Two-burn) ..... 25
Figure 24: Performance of Published, Single Burn, and Two-Burn ( $1=28.5$ ) ..... 26
Figure 25: Performance of Published, Single Burn, and Two-Burn (i $=51.6$ ) ..... 26
Figure 26: Performance of Published, Single Burn, and Two-Burn (i $=98.6$ ) ..... 27
Figure 27: Weight and Sizing Analysis Spreadsheet ..... 28
Figure 28: Central Composite Design ..... 29
Figure 29: Response Surface ..... 32
Figure 30: Performances Comparison ( $\mathrm{i}=28.5$ ) ..... 34
Figure 31: Performances Comparison ( $\mathrm{i}=51.6$ ) ..... 35
Figure 32: Performances Comparison $(i=98.6)$ ..... 35
Figure 33: Payload of all three data ( $\mathrm{i}=28.5[\mathrm{deg}]$, alt $=108[\mathrm{~nm}]$ ) ..... 36

## List of Tables

Table.1: Sprite Launch Vehicle Physical Characteristics ..... 5
Table 2: Sprite Configuration Data ..... 11
Table 3: HABP Analysis Runs ..... 12
Table 4: Propulsion Data and REDTOP input ..... 15
Table 5: REDTOP output. ..... 15
Table 6: Post calculation conditions ..... 17
Table 7: Sprite Physical Characteristics for POST ..... 17
Table 8: Single Burn Trajectory Analysis Result ..... 21
Table 9: Two-Burn Trajectory Analysis Result ..... 25
Table 10: Upper and Lower Boundaries of Expansion Ratio ..... 29
Table 11: Central Composite Design Setting. ..... 30
Table 12: Design of Experiments ..... 31
Table 13: Refined Sprite vs. Original Sprite ..... 32
Table 14: Refined Sprite Data. ..... 33
Table 15: Refined Vehicle Trajectory Analysis Result ..... 33

## Acronyms and Symbols

| $\mathrm{A}_{\text {exit }}$ | Exit Area (of Engine Nozzle) |
| :---: | :---: |
| Alt | Altitude |
| APAS | Aerodynamic Preliminary Analysis System |
| CCD | Central Composite Design |
| $\mathrm{C}_{\mathrm{D}}$ | Drag Coefficient |
| $\mathrm{C}_{\mathrm{L}}$ | Lift Coefficient |
| dia | Diameter |
| DOE | Design of Experiments |
| DSM | Design Structure Matrix |
| i | Inclination |
| Isp | Specific Impulse |
| KSC | Kennedy Space Center |
| LEO | Low Earth Orbit |
| LOX | Liquid Oxygen |
| NASA | National Aeronautics and Space Administration |
| O/F | Oxidizer to Fuel weight ratio |
| POST | Program To Optimize Simulated Trajectories |
| REDTOP | Rocket Engine Design Tool for Optimal Performance |
| RSM | Response Surface Method |
| $\mathrm{S}_{\text {fairing }}$ | Fairing Surface Area |
| sl | Sea Level |
| SLV | Small Launch Vehicle |
| Sref | Reference Wing Area (= Maximum Cross Section Area in this paper) |
| T/W | Thrust to Weight ratio |
| UDP | Unified Distributed Panel |
| vac | Vacuum |
| VAFB | Vandenberg Air Force Base |
| Wallops | Virginia Spaceport Authority, Wallops Flight Facility |
| $\mathrm{W}_{\text {fairing }}$ | Fairing Weight |
| W\&S | Weight and Sizing |
|  | Angle of Attack |
|  | Coefficients of Response Surface Equation |
|  | Expansion ratio |

### 1.0 Introduction

Small, mini, and micro-satellite technologies are leading to many innovative space applications. A primary obstacle to successful operational transition of these systems is the lack of affordable small launch capability. In addition, the broader space launch market in general demands lower launch costs. One of solution is Microcosm's Sprite launch system. This vehicle is planned to meet the need for low-cost, small-payload capability while verifying the technology for larger vehicles with much lower cost per pound ${ }^{1}$. In this project, we treat Sprite launch vehicle as an example of small and low-cost launch vehicle. The goal of project is to analyze its design concept, confirm performance, and refine its design.

The project consists of two parts. The first part is confirming part (Part I). Using disciplinary analysis tools, the performance of Sprite vehicle is simulated. In this part, mainly two disciplinary analyses are used, such as aerodynamics and trajectory. Aerodynamics is simulated by APAS (Aerodynamic Preliminary Analysis System), and trajectory is simulated by POST (Program to Optimize Simulated Trajectories). In addition, propulsion analysis using REDTOP (Rocket Engine Design Tool for Optimal Performance) is done by Chris Tanner, a student member of the Georgia Tech Space System Design Laboratory. Analyzing disciplinary details show the practicability of Sprite launch vehicle. Using data from these analyses, the performances of original design Sprite are estimated

The second part is design refining part (Part II). Based on Part I simulation, we find the room for improvement of Sprite vehicle. Adding weight and sizing disciplinary analysis, the vehicle is re-designed with optimal design techniques. Same analysis as Part I is done for new vehicle, and the performances of re-designed Sprite are estimated.

In the end of this project, we compare the performance of published data, simulated data of original design, and simulated data of refined design. This will be the result and the conclusion of this project.

### 2.0 Microcosm Launch Vehicles

In order to meet the increasing needs for responsive launch for various defense and other related programs, Microcosm has been developing the concept of operations for the Scorpius family of launch vehicles for over eleven years. The Scorpius family of pressure-fed launch vehicles shown in Figure 1 includes two suborbital vehicles that have been flown successfully and other orbital vehicles in development with capabilities ranging from 700 lb to $50,000 \mathrm{lb}$ to Low Earth Orbit (LEO) ${ }^{2}$. The Scorpius program goal is to reduce the cost of launch by a factor of 5-10 below existing launch systems. Scorpius launchers are also designed for responsive launch operations.


Figure 1: Microcosm Scorpius Family On the left, are the SR-S and SR-XM suborbitals and the Sprite Small Launch Vehicle. The intermediate-sized vehicles in the center are Antares and Exodus. The Heavy Lift Space Freighter is on the right. (Source: James R. Wertz, Robert Conger, Jack Kulpa, "Responsive Launch with Scorpius of Low-Cost Expandable Launch Vehicle," Microcosm Inc, AIAA LA Section/SSTC 2003-500)

### 2.1 Scorpius Family

Two key features of the Scorpius family that have been a part of the design are dramatically lower cost than traditional vehicles and launch within 8 hours of demand. Microcosm has been working toward creating a responsive launch system for nearly a decade and has had to face many of the hurdles involved in their process. The small payload class member of the family workhorse, the Sprite SLV is expected to have the capability of 700 lb payload into LEO ( 100 nm circular orbit due east from the launch site) for $\$ 2.5$ million. The other workhorse is a medium type lift vehicle. Exodus is expected to have the capability of $15,000 \mathrm{lb}$ payload into LEO for $\$ 12.5$ million. The Sprite and suborbital vehicles are expected to be the most used for truly responsive missions because of their low cost.

Also the Scorpius family of launch vehicles is designed to provide very low-cost access to space by using simple, modular design. All of the Scorpius vehicles share a number of features that significantly assist the responsive character and its low cost ${ }^{3}$ :
(i) Assembled at or near the primary launch site
(ii) Assembled vertically on a reusable launch cradle on which they are also moved about the facility as needed
(iii) Short, fat design for rapid movement and handling
(iv) Transported vertically at the launch site on their cradles on rails or on a flatbed trailers
(v) No gantry or service tower needed for transportation or launch
(vi) Ground level servicing (vehicles are short enough that the avionics bay and payload compartment can be reached by a cherry picker if required)
(vii) All stages use environmentally friendly LOX/kerosene propellants The kerosene that is used is Jet-A, available at essentially any airport worldwide. In the next section, more detail about Sprite launch vehicle, which is the object of this paper, is explained.

### 2.2 Sprite Launch Vehicle



Figure 2: Sprite Configuration (Source: James R. Wertz, Robert Conger, Jack Kulpa, "Responsive Launch with Scorpius of Low-Cost Expandable Launch Vehicle," Microcosm Inc, AIAA LA Section/SSTC 2003-5001)

The three-stage Sprite SLV is the first orbital vehicle in the Scorpius family. The baseline configuration shown in Figure 2 is capable of carrying 700 lb to LEO ( 100 nm due east) or 330 lb to Sun synchronous orbit at 400 nm . Sprite uses seven common "pods" and a small upper stage. Sprite is a three-stage, pressure-fed rocket consisting of six external booster pods comprising the first stage, a center or sustainer second stage pod, and a third stage affixed to the top of the second stage. The first and second stages share the same components with the exception of a modified high-altitude nozzle in the second stage. This commonality reduces the number of unique parts on the vehicle which ultimately reduces cost and manufacturing time. The third stage is designed to meet mission requirements as either a small satellite launch system or long-range, tactical, sub-orbital rocket and includes provisions for a deorbit maneuver to avoid becoming orbital debris. ${ }^{4}$

Table.1: Sprite Launch Vehicle Physical Characteristics (Source: Yellow: Steven J. Isakowitz, Joshua B. Hopkins, Joseph P. Hopkins Jr.,"International Reference Guide to Space Launch System," AIAA, 2004, Green: James R. Wertz, Robert Conger, Jack Kulpa, "Responsive Launch with the Scorpius Family of Low-Cost Expendable Launch Vehicles," AIAA-LA Section/SSTC 2003-5001, Beige: REDTOP simulation result by Chris Tanner)

| Payload volume |  |  |  | 38"dia X 63" long |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gross payload to 28.5deg 108nmi |  |  |  | 700 lbm |  |  |
| Launch sites |  |  |  | KSC, Wallops or VAFB |  |  |
| Stage 1/2/3 main propellant |  |  |  | Jet fuel and LOX |  |  |
| Liftoff Configuration |  | Gross WT |  | 83,643 lbm |  |  |
|  |  | Dry WT |  | 12,683 lbm |  |  |
|  |  | Dimensions |  | $53.3 \mathrm{ft} \times 11.2 \mathrm{ft} \mathrm{dia}$. |  |  |
|  | Stage 1 |  | Stage 2 |  | Stage 3 |  |
| Gross Weight | 68304 | lbm | 11549 | lbm | 3090 | lbm |
| Empty Weight | 10254 | lbm | 1851 | lbm | 578 | lbm |
| Height | 38.1 | ft | 33.2 | ft | 15.2 | ft |
| Diameter | 11.2 | ft | 3.5 | ft | 3.5 | ft |
| Thrust | $17129 \times 6$ | lbf (sl) | 22700 | Ibf (vac) | 2530 | lbf (vac) |
| O/F Ratio | 2.4 | - | 2.4 |  | 2.4 | - |
| Chamber Press. | 385 | psi | 385 | psi | 154 | psi |
| Isp | 285 | sec (vac) | 317 | sec (vac) | 330 | sec (vac) |
| Expansion Ratio | 6.56 | - | 30 | - | 80 | - |

