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1. ABSTRACT 
 
 This paper presents a method of transforming aerodynamic datasets generated in 

Aerodynamic Preliminary Analysis System (APAS) into parametric equations which may 

subsequently be used in a multidisciplinary design optimization (MDO) environment for 

analyzing aerospace vehicles. 

 

 APAS is an analysis code which allows the user to create a simple geometric 

model of a vehicle and then calculate the aerodynamic force coefficients of lift, drag, and 

pitching moment over a wide range of flight conditions.  As such, APAS is a very useful 

tool for conceptual vehicle designs since it allows the force coefficients for a given 

design to be calculated  relatively quickly and easily. 

 

 However, APAS suffers from an outdated user interface and, because it is tedious 

to generate a new dataset during each design iteration, it is quite difficult to integrate into 

an MDO framework.  Hence the desire for a method of transforming the APAS output 

into a more usable form. 

 

 The approach taken and described in this paper involves the use of regression 

analysis techniques to accomplish the data transformation with three goals in mind.  The 

first goal was to develop a parametric model for calculating the aerodynamic coefficients 

for a single unique geometry.  The second goal was to extend this model to capture the 

effects of changes in vehicle geometry.  The third goal was to write a Fortran program 

that would be capable of automatically carry out the regression analysis on a given APAS 

data set and produce the desired parametric equations.  This paper presents the results and 

gives the model developed for analyzing a sample vehicle with a fixed geometry as well 

as the results of a sample vehicle with a variable geometry.  The Fortran computer code is 

also given. 
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2. NOMENCLATURE 
 

APAS  Aerodynamic Preliminary Analysis System 

AR  wing aspect ratio 

Cd  coefficient of drag 

Cdo  coefficient of drag at zero lift 

Cl  coefficient of lift 

Clo  coefficient of lift at zero angle of attack 

Cm  coefficient of pitching moment 

DSM  Design Structure Matrix 

HABP  Hypersonic Arbitrary Body Program 

K  parameter relating Cd to Cl  

M  Mach number 

MDO  multidisciplinary design optimization 

POST   Program to Optimize Simulated Trajectories 

S  lift slope parameter 

UDP  Unified Distributed Panel 

α  angle of attack (degrees) 

Λ  wing leading edge sweep angle (degrees) 
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3. INTRODUCTION 

3.1. Background 
 
 Aerodynamic Preliminary Analysis System (APAS) is an industry-standard tool 

for calculating aerodynamic force coefficients at the conceptual design stage of aerospace 

vehicles.  This tool, developed by NASA and Rockwell International for use in the design 

of the Space Shuttle, is useful for aerodynamic analysis, but due to it’s highly interactive 

nature, it does not lend itself well to an iterative or optimized overall vehicle design 

process. 

 

 Aerodynamic analysis of a vehicle using APAS first requires the user to define a 

geometric model of the vehicle.  This is done by specifying various parameters for 

individual components such as wings, fuselages, vertical tails, etc.  For example, wings 

are defined by specifying planform area, aspect ratio, thickness-to-chord ratio, taper ratio, 

sweep angle and dihedral; fuselages by specifying length, cross-sectional area at various 

points along the longitudinal axis of the fuselage, and width-to-height ratio of each 

defined cross-sections.  Required geometric data is entered manually via the keyboard 

with limited graphical interface.  The process is prone to error and is difficult to duplicate 

or repeat accurately.  In addition, changes to the vehicle configuration require a new 

model to be created in APAS because component geometric parameters cannot be altered 

at the keyboard once created. 

 

 Analysis in APAS is accomplished by defining specific flight conditions and 

vehicle attitude at which to calculate the aerodynamic force coefficients (typically lift, 

drag, and pitching moment).  The required inputs are Mach number, angle of attack, flap 

deflection angle, altitude, skin friction coefficient and sideslip angle [1].  For advanced 

launch vehicles, the user typically defines a range of 10 - 15 Mach number and altitude 

pairs from liftoff to orbit that model the vehicle’s expected flight path. Aerodynamic 

coefficients are then calculated at 8 - 12 angles of attack (or sideslip angles) for each 

flight condition. The result is a very large set of tabular aerodynamic data (over 100 data 
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points for each coefficient table).  The entire aerodynamic dataset must be regenerated 

each time the overall vehicle geometry changes other than photographically. 

 

 Two separate analysis codes  are used to perform the actual flow calculations.  

The first is Unified Distributed Panel (UDP) which is a vortex paneling code capable of 

analyzing subsonic and low supersonic flow conditions.  The second code is Hypersonic 

Arbitrary Body Program (HABP) which, as the name suggests, is used for hypersonic 

flow conditions and is based on local surface inclination methods in which pressure 

coefficients are calculated. 

 

 APAS is inherently a difficult program to use due to its outdated user interface 

and cumbersome interactive format for creating and modifying a vehicle model.  For each 

geometry change, regenerating the aerodynamic database might take an experienced user 

4 - 6 hours. These characteristics make integrating APAS into a design optimization 

process wherein the vehicle geometry is allowed to change very difficult.  Because of 

this, the valuable analysis capability of APAS is often under-utilized at the conceptual 

design stage of an aerospace vehicle. 

 

3.2. Multidisciplinary Design Optimization Effort 
 

 In conceptual design, the typical order of execution of the various disciplines may 

be illustrated in a Design Structure Matrix (DSM), as shown in Figure 1, below.  Here the 

DSM serves to organize the flow of information from one discipline to another.  The 

“inputs” from propulsion to trajectory optimization, for example, are shown as lines 

above and to the right of the boxes, and the “outputs,” or feedback, are shown as lines 

below and to the left of the boxes. 

 

 Overall vehicle layout and configuration is determined prior to or as a part of the 

aerodynamic design and analysis stage, whereupon propulsion, trajectory, aeroheating 

and weights and sizing are carried out in a tightly coupled, iterative process.  

Aerodynamics is typically left out of the loop (i.e. no feedback into the aerodynamics 
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discipline exists) once initial analysis has been performed due to the time constraints 

involved in recreating geometric models in APAS.  Once the aerodynamic analysis has 

been done, the vehicle is only permitted to scale up or down photographically which 

ensures that the non-dimensional aerodynamic force coefficients remain unchanged 

throughout the iterative design process.  Although this facilitates a rapid design process, 

it does not contribute to an overall optimized vehicle design since the aerodynamic 

coefficients are set at the beginning of the process and not allowed to vary as design 

knowledge increases. 

