
 
 

1 
 

Flyby Trajectory Analysis and Thermal Simulation of a 

Venus Atmospheric Probe 

 

 

                          

 

 

AE 8900 MS Special Problems Report  

Space Systems Design Laboratory (SSDL)  

Guggenheim School of Aerospace Engineering  

Georgia Institute of Technology  

Atlanta, GA, 30332 

 

Author: 

Roshan Selvaratnam 

 

Academic Advisor: 

Dr. E. Glenn Lightsey 

 

 

 

 

 

 

 

December 12, 2017 

 



 
 

2 
 

Flyby Trajectory Analysis and Thermal Simulation of a Venus 

Atmospheric Probe 

Roshan Selvaratnam* 

Georgia Institute of Technology, Atlanta, GA, United States 

E. Glenn Lightsey† 

Georgia Institute of Technology, Atlanta, GA, United States 

 Cupid’s Arrow is a proposed interplanetary Venus mission aimed at sampling the 

noble gases in its atmosphere. These inert elements can provide an insight into the history of 

the planet’s formation and provide a reference for comparison with the Earth. The mission 

is comprised of a mothership and an atmospheric sample collection probe. This study is 

focused on the latter which will be deployed into Venus’ atmosphere and descend to an 

altitude of 120 km. The thermal environment of the Venusian exosphere is the primary 

driver of the probe design both in terms of its structure and material composition. The 

mission architecture being considered for this study takes advantage of a gravity assist flyby 

trajectory. The probe will be dropped off as a secondary payload en route to the spacecraft’s 

primary destination. The entry conditions at Venus and the trajectory of the probe relative 

to the mothership were determined using 2-body orbital mechanics. Using planar equations 

of motion, the probe’s entry into Venus’ atmosphere was simulated to predict the thermal 

environment that it would encounter. Initial results show a peak heat rate of approximately 

220.3297 W/cm2, a peak deceleration of 2.7654 Earth g’s and a total heat load of 15535 J/cm2. 

The results of the thermal environment model and relative trajectory analysis were used to 

validate the baseline communications and TPS design. In addition to Venus, this mission 

concept could be used to explore other planetary atmospheres, especially those frequented 

by interplanetary flybys. 

NOMENCLATURE 

TPS = Thermal Protection System 

PICA = Phenolic Impregnated Carbon Ablator 

POST2 = Program to Optimize Simulated Trajectories II 

CFD = Computational fluid dynamics 

rv = Radius of Venus 

V = Velocity of probe  

h = Altitude 

γ = Flight path angle  

β = Ballistic coefficient 

L/D = Lift-to-drag ratio 

ρ0 = Reference density 

q = Stagnation point convective heat rate 

_____________________ 
* Graduate Student, Space Systems Design Lab (SSDL), Guggenheim School of Aerospace Engineering 

† Professor, Director of Space Systems Design Lab (SSDL), Guggenheim School of Aerospace Engineering 
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rn = Effective nose radius 

k = Sutton-Graves constant 

Rp = Radius of the planet 

H = Scale height 

V∞ = Hyperbolic excess velocity 

Varr = Spacecraft heliocentric arrival velocity 

Vp = Heliocentric velocity of planet 

RSOI = Radius of the sphere of influence 

 

INTRODUCTION 

 During the advent of space exploration, Venus, also known as the Earth’s twin, was by far 

the most popular destination. In total, 23 spacecrafts have at least partially completed a mission to 

Venus, most of which occurred between 1961 and 1984. Since then, the international space 

community have gradually shifted their focus towards Mars and the outer planets in the solar 

system. In fact, the United States’ last dedicated mission to Venus (Magellan) was launched way 

back in the 1989. Having said that, several space agencies have expressed a renewed interest in a 

Venus mission. The Venus Exploration Analysis Group (VEXAG) at NASA is interested in the 

formation and evolution of the Venusian atmosphere. Cupid’s Arrow is a proposed mission to 

study the atmospheric content of Venus, in particular the abundance of certain noble gases (Ne, 

Ar, Kr, Xe) and their isotopic ratios in the homopause [1]. These inert elements can provide a 

history into the planet’s formation and provide a reference for comparison with the Earth.  