Table 1 shows the physical characteristics of Sprite vehicle. The Sprite vehicle is approximately 53 feet in length and 11 feet wide at its base. Six 20-Klbf first stage engines provide $120,000 \mathrm{lbs}$ of thrust while the second and third stages provide $20,000 \mathrm{lbs}$ and 2,500 lbs of thrust respectively. The Scorpius launchers are pressure-fed liquid rockets with mostly carbon composite structures. Liquid oxygen and kerosene (Jet-A) were chosen as propellants because of their low toxicity, good performance, and low cost. Jet-A is readily available and LOX can be brought in or produced on site. Because the vehicle is pressure-fed, the tanks are robust enough to support themselves and can endure casual handling expected during the transportation and launch campaign without problems. The shorter, wider nature of the vehicle makes it stable while vertical, enabling easier movement of an integrated vehicle to the launch pad. The dry weight of the Sprite vehicle is comparable to a small bulldozer (about $10,000 \mathrm{lb}$ ) and can be easily towed by a standard truck tractor. All normal servicing of the vehicle on the pad is done at ground level thus eliminating the need for a gantry or tower. ${ }^{5}$

According to James V. Berry, the Sprite SLV addresses the need for small- and mini-
payload capability with a price to orbit objective of "less than $\$ 2.5$ million (FY02\$) for 700 lb to $\mathrm{LEO}^{6}$." The minimum available payload volume is comparable to the Scout and Pegasus large fairing, i.e., 38 -inch diameter by 63.25 inches long. The payload area, with provisions to deploy single or multiple payloads, can be accessed as needed with standard commercial equipment. The payload performance for different orbit inclinations is shown in Figure 3. Launch sites are depended on inclination (KSC for 28.5, Wallops for 51.6, and VAFB for 98.6)


Figure 3: Sprite Payload Performance to Circular Orbit at Various Inclinations (Original data source: Robert E. Conger, James R. Wertz, Jack Kulpa,’'The Scorpius Expendable Launch Vehicle Family and Status of the Sprite Mini-Lift," AIAA 2002-2004)

### 3.0 Approach

The focus of this project is the Sprite SLV as the example of small and low-cost vehicle. Here is one question about Sprite SLV. As shown in pervious section, Sprite vehicle has $120-\mathrm{Klbf}$ (vacuum) total thrust in first stage. Compare to other small and low-cost vehicle, for example, Falcon I launch vehicle has only $85-\mathrm{Klbf}$ (vacuum) thrust. However, Falcon I has the capability of 1472 lb payload into 108 nm LEO while Sprite has only about 700 lb capabilities into same orbit. Even though there are many differences such as shapes or mass ratio between Sprite and Falcon I, almost 700 lb payload difference seems too much. Thus, independently confirming the performance of Sprite is desired. Basically, the performance can be estimated by aerodynamics, propulsion and trajectory analysis. This is going to be the first part of the project (Part I).

Also one more question might occur after confirming the performance. Based on the confirming analysis, we might notice there is the room for improvement in the original design of Sprite SLV. If there is, refining design process is desired. Since Sprite SLV project is already started in Microcosm, minor change in engine parameters is going to be key of this part, but not major change in shapes, weight, or engine. Using same engine, but some changing in nozzle (thus Isp) can make the better performance of Sprite SLV. This is going to be the second part of the project (Part II)

### 4.0 Design Method

To analyze and confirm the original design or refined design, integrated design process is required. Several disciplinary design works are required for this type of system design, thus it is needed to integrate the results from each disciplinary. In this section, integration design technique is discussed first. Then we focus on three disciplinary codes, APAS, POST and REDTOP, which are used both Part I and Part II in this project. Then trade study about engine refining is discussed after confirming the performance of original design. Also additional weight and sizing calculation tool developed by Microsoft Excel spreadsheet is discussed in second half part of this section. In the end of this section, results of Part I and Part II are shown.

### 4.1 Design Structure Matrix

DSM (Design Structure Matrix) is the chart, which shows the relationship of each disciplinary analysis in whole conceptual design. We can easily identify the design process, especially feed-forward and feedback among several disciplinary analyses. Figure 4 shows DSM of Sprite SLV in part I. There is no feedback because all configurations of Sprite SLV are original one, and no change is allowed since this is confirming part. The first step is the aerodynamics analysis by APAS. The shape of Sprite vehicle is input. Output of aerodynamics disciplinary is lift coefficient, drag coefficient and pitching momentum coefficient, and these data become the input of trajectory analysis. With propulsion analysis data by REDTOP, POST simulates optimized trajectory for Sprite SLV. Then the performance data, which is maximum payload to specific orbit, will be given. In this project, we stop the simulation we get the performance data, but usually it will be continue to weight and sizing, cost or other disciplinary analysis.


Figure 4: Design Structure Matrix of Part I Gray disciplinary and dotted lines are not simulated in this project

Figure 5 shows DSM for Part II. This part is refining part, thus there is a feed back between trajectory and propulsion. As mentioned before, changing in nozzle (expansion ratio) or Isp is occurred for better performance. The simulation looped among Propulsion, Trajectory, and Weight and Sizing calculation.


Figure 5: Design Structure Matrix of Part II Gray disciplinary and dotted lines are not simulated in this project

### 4.2 Aerodynamics Analysis

As shown in DSM, the first thing of design is aerodynamics analysis. In this project, APAS (Aerodynamic Preliminary Analysis System) program is used for aerodynamics analysis. The Aerodynamics Preliminary Analysis System was developed by the NASA Langley Research Center and the Rockwell International Corporation. APAS analysis can be done relatively quickly allowing multiple design iterations, and results are usually within twenty percent of actual values. Such results are good enough for conceptual design, and the speed with which they can be achieved allows designer to include aerodynamic calculations in Multi-Disciplinary Design Optimization loops. Based on the shapes or configuration of object, the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies ${ }^{7}$.

### 4.2.1 APAS Inputs



Figure 6: Sprite Configuration for Aerodynamics (Original Picture Source: James R. Wertz, Robert Conger, Jack Kulpa, "Responsive Launch with Scorpius of Low-Cost Expandable Launch Vehicle," Microcosm Inc, AIAA LA Section/SSTC 2003-5001)

Table 2: Sprite Configuration Data (Data Source: James R. Wertz, Robert Conger, Jack Kulpa, "Responsive Launch with the Scorpius Family of Low-Cost Expendable Launch Vehicles," AIAA-LA Section/SSTC 2003-5001)

|  | Stage 1 |  | Stage 2 |  | Stage 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Height | 53.3 | ft | 48.4 | ft | 15.2 | ft |
| Overall Diameter | 11.2 | ft | 3.5 | ft | 3.5 | ft |

The Input of APAS is the shape or configuration of vehicle. Figure 6 and Table 2 shows the actual Sprite vehicle configuration. Based on these data, three-dimensional model geometry is built in APAS. Figure 7-9 shows actual input model in APAS for fist stage to third stage. Unfortunately, detail data of cone half-angles for the vehicle are not available, and these are estimations.


Figure 7: Sprite First Stage APAS Geometry
As illustrated in Figure 7 above, or other figures, the overall Sprite design is relatively short and squat, as are the other Scorpius launch vehicles. Thus the vehicle is expected to be stable while vertical, enabling easier movement of an integrated vehicle to the launch pad. Relatively smaller numbers of $C_{L}$ (Lift Coefficient) and $C_{D}$ (Drag Coefficient) are expected by APAS simulation compared to general "pencil looks" launch vehicles.


Figure 8: Sprite Second Stage APAS Geometry
Figure 8 shows the APAS input geometry of second stage. Different from the first stage, it looks like normal launch system - long and sharp. Since the length of second stage is
not different from the first stage, higher numbers of $C_{L}$ and $C_{D}$ are expected by APAS simulation.


Figure 9: Sprite Third Stage APAS Geometry
Figure 9 are APAS input geometries of third stages. This is also looks like normal higher stage of launch system. Sprite is designed to have a similar payload fairing to the retired Scout G-1 launch vehicle.

### 4.2.2 APAS Run Conditions and Run Setup

The flight conditions of the ten HABP runs analyzed for each trial stage are shown in Table 3. "Tangent cone" and "Prandtl-Meyer" analyses methods are used for the body and shadowed regions. The base pressure is set to $C_{p}=0$. The Mach number range of 1.5-30 is considered to be the launch vehicle flight regime. This schedule is used for all 3 trials. Angles of Attack ( ) from - 15 to 30 degrees are analyzed.

Table 3: UDP Analysis Runs

| Trials for 1-3 stages |  |  |
| :---: | :---: | :---: |
| RUN | Mach | Altitude (ft) |
| 1 | 1.5 | 20000 |
| 2 | 3 | 40000 |
| 3 | 4 | 60000 |
| 4 | 5 | 75000 |
| 5 | 7 | 100000 |
| 6 | 10 | 125000 |
| 7 | 15 | 150000 |
| 8 | 20 | 175000 |
| 9 | 25 | 200000 |
| 10 | 30 | 225000 |

### 4.2.3 APAS Results

Aerodynamics data ( $C_{L}$ vs. $C_{D}$ plots) by APAS results are shown in Figure 10-12 for each stage. In these plots, Mach number 1.5, 7, 15 and upper are not shown here due to visibility. All detail data are available in Appendix A. As expected, the result of first stage has lower L/D compare to the result of second stage.


Figure 10: 1st stage $\mathbf{C}_{\mathrm{L}}$ vs $\mathbf{C}_{\mathrm{D}}\left(\mathrm{S}_{\text {ref }} 64.7\left[\mathrm{ft}^{2}\right]\right.$ Length $\left.53.3[\mathrm{ft}]\right)$
(Figure 11 and 12 on next page)


Figure 11: 2nd stage $\mathbf{C}_{\mathrm{L}}$ vs $\mathbf{C}_{\mathrm{D}}\left(\mathrm{S}_{\text {ref }} 9.6\left[\mathrm{ft}^{2}\right]\right.$ Length $\left.48.4[\mathrm{ft}]\right)$


Figure 12: 3rd stage $\mathbf{C}_{\mathrm{L}}$ vs $\mathbf{C}_{\mathrm{D}}\left(\mathrm{S}_{\text {ref }} 9.6\left[\mathrm{ft}^{2}\right]\right.$ Length $\left.15.2[\mathrm{ft}]\right)$

### 4.3. Propulsion Analysis

This part is done by Chris Tanner, a student in the Georgia Tech Space System Design Laboratory, using REDTOP (Rocket Engine Design Tool for Optimal Performance) program. Only the input (Table 4) and output (Table 5) are shown in here.

Table 4: Propulsion Data and REDTOP input (Data Source: Chris Tanner)

|  |  | Reference |  |  |  |  |  | INPUT |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Spec | Unit | AIAA | 2003-5 | 001 |  | sakowitz |  |  | REDTOP |  |
| Stage | - | 1st | 2nd | 3rd | 1st | 2nd | 3rd | 1st | 2nd | 3rd |
| Thrust | Ibf (vac) *1 | 17330 | 22600 | 2530 | 20400 | 22700 | 2300 | 17129 | 22700 | 2530 |
| O/F Ratio | - | 2.4 | 2.4 | 1.0 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 | 2.4 |
| Chamber Press. | psi *2 | 270 | 45 | 8 | 385 | 385 | 154 | 385 | 385 | 154 |
| Isp | sec (vac) | 281*3 | 297*3 | 319*3 | 277.5 | 309 | 323 | 285 | 317 | 330 |
| Expansion Ratio | - | N/A | N/A | N/A | 6.56 | 30 | 80 | 6.56 | 30 | 80 |
| Oxidizer | - | LOX |  |  | LOX |  |  | LOX |  |  |
| Fuel | - | kerosene (Jet-A) |  |  | kerosene (Jet-A) |  |  | kerosene (Jet-A) |  |  |

*1 All 1st stage thrusts are single pod, sea level
*2 Unit is not avaiable for Chamber Pressure in AIAA 2003-5001
*3 Values obtained in AIAA 2004-3358

Table 5: REDTOP output These values are going to be feed-forward to trajectory analysis by POST (Data Source: Chris Tanner)

| REDTOP Output (feed-forward to POST) |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: |
| Spec | Unit | $1 \mathrm{st}^{*}$ | 2nd | 3rd |
| Exit area | $\mathrm{ft}^{2}$ | 1.546 | 7.069 | 4.565 |
| Thrust | $\mathrm{Ibf}^{\mathrm{bbac})}$ | 20400 | 22700 | 2300 |
| Isp | sec (vac) | 285.05 | 317.267 | 330.06 |

*single pod

Table 4 shows propulsion data from two different references and actual input values used in propulsion analysis by REDTOP. Table 5 shows output values by REDTOP, and only the values, which are going to be feed-forward to trajectory analysis by POST, are shown here.