 
Figure 1 – Design Structure Matrix 

 

 In order to alleviate some of the problems associated with APAS, to make better 

use of its capabilities, and to facilitate its integration into an MDO environment, this 

research project was undertaken with several goals in mind.  The first goal was to 

develop a method of transforming APAS datasets into a parametric model for calculation 

of the aerodynamic coefficients for a single unique geometry, and the second goal was to 

extend this method to capture the effects of changes in vehicle geometry.  The third and 

final goal was to write a Fortran code that would automatically carry out the regression 

analysis for a given APAS dataset and produce the desired parametric equations. 
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 Using the parametric equations to approximate a vehicle’s aerodynamics and the 

change in aerodynamics with change in geometry, a gradient-based optimizer would be 

able to determine the optimum geometric parameters given a desired objective function.  

For example, the methods outlined below were used to capture the effect of changing the 

wing aspect ratio.  An optimizer could then vary the aspect ratio and determine the force 

coefficients according to the parametric equations rather than requiring actual APAS 

analysis of several manually-created models, each with a unique aspect ratio.  Extended 

to several geometric parameters, this would reduce the time and effort required to 

optimize a conceptual-level vehicle design. 

 

 One example of an optimization tool is NASA’s Program to Optimize Simulated 

Trajectories (POST), a tool commonly used to perform the trajectory analysis and 

optimization for aerospace vehicles [7].  POST requires as inputs the APAS tables of lift, 

drag and moment at specific Mach numbers which it uses in calculating drag losses and 

lift forces along the vehicle’s trajectory.  In calculating the lift and drag forces throughout 

the trajectory, POST interpolates between explicit data points given in the aerodynamic 

tables as needed. 

 

 Given the parametric model developed here, the aerodynamic tables may be 

replaced with parametric equations.  This will allow POST to internally calculate the 

force coefficients at run-time as opposed to repeatedly “looking up” values in a table, 

reducing CPU time.  In addition, POST may use its internal optimization routines to vary 

the geometric parameters for which the parametric model was developed and calculate 

the optimum values of those parameters for a given objective function (such as minimum 

vehicle dry weight). 

 

 Use of the parametric model would thus provide a method of rapidly performing 

multiple design iterations in which vehicle geometry is changed, essentially bringing 

aerodynamics back “in the loop,” i.e. including APAS analysis within a multi-

disciplinary design optimization environment.  Coupled with the Fortran code, multiple 
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design iterations could then be accomplished with greater speed and greater flexibility, 

and ostensibly producing a more highly optimized final vehicle design. 
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4. DEVELOPMENT OF MODEL 

4.1. Test Vehicle 
 

 For this research effort, a representative aerospace vehicle designed by a team of 

graduate students at Georgia Tech was used as a test vehicle.  This vehicle, named 

Polaris, is a rocket-powered reusable commercial launch vehicle designed for the space 

tourism market.   It has a winged body configuration allowing horizontal take-off and 

landing, a fuselage fineness ratio of 8, swept wing (leading edge sweep angle = 55°) with 

an aspect ratio of 1.86 and theoretical planform area of 688 ft2, and single vertical tail.  A 

three-dimensional CAD model of the vehicle was produced using the I-DEAS solid 

modeling package.  This model is shown in Figure 2. 

 

 

 
Figure 2 - Polaris launch vehicle 
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Figure 3 – APAS Model 

4.2. APAS Analysis 
  

 A simplified geometric model of Polaris was created in APAS.  The fuselage was 

created using two components, the nose and the main fuselage.  The wing was created as 

a single component while the vertical tail was not modeled since it contributes little to the 

drag, nothing to lift, and since lateral stability and control was not a concern for this 

project.  The APAS model is shown in Figure 3. 

 Aerodynamic analysis for 

the test vehicle was performed 

over a sub-orbital trajectory.  The 

flight path was assumed to 

follow a trajectory from sea level 

to an altitude of about 250,000 

feet, from Mach 0.3 at liftoff to 

Mach 18.0 at altitude.  APAS 

was used to calculate the force 

coefficients for fourteen 

particular Mach numbers in the 

specified range, at nine angles of 

attack for each Mach number, 

ranging from -15 degrees to +15 degrees.  Thus a total of 126 data points for each force 

coefficient were obtained for use in the basic model.  From this dataset, parametric 

equations were developed to calculate lift and drag as a function of Mach number.   

 

 Additional models of Polaris were generated in APAS in which the wing aspect 

ratio was varied.  In this case, analysis was performed for models with wing aspect ratios 

of 1.5, 2.0 and 2.5 (in addition to the 1.86 AR wing).  In total, 504 data points were 

generated for each force coefficient in order to carry out the regression analysis. 

  

 The appropriate form of the equations used to calculate lift and drag coefficients 

may be seen by plotting Cl vs. angle of attack and Cl vs. Cd (drag polar).  These plots are 
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shown for the test vehicle at three different Mach numbers: 0.3, 1.5 and 8.0. 

 

Figure 4 - Lift Curve Slope 

Figure 5 - Drag Polar 

 

 As indicated in the plot of lift curve slope (Figure 4), the relationship between lift 

and angle of attack is nearly linear for a given Mach number, hence the following 

equation applies: 

Cl = Clo + S * α             (1) 
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where Clo is the lift coefficient at an angle of attack of zero degrees, S is the lift slope 

curve parameter and α is the angle of attack (either degrees or radians may be used in the 

regression; here angles in radians were used).  This linear relation is what one would 

expect from basic aerodynamic theory [3]. 

 

 For a given Mach number, the relationship between lift and drag is non-linear, 

and the shape of the curves in the graph above suggests the use of an equation of the 

form: 

Cd = Cdo + K * Cl
2    (2) 

 

or, alternately: 

Cd = Cdo + K1 * Cl
 + K2 * Cl

2   (3) 

 

where Cdo is the drag coefficient corresponding to zero lift condition and K, K1 and K2 are 

parameters. 

 

 In these two equations, the constants Clo, Cdo, K, and S expected in a conventional 

single Mach number analysis are replaced with quadratic or cubic polynomial equations 

that vary these coefficients with Mach number, M.  For example, the equation to 

calculate K as a function of Mach number may take the form, 

 

K = K(M) = β0 + β1*M + β2*M2  (4) 

 

where β0, β1, and β2 are constants. 

 

 Similar polynomial equations can be determined for Clo, Cdo and S.  In this way, 

the simple relationships of equations (1) and (2) can be extended to model the entire 

flight regime. 