 The mission is comprised of a mothership and an atmospheric sample collection probe. 

This study is focused on the latter which will be deployed into Venus’ atmosphere and descend to 

an altitude of 120 km [2]. The mission architecture being considered for this study takes advantage 

of a gravity assist flyby trajectory. The probe will be dropped off as a secondary payload en route 

to the spacecraft’s primary destination. This approach not only circumvents the need for a 

dedicated mission to Venus but also provides an additional science return for a fraction of the cost. 

The allure of this mission concept also extends beyond Venus as it can be used to explore other 

planetary atmospheres  

 The relative trajectory between the probe and the mothership as well as the former’s entry 

conditions at Venus were determined using simple 2-body orbital mechanics. The relative range 

and velocity between the two were used to determine the time available for communication (i.e., 

scientific data from payload) between the two spacecraft before they’re out of range. Using planar 

equations of motion, the probe’s entry into Venus’ atmosphere was simulated to predict the thermal 

environment that it would encounter. The thermal environment of the Venusian exosphere is the 

primary driver of the probe design both in terms of its structure and material composition.  

 The expected outcome of this research includes: 1) The relative trajectory of the 

atmospheric probe with respect to the mothership 2) The expected approximate thermal 

environment of the Venusian atmosphere during the probe encounter. 
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METHOD 

Probe and Mothership Relative Trajectory 

 The relative trajectory between the probe and the mothership especially during the former’s 

encounter with the Venusian atmosphere is crucial from a communications standpoint. The probe 

must transmit the data collected by the spectrometer to the mothership before the two spacecraft 

are out of communication range. The relative motion between the probe and the mothership – for 

our purposes – was simulated as planar two-body motion (see Eq. 1). In addition, the analysis was 

focused on the portion of the overall trajectory that lied within the sphere of influence of Venus, 

only taking into account its gravitational acceleration (patched conic approximation).  

�̈� = −
𝜇

𝑟3
𝑟 (1) 

�⃗⃗�∞/𝑉𝑒𝑛𝑢𝑠 = �⃗⃗�𝑎𝑟𝑟 − �⃗⃗�𝑝 (2) 

 The initial conditions for the orbit propagator were the boundary conditions (RSOI and V∞) 

at the edge of the sphere of influence. Assuming a Hohmann trajectory, the arrival velocity of the 

spacecraft – prior to separation – at Venus was determined. The hyperbolic excess velocity was 

then calculated using Eq. 2. The radius of the sphere of influence was approximated using the 

following relation: 

𝑅𝑆𝑂𝐼 = 𝐷 (
𝑚

𝑀
)

2
5

(3) 

where m is the mass of Venus, M is the mass of the Sun and D is the distance between the two 

planets [3]. In this analysis, both the mothership and the spacecraft were considered as one 

spacecraft (prior to separation) and possess the same initial conditions at the boundary of Venus’s 

sphere of influence. The parameters discussed above are illustrated in Fig. 1. 

 

Figure 1. Patched conic trajectory regimes for Venus flyby encounter. 
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 The separation of the probe from the mothership was modelled as an impulsive maneuver 

along the velocity vector. The separation maneuver was performed at different points along the 

inbound hyperbolic trajectory to assess its impact on the resulting planetary flyby in terms of the 

growth in the relative range between the two spacecraft. This was accomplished by delaying the 

maneuver to occurs progressively closer to Venus after propagating the trajectory from the edge 

of the sphere of influence. The necessary delta-v to yield the desired periapsis radius of the probe 

was iteratively solved for each case. 