### 4.4 Trajectory Analysis (Part I)

The next disciplinary design analysis is trajectory analysis. In this project, POST (Program to Optimize Simulated Trajectories) program is used. POST is a generalized point mass, discrete parameter targeting and optimization program. POST provides the capability to target and optimize point mass trajectories for a powered or unpowered vehicle near an arbitrary rotating, oblate planet. POST has been used successfully to solve a wide variety of atmospheric ascent and reentry problems, as well as ex-atmospheric orbital transfer problems. The generality of the program is evidenced by its multiple phase simulation capability which features generalized planet and vehicle models. This flexible simulation capability is augmented by an efficient discrete parameter optimization capability that includes equality and inequality constraints. Data generated by APAS and REDTOP is the input of POST. Also other data, such as weight (usually this is a feed-back from weight and sizing analysis), launch site, or target orbit are used. Then POST estimates possible maximum payload for Sprite launch system.

### 4.4.1 POST inputs

The POST inputs, trajectory analysis inputs, are the feed-forward or -back from disciplinary analyses shown as DSM and other characteristic data of vehicle. By using POST, the maximum payload of Sprite SLV is estimated. Table 6 shows the calculation conditions. Inclination takes three patterns, 28.5, 51.6, and 98.6 degrees. Circular orbit altitude from 108 to 500 nm is analyzed. Launch sites are decided by target inclinations as shown as in Table 6. Also start up loss of $0.5 \%$ and fuel residual of $1 \%$ after burns out are set for calculation.

Table 6: Post calculation conditions

|  |  | Conditions |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Target Orbit | Inclination | 28.5 | 56.1 | 98.6 | deg |
|  | Altitude | 108, 220, 300, 432, 500 |  |  | nm |
|  | Launch Site | KSC | Wallops | VAFB | - |

In addition to the calculation conditions, Sprite SLV physical characteristics data shown in Table 7 are used in analysis. Fairing weight is not available in any pulished paper, so it is estimated as $\mathrm{W}_{\text {fairing }}=\mathrm{S}_{\text {fairing }}\left[\mathrm{ft}^{2}\right] \times 2\left[\mathrm{lb} / \mathrm{ft}^{2}\right]=165[\mathrm{lb}]$. These data are basically same values shown in Table 1 and Table 5. The actual POST input file is attached in the end of this paper (Appendix B).

Table 7: Sprite Physical Characteristics for POST (Original data source:Yellow: Steven J. Isakowitz, Joshua B. Hopkins, Joseph P. Hopkins Jr.,"International Reference Guide to Space Launch System," AIAA, 2004, Green: James R. Wertz, Robert Conger, Jack Kulpa, "Responsive Launch with the Scorpius Family of Low-Cost Expendable Launch Vehicles," AIAA-LA Section/SSTC 2003-5001, Beige: REDTOP simulation result by Chris Tanner)

| Spec | Unit | 1st *1 | 2nd | 3rd |
| :--- | :--- | :---: | :---: | :---: |
| Total Height | ft | 53.3 | 48.4 | 15.2 |
| Reference Area | ft | 67.35 | 9.62 | 9.62 |
| Gross Weight *2 | Ibm | 68304 | 11549 | 3090 |
| Empty Weight | lbm | 10254 | 1851 | 578 |
| Exit area | $\mathrm{ft}^{2}$ | 9.276 | 7.069 | 4.565 |
| Thrust | $\mathrm{lbf}(\mathrm{vac})$ | 122400 | 22700 | 2300 |
| lsp | sec (vac) | 285.05 | 317.267 | 330.06 |

*1 Total of 6 pods values
*2 Each Stage values (without Payload)

### 4.4.2 POST Results for Original Design (Single Burn)



Figure 13: Altitude vs. Down Range ( $\mathrm{i}=28.5$ [ deg Alt=108 [nm], Single burn)
Figure 13 shows one of POST outputs, the trajectory of Sprite vehicle (Inclination $=$ 28.5 [deg], Altitude $=108[\mathrm{~nm}]$ Single burn case). X-axis represents downrange of vehicle in nautical miles, and Y-axis represents altitude of vehicle in kilo-feet. At point 1 on Figure 13, first stage burns out and jettison. Then fairing separate at point 2 . Second stage burns out and jettison at point 3 on Figure 13. The vehicle reached to higher altitude than target altitude ( $108 \mathrm{~nm}=657 \mathrm{k}$ - ft ), and then it descends into target altitude. Also Figure 14-16 are same case detail results from POST.
(Figure 14-16 on next page)


Figure 14: POST Output Altitude vs. Time ( $\mathrm{i}=28.5$ [ deg$]$ Alt=108 [ nm$]$, Single burn)


Figure 15: POST Output Velocity vs. Time ( $\mathrm{i}=28.5$ [ deg$]$ Alt=108 [nm], Single burn)


Figure 16: POST Output Weight vs. Time ( $\mathrm{i}=28.5$ [ deg ] Alt=108 [nm], Single burn)
Figure 14 shows vehicle altitude change by time. Figure 15 shows vehicle velocity change by time. From these two graphs, it is found that vehicle reaches target altitude before its velocity reaches required velocity for circularize. Thus, vehicle passes the target altitude once, and gets more velocity by thrusting. This phenomenon is only happen in 108 nm cases, which required high velocity for circularize but low altitude. Also Figure 15 shows separation points of each stage very well. Just before the jettison, vehicle uses almost all fuel and gets lighter, so the acceleration gets much better than start. But after the jettison points, acceleration gets worse because of changing to smaller engine (and starts again). Figure 16 shows vehicle weight change by time. Same as Figure 15, this plot also shows jettison points very well. Of course, the vehicle weight dramatically falls by separating burned out stages. Fuel consumption rate is known by Figure 16, too.

Table 8 shows POST trajectory analysis results. Maximum payloads for specific altitudes and inclinations are shown.

Table 8: Single Burn Trajectory Analysis Result

|  | Inclination [deg] |  |  |
| :---: | :---: | :---: | :---: |
| Altitude [nm] | 28.5 | 51.6 | 98.6 |
| 108 | 886 | 825 | 657 |
| 220 | 850 | 795 | 621 |
| 300 | 715 | 686 | 518 |
| 432 | 496 | 459 | 351 |
| 500 | 364 | 334 | 215 |
| *Values in [lb] |  |  |  |

Figure 17-19 show performance of published data and simulated data. The simulated data marks better performance in lower altitude, but it drops in higher altitude. In contrast, the published data draws gentle decline curve. The difference is probably burn times. The simulation uses single burn for the upper stage trajectory. The published data does not mention about burn times, but usually two-burn shows slower decline like the published performance data of Sprite vehicle. Thus, using same condition showed in section 4.4.1, the two-burn simulation is analyzed in next section.


Figure 17: Performance of Published and Simulated (Single burn, $\mathrm{i}=28.5$ )


Figure 18: Performance of Published and Simulated (Single burn, $\mathrm{i}=51.6$ )


Figure 19: Performance of Published and Simulated (Single burn, $\mathrm{i}=98.6$ )

### 4.4.3 POST Result for Original Design (Two-Burn)

As discussed in former section, two-burn simulation was assessed. Two burns techniques usually increase maximum payload, and show better performance in higher altitude than single burn. In Atlas launch system case, for example, in a single burn mission, t he payload is injected directly into a transfer or circular orbit. In a two-burn mission, the first burn injects the payload into a parking orbit followed by a coast period. The second engine burn places the vehicle in the desired orbit, followed by separation of the payload. The POST input file has minor change about two-burn. The same simulation conditions shown in Table 6 and same characteristics shown in Table 7 are used.

Figure 20-23 show example trajectory analysis results of two burns upper stage case. These figures are correspondence to Figure 16-19 of single burns. Compare to single stage case, vehicle reached to the target orbit very smoothly. Figure 22 and 23 shows it is actually two-burn upper stage. In third stage, the acceleration is stopped when vehicle stop the first burning. It started the engine again to circularize when it reached to the target altitude.


Figure 20: Altitude vs. Down Range ( $\mathrm{i}=28.5$ [ deg$]$ Alt $=108$ [ nm ], Two-burn)


Figure 21: POST Output Altitude vs. Time (i=28.5 [deg] Alt=108 [nm], Two-burn)


Figure 22: POST Output Weight vs. Time (i=28.5 [deg] Alt=108 [nm], Two-burn)


Figure 23: POST Output Weight vs. Time (i=28.5 [deg] Alt=108 [nm], Two-burn)

Table 9 shows POST trajectory analysis results. Two burn case maximum payloads for specific altitudes and inclinations are shown.

Table 9: Two-Burn Trajectory Analysis Results

|  | Inclination [deg] |  |  |
| :---: | :---: | :---: | :---: |
| Altitude [nm] | 28.5 | 51.6 | 98.6 |
| 108 | 943 | 834 | 667 |
| 220 | 867 | 797 | 622 |
| 300 | 786 | 725 | 557 |
| 432 | 675 | 636 | 481 |
| 500 | 636 | 597 | 448 |
| *Values in [lb] |  |  |  |



Figure 24: Performance of Published, Single Burn, and Two-Burn (i=28.5)


Figure 25: Performance of Published, Single Burn, and Two-Burn (i=51.6)


Figure 26: Performance of Published, Single Burn, and Two-Burn (i=98.6)
Figure 24-26 shows performance comparison of published data, single burn simulated data, and two-burn simulated data. For all points, two-burn simulated data superior to others. Also the curvature of two-burn is similar to published curve. It can conclude that Sprite SLV's published data is two-burn on the upper stage.