  

 The second goal of this research was to extend the multivariable regression 

analysis technique described above to include geometric variables in the parametric 
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equations.  For example, an equation was derived to calculate Cl and Cd over the entire 

flight regime as a function of the wing aspect ratio.  APAS was used to generate tables of 

lift and drag coefficients for three different aspect ratios. Then, using the basic 

relationships in equations (1) and (2), a new version of equation (4) was determined 

having the form, 

 

K(M) = β0 + β1*M + β2*AR + β3*M*AR + β4*AR2+β5*M2  (5) 

 

where AR represents wing aspect ratio. Quadratic polynomial equations such as this are 

commonly used in regression analysis to capture the first and second order effect of each 

variable as well as the interaction effect between the two variables [1]. 

 

4.3. Regression Analysis 
 

 To develop the desired parametric equations, methods of regression analysis were 

used to model the datasets generated in APAS.  Specifically, the Least Squares method 

was employed to determine the relations between Mach number, lift and drag.  The 

APAS data was imported into a Microsoft Excel spreadsheet and the regression analysis 

was carried out using Excel’s built-in regression tool. 

  

 Equations of the form of (1) and (2) (and equation (3) when including both first 

and second order terms produced more accurate results) were derived for the set of Cl and 

Cd coefficients corresponding to each Mach number at which the test vehicle was 

analyzed in APAS.  In other words, a regression was done at each Mach number with α 

as the independent variable and Cl as the response variable, and a second regression was 

done at each Mach number with Cl as the independent variable and Cd as the response 

variable.  From this, values of Clo, Cdo, S and K were obtained at each Mach number.   

  

 The values of Clo, Cdo, S and K were then used to perform a new regression for 

each of these parameters against Mach number, i.e. using Mach number as the 
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independent variable and Clo, Cdo, S and K as response variables.  This regression 

permitted the determination of suitable equations describing the relationship between 

these four parameters and Mach number. 

 

4.4. Parametric Equation Development 
  

 As discussed above, two separate codes, UDP and HABP, are used in conjunction 

with APAS to calculate the force coefficients for the subsonic and hypersonic regimes.  

Unfortunately, neither one is well suited for the transonic regime.  UDP, a code based on 

a vortex panel method and slender body theory, is valid for linearized subsonic and low 

supersonic flow [5].  HABP is valid for hypersonic flow, essentially for speeds above 

Mach 4, since it is based on various impact methods such as Newton’s sine squared law 

which are increasingly accurate as Mach number increases [5].  Thus, the region between 

Mach 2 and Mach 4 is difficult to model accurately with APAS.  Typically, UDP is used 

up to about Mach 1.5, and HABP is used at Mach 2.0 and above to essentially “split the 

difference.” 

 

 Also, in order to model the mathematical discontinuity that occurs at Mach 1 

where (mathematically, at least) the drag goes to infinity, two separate parametric models 

were required since a single set of equations would be unable to efficiently model the 

discontinuity.  A complete set of parametric equations was therefore derived for subsonic 

flow and a second complete set was derived for supersonic flow.  The subsonic equations 

are primarily quadratic equations where the best fit of the data was obtained using only 

Mach number and it’s square, but the supersonic equations are primarily cubic wherein 

adding the M3 term provided the best fit of the data. 

 

 In addition, modeling the drag coefficient was most accurate for the subsonic case 

when equation (3) was used, however supersonically the drag coefficient was best 

modeled using equation (2), i.e. having only a single K parameter as opposed to two. 
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 The parametric equations developed for the test vehicle are given in the following 

results section. 

5. RESULTS 

5.1. Non-varying Geometry 
 

 The equations developed for Polaris in the subsonic flow regime using the 

regression analysis techniques are as follows: 

 

Subsonic Flow 

Clo = 0.153 – 0.006*M + 0.01*M2                         (6) 
Cl = Clo + S * α                            (7) 
S = 2.293 – 0.666*M + 1.071*M2                          (8) 
Cdo = 0.014 - 0.0002*M – 0.0016*M2                        (9) 
K1 = -0.047 - 0.003*M +0.005*M2                     (10) 
K2 = 0.177 + 0.005*M - 0.011*M2                     (11) 
Cd = Cdo + K1*Cl + K2*Cl

2                      (12) 

 

 The accuracy of each of these equations with respect to actual APAS data is 

shown graphically below in Figures 6 through 10.  In each plot, the actual data points 

generated in APAS are shown in bold lines and the fitted curves are shown in dashed 

lines. 

 

 The coefficient of determination, R2, is also shown for each curve fit.  The 

coefficient of determination is an indicator of the measure of variability in the response 

variable that is accounted for by the predictor variable(s), and thus provides a measure of 

the validity of the regression model used.  A coefficient of determination equal to one 

indicates a perfect fit of the equation to the data (all data points fall on the regression 

line) and a value equal to zero indicates no relation whatsoever between the response 

variable and predictor variable(s). 
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Figure 6 – Clo Curve Fit 

 

 

 

 

Figure 7 - Cdo Curve Fit 
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Figure 8 – S Parameter Curve Fit 

 

 

 

 

 

Figure 9 - K1 Parameter Curve Fit 
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Figure 10 – K2 Parameter Curve Fit 

 

 As the above plots show, excellent curve fits were obtained for all of the 

parameters as a function of Mach number, with coefficients of determination of ~0.98 or 

greater.  This indicates that the regression model used accurately represents the APAS 

tabular data and that the equations may then be used to accurately calculate the 

aerodynamic coefficients for the test vehicle.  

 

  The equations developed for the test vehicle in the supersonic flow regime are the 

following: 

 

Supersonic Flow 

Clo = 0.214 – 0.082*M + 0.008* M2 – 0.0002*M3            (13) 
Cl = Clo + S * α              (14) 
S = 3.729 - 0.862*M + 0.0761* M2 – 0.0021*M3                   (15) 
Cdo = 0.0385 – 0.003*M + 0.0002*M2 + 0.000007* M3                    (16) 
K = -0.291 + 0.396*M – 0.029*M2 + 0.0007*M3            (17) 
Cd = Cdo + K * Cl

2                        (18) 
 

 In this case, cubic equations produced the best curve fits in contrast to the 

quadratic equations used for the subsonic regime.  The curve fit for each of these 

equations is also shown graphically below in Figures 11 through 14. 
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Figure 11 - Clo Curve Fit 

 

 

 

 

Figure 12 – Cdo Curve Fit 
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Figure 13 – S Parameter Curve Fit 

 

Figure 14 – K Parameter Curve Fit 
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analysis tool used changes from UDP to HABP is obvious. 