Probe Thermal Environment 

 The probe’s survivability will be put to the test during its encounter with the harsh 

environment of Venus as it dips to an altitude of just 120 km. The structural and thermal integrity 

of the aeroshell is paramount to the protection of the spacecraft bus and payload (spectrometer) 

and hinges upon the thermal protection system (TPS). The TPS for Cupid’s Arrow consists of the 

heat shield (forebody) and backshell (aftbody). Continuing in the footsteps of previous planetary 

entry missions, Cupid’s Arrow’s atmospheric probe (shown in Fig. 2) utilizes a 45-degree (half-

angle) sphere cone heat shield design.  

 

Figure 2. Cupid’s Arrow preliminary CAD model [4]. 

 With the size and shape of the aeroshell determined, the next phase of the TPS system 

design was the selection of the TPS that would be used to coat the heat shield. The two primary 

metrics used to choose and size the TPS coating are the maximum heat rate and total heat load that 

the probe would experience. The former determines the choice of TPS material that lines the heat 

shield while the latter is used to size the lining’s thickness. The heat rate is the instantaneous heat 

flux at a point on the vehicle while the heat load is the integrated heat rate over the trajectory [5]. 

Using simple planar equations of motion, the probe’s descent into the Venusian atmosphere was 

simulated to characterize its thermal environment [5]. The following atmospheric relative 

equations describe the entry trajectory of the probe in terms of its velocity, flight path angle and 

altitude. This unpowered entry trajectory (like most planetary entry missions) is largely driven by 

the three following design parameters: (1) Flight path angle, (2) Ballistic coefficient, (3) Lift to 

drag ratio. 
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𝑑𝑉

𝑑𝑡
=

−𝜌𝑉2

2𝛽
+ 𝑔𝑠𝑖𝑛(𝛾) (4) 

 

𝑉
𝑑𝛾

𝑑𝑡
= −

𝑉2𝑐𝑜𝑠𝛾

𝑅𝑝 + ℎ
−

𝜌𝑉2

2𝛽
(

𝐿

𝐷
) + 𝑔𝑐𝑜𝑠(𝛾) (5) 

 

(
𝑑ℎ

𝑑𝑡
) = −𝑉𝑠𝑖𝑛(𝛾) (6) 

 Besides planar motion, the set of equations above also inherit the following assumptions: 

(a) Spherical planet, (b) Negligible rotational velocity of Venus, (c) Negligible wind effects, (d) 

Constant mass of entry vehicle [5]. In order to solve the equations defined above, the gravity and 

atmospheric density were modelled as the following functions as a function of altitude. 

𝜌 = 𝜌0𝑒−
ℎ
𝐻 (7) 

𝑔 = 𝑔0

(𝑅𝑝
2)

(𝑅𝑝 + ℎ)
2

(8) 

The values of ρ0 and H were based on the Venus International Reference Atmosphere (VIRA) 

model [6]. The nominal entry conditions for the atmospheric entry trajectory simulation (Table II) 

were derived from the probe’s radius and velocity at periapsis following the separation maneuver.  

 Using the velocity information, the stagnation point convective heat rate of the probe 

during the entry regime was determined using the Sutton-Graves equation shown below where the 

value of k is 1.8960e-4 for Venus [5]. This relation assumes that the probe’s outer surface is fully 

catalytic. For the purpose of this study, the radiative heating effects can be ignored due to the 

moderate entry velocity (~10.5 km/s). The total heat load experienced by the probe is integrated 

heat rate over the trajectory. 

𝑞 = 𝑘 (
𝜌

𝑟𝑛
)

1
2

𝑉3 (9) 
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RESULTS 

Probe and Mothership Relative Trajectory 

 The initial conditions used for the Venus flyby simulation listed in Table I were used to 

generate the following range, velocity, altitude and trajectory plots for the relative motion between 

the probe and mothership. 

Table I. Initial conditions for hyperbolic flyby simulation. 