### 4.5 Weight and Sizing Analysis

Before design refining analysis, new disciplinary tool is required. As DSM shown in Figure 5, weight and sizing (W\&S) analysis is used in Part II of this project. This new tool is made by Microsoft Excel, and based on same type tool made by Janssen Pimentel, a former student in the Georgia Tech Space System Design Laboratory. Inputs are Sprite's dimensions, payload weight, and engine data. Figure 27 displays weight calculation of first stage in this Excel spreadsheet tool.

|  | A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |  |  |
| 2 | 1.0 | Structure |  | 776 lb |  | Max diameter | 3.5 | ft |
| 3 | \% 1.1 | Primary Structure (Intertank, Interstage) | 498 lb |  |  | Interstage clearance | 5 | ft |
| 4 | - 1.2 | Fuel Tank | 45 lb |  |  | Interstage area | 82.19 | $f$ ft |
| 5 | -1.3 | Oxidizer Tank | 98 lb |  |  | Tank clearance | 3 | ft |
| 6 | -1.4 | Thrust Structure | 39 lb |  |  | Tank diameter | 3.5 | ft |
| 7 | 1.5 | Payload Support (Upper Stage only) | 0 lb |  |  | Dome height | 1.24 | $\mathrm{ft}^{3}$ |
| 8 | 1.6 | Secondary Structure (Base Shield) | 19 lb |  |  | Dome volume | 7.94 | $\mathrm{ft}^{2}$ |
| 9 | 1.7 | Cone | 76 lb |  |  |  |  |  |
| 10 | 2.0 | Aero Surfaces (Booster only) |  | 0 lb |  | Intertank area | 60.20 | $\mathrm{ft}^{2}$ |
| 11 | 3.0 | Propulsion |  | 278 lb |  | Base Shield area | 9.62 | $\mathrm{ft}^{2}$ |
| 12 | 4.0 | Power |  | 100 lb |  | Aero Fin area | 28.86 | $\mathrm{ft}^{2}$ |
| 13 | 5.0 | Reaction Control (Upper Stage only) |  | 0 lb |  | Cone Length | 6.70 | ft |
| 14 | 6.0 | Avionics and Controls |  | 103 lb |  | Cone Aera | 38.07 | $\mathrm{ft}^{2}$ |
| 15 | 7.0 | Growth Margin (15\%) |  | 189 lb |  |  |  |  |
| 16 | 8.0 | Dry Weight |  | 1,445 lb |  | Lox Tank length | 8.50 | ft |
| 17 | 9.0 | Residuals and Reserves |  | 98 lb |  | Lox tank volume | 97.64 | $\mathrm{ft}^{3}$ |
| 18 | 10.0 | Circularization Propellant (Upper Stage only) |  | 0 lb |  | RP Tank length | 4.22 | ft |
| 19 | 11.0 | Payload (or next stage) |  | 2,556 lb | per pod | RP Tankvolume | 56.47 | $\mathrm{ft}^{3}$ |
| 20 | 12.0 | Burnout Weight |  | 4,100 lb |  |  |  |  |
| 21 | 13.0 | Main Propellants |  | $9,849 \mathrm{lb}$ |  | Stage Length | 37.37 | ft |
| 22 | -13.1 | Fuel | 2,897 lb |  |  | Stage Thrust | 17,129 | Ibf |
| 23 | -13.2 | Oxidizer | $6,952 \mathrm{lb}$ |  |  |  |  |  |
| 24 | 14.0 | Gross Weight |  | 13,949 lb |  | MR | 3.4020196 |  |
| 25 | 15.0 | Startup Losses |  | 49 lb |  | TM | 1.228 |  |
| 26 | 16.0 | Maximum Weight |  | 13,998 lb |  | O/F | 2.4 |  |
| 27 |  |  | Step GW | $11,442 \mathrm{lb}$ |  |  |  |  |
| 28 |  |  | Step DW | $1,544 \mathrm{lb}$ |  | Startup Loss | 0.5 | \% |
| 29 |  | TOTAL 6 pods Gross Weight |  | 83693.599 |  | Residual | 1 | \% |
| 30 |  | TOTAL 6 pods Propellants |  | 59092.447 |  |  |  |  |
| 31 |  |  |  |  |  |  |  |  |
| 32 |  | Amout of Properant | 9848.741237 |  |  |  |  |  |

Figure 27: Weight and Sizing Analysis Spreadsheet (First stage breakdown)
Since engine parameter changing is occur in Part II, engine weight equation is key of this spread sheet. The equation used in this tool is

$$
\begin{equation*}
W_{\text {engine }}=\frac{m \operatorname{dot}\left(h_{c}-h_{e}\right)}{k} \tag{1}
\end{equation*}
$$

where $\mathrm{W}_{\text {engine }}$ : Engine weight, mdot: Mass flow rate, $\mathrm{h}_{c} \mathrm{~h}_{\mathrm{e}}$ : Combustor/Exhaust plane flow enthalpy, and k : Weight relation coefficient. This equation and value of k is determined by D . W. Way (AIAA 99-2353) ${ }^{8}$. In Sprite SLV case, $\mathrm{k}=520[\mathrm{BTU} / \mathrm{s} / \mathrm{lbf}]$ is used.

### 4.6 Trade Study

From this section, second part of the project begins. For refining design, minor change of engine is decided. First of all, visualization of trade study is required. Table 10 shows available design space of expansion ratio. Based on these upper and lower boundaries, Design of Experiments (DOE) between expansion ratio and maximum payload is generated. Third stage engine is eliminated from trade study. Third stage almost always burns in vacuum environment, thus no change is expected on third stage. Using Response Surface Methods, model is generated so that it can used to determine optimum values and for sensitivity studies and design space visualization.

| Expansion Ratio : |  |  |  |
| :---: | :---: | :---: | :---: |
|  | baseline | Lower Bound | Upper Bound |
| 1st stage | 6.56 | 6 | 18 |
| 2nd stage | 30 | 25 | 45 |

Table 10: Upper and Lower Boundaries of Expansion Ratio

### 4.6.1 Design of Experiments and Response Surface Methods

Design of experiments (DOE) is a systematic, rigorous approach to engineering problem-solving that applies principles and techniques at the data collection stage so as to ensure the generation of valid, defensible, and supportable engineering conclusions ${ }^{9}$. In this project Central Composite Design (CCD) Type of DOE is used (Figure 28). Error can be lager than full factorial design, but it reduces the number of test points. Test points are set as Table 11.


Figure 28: Central Composite Design (Three Parameter Case)

Table 11: Central Composite Design Setting

| $\mathrm{k}=2$ |  |  |
| :---: | :---: | :---: |
| No | x 1 | x 2 |
| 1 | -1 | -1 |
| 2 | 1 | -1 |
| 3 | -1 | 1 |
| 4 | 1 | 1 |
| 5 | -- |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |

Response Surface Method (RSM) is a technique for building and optimizing empirical models of continuous functions. RSM approximates the underlying dependence of output responses to input parameters with an empirical polynomial relationship based on a given set of data (DOE). Advantage of using RSM is that simplified equation representing a complex system. Initially, the dependent parameter is assumed to be a second-order equation, base on a Taylor series approximation, of the form:

$$
\begin{equation*}
\text { Re sponse }=\beta_{0}+\sum_{i=1}^{k} \beta_{i} x_{i}+\sum_{i=1}^{k} \beta_{i i} x_{i}^{2}+\sum_{i=1}^{k-1} \sum_{j=i+1}^{k} \beta_{i j} x_{i} x_{j}+\text { error } \tag{2}
\end{equation*}
$$

where Response is the dependent parameter (response) of interest
${ }_{i}$ are regression coefficients for the first order terms ${ }_{i i}$ are coefficients for the pure quadratic terms
${ }_{i j}$ the coefficients for the cross-product terms
$\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}$ are the independent variables
error is the error associated with neglecting higher order effects

$$
\begin{equation*}
\text { Payload }=\beta_{0}+\beta_{1} \varepsilon_{1}+\beta_{2} \varepsilon_{2}+\beta_{3} \varepsilon_{1}^{2}+\beta_{4} \varepsilon_{2}^{2}+\beta_{5} \varepsilon_{1} \varepsilon_{2} \tag{3}
\end{equation*}
$$

Equation (3) shows the response surface (payload) of this part (Part II). To determine these coefficients in equation, DOE of Part II are generated. Responded payload is calculated by APAS, REDTOP, POST and W\&S spreadsheets for each expansion ratio in CCD. Simulation includes the loop calculation as shown in DSM (Figure 5). At least five
time iterations are simulated for each. In addition, $\mathrm{T} / \mathrm{W}$ ratio and $\mathrm{O} / \mathrm{F}$ ratio are fixed. These simulation results are shown in DOE (Table 12).

Table 12: Design of Experiments

| No | CCD Sets |  | Parameters |  | Response |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | x 1 | x 2 | 1 |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

From the DOE, the coefficients in equation (3) are solved. To get the equation, JMP, the statistical data handling program, is used in this project. Equation (4) shows the result of JMP calculation. The calculation error is one digit in second order error. This is not small, but acceptable in this case.

$$
\begin{equation*}
\text { Payload }=265.2777+51.2330 \varepsilon_{1}+31.3098 \varepsilon_{2}-3.6266 \varepsilon_{1}^{2}-0.4145 \varepsilon_{2}^{2}-0.0833 \varepsilon_{1} \varepsilon_{2} \tag{4}
\end{equation*}
$$

### 4.6.2 Optimized Values by Response Surface Method

In last section, RSM is defined for Sprite Refining. Figure 29 shows visualized response surface from equation (4). Top of hill, where is the maximum payload point, is in our ranges $\left(6<{ }_{1}<18,25<{ }_{2}<45\right)$. This means optimal values of expansion ratios are in range. By calculation, maximum value of equation (4) is 1016.1 [lb] when ${ }_{1}=6.63662$, ${ }_{2}=37.1015$. Table 13 shows comparison of payload. Refined Sprite SLV has better performance than original. Also it shows both payload from RSM equation, and simulated payload with ${ }_{1}=6.63662$ and ${ }_{2}=37.1015$.
(Figure 29 and Table 13 are shown in next page)


Figure 29: Response Surface

Table 13: Refined Sprite vs. Original Sprite

| Case i=28.5 alt=108[nm] |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
|  | Original <br> (Published) | Part I | Part II |  |
|  |  |  | RSM Cal. | Simulate |
| -1 | 6.56 | 6.56 | 6.64 | 6.64 |
| 2 | 30 | 30 | 37 | 37 |
| Payload [lb] | 700 | 943 | 1016 | 1003 |

Maximum Payloads between RSM calculation and Actual simulation are slightly different. This is happened because of error in RSM. RSM is very useful Technique for system designing, but it assumes response surface has quadratic form in this case. This makes some error in calculation, thus the expansion ratios we have might not be the best answer. Hopefully, the values are not so far from central point (middle values point) so that error might be small as ignorable. Also the payload of simulated value in Part II is larger than Part I. This means the expansion ratios are may not the best but these values actually makes improvement. From this reason, we take these expansion ratios for refined design vehicle. From next section, refined vehicle analysis is started with these new values.

### 4.7 Refined Vehicle Analysis

In this section, performance of refined Sprite SLV is simulated with new expansion ratios. Due to changing of expansion ratios and other values, Table 14 shows new inputs values for simulation. New Sprite SLV has smaller first and second stages. Simulation methods are basically same as Part I, so analysis details are omission. Same conditions are used for all calculations.

Table 14: Refined Sprite Data

| Spec | Unit | 1 st *1 | 2nd | 3rd |
| :--- | :--- | :---: | :---: | :---: |
| Total Height | ft | 52.8 | 47.9 | 15.2 |
| Reference Area | ft | 67.35 | 9.62 | 9.62 |
| Gross Weight *2 | lbm | 68165 | 11249 | 3090 |
| Empty Weight *2 | lbm | 10310 | 1854 | 578 |
| Exit area | $\mathrm{ft}^{2}$ | 9.378 | 8.65 | 4.565 |
| Thrust | $\mathrm{Ibf}(\mathrm{vac})$ | 122400 | 22700 | 2300 |
| lsp | sec (vac) | 285.38 | 320.67 | 330.06 |

*1 Total of 6 pods values
*2 Each Stage values (without Payload)

Table 15 shows simulation results of New Sprite SLV. In this section, only this table shows the simulation results. Basically, table shows the better performance of refined design vehicle. The performance comparison graphs are shown in next section with comments. Trajectory detail graphs are omission here. Since there is not so much big difference in Input data, trajectory is almost same as Figure 20-23.