   

 For example, the jump in Cdo at Mach 2 that is seen in Figure 12 is not an actual 

reflection of conditions encountered in flight, but simply a result of the different analysis 

method employed by the tool.  A large increase in drag occurs near Mach 1, but not at 

Mach 2.  In this case in particular, the smooth fitted curve may actually give a more 

accurate reflection of flight conditions, and hence the relatively low R2 value (0.735) is 

perhaps somewhat misleading.  

 

 The error between the fitted curves and explicit APAS data was determined also 

in order to evaluate the accuracy of the parametric equations. The error in lift and drag 

coefficients at both subsonic and supersonic flow conditions  is graphically illustrated in 

Figures 15 through 18.  

 

Figure 15 – Subsonic Lift Coefficient Error 
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Figure 16 – Supersonic Lift Coefficient Error 

 

Figure 17 – Subsonic Drag Coefficient Error 
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Figure 18 – Supersonic Drag Coefficient Error 

 

 As may be seen in the above plots, the curve fits for subsonic flow velocities are 

extremely accurate.  The error between the fitted data and APAS data is on the order of 

1% at a given data point.  The results for supersonic flow conditions are also quite 

accurate for lift coefficient.  The supersonic drag coefficient curve fit is less accurate, 

with most of the error occurring primarily at negative angles of attack. 

 

5.2. Wing Aspect Ratio  
 

 The techniques discussed above were applied to changing the aspect ratio of the 

test vehicle’s wing.  Three additional models were created in APAS, all identical except 

for aspect ratio. Aspect ratios of 1.5, 2.0 and 2.5 were used, and parametric equations 

were then developed to calculate Clo, Cdo, Cl, Cd, S, K1 and K2 as a function of wing aspect 

ratio and Mach number.  These equations are all of the form of equation (5) wherein the 
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the interaction term of the two variables, are used to model the data.  The subsonic and 

supersonic equations are given below. 
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Subsonic Flow 

Clo = 0.11 – 0.013*M + 0.028*AR – 0.0003*M*AR + 0.0063*AR2 + 0.0234*M2         (19) 
Cdo = 0.104 – 0.005*M + 0.002*AR – 0.0001*M*AR - 0.0004*AR2 + 0.0027*M2       (20) 
S = -0.664 – 1.606*M + 2.413*AR + 0.429*M*AR - 0.46*AR2 + 1.046*M2           (21) 
K1 = -0.049 + 0.0023*M + 0.029*AR - 0.002*M*AR - 0.005*AR2 + 0.004*M2      (22) 
K2 = 0.62 – 0.018*M - 0.34*AR + 0.014*M*AR + 0.058*AR2 - 0.018*M2                  (23) 
 

Supersonic Flow 

Clo = 0.099 – 0.022*M - 0.013*AR – 0.0002*M*AR + 0.004*AR2 + 0.001*M2        (24) 
Cdo = 0.047 – 0.071*M + 0.016*AR + 0.0002*M*AR - 0.0006*AR2 + 0.0004*M2        (25) 
S = 0.747 – 0.339*M + 1.752*AR - 0.051*M*AR - 0.263*AR2 + 0.018*M2      (26) 
K1 = -0.026 - 0.0005*M + 0.012*AR - 0.002*M*AR - 0.002*AR2 + 0.00001*M2      (27) 
K2 = 0.268 + 0.262*M - 0.291*AR - 0.002*M*AR + 0.057*AR2 - 0.01*M2      (28) 
 
  

The accuracy of the above in the subsonic flow regime is again very good.  

However, the error of the supersonic equations is considerable for the lift coefficients.  

This is shown in Figures 19 and 20, where the force coefficients were calculated using an 

aspect ratio of 2.0. 

 

 

Figure 19 – Supersonic Lift Coefficient Error 
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Figure 20 – Supersonic Drag Coefficient Error 

 

The error between fitted data points and APAS data points for lift coefficients was 

as high as 78% with an average error of 27%.  In contrast, the accuracy of the equations 

are better for supersonic drag coefficients, with the error between a given fitted data point 

and the corresponding APAS data point being about 10% on average, although at the 

highest and lowest angles of attach the error is as high as 26%.  This is an interesting 

result given that the drag coefficients are calculated from the lift coefficients.  Figure 21 

shows the percent error at each data point and the average error for the Mach 8 case. 

  

Figure 21 – Data Error 
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Cl Cl % error Cd Cd % error
deg. radians fitted APAS fitted APAS
-15 -0.261799 -0.2330 -0.2392 2.58% 0.073198 0.0994 26.36%
-10 -0.174533 -0.1641 -0.1468 11.82% 0.059471 0.0553 7.54%
-5 -0.087266 -0.0953 -0.0746 27.69% 0.034137 0.0311 9.76%
-2 -0.034907 -0.0539 -0.0386 39.69% 0.025076 0.0235 6.71%
0 0 -0.0264 -0.0166 58.81% 0.021594 0.0209 3.32%
2 0.034907 0.0012 0.0056 78.67% 0.020158 0.02 0.79%
5 0.087266 0.0425 0.0424 0.31% 0.021842 0.0224 2.49%
10 0.174533 0.1114 0.117 4.77% 0.034881 0.0385 9.40%
15 0.261799 0.1803 0.2122 15.03% 0.060712 0.0752 19.27%

Avg. 26.59% Avg. 9.52%

Alpha
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6. REGRESSION ANALYSIS TOOL 

6.1. Fortran Code 
 
 The results presented thus far were obtained by manually carrying out the 

regression analysis using Microsoft Excel, which has a built-in regression function.  For 

the test vehicle described above, this involved doing the regression analysis a total of 

seventy-two times: one for each Mach number to determine Clo and S; twice for each 

Mach number to determine whether it was better to calculate Cd using the square of Mach 

number only or both the square and the cube of Mach number; and three times for each 

parameter Clo, Cdo, S, K1 and K2 to determine if they were best modeled as a function of 

Mach number only, or whether to include Mach number squared and Mach number cubed 

for both the subsonic and supersonic cases.  Additional effort was put into investigating 

other forms of the regression model for various parameters, such as exponential or 

logarithmic models, neither of which proved to significantly improve the accuracy of the 

parametric equations. 