 

 

 

Figure 3. Time history of relative range between the probe and mothership during Venus 

flyby encounter for different separation times. 

Varr 37.7267 km/s

V∞/Venus 2.7066 km/s

rSOI 616282 km
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Figure 4. Zoomed in view of the relative range profiles in Fig. 3. 

 Figures 3 and 4 and show that delaying the separation of the probe from the mothership 

has the benefit of reducing the spike in the relative range during the Venus encounter. Since the 

probe experiences a greater gravitational acceleration to Venus than the mothership, delaying the 

separation maneuver prevents the relative range from building up too quickly.  A delayed probe 

separation also incurs a greater maximum relative range well beyond the planetary encounter 

which can be dismissed for the purpose of this analysis. A more important downside that must be 

taken into consideration is the additional fuel cost that is required to carry out the maneuver later 

in flyby trajectory. As of the writing of this paper, the baseline probe design includes X-band 

antennas that give it the capability to downlink data directly to Earth via the Deep Space Network 

(DSN) as a contingency if the mothership is out of range.  

 The results of the above analysis showed that the probe separation maneuver performed 

2.18 days after entering the sphere of influence of Venus produced the most desirable relative 

range profile between the two spacecraft for communications purposes. The delta-v needed to 

perform the maneuver was calculated to be 0.1699 km/s. For the reader’s reference, the periapsis 

encounter of the probe takes place approximately 2.3 days into the trajectory. Figures 5, 6, 7 and 

8 were generated using the best-case probe separation maneuver. 
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Figure 5. Venus flyby trajectory of the probe and mothership. 

 

 

Figure 6. Relative velocity profile of the Venus flyby encounter. 
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Figure 7. Relative range profile of the Venus flyby encounter. 

 The Venus flyby shown in Fig. 5 is broken into three distinct phases: pre-separation, 

periapsis encounter and post-separation. As expected, the peak relative velocity (see Fig. 6) 

occurred during the second phase and was determined to be 1.9764 km/s. After the flyby, the 

velocity of the spacecraft with respect to one another reached a steady state value of about 0.4 

km/s. Both spacecraft remain relatively close following the separation maneuver with a gradual 

increase in the range between them as shown in Fig. 7. Immediately following the probe’s periapsis 

passage, the range decreases a little before quickly building up due to the different turn angles of 

each spacecraft. The range plots show that the two spacecraft remain within 10000 km of each 

other for approximately 0.2403 days or 346 minutes after the probe’s periapsis encounter which is 

ample time for it to relay the science data to the mothership. However, it must be noted that the 

time required for the analysis of the collected gas samples was assumed be on the order of minutes. 

The altitude profile of the simulated flyby in Fig. 8 shows that the target altitude of 120 km was 

achieved. 

 

Figure 8. Mothership and probe altitude profile of the Venus flyby encounter. 
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Probe Thermal Environment 

Table II. Atmospheric entry boundary conditions. 

 

 
 

Table III. Current best estimates of the probe design parameters. 

 

 Using the initial conditions and design parameters listed in Tables II and III, the following 

trajectory, acceleration (in Earth g’s) and heating plots were generated for the probe’s atmospheric 

entry. The drag coefficient used was based on the Hayabusa mission which used the same aeroshell 

design [2]. The L/D was chosen with to produce the desired atmosphere-skimming maneuver and 

minimize the thermal loads. 

 

Figure 9. Altitude (top) and flight path angle (bottom) as a function of velocity. 

Ventry 10.5 km/s

γentry 7.5°

hatm 200 km

L/D 0.1

Cd 1.12

mprobe 72.8

dprobe 0.87 m

rn 0.44 m

βprobe 109.34 kg/m
2
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Figure 10. Altitude profile of the probe during entry. 