Table 15: Refined Vehicle Analysis Results

|  | Inclination [deg] |  |  |
| :---: | :---: | :---: | :---: |
| Altitude [nm] | 28.5 | 51.6 | 98.6 |
| 108 | 1003 | 834 | 661 |
| 220 | 878 | 794 | 630 |
| 300 | 825 | 749 | 596 |
| 432 | 711 | 668 | 512 |
| 500 | 657 | 629 | 481 |
| *Values in [lb] |  |  |  |

### 5.0 Performance Comparison

All simulations and calculations are completed. Performance of Published Data, Simulated Data of Original Design (two burns case), and Simulated Data of Refined Design are gathered. Then performance comparison of all three models with comments is here. Let's start from i=28.5 case in Figure 30.


Figure 30: Performance Comparison ( $\mathrm{i}=28.5$ )
Figure 30 shows the maximum payload of these three designs. It shows the refined design vehicle has the slightly better performance than Part I design (Original, simulated). It means the improvement of Sprite SLV is succeeded. Basically all curves shows almost same grade of declines. Figure 31 and 32 shows same performance comparison graphs, but inclinations are 51.6 [ deg ] and 98.9 [deg]. These also show better performance of Part II analyses. In Figure 31, Part I analysis shows minute better performance than Part II analysis at around $200[\mathrm{~nm}]$. It should be lower, but it is possible there is an error because of some noise. At the other altitude, it shows better performance, thus it can be neglected.


Figure 31: Performance Comparison ( $\mathrm{i}=51.6$ )


Figure 32: Performance Comparison ( $\mathrm{i}=98.6$ )

### 6.0 Conclusions

All simulations and calculations are done. Figure 33 shows the maximum payload of all three data. From these results, we can conclude that the project is success.


Figure 33: Payload of all three data ( $\mathrm{i}=28.5[\mathrm{deg}]$, alt $=108[\mathrm{~nm}]$ )
The simulated data of original design is better than published data. As expected in the approach of the project (see 3.0 Approach), the Sprite SLV has better performance, which corresponds to the engine sizes. Upper stage burns time (single burn or two burns) is unknown when the project starts. These data are not published so far. However, it is able to conclude that Sprite SLV uses two burns upper stage from the simulation results in this project*.

The refining part is also success. As mentioned before, the expansion ratios are calculated by RSM equation with some error. Thus, it might not be the optimal values for Sprite vehicle. However, the simulation results show better performance enough. That is the reason we can say this is success.
*According to Microcosm engineer, it is actually two burns upper stage.

### 7.0 Reference

${ }^{1}$ Shyama Chakroborty, Thomas P. Bauer, "Using Pressure-Fed Propulsion Technology to Lower Space Transportation Costs," AIAA 2004-3358, 2004
${ }^{2}$ Shyama Chakroborty, Robert E. Conger, James R. Wertz, "Responsive Access to Space The Scorpius Low-Cost Launch System,'"IAC-04-IAF-04, Microcosm Inc, 2004
${ }^{3}$ Robert Conger, James R. Wertz, "Responsive Launch with the Scorpius Family of LowCost Expandable Launch Vehicle," AIAA LA Section/SSTC 2003-5001, 2003
${ }^{4}$ James V. Barry, Robert E. Conger, "Sprite Mini-Lift, an Affordable Small Expendable Launcher," AIAA 2001-4700, 2001
${ }^{5}$ Rober E. Conger, Shyama Chakroborty, James R. Wertz, "The Scorpius Expendable Launch Vehicle Family and Status of the Sprite Mini-Lift," AIAA 2002-2004, 2002
${ }^{6}$ James V. Berry, Robert E. Conger, James R. Wertz, "The Sprite Mini-Lift Vehicle:
Performance, Cost, and Schedule Projections for the First of the Scorpius Low-Cost Launch Vehicles," SSC99-X-7, Microcosm Inc, 1999
${ }^{7}$ Mark D. Guynn, "Aerodynamics Preliminary Analysis System Beginner's Guide," NASA Langley Research Center, 1991
${ }^{8}$ Way, D. W., Olds, J. R., "SCORES: Web-Based Rocket Propulsion Analysis Tool for Space Transportation System Design," AIAA 99-2353, 1999.
${ }^{9}$ Michelle R. Kirby, "The "How To" Guide for Response Surface Methodology," Georgia Institute of Technology Aerospace Systems Design Laboratory, 2003

## Appendix A: APAS Analysis Data

Frist Stage Data $\left(\right.$ Sref $=67.34\left[\begin{array}{ll}\text { [tt }\end{array}\right]$, Length $\left.=53.3[\mathrm{ft}]\right)$

| Run 1 |  |  |  |  |  |  |  | Run 5 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mach | alpha |  | beta | cl |  | cd | cm | mach | alpha | beta | c |  | cd | cm |
| 1.5 |  | -15 |  | 0 | -3.2498 | 1.0949 | 9.4049 | 7 | -15 |  | 0 | -1.0239 | 0.4192 | 2.7784 |
| 1.5 |  | -10 |  | 0 | -2.1633 | 0.582 | 6.15 | 7 | -10 |  | 0 | -0.6129 | 0.2297 | 1.5928 |
| 1.5 |  | -5 |  |  | -1.0647 | 0.2793 | 3.018 | 7 | -5 |  | 0 | -0.274 | 0.1321 | 0.6899 |
| 1.5 |  | 0 |  | 0 | 0 | 0.1812 |  | 7 |  |  | 0 | 0 | 0.1053 | 0 |
| 1.5 |  | 5 |  | 0 | 1.0647 | 0.2793 | -3.018 | 7 |  |  | 0 | 0.274 | 0.1321 | -0.6899 |
| 1.5 |  | 10 |  | 0 | 2.1633 | 0.582 | -6.15 | 7 | 10 |  | 0 | 0.6129 | 0.2297 | -1.5928 |
| 1.5 |  | 15 |  | 0 | 3.2498 | 1.0949 | -9.4049 | 7 | 15 |  | 0 | 1.0239 | 0.4192 | -2.7784 |
| 1.5 |  | 20 |  | 0 | 4.3843 | 1.8423 | -13.019 | 7 | 20 |  | 0 | 1.5049 | 0.7217 | -4.2848 |
| 1.5 |  | 25 |  | 0 | 5.4524 | 2.8166 | -16.783 | 7 | 25 |  | 0 | 2.0293 | 1.1546 | -6.0943 |
| 1.5 |  | 30 |  | 0 | 6.371 | 3.9681 | -20.573 | 7 | 30 |  | 0 | 2.5627 | 1.7264 | -8.1683 |
| Run 2 |  |  |  |  |  |  |  | Run 6 |  |  |  |  |  |  |
| mach | alpha |  | beta | cl |  | cd | cm | mach | alpha | beta | cl |  | cd | cm |
|  | 3 | -15 |  | 0 | -1.6413 | 0.5956 | 4.631 | 10 | -15 |  | 0 -0.9212 |  | 0.3934 | 2.4725 |
|  | 3 | -10 |  |  | -1.0576 | 0.3242 | 2.9126 | 10 | -10 |  | 0 | -0.53 | 0.2106 | 1.3447 |
|  | 3 | -5 |  | 0 | -0.5034 | 0.1713 | 1.3731 | 10 | -5 |  | 0 | -0.2271 | 0.1153 | 0.5475 |
|  | 3 | 0 |  | 0 | 0 | 0.1247 | 0 | 10 |  |  | 0 | 0 | 0.0937 | 0 |
|  | 3 | 5 |  | 0 | 0.5034 | 0.1713 | -1.3731 | 10 |  |  | 0 | 0.2271 | 0.1153 | -0.5475 |
|  | 3 | 10 |  | 0 | 1.0576 | 0.3242 | -2.9126 | 10 | 10 |  | 0 | 0.53 | 0.2106 | -1.3447 |
|  | 3 | 15 |  | 0 | 1.6413 | 0.5956 | -4.631 | 10 | 15 |  | 0 | 0.9212 | 0.3934 | -2.4725 |
|  | 3 | 20 |  | 0 | 2.2514 | 0.9966 | -6.5604 | 10 | 20 |  | 0 | 1.3903 | 0.6878 | -3.9444 |
|  | 3 | 25 |  | 0 | 2.8651 | 1.5391 | -8.7052 | 10 | 25 |  | 0 | 1.9084 | 1.1126 | -5.735 |
|  | 3 | 30 |  | 0 | 3.4548 | 2.2288 | -11.054 | 10 | 30 |  | 0 | 2.4391 | 1.6751 | -7.7976 |
| Run 3 |  |  |  |  |  |  |  | Run 7 |  |  |  |  |  |  |
| mach | alpha |  | beta | cl |  | cd | cm | mach | alpha | beta | cl |  | cd | cm |
|  | 4 | -15 |  |  | -1.3491 | 0.5092 | 3.7534 | 15 | -15 |  | 0 | -0.8634 | 0.3609 | 2.2847 |
|  | 4 | -10 |  |  | -0.8524 | 0.2792 | 2.3037 | 15 | -10 |  | 0 | -0.4794 | 0.1899 | 1.1865 |
|  | 4 | -5 |  | 0 | -0.3988 | 0.1527 | 1.0626 | 15 | -5 |  | 0 | -0.1936 | 0.1097 | 0.4468 |
|  | 4 | 0 |  | 0 | 0 | 0.1152 | 0 | 15 |  |  | 0 | 0 | 0.0888 | 0 |
|  | 4 | 5 |  |  | 0.3988 | 0.1527 | -1.0626 | 15 |  | 5 | 0 | 0.1936 | 0.1097 | -0.4468 |
|  | 4 | 10 |  | 0 | 0.8524 | 0.2792 | -2.3037 | 15 | 10 |  | 0 | 0.4794 | 0.1899 | -1.1865 |
|  | 4 | 15 |  | 0 | 1.3491 | 0.5092 | -3.7534 | 15 | 15 |  | 0 | 0.8634 | 0.3609 | -2.2847 |
|  | 4 | 20 |  | 0 | 1.8874 | 0.858 | -5.447 | 15 | 20 |  | 0 | 1.3234 | 0.666 | -3.7445 |
|  | 4 | 25 |  | 0 | 2.4492 | 1.3414 | -7.3986 | 15 | 25 |  | 0 | 1.8358 | 1.0959 | -5.5317 |
|  | 4 | 30 |  | 0 | 3.0025 | 1.966 | -9.5787 | 15 | 30 |  | 0 | 2.3638 | 1.6586 | -7.5947 |
|  | Run 4 |  |  |  |  |  |  | Run 8 |  |  |  |  |  |  |
| mach | alpha |  | beta | cl |  | cd | cm | mach | alpha | beta | cl |  | cd | cm |
|  | 5 | -15 |  | 0 | -1.1877 | 0.4631 | 3.2683 | 20 | -15 |  | 0 | -0.8418 | 0.3577 | 2.2208 |
|  | 5 | -10 |  | 0 | -0.7365 | 0.2549 | 1.9594 | 20 | -10 |  | 0 | -0.4579 | 0.1918 | 1.1257 |
|  | 5 | -5 |  | 0 | -0.3393 | 0.1429 | 0.8851 | 20 | -5 |  | 0 | -0.1781 | 0.1129 | 0.402 |
|  | 5 | 0 |  | 0 | 0 | 0.1103 | 0 | 20 |  |  | 0 | 0 | 0.0928 | 0 |
|  | 5 | 5 |  | 0 | 0.3393 | 0.1429 | -0.8851 | 20 |  |  | 0 | 0.1781 | 0.1129 | -0.402 |
|  | 5 | 10 |  | 0 | 0.7365 | 0.2549 | -1.9594 | 20 | 10 |  | 0 | 0.4579 | 0.1918 | -1.1257 |
|  | 5 | 15 |  | 0 | 1.1877 | 0.4631 | -3.2683 | 20 | 15 |  | 0 | 0.8418 | 0.3577 | -2.2208 |
|  | 5 | 20 |  | 0 | 1.6949 | 0.7869 | -4.8592 | 20 | 20 |  | 0 | 1.3093 | 0.6358 | -3.6723 |
|  | 5 | 25 |  | 0 | 2.2351 | 1.2423 | -6.7282 | 20 | 25 |  | 0 | 1.8298 | 1.0441 | -5.4469 |
|  | 5 | 30 |  | 0 | 2.7755 | 1.8377 | -8.8437 | 20 | 30 |  | 0 | 2.3438 | 1.631 | -7.5049 |