  

 Clearly, this is a very time consuming process, one that cannot be carried out at 

each design iteration.  Hence, a Fortran program was written to enable the regression 

analysis to be carried out automatically.  This program, entitled regression, is very simple 

to use and requires minimal effort by the user.   

 

Regression requires as an input the APAS-generated tables of aerodynamic force 

coefficients of lift and drag in the form of a POST input deck, and generates as output a 

text file containing the values of the five parameters (Clo, Cdo, S, K1 and K2) at each Mach 

number and a listing of parametric equations for both subsonic and supersonic flow.  The 

program also calculates a value of the coefficient of determination, R2, for each 

parametric equation as a gauge of the accuracy of the same. 

 

 The Fortran program uses only polynomial equations, either cubic or quadratic, to 

fit the aerodynamic data generated in APAS.  It does not allow the user to select other 
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types of regression models (e.g. exponential).  This is a result of the method used to solve 

for the parameter coefficients, namely matrix operations which are discussed in further 

detail below.  

 

 Regression uses several matrix operations to solve for the parameter coefficients, 

including matrix multiplication, transposition, and inversion.  These operations are used 

to solve the matrix equation: 

 

b = (XTX)-1XTY   (29) 
 

where b is a vector containing the coefficients in a particular parametric equation, X is 

the matrix of predictor variables (Mach number, Mach number squared, angle of attack, 

etc.), XT is the transpose of matrix X, and Y is the matrix of independent or response 

variables (Cd, Cl, etc.).  This is the standard Least Squares linear regression solution using 

matrix operations [2]. 

 

 The program solves this equation in six steps.  First, data is read from the input 

file to assemble the matrix X.  Second, the matrix is transposed.  Third, the matrix 

multiplication operation of XTX is carried out.  Fourth, the square product matrix XTX is 

inverted.  Fifth, the inverted matrix is multiplied by XT and sixth, this product matrix is 

multiplied by Y, giving the desired vector of coefficients.  These steps are carried out as 

many times as may be required to complete the entire regression analysis. 

 

 Regression was written in Fortran 90, a superset of Fortran 77, since Fortran 90 

has intrinsic matrix manipulation functions such as multiplication and transpose, features 

which made writing the code simpler and which also reduce CPU time at execution.  

Fortran 90 also allows dynamic allocation of arrays which means array sizes are 

dependent on user inputs and need not be explicitly defined by the programmer.  This 

significantly reduces memory usage by obviating the need to allocate extra-large arrays to 

allow program flexibility.   
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The program has been compiled to run as a DOS program on PC computers, the 

executable file is regression.exe. 

 

6.2. Program Execution 
 
 

The program requires several steps in its implementation.  The user must first 

carry out the vehicle analysis in APAS.  Next, the user must run the Fortran program 

apasdat to generate a POST input deck text file.  This input deck must be slightly edited 

to delete the POST table data found at the beginning of the lift coefficient table as well as 

the drag coefficient table (see Figure 22).  If desired, the table of pitching moment 

coefficients may be deleted since it is not used by regression.  The input file must be 

located in the same directory as the executable file.  Once the POST input file created in 

apasdat is modified, the code may then be executed by typing “regression” at the DOS 

prompt. 

 
l$tab table=5hclt  ,2,5halpha,5hmach , 12, 15,8*1,         
         0.30, 
        -15.0,   -0.3743, 
        -10.0,   -0.2418, 
         -5.0,   -0.1092, 
         -2.0,   -0.0297, 
   
$end 
l$tab table=5hcdt  ,2,5halpha,5hmach ,  9, 14,8*1, 
         0.30, 
        -15.0,    0.0531, 
        -10.0,    0.0278, 
         -5.0,    0.0139, 
 

Figure 22 – POST input deck (partial) 

 

When it is executed, regression prompts the user to input the number of angles of 

attack at which the APAS analysis was performed, the number of subsonic Mach 

numbers used in the analysis, and the number of supersonic Mach numbers.  Since the 

program was written in Fortran 90, the size of each array is dynamically defined (a 

feature not available in Fortran 77) based on the user inputs and thus there are no limits to 

how many angles of attack may be used or how many Mach number points may be used.  

         Delete these two 
                   lines 

         Delete this line 
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The input file containing the lift and drag coefficients must be named “aerodeck.txt” and 

must be located in the same directory as the executable file. 

 

A listing of the code is included in Appendix A.  The code includes several linear 

algebra subroutines and functions obtained from a Fortran-related web site maintained by 

the University of Tennessee at Knoxville [8]. 

 

6.3. Program Output 
 
 
 The output of regression consists of a listing of the parameters Clo, Cdo, S, K1 and 

K2 calculated for each Mach number, a set of equations for the subsonic flow regime, and 

a set of equations for the supersonic flow regime.  The output is written to a file called 

“equations.txt” located in the same directory as the executable and input files. 

 

A sample output from the Fortran program for the test vehicle is shown in Figure 

23.  This output is based on the same APAS data as was used in the original Excel 

analysis. 

 

Note that the Fortran program uses equation (3) rather than equation (2), the latter 

being the equation used in the manual regression analysis.  The accuracy in the drag 

coefficient calculation improves slightly when both the K1 and K2 parameters are 

included. 
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  Mach #      Clo         Cdo         S          K1           K2 
   0.30     0.15150      0.0142     2.20589    -0.04797     0.17719 
   0.60     0.15243      0.0137     2.30464    -0.04755     0.17581 
   0.90     0.15501      0.0129     2.55838    -0.04629     0.17268 
   0.95     0.15590      0.0128     2.64517    -0.04580     0.17166 
   1.05     0.16080      0.0357     3.05157    -0.04685     0.16663 
   1.10     0.15421      0.0334     3.06074    -0.04555     0.16813 
   1.50     0.14844      0.0273     2.49097    -0.04856     0.18204 
   2.00    -0.01860      0.0409     2.16678    -0.00446     0.48765 
   4.00    -0.01474      0.0240     1.18988    -0.00939     0.89671 
   6.00    -0.01390      0.0193     0.92194    -0.01278     1.17532 
   8.00    -0.01354      0.0175     0.80560    -0.01550     1.35621 
  12.00    -0.01330      0.0160     0.71116    -0.01868     1.52079 
  15.00    -0.01317      0.0195     0.67954    -0.01756     1.57726 
  18.00    -0.01297      0.0320     0.65445    -0.01335     1.64789 
  