 The simulated entry trajectory in Fig. 9 shows the probe maintaining a constant altitude of 

around 100 km during the peak deceleration phase before ‘skipping’ out of the atmosphere. The 

altitude at which peak deceleration occurs is primarily driven by of the density of the target planet’s 

atmosphere. The atmospheric density on Venus is much greater than on Earth which causes the 

probe to decelerate at a higher altitude. This trajectory is favorable for the primary science mode 

of the mission during which the sample acquisition occurs. The altitude profile in Fig. 10 shows 

that the probe remains below the target altitude for approximately 136 s which is more than 

adequate time for sufficient gas samples to be collected for on board analysis. The orientation of 

the spacecraft is represented by the flight path angle plot which shows the probe transition from 

having positive FPA angles (atmospheric entry) to negative angles (atmospheric exit). 
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Figure 11. Stagnation point convective heating profile of the probe during entry. 

 

 

Figure 12. Acceleration profile of the probe during entry. 

 Figure 11 shows the heat rate profile of the probe determined using the Sutton-Graves 

relation (Eq. 9) discussed earlier. The peak stagnation point convective heat rate and the total 

integrated heat load were calculated to be 220.3297 W/cm2 and 15535 J/cm2 respectively. The 

peck heat rate is well within the limit of the current baseline TPS material, PICA which can handle 

heat rates over 1500 W/cm2 [4]. PICA is a relatively low density ablative material developed by 
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NASA Ames Research Center for use on the Stardust Return Capsule [7]. Since then, it has been 

used for the Mars Science Laboratory mission and the Dragon spacecraft (SpaceX uses its own 

version of PICA called PICA-X). The required thickness of the heatshield is driven by the 

maximum bondline temperature which directly impacts the internal components of the spacecraft. 

The bondline temperature is the temperature of the heatshield surface on which the PICA tiles are 

adhered to. As shown in Fig. 12, the spacecraft experiences a surprising low maximum structural 

load of 2.7654 Earth g’s during the peak deceleration region. This is largely due to the nature of 

the trajectory that merely skims the atmosphere instead of passing through the bulk of it. 

 

CONCLUSION & FUTURE WORK 

 The initial results of the thermal environment and trajectory analyses of the Cupid’s Arrow 

atmospheric probe validate the feasibility of the mission concept. The stagnation point convective 

heat rate and total integrated heat load are well within the constraints of existing heritage TPS 

systems. Furthermore, the study suggests that the desired relative motion between the two 

spacecraft can be achieved by performing a relatively inexpensive and simple burn at the right 

point along the trajectory. This study has demonstrated the attractiveness of using interplanetary 

flybys to drop-off small satellites at another planet. This concept adds scientific value to the 

primary mission by leveraging its infrastructure at a fraction of the cost of an entirely separate 

mission [8]. Planets like Venus – that are often used for gravity assists – or even the moons of 

Saturn that were passed by Cassini are perfect for this method of deployment. Add this to the fact 

that most interplanetary mission have unused mass margin, the implementation of this model to 

study planetary atmospheres is an endeavor worth pursuing in the near future.  

 This study focused on the conceptual design and feasibility analysis of Cupid’s Arrow as 

a potential future NASA mission. If additional funding can be procured, a higher fidelity 6-DOF 

orbit propagator like NASA’s POST2 which includes atmospheric drag, solar radiation pressure 

and other 3rd body perturbations will be implemented to accurately characterize the trajectory of 

both spacecraft. In addition, a more complex thermal model and/or thermal environment 

simulation tool (e.g. Thermal Desktop or Siemens NX) should be used size the TPS system (i.e., 

determine the thickness of the PICA heatshield). A comprehensive full body three-dimensional 

CFD model of the simulated probe entry would also be required to determine the specific TPS 

requirements of different sections of the spacecraft. The effects of non-Hohmann type transfer 

trajectories on the arrival conditions at Venus are also worth exploring. This study did not include 

any trajectory optimization scheme which could be used in future studies to fine tune the reference 

trajectory for control purposes as well as to mitigate the heating effects on the probe. 
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