Conceptual Design and Analysis of a Small and Low-cost Launch Vehicle
Frist Stage Data $\left(\right.$ Sref $=67.34\left[f t \quad{ }^{2}\right]$, Length $\left.=53.3[f t]\right)$

| Run 9 |  |  |  |  |  |  | Run 10 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mach | alpha | beta |  | cl | cd | cm | mach | alpha | beta |  | cl | cd | cm |
| 25 | -15 |  | 0 | -0.8294 | 0.3653 | 2.1924 | 30 | -15 |  | 0 | -0.8208 | 0.3808 | 2.1806 |
| 25 | -10 |  | 0 | -0.4467 | 0.1988 | 1.0976 | 30 | -10 |  | 0 | -0.4395 | 0.2124 | 1.0843 |
| 25 | -5 |  | 0 | -0.1696 | 0.1203 | 0.3791 | 30 | -5 |  | 0 | -0.1641 | 0.1329 | 0.3666 |
| 25 | 0 |  | 0 | 0 | 0.1003 | 0 | 30 | 0 |  | 0 | 0 | 0.113 | 0 |
| 25 | 5 |  | 0 | 0.1696 | 0.1203 | -0.3791 | 30 | 5 |  | 0 | 0.1641 | 0.1329 | -0.3666 |
| 25 | 10 |  | 0 | 0.4467 | 0.1988 | -1.0976 | 30 | 10 |  | 0 | 0.4395 | 0.2124 | -1.0843 |
| 25 | 15 |  | 0 | 0.8294 | 0.3653 | -2.1924 | 30 | 15 |  | 0 | 0.8208 | 0.3808 | -2.1806 |
| 25 | 20 |  | 0 | 1.2957 | 0.6437 | -3.6443 | 30 | 20 |  | 0 | 1.2855 | 0.6606 | -3.6345 |
| 25 | 25 |  | 0 | 1.8154 | 1.0518 | -5.4199 | 30 | 25 |  | 0 | 1.8038 | 1.0696 | -5.4126 |
| 25 | 30 |  | 0 | 2.3508 | 1.5994 | -7.4706 | 30 | 30 |  | 0 | 2.3379 | 1.6176 | -7.4662 |

Second Stage Data $\left(\right.$ Sref $=9.62\left[f t \quad{ }^{2}\right]$, Length=48.4 [ft] $)$

| Run 1 |  |  |  |  |  |  | Run 4 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mach | alpha | beta | cl |  | cd | cm | mach | alpha |  | beta | cl |  | cd | cm |
| 1.5 | -15 |  | 0 | -7.2636 | 2.3285 | 52.69 |  | 5 | -15 |  | 0 | -2.615 | 0.9742 | 17.833 |
| 1.5 | -10 |  | 0 | -4.7541 | 1.1915 | 33.978 |  | 5 | -10 |  | 0 | -1.5995 | 0.5224 | 10.504 |
| 1.5 | -5 |  | 0 | -2.26 | 0.5369 | 16.151 |  | 5 | -5 |  | 0 | -0.7184 | 0.2838 | 4.5924 |
| 1.5 | 0 |  | 0 | 0 | 0.3294 | 0 |  | 5 |  |  | 0 | 0 | 0.2162 | 0 |
| 1.5 | 5 |  | 0 | 2.26 | 0.5369 | -16.151 |  | 5 |  |  | 0 | 0.7184 | 0.2838 | -4.5924 |
| 1.5 | 10 |  | 0 | 4.7541 | 1.1915 | -33.978 |  | 5 | 10 |  | 0 | 1.5995 | 0.5224 | -10.504 |
| 1.5 | 15 |  | 0 | 7.2636 | 2.3285 | -52.69 |  | 5 | 15 |  | 0 | 2.615 | 0.9742 | -17.833 |
| 1.5 | 20 |  | 0 | 9.8283 | 3.9945 | -73.248 |  | 5 | 20 |  | 0 | 3.7574 | 1.6867 | -26.781 |
| 1.5 | 25 |  | 0 | 12.19 | 6.1383 | -94.357 |  | 5 | 25 |  | 0 | 4.9757 | 2.696 | -37.339 |
| 1.5 | 30 |  | 0 | 14.323 | 8.7628 | -116.19 |  | 5 | 30 |  | 0 | 6.1995 | 4.0219 | -49.329 |
| Run 2 |  |  |  |  |  |  | Run 5 |  |  |  |  |  |  |  |
| mach | alpha | beta | cl |  | cd | cm | mach | alpha |  | beta | cl |  | cd | cm |
| 3 | -15 |  | 0 | -3.6448 | 1.261 | 25.663 |  | 7 | -15 |  | 0 | -2.241 | 0.8772 | 14.998 |
| 3 | -10 |  | 0 | -2.3189 | 0.6655 | 15.926 |  | 7 | -10 |  | 0 | -1.3199 | 0.4653 | 8.3943 |
| 3 | -5 |  | 0 | -1.0753 | 0.3355 | 7.2923 |  | 7 | -5 |  | 0 | -0.5747 | 0.2553 | 3.4921 |
| 3 | 0 |  | 0 | 0 | 0.2369 | 0 |  | 7 |  |  | 0 | 0 | 0.2009 | 0 |
| 3 | 5 |  | 0 | 1.0753 | 0.3355 | $-7.2923$ |  | 7 |  |  | 0 | 0.5747 | 0.2553 | -3.4921 |
| 3 | 10 |  | 0 | 2.3189 | 0.6655 | -15.926 |  | 7 | 10 |  | 0 | 1.3199 | 0.4653 | -8.3943 |
| 3 | 15 |  | 0 | 3.6448 | 1.261 | -25.663 |  | 7 | 15 |  | 0 | 2.241 | 0.8772 | -14.998 |
| 3 | 20 |  | 0 | 5.0199 | 2.149 | -36.543 |  | 7 | 20 |  | 0 | 3.3246 | 1.542 | -23.47 |
| 3 | 25 |  | 0 | 6.401 | 3.3558 | -48.648 |  | 7 | 25 |  | 0 | 4.5091 | 2.5001 | -33.702 |
| 3 | 30 |  | 0 | 7.7309 | 4.8921 | -61.928 |  | 7 | 30 |  | 0 | 5.7186 | 3.7735 | -45.474 |
|  | Run 3 |  |  |  |  |  | Run 6 |  |  |  |  |  |  |  |
| mach | alpha | beta | cl |  | cd | cm | mach | alpha |  | beta | cl |  | cd | cm |
| 4 | -15 |  | 0 | -2.9823 | 1.0747 | 20.63 | 1 | 0 | -15 |  | 0 | -2.0084 | 0.8153 | 13.22 |
| 4 | -10 |  | 0 | -1.8602 | 0.5729 | 12.472 | 1 | 0 | -10 |  | 0 | -1.1331 | 0.4228 | 6.9567 |
| 4 | -5 |  | 0 | -0.8492 | 0.3015 | 5.5828 | 1 | 0 | -5 |  | 0 | -0.4714 | 0.2219 | 2.6819 |
| 4 | 0 |  | 0 | 0 | 0.2228 | 0 | 1 | 0 |  |  | 0 | 0 | 0.1743 | 0 |
| 4 | 5 |  | 0 | 0.8492 | 0.3015 | -5.5828 | 1 | 0 |  |  | 0 | 0.4714 | 0.2219 | -2.6819 |
| 4 | 10 |  | 0 | 1.8602 | 0.5729 | -12.472 | 1 | 0 | 10 |  | 0 | 1.1331 | 0.4228 | -6.9567 |
| 4 | 15 |  | 0 | 2.9823 | 1.0747 | -20.63 | 1 | 0 | 15 |  | 0 | 2.0084 | 0.8153 | -13.22 |
| 4 | 20 |  | 0 | 4.1946 | 1.8441 | -30.159 | 1 | 0 | 20 |  | 0 | 3.0666 | 1.459 | -21.502 |
| 4 | 25 |  | 0 | 5.4607 | 2.9166 | -41.18 | 1 | 0 | 25 |  | 0 | 4.2383 | 2.4005 | -31.642 |
| 4 | 30 |  | 0 | 6.7123 | 4.3087 | -53.525 |  | 0 | 30 |  | 0 | 5.4408 | 3.6558 | -43.361 |

Second Stage Data (Sref = $9.62\left[f{ }^{2}\right]$, Length=48.4 [ft])

| Run 7 |  |  |  |  |  |  | Run 9 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mach | alpha | beta | cl |  | cd | cm | mach | alpha | beta | cl |  | cd | cm |
| 15 | -15 |  | 0 | -1.8751 | 0.7472 | 12.123 | 25 | -15 |  | 0 | -1.7898 | 0.7784 | 11.582 |
| 15 | -10 |  | 0 | -1.0139 | 0.3892 | 6.0259 | 25 | -10 |  | 0 | -0.9371 | 0.4215 | 5.5058 |
| 15 | -5 |  | 0 | -0.3943 | 0.2227 | 2.0954 | 25 | -5 |  | 0 | -0.3391 | 0.2586 | 1.6969 |
| 15 | 0 |  | 0 | 0 | 0.181 | 0 | 25 |  |  | 0 | 0 | 0.2185 | 0 |
| 15 | 5 |  | 0 | 0.3943 | 0.2227 | -2.0954 | 25 |  |  | 0 | 0.3391 | 0.2586 | -1.6969 |
| 15 | 10 |  | 0 | 1.0139 | 0.3892 | -6.0259 | 25 | 10 |  | 0 | 0.9371 | 0.4215 | -5.5058 |
| 15 | 15 |  | 0 | 1.8751 | 0.7472 | -12.123 | 25 | 15 |  | 0 | 1.7898 | 0.7784 | -11.582 |
| 15 | 20 |  | 0 | 2.9149 | 1.4141 | -20.355 | 25 | 20 |  | 0 | 2.8432 | 1.3865 | -19.774 |
| 15 | 25 |  | 0 | 4.0772 | 2.3624 | -30.487 | 25 | 25 |  | 0 | 4.0209 | 2.2879 | -29.847 |
| 15 | 30 |  | 0 | 5.2768 | 3.6145 | -42.215 | 25 | 30 |  | 0 | 5.2363 | 3.5056 | -41.509 |
| Run 8 |  |  |  |  |  |  | Run 10 |  |  |  |  |  |  |
| mach | alpha | beta |  | cl | cd | cm | mach | alpha | beta |  | cl | cd | cm |
| 20 | -15 |  | 0 | -1.8196 | 0.7537 | 11.744 | 30 | -15 |  | 0 | -1.7691 | 0.8219 | 11.52 |
| 20 | -10 |  | 0 | -0.9636 | 0.3986 | 5.6689 | 30 | -10 |  | 0 | -0.9201 | 0.4594 | 5.4323 |
| 20 | -5 |  | 0 | -0.3589 | 0.2346 | 1.8324 | 30 | -5 |  | 0 | -0.3265 | 0.2937 | 1.6244 |
| 20 | 0 |  | 0 | 0 | 0.1946 | 0 | 30 |  |  | 0 | 0 | 0.2539 | 0 |
| 20 | 5 |  | 0 | 0.3589 | 0.2346 | -1.8324 | 30 |  |  | 0 | 0.3265 | 0.2937 | -1.6244 |
| 20 | 10 |  | 0 | 0.9636 | 0.3986 | -5.6689 | 30 | 10 |  | 0 | 0.9201 | 0.4594 | -5.4323 |
| 20 | 15 |  | 0 | 1.8196 | 0.7537 | -11.744 | 30 | 15 |  | 0 | 1.7691 | 0.8219 | -11.52 |
| 20 | 20 |  | 0 | 2.8757 | 1.3611 | -19.929 | 30 | 20 |  | 0 | 2.8186 | 1.4343 | -19.729 |
| 20 | 25 |  | 0 | 4.0556 | 2.2628 | -29.992 | 30 | 25 |  | 0 | 3.9922 | 2.3382 | -29.82 |
| 20 | 30 |  | 0 | 5.2262 | 3.5675 | -41.713 | 30 | 30 |  | 0 | 5.204 | 3.5569 | -41.502 |