 Subsonic Equations                                                R^2 
Clo =  0.152501 + -0.006420 * M +  0.010402 * M^2                 0.997 
  S =  2.290521 + -0.574222 * M +  0.985477 * M^2                 0.997 
Cdo =  0.014437 + -0.000257 * M + -0.001556 * M^2                 0.999 
 K1 = -0.047381 + -0.003582 * M +  0.005441 * M^2                 0.996 
 K2 =  0.176496 +  0.005610 * M + -0.011134 * M^2                 0.999 
  
 Supersonic Equations 
Clo =  0.213707 + -0.081599*M + 0.008163*M^2 + -0.000242*M^3      0.756 
  S =  3.760170 + -0.869027*M + 0.076720*M^2 + -0.002124*M^3      0.981 
Cdo =  0.038470 + -0.003404*M + 0.000027*M^2 + 0.000008*M^3       0.806 
 K1 = -0.059226 +  0.018492*M + -0.002042*M^2 + 0.000065*M^3      0.619 
 K2 = -0.213437 +  0.367748*M + -0.026420*M^2 + 0.000653*M^3      0.995 
 

Figure 23 – Regression Output 
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7. SUMMARY 
 

 This research has demonstrated that aerodynamic datasets generated in APAS for 

a given aerospace vehicle may be successfully transformed into a set of parametric 

equations through methods of linear regression.  While the resulting accuracy of the 

parametric equations is very good for dataset transformations involving force coefficients 

as a function of Mach number only, the accuracy of the equations generated by fitting 

force coefficients as a function of Mach number and a specific geometric parameter 

(wing aspect ratio in this case) is not as good.  It appears from this research that 

regression analysis is perhaps not applicable to the latter case, at least not using a 

regression model of the form of equation (5).  Further research would be required to 

determine a more suitable model, perhaps using additional predictor variables (e.g. higher 

order terms), in order to obtain parametric equations whose accuracy is within an 

acceptable error range. 

 

 Because of the lack of success in modeling a vehicle’s aerodynamics when 

geometric parameters are included, the second goal of this research effort has not been 

met.  If a suitable regression model cannot be found using the methods discussed above, 

it may be necessary to test an entirely different approach to the task of integrating APAS 

more fully into an MDO environment.  Possible avenues for research include further 

developing the ideas2apas translator1 to include vehicle components such as wings and 

engine nacelles, or automating the analysis process by writing a computer code to 

automatically run UDP and HABP.  Efforts have been undertaken at NASA’s Langley, 

Virginia research facility in this latter area. 

 

 The Fortran code regression, written to automatically carry out the regression 

analysis and derive parametric equations from a given input file, provides a quick and 

simple means of transforming APAS datasets into parametric equations, but does not 

address the need to analyze multiple configurations of a given vehicle.   

                                                
1 This code was developed by Peter Bellini as part of his AE 8500 project (Fall 1997) at Georgia Tech. 
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The program could be modified and extended to include the parametric modeling 

of a vehicle with changing geometric parameters if a suitable regression model were 

found.  This would entail modifying the program to allow it to read several input files, 

one from each APAS model analysis, and writing new DO loops to include the additional 

geometric parameters in the regression analysis.   
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9.  APPENDIX A – Fortran Program Code 
 
 program regression 
c this program will perform the least squares method of regression analysis 
c on a data set to derive a set of parametric equations for calculating the 
c aerodynamic force coefficents of lift and drag as a function of mach number 
 implicit none 
 integer angle, machsub, machsup, mach 
 real, dimension (:), allocatable :: alpha,machnum,s,cdo,clo,cd 
 real, dimension (:), allocatable :: k1,k2,y,yb,ya 
 real, dimension (:,:), allocatable :: cl,x2,x3,x3b,x3c,x4,xt2 
 real, dimension (:,:), allocatable :: xt3,xt3b,xt3c,xt4,xn2,xn3a 
 real, dimension (:,:), allocatable :: xn3b,xn3c,xn4 
 real rconv, rsq 
 real xx2(2,2), xx3(3,3), xx4(4,4) 
 real xi2(2,2),xi3(3,3),xi4(4,4) 
 real b2(2), b3(3), b4(4) 
 real work(4), det(2) 
 integer info, job, i, j, d, z 
 integer ipvt(4) 
 job=11 
 rconv=0.01745329252 
 open (unit=20, file="aerodeck.txt", status="old") 
 open (unit=21, file="equations.txt",status="unknown") 
 print*, "Enter the number of angles of attack used in apas" 
 read*, angle 
 print*, "Enter the number of subsonic mach numbers used in apas" 
 read*, machsub 
 print*, "Enter the number of supersonic mach numbers used in apas" 
 read*, machsup 
 mach=machsub + machsup 
c define array sizes 
 allocate (alpha(angle), machnum(mach),cl(angle,mach),s(mach)) 
 allocate (clo(mach),cd(mach),k1(mach), k2(mach), y(machsup)) 
 allocate (yb(machsub),x2(angle,2), x3(angle,3), x3b(machsub,3)) 
 allocate (x3c(machsup,3),x4(machsup,4),ya(angle),xt2(2,angle)) 
 allocate (xt3(3,angle),xt3b(3,machsub),xt3c(3,machsup)) 
 allocate (xt4(4,machsup),xn2(2,angle), xn3a(3,angle),cdo(mach)) 
 allocate (xn3b(3,machsub),xn3c(3,machsup), xn4(4,machsup)) 
c  calculate clo and s for all mach numbers, assign to arrays clo and s 
c  equation is cl = clo + s * alpha 
 print*,"reading in info" 
 do j = 1, mach 
    read(unit=20, fmt=*) machnum(j) 
    do i=1,angle 
            read(unit=20,fmt=*) alpha(i), cl(i,j) 
c convert degrees to radians 
    alpha(i)=alpha(i)*rconv 
    x2(i,1) = 1.0 
    x2(i,2) = alpha(i) 
    ya(i) = cl(i,j)       
    end do 
    xt2=transpose(x2) 
    xx2 = matmul(xt2,x2) 
c invert the matrix 
    call invert_two_by_two(xx2, xi2) 
    xn2=matmul(xi2,xt2) 
    b2=matmul(xn2,ya) 
    clo(j)=b2(1) 
    s(j)=b2(2) 
 end do 
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c calculate cdo, k1, k2 for all mach numbers, assign to arrays cdo, k1, k2 
c equation is cd = cdo + k1 * cl + k2 * cl^2 
 do j = 1, mach 
    read(unit=20, fmt=*) machnum(j) 
    do i=1,angle 
    read(unit=20,fmt=*) alpha(i), cd(i) 
    x3(i,1) = 1.0 
    x3(i,2) = cl(i,j) 
    x3(i,3) = cl(i,j)**2 
    ya(i) = cd(i) 
    end do 
    xt3=transpose(x3) 
    xx3=matmul(xt3,x3) 
c  matrix inversion step 
    call invert_three_by_three(xx3,xi3) 
    xn3a=matmul(xi3,xt3) 
    b3=matmul(xn3a,ya) 
    cdo(j)=b3(1) 
    k1(j)=b3(2) 
    k2(j)=b3(3) 
 end do 
 print*,"initial regression for each mach number is complete..." 
 print*,"beginning overall regression analysis..." 
c  write to file all each coefficient at each mach number  
 write(unit=21,fmt=70) 
 do j=1,mach 
    write(unit=21,fmt=71),machnum(j),clo(j),cdo(j),s(j),k1(j),k2(j) 
 end do 
c  
c  initial subsonic and supersonic regressions are complete, i.e. all 
c  parameters (clo, s, cdo, k1, k2) have been obtained.  next step 
c  is to do the regression of each parameter against mach number. 
c 
c  note that all subsonic parameters are calculated as a function of 
c  mach # and mach # squared, while all supersonic parameters use 
c  an additional mach # cubed coefficient (except cdo, which is the 
c  same as subsonic) 
c 
c  matrix equation is (xt*x)^-1 * xt * y 
c do clo first:  equation is clo = bo + b1*m + b2 * m^2 
 print*,"subsonic clo..." 
 do j=1,machsub 
    x3b(j,1)=1. 
    x3b(j,2)=machnum(j) 
    x3b(j,3)=machnum(j)**2 
    yb(j)=clo(j) 
 end do 
 xt3b=transpose(x3b) 
 xx3 = matmul(xt3b,x3b) 
 call invert_three_by_three(xx3,xi3) 
 xn3b=matmul(xi3,xt3b) 
 b3 = matmul(xn3b,yb) 
 write (unit=21,fmt=91) 
 write (unit=21,fmt=90) 
 call rsquare(yb,machsub,x3b,3,b3,rsq) 
 write (unit=21,fmt=51) b3(1),b3(2),b3(3),rsq 
c  subsonic regression of s on m, m^2 
 print*,"subsonic s..." 
 do j=1,machsub 
    yb(j)=s(j) 
 end do 
 b3=matmul(xn3b,yb) 
 call rsquare(yb,machsub,x3b,3,b3,rsq) 
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 write (unit=21,fmt=52) b3(1),b3(2),b3(3),rsq 
c  subsonic regression of cdo on m, m^2 
 print*,"subsonic cdo..." 
 do j=1,machsub 
    yb(j)=cdo(j) 
 end do 
 b3=matmul(xn3b,yb) 
 call rsquare(yb,machsub,x3b,3,b3,rsq) 
 write (unit=21,fmt=53) b3(1),b3(2),b3(3),rsq 
c  subsonic regression of k1 on m, m^2 
 print*,"subsonic k1..." 
 do j=1,machsub 
    yb(j)=k1(j) 
 end do 
 b3=matmul(xn3b,yb) 
 call rsquare(yb,machsub,x3b,3,b3,rsq) 
 write (unit=21,fmt=54) b3(1),b3(2),b3(3),rsq 
c  subsonic regression of k2 on m, m^2 
 print*,"subsonic k2..." 
 do j=1,machsub 
    yb(j)=k2(j) 
 end do 
 b3=matmul(xn3b,yb) 
 call rsquare(yb,machsub,x3b,3,b3,rsq) 
 write (unit=21,fmt=55) b3(1),b3(2),b3(3),rsq 
  write (unit=21,fmt=91) 
 write (unit=21,fmt=*) "supersonic equations" 
c  supersonic regression of clo on m, m^2, m^3 
 print*,"supersonic clo..." 
 do j=1,machsup 
    x4(j,1) = 1.0 
    x4(j,2) = machnum(j+machsub) 
    x4(j,3) = machnum(j+machsub)**2 
    x4(j,4) = machnum(j+machsub)**3 
    y(j)=clo(j+machsub) 
 end do 
 xt4=transpose(x4) 
 xx4=matmul(xt4,x4) 
c  gaussian elimination step  
 call sgefa(xx4, 4, 4, ipvt, info) 
c  matrix inversion step 
 call sgedi(xx4, 4, 4, ipvt, det, work, job) 
c solve for coefficients 
 xn4=matmul(xx4,xt4) 
 b4=matmul(xn4,y) 
 call rsquare(y,machsup,x4,4,b4,rsq) 
 write (unit=21,fmt=56) b4(1),b4(2),b4(3),b4(4),rsq 
c  supersonic regression of s on m, m^2, m^3 
 print*,"supersonic s..." 
 do j=1,machsup 
    y(j)=s(j+machsub) 
 end do 