Third Stage Data (Sref=9.62 [ft ${ }^{2}$ ], Length $\left.=15.2[f f]\right)$

| Run 1 |  |  |  |  |  | Run 3 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mach | alpha | beta | cl | cd | cm | mach | alpha | beta | cl | cd | cm |
| 1.5 | -15 | 0 | -1.9899 | 0.866 | 4.6853 | 4 | -15 | 0 | -0.944 | 0.4949 | 2.0372 |
| 1.5 | -10 | 0 | -1.2799 | 0.5286 | 2.9559 | 4 | -10 | 0 | -0.6059 | 0.3206 | 1.2483 |
| 1.5 | -5 | 0 | -0.5821 | 0.3391 | 1.3366 | 4 | -5 | 0 | -0.2814 | 0.2215 | 0.5574 |
| 1.5 | 0 | 0 | 0 | 0.2776 | 0 | 4 | 0 | 0 | 0 | 0.1909 | 0 |
| 1.5 | 5 | 0 | 0.5821 | 0.3391 | -1.3366 | 4 | 5 | 0 | 0.2814 | 0.2215 | -0.5574 |
| 1.5 | 10 | 0 | 1.2799 | 0.5286 | -2.9559 | 4 | 10 | 0 | 0.6059 | 0.3206 | -1.2483 |
| 1.5 | 15 | 0 | 1.9899 | 0.866 | -4.6853 | 4 | 15 | 0 | 0.944 | 0.4949 | -2.0372 |
| 1.5 | 20 | 0 | 2.6994 | 1.3516 | -6.5564 | 4 | 20 | 0 | 1.2913 | 0.7502 | -2.9375 |
| 1.5 | 25 | 0 | 3.3336 | 1.9618 | -8.4656 | 4 | 25 | 0 | 1.631 | 1.0892 | -3.9495 |
| 1.5 | 30 | 0 | 3.9031 | 2.7019 | -10.445 | 4 | 30 | 0 | 1.9484 | 1.5125 | -5.0606 |
| Run 2 |  |  |  |  |  | Run 4 |  |  |  |  |  |
| mach | alpha | beta | cl | cd | cm | mach | alpha | beta | cl | cd | cm |
| 3 | -15 | 0 | -1.0967 | 0.5436 | 2.4403 | 5 | -15 | 0 | -0.8609 | 0.4691 | 1.8159 |
| 3 | -10 | 0 | -0.7073 | 0.3477 | 1.5168 | 5 | -10 | 0 | -0.549 | 0.3066 | 1.0961 |
| 3 | -5 | 0 | -0.3277 | 0.2365 | 0.6819 | 5 | -5 | 0 | -0.2547 | 0.2145 | 0.4853 |
| 3 | 0 | 0 | 0 | 0.2016 | 0 | 5 | 0 | 0 | 0 | 0.186 | 0 |
| 3 | 5 | 0 | 0.3277 | 0.2365 | -0.6819 | 5 | 5 | 0 | 0.2547 | 0.2145 | -0.4853 |
| 3 | 10 | 0 | 0.7073 | 0.3477 | -1.5168 | 5 | 10 | 0 | 0.549 | 0.3066 | -1.0961 |
| 3 | 15 | 0 | 1.0967 | 0.5436 | -2.4403 | 5 | 15 | 0 | 0.8609 | 0.4691 | -1.8159 |
| 3 | 20 | 0 | 1.488 | 0.8272 | -3.4585 | 5 | 20 | 0 | 1.1879 | 0.7108 | -2.6629 |
| 3 | 25 | 0 | 1.8624 | 1.2009 | -4.5701 | 5 | 25 | 0 | 1.5122 | 1.0344 | -3.6314 |
| 3 | 30 | 0 | 2.2047 | 1.661 | -5.7677 | 5 | 30 | 0 | 1.8185 | 1.4397 | -4.7077 |

Third Stage Data (Sref=9.62 [ft ${ }^{2}$ ], Length=15.2 [ft])

| Run 5 |  |  |  |  |  | Run 8 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mach | alpha | beta | cl | cd | cm | mach | alpha | beta | cl | cd | cm |
| 7 | -15 | 0 | -0.7761 | 0.4437 | 1.5906 | 20 | -15 | 0 | -0.6802 | 0.4247 | 1.3338 |
| 7 | -10 | 0 | -0.4885 | 0.2863 | 0.9324 | 20 | -10 | 0 | -0.4126 | 0.2827 | 0.7272 |
| 7 | -5 | 0 | -0.2272 | 0.1934 | 0.4042 | 20 | -5 | 0 | -0.1852 | 0.2054 | 0.29 |
| 7 | 0 | 0 | 0 | 0.167 | 0 | 20 | 0 | 0 | 0 | 0.1819 | 0 |
| 7 | 5 | 0 | 0.2272 | 0.1934 | -0.4042 | 20 | 5 | 0 | 0.1852 | 0.2054 | -0.29 |
| 7 | 10 | 0 | 0.4885 | 0.2863 | -0.9324 | 20 | 10 | 0 | 0.4126 | 0.2827 | -0.7272 |
| 7 | 15 | 0 | 0.7761 | 0.4437 | -1.5906 | 20 | 15 | 0 | 0.6802 | 0.4247 | -1.3338 |
| 7 | 20 | 0 | 1.0849 | 0.6754 | -2.3931 | 20 | 20 | 0 | 0.9769 | 0.6409 | -2.1051 |
| 7 | 25 | 0 | 1.3972 | 0.9859 | -3.3293 | 20 | 25 | 0 | 1.2833 | 0.9363 | -3.0226 |
| 7 | 30 | 0 | 1.6958 | 1.3772 | -4.3832 | 20 | 30 | 0 | 1.5798 | 1.3123 | -4.0625 |
| Run 6 |  |  |  |  |  | Run 9 |  |  |  |  |  |
| mach | alpha | beta | cl | cd | cm | mach | alpha | beta | cl | cd | cm |
| 10 | -15 | 0 | -0.7272 | 0.4183 | 1.4448 | 25 | -15 | 0 | -0.6715 | 0.4406 | 1.3248 |
| 10 | -10 | 0 | -0.4507 | 0.2725 | 0.8217 | 25 | -10 | 0 | -0.4057 | 0.2986 | 0.7175 |
| 10 | -5 | 0 | -0.2069 | 0.1923 | 0.3476 | 25 | -5 | 0 | -0.1809 | 0.222 | 0.2821 |
| 10 | 0 | 0 | 0 | 0.1677 | 0 | 25 | 0 | 0 | 0 | 0.1984 | 0 |
| 10 | 5 | 0 | 0.2069 | 0.1923 | -0.3476 | 25 | 5 | 0 | 0.1809 | 0.222 | -0.2821 |
| 10 | 10 | 0 | 0.4507 | 0.2725 | -0.8217 | 25 | 10 | 0 | 0.4057 | 0.2986 | -0.7175 |
| 10 | 15 | 0 | 0.7272 | 0.4183 | -1.4448 | 25 | 15 | 0 | 0.6715 | 0.4406 | -1.3248 |
| 10 | 20 | 0 | 1.0282 | 0.642 | -2.225 | 25 | 20 | 0 | 0.9667 | 0.6566 | -2.0973 |
| 10 | 25 | 0 | 1.3334 | 0.9519 | -3.1516 | 25 | 25 | 0 | 1.272 | 0.9513 | -3.0163 |
| 10 | 30 | 0 | 1.6254 | 1.3429 | -4.201 | 25 | 30 | 0 | 1.5678 | 1.3261 | -4.0576 |
| Run 7 |  |  |  |  |  | Run 10 |  |  |  |  |  |
| mach | alpha | beta | cl | cd | cm | mach | alpha | beta | cl | cd | cm |
| 15 | -15 | 0 | -0.6943 | 0.4165 | 1.3618 | 30 | -15 | 0 | -0.6648 | 0.464 | 1.326 |
| 15 | -10 | 0 | -0.4243 | 0.2737 | 0.7528 | 30 | -10 | 0 | -0.4008 | 0.3201 | 0.7162 |
| 15 | -5 | 0 | -0.1922 | 0.1959 | 0.3073 | 30 | -5 | 0 | -0.178 | 0.2425 | 0.2794 |
| 15 | 0 | 0 | 0 | 0.1722 | 0 | 30 | 0 | 0 | 0 | 0.2186 | 0 |
| 15 | 5 | 0 | 0.1922 | 0.1959 | -0.3073 | 30 | 5 | 0 | 0.178 | 0.2425 | -0.2794 |
| 15 | 10 | 0 | 0.4243 | 0.2737 | -0.7528 | 30 | 10 | 0 | 0.4008 | 0.3201 | -0.7162 |
| 15 | 15 | 0 | 0.6943 | 0.4165 | -1.3618 | 30 | 15 | 0 | 0.6648 | 0.464 | -1.326 |
| 15 | 20 | 0 | 0.9925 | 0.6337 | -2.1336 | 30 | 20 | 0 | 0.9582 | 0.6808 | -2.1015 |
| 15 | 25 | 0 | 1.2999 | 0.9305 | -3.051 | 30 | 25 | 0 | 1.2616 | 0.9757 | -3.0235 |
| 15 | 30 | 0 | 1.597 | 1.3082 | -4.0904 | 30 | 30 | 0 | 1.5557 | 1.35 | -4.0678 |

## Appendix B: POST sample input file

```
 ссссссссссссссссссссссссссссссссссссссссссссссссссссссссссссс
C
c Simple 3-D POST trajectory to simulated a rubberized
c Atlas III-like TSTO ELV.
c Modified for Microcosm Sprite (3 Stages) by Kohei Taya
c }108\textrm{nm}\mathrm{ altitude from KSC
c written by: John R. Olds (Georgia Tech)
c December, }199
c cссссссссссссссссссссссссссссссссссссссссссссссссссссссссссссс
c *** set up optimization inputs ***
c
I$search
    ioflag = 0, / english input, english output units
    opt = 1, / optimizer should maximize
c opt = 0, / target only
    maxitr = 30,
    ipro =-1, / print only the final, optimized trajectory
    *** optimization variable ***
    optvar = 6hweight, / maximize the final weight (payload)
    optph = 1000, / optimize at the end of booster stage
c
c *** constraint variables ***
c
    ndepv = 6,
    depvr = 'gdalt','gammai','inc','veli','xmax2','xmax6',/names of dependent variables
    depval =656640.0, 0.0,28.5,25540.42841,50.0,1500.0, /target values
    deptl = 100.0,0.05,0.1,10.0,1.0,1.0, /targeting criteria(allowable errors)
    depph = 1000,1000,1000,1000,800,800,
c
c *** simulation control variables (u's) ***
c
    nindv = 18,
    tabl = 6*'pitt',5*'pitt',5*'pitt',
    tably = 3,4,5,6,7,8,1,2,3,4,5,1,2,3,4,5,
    indvr = 'tabl1','tabl2','tabl3','tabl4','tabl5','tabI6','tabl7','tabI8','tabI9',
    'tabl10','tabl11','tabl12','tabl13','tabl14','tabl15','tabl16','wstpd4','azl',
    indph = 6*1,5*500,5*800,1,1,
C
c *** initial guesses for u's ***
C
u= -10,-20,-30,-40,-50,-60,-70,-80,-80,-80,-80,-80,-80,-80,-80,-80,700,90,
```

с сссссссссссссссссссссссссссссссссссссссссссссссссссссссссссссо
C
c Projected Gradient Options
c (comment out this block if using npsol)
c
srchm =5, $\quad /$ use accelerated projected gradient
idepvr $=0,0,0,0,1,1$,
modew $=0, \quad /$ use manual weighting for u's
c $w v u=1 e-3,2^{*} 2 e-2,3 e 2,5^{*} 2 e-01,1 e-02$,
pert $=18 * 1 \mathrm{e}-5$,
c coneps $=89.99,0,0,0,0,0, \quad /$ tighten optimality criteria
pctcc $=.5, \quad /$ limit maximum change in u's for targeting
$\operatorname{npad}(1)=0, \quad /$ ignore requirements on pert precision
с ссссссссссссссссссссссссссссссссссссссссссссссссссссссссссссссе

C

```
c NPSOL Options
    (comment out this block if using projected gradient)
    srchm = 6, I use npsol
    depvub =6.080e5, 0, 10000, 0,
    depvlb =6.080e5, 0, 0, 0,
    deptl = 100, .005, 2, 1,
    indpub = 1000,0,0,0,0,0,0,
    indplb =0,-70,-90,-90,-90,-100,-150,
    wopt = 100,
    wvnlc = 10000,1,10,
    wvu = 100,20,100,100,100,100,100,
    isens =3, / automatic pert control from npsol
    isens = 1, / user selected central differences
    pert = 1e-6,6*1e-7,
C
 сссссссссссссссссссссссссссссссссссссссссссссссссссссссссссссс
c
C
$
c *** trajectory simulation inputs ***
C
I$gendat
    title=Oh*Scorpius Sprite*,
    event =1,
    fesn = 1000, / final event number
    npc(1) = 3, / Keplerian conic calculation flag
    npc(2) = 1, / fourth order runge-kutta
    dt = 1, / integration step size
    Iref = 53.3, / body length
    pinc =30, / print interval
    prnc = 0,
c *** initial conditions ***
    npc(3) = 4, / earth relative velocity components
c azl =90, / rotate L coordinates so that }Z\mathrm{ points due east
    npc(4) = 2, / geocentric position components
    gdalt =20, / initial altitude - feet
    gdlat =28.4583, / Kennedy Space Center
    long =279.4728,
    npc(5) = 5, / 1976 standard atmosphere
    npc(7) = 1, / limit accelaration using etal
    asmax = 6.4, I asmax is the maximum number of g's allowed
    npc(8) =2, / cl and cd aero inputs
    sref =67.34, l aero reference data is max cross sectional area (guess)
    npc(9) = 1, / use thrusting engines (rather than delta V's)
    npc(12) = 1, / calculate downrange and crossrange distances
    npc(15) = 1, / calculate heating using Chapman's equation
    npc(16) = 1, / use spherical planet for gravity model
    npc(21) = 1, / calculate prop brun
    npc(25) = 2, / calculate velocity losses
    npc(27) = 1, / integrate to find prop flow rates
    npc(30) = 3, / use enhanced weight model (steps)
c
c *** enhanced weight model-4 steps,3 engines
ispv = 285.05, 317.27, 330.06, / engine 1, engine 2, engine 3 (All LOX/Kerosene)
    iengmf= 1, 0, 0,/ which engines are on and what type
    ienga = 1, 1, 1,/ use engine throttle to limit acceleration
    iwdf = 2, 2, 2, / type of flowrate calculation (isp table or const).
    iwpf = 1, 1, 1, / include 3 engines in flowrate calculations
    nengl = 1, l lowest number of all engines
    nengh = 3, / highest number of all engines (= total number of engine)
    nstpl = 1, / lowest number of all steps
    nstph = 4, / / highest number of all steps (= total number of step)
    wstpd(1)=67962.48, / Step 1 Gross Weight (0.5% Startup losses)
    wstpd(2)= 11549, / Step 2 Gross Weight
    wstpd(3)=3090, / Step 3 Gross Weight
```

```
C
    menstp = 1,2,3, / map each engine to a specific step
    mentnk = 1,2,3, / map each engine to a specific tank
    istepf = 1,1,1,1, / include all steps in calculation of dry weight
c
c
c *** guidance inputs ***
c
    iguid(1) = 1,0,
    iguid(4) = 2, / inertial Euler angles with table look up
c
    monx = 'dynp', 'alpha', 'heatrt', 'asmg', 'gdalt', 'qalpha',/ monitor variables
    maxtim = 1600, /max time of flight
    altmax = 10000000, /max alt
    altmin =-100, /min alt
c
C *** print block ***
C
    prnt(97)= 'wprus1','wprus2','wprus3',
        'wpru1','wpru2','wpru3',
        'thr1','thr2','thr3',
        'isp1','isp2','isp3',
        'dynpdt',
        'xmin1','xmax1',
        'xmin2','xmax2',
        'xmin3','xmax3',
        'xmin4','xmax4',
        'xmin5','xmax5',
        'xmin6','xmax6',
        'netisp',
        'timrf1','timrf2','timrf3',
        'videal',
        'pstop',
    $
|$tblmlt tvc1m = 1.0,
    $
c
c *** inertial pitch angle table includes vertical rise segment ***
c
I$tab
    table= 'pitt',1,'time',8,1,1,1,
    0, 0,
    5, 0, / Forced to be vertical for 5 seconds
    15, 0,
    30, 0,
    60, 0,
    90, 0,
    120, 0,
    180, 0,
    $
c *** include APAS aerodynamic coefficients table for 1st stage ***
*include '/ssdldsk/ae6322a/Kohei_Taya/POST/1ststage.aero'
I$tab
c
c *** Thrust at liftoff ***
    table = 5htvc1t,0,122400, Nacuum thrust of 6 engines (1st stage)
    $
I$tab
c
c *** exit area for engine 1 (ft^2) ***
C
    table = 4hae1t,0,9.276,
    endphs = 1,
$
```

```
I$gendat
c
c *** enent 110***
C *** 1st stage burns out ***
c *** prop weight accounts for 1% residuals at separation ***
event = 110, critr='wprus1', value = 57131.4, /usuable prop used on 1st stage
wsjtd(1) = 10834.5, /dry weight and prop residuals of 1st stage
iengmf = 0, 0, 0,
nengl =2,
nstpl = 2,
endphs =1,
$
I$gendat
c *** event 500 ***
c *** coast for 5 seconds then start 2nd stage engine ***
C
event =500, critr = 5htdurp, value = 5,
iengmf = 0, 1, 0,
C
c *** turn on timer for second pitch table ***
C
    dtimr(1) = 1,
    sref = 9.62, / aero reference data is max cross sectional area
$
|$tblmlt tvc2m = 1.0,
$
c *** include APAS aerodynamic coefficients table for 2nd stage ***
C
*include '/ssdldsk/ae6322a/Kohei_Taya/POST/2ndstage.aero'
c
c *** start new pitch angle steering table ***
I$tab
    table=4hpitt,1,6htimrf1,8,1,1,1,
    0, 0,
    10, 0,
    60, 0,
    90, 0,
    120, 0,
    150, 0,
    180, 0,
    210, 0,
    $
I$tab
C
c *** 2nd stage engine ***
C
    table = 5htvc2t,0,22700, /vacuum thrust of 2nd stage engine
    $
I$tab
C
c *** exit area for 2nd stage engine ***
c
table = 4hae2t,0,7.069,
    endphs = 1,
    $
I$gendat
C
c *** event 600 ***
c *** Fairing Separation at dynp=1.0 psf w=165 lbs ***
C
event=600,1,critr=4hdynp,value=0.5,/separation by dynp=0.5 psf
```

```
    mdl=3,/Event will only be initiated if derivative of dynp is negative
    wsjtd(3) = 165,
    endphs = 1,
    $
I$gendat
C
c *** 2nd stage burns out ***
c *** prop weight accounts for 1% residuals at separation ***
event = 700,0, critr='wprus2', value = 9601.02, /usuable prop used on 2nd stage
mdl = 1, /Event will only be initiated if derivative of wprus2 is positive (default)
wsjtd(2) = 1947.98,/dry weight and prop residuals of 2nd stage (the fairing has already been released)
iengmf = 0, 0, 0,
nengl = 3,
    nstpl = 3,
    endphs = 1,
    $
I$gendat
C
c *** coast for 5 seconds then start 3rd stage engine ***
c
    event =800, critr = 5htdurp, value = 5,
    iengmf = 0, 0, 1,
c
c *** turn on timer for third pitch table ***
dtimr(2) = 1,
    sref =9.62, / aero reference data is max cross sectional area
    $
|$tblmlt tvc3m = 1.0,
$
c
c *** include APAS aerodynamic coefficients table for 3rd stage ***
*include '/ssdldsk/ae6322a/Kohei_Taya/POST/3rdstage.aero'
C
c *** start new pitch angle steering table ***
c
|$tab
    table=4hpitt,1,6htimrf2,5,1,1,1,
    0, 0,
    50, 0,
    100, 0,
    200, 0,
    500, 0,
    $
I$tab
c
c *** 3rd stage engine ***
C
    table = 5htvc3t,0,2300,/vacuum thrust of 3rd stage engine
    $
I$tab
c *** exit area for 3rd stage engine ***
c
    table = 4hae3t,0,4.565,
    endphs = 1,
    $
I$gendat
C
c *** 3rd stage burns out when all prop are used ***
C
    event =900, critr='wprus3', value = 2486.88,/usable prop used on 3rd stage
    wsjtd(3) = 413, /dry weight of 3rd stage (the fairing has already been released)
    iengmf = 0,0,0,
    pinc = 1,
c
```

```
c *** begin to fly zero angle of attack for minimum drag ***
c
    iguid(1) = 0,0,0,
    iguid(3) = 1,
    alppc(1) = 0,
    nstpl =4
    nstph = 4,
    endphs =1,
    $
I$gendat
c
c *** this is the final event ***
c}\mathrm{ event =1000,critr=5htdurp,value=0.0,
endphs = 1,
endjob = 1,
endprb = 1,
$
```