 b4=matmul(xn4,y) 
 call rsquare(y,machsup,x4,4,b4,rsq) 
 write (unit=21,fmt=57) b4(1),b4(2),b4(3),b4(4),rsq 
c  supersonic regression of cdo on m, m^2 
 print*,"supersonic cdo..." 
 do j=1,machsup 
    y(j)=cdo(j+machsub) 
 end do 
 b4=matmul(xn4,y) 
 call rsquare(y,machsup,x4,4,b4,rsq) 
 write (unit=21,fmt=58) b4(1),b4(2),b4(3),b4(4),rsq 
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c  supersonic regression of k1 on m, m^2, m^3 
 print*,"supersonic k1..." 
 do j=1,machsup 
    y(j)=k1(j+machsub) 
 end do 
 b4=matmul(xn4,y) 
 call rsquare(y,machsup,x4,4,b4,rsq) 
 write (unit=21,fmt=59) b4(1),b4(2),b4(3),b4(4),rsq 
c  supersonic regression of k2 on m, m^2, m^3 
 print*,"supersonic k2..." 
 do j=1,machsup 
    y(j)=k2(j+machsub) 
 end do 
 b4=matmul(xn4,y) 
 call rsquare(y,machsup,x4,4,b4,rsq) 
 write (unit=21,fmt=60) b4(1),b4(2),b4(3),b4(4),rsq 
 print*," " 
 print*,"regression analysis complete" 
c  end of linear regression operations; the parametric curve fits are complete 
and 
c  saved to file "equations.txt" 
51    format("clo = ",f9.6," + ",f9.6," * m + ",f9.6," * m^2",21x,f5.3) 
52 format("  s = ",f9.6," + ",f9.6," * m + ",f9.6," * m^2",21x,f5.3) 
53 format("cdo = ",f9.6," + ",f9.6," * m + ",f9.6," * m^2",21x,f5.3) 
54 format(" k1 = ",f9.6," + ",f9.6," * m + ",f9.6," * m^2",21x,f5.3) 
55 format(" k2 = ",f9.6," + ",f9.6," * m + ",f9.6," * m^2",21x,f5.3) 
56 format("clo = ",f9.6," + ",f9.6," * m + ",f9.6," * m^2 + ", 
     $      f9.6," * m^3",3x,f5.3) 
57 format("  s = ",f9.6," + ",f9.6," * m + ",f9.6," * m^2 + ", 
     $      f9.6," * m^3",3x,f5.3) 
58 format("cdo = ",f9.6," + ",f9.6," * m + ",f9.6," * m^2 + ", 
     $       f9.6," * m^3",3x,f5.3) 
59 format(" k1 = ",f9.6," + ",f9.6," * m + ",f9.6," * m^2 + ", 
     $       f9.6," * m^3",3x,f5.3) 
60 format(" k2 = ",f9.6," + ",f9.6," * m + ",f9.6," * m^2 + ", 
     $       f9.6," * m^3",3x,f5.3) 
70 format(2x,"mach #",6x,"clo",9x,"cdo",9x,"s",10x,"k1",11x,"k2") 
71 format(2x,f5.2,4x,f8.5,4x,f8.4,4x,f8.5,4x,f8.5,4x,f8.5) 
90 format(" subsonic equations",52x,"r^2") 
91 format(" ") 
 stop 
 end 
c 
 subroutine invert_two_by_two(x, xi) 
 implicit none 
 real x(2,2), xi(2,2) 
 real mult 
 mult=1/((x(1,1)*x(2,2)) - (x(1,2)*x(2,1))) 
 xi(1,1)=x(2,2) 
 xi(1,2)= -1.0*x(1,2) 
 xi(2,1)= -1.0*x(2,1) 
 xi(2,2)=x(1,1) 
 xi=xi*mult 
 return 
 end 
c 
 subroutine invert_three_by_three(x, xi) 
 implicit none 
 real x(3,3), xi(3,3) 
 real a,b,c,d,e,f,g,h,k,z 
 a = x(1,1) 
 b = x(1,2) 
 c = x(1,3) 
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 d = x(2,1) 
 e = x(2,2) 
 f = x(2,3) 
 g = x(3,1) 
 h = x(3,2) 
 k = x(3,3) 
 z=a*(e*k-f*h) - b*(d*k-f*g) + c*(d*h - e*g) 
 xi(1,1) = (e*k - f*h)/z 
 xi(1,2) = -1.*(b*k - c*h)/z 
 xi(1,3) = (b*f - c*e)/z 
 xi(2,1) = -1.*(d*k - f*g)/z 
 xi(2,2) = (a*k - c*g)/z 
 xi(2,3) = -1.*(a*f - c*d)/z 
 xi(3,1) = (d*h - e*g)/z 
 xi(3,2) = -1.*(a*h - b*g)/z 
 xi(3,3) = (a*e - b*d)/z 
 return 
 end  
c 
      subroutine sgefa(a,lda,n,ipvt,info) 
      integer lda,n,ipvt(1),info 
      real a(lda,1) 
c     sgefa factors a real matrix by gaussian elimination. 
c 
c     on entry 
c        a       real(lda, n) 
c                the matrix to be factored. 
c        lda     integer 
c                the leading dimension of the array  a . 
c        n       integer 
c                the order of the matrix  a . 
c     on return 
c        a       an upper triangular matrix and the multipliers 
c                which were used to obtain it. 
c                the factorization can be written  a = l*u  where 
c                l  is a product of permutation and unit lower 
c                triangular matrices and  u  is upper triangular. 
c        ipvt    integer(n) 
c                an integer vector of pivot indices. 
c        info    integer 
c                = 0  normal value. 
c                = k  if  u(k,k) .eq. 0.0 .  this is not an error 
c                     condition for this subroutine, but it does 
c                     indicate that sgesl or sgedi will divide by zero 
c                     if called.  use  rcond  in sgeco for a reliable 
c                     indication of singularity. 
c 
c     linpack. this version dated 08/14/78 . 
c     cleve moler, university of new mexico, argonne national lab. 
c 
c     subroutines and functions 
c 
c     blas saxpy,sscal,isamax 
c 
c     internal variables 
c 
      real t 
      integer isamax,j,k,kp1,l,nm1 
c 
c     gaussian elimination with partial pivoting 
c 
      info = 0 
      nm1 = n - 1 
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      if (nm1 .lt. 1) go to 70 
      do 60 k = 1, nm1 
         kp1 = k + 1 
c 
c        find l = pivot index 
c 
         l = isamax(n-k+1,a(k,k),1) + k - 1 
         ipvt(k) = l 
c 
c        zero pivot implies this column already triangularized 
c 
         if (a(l,k) .eq. 0.0e0) go to 40 
c 
c           interchange if necessary 
c 
            if (l .eq. k) go to 10 
               t = a(l,k) 
               a(l,k) = a(k,k) 
               a(k,k) = t 
   10       continue 
c 
c           compute multipliers 
c 
            t = -1.0e0/a(k,k) 
            call sscal(n-k,t,a(k+1,k),1) 
c 
c           row elimination with column indexing 
c 
            do 30 j = kp1, n 
               t = a(l,j) 
               if (l .eq. k) go to 20 
                  a(l,j) = a(k,j) 
                  a(k,j) = t 
   20          continue 
               call saxpy(n-k,t,a(k+1,k),1,a(k+1,j),1) 
   30       continue 
         go to 50 
   40    continue 
            info = k 
   50    continue 
   60 continue 
   70 continue 
      ipvt(n) = n 
      if (a(n,n) .eq. 0.0e0) info = n 
      return 
      end 
c 
      integer function isamax(n,sx,incx) 
c 
c     finds the index of element having max. absolute value. 
c     jack dongarra, linpack, 3/11/78. 
c     modified 3/93 to return if incx .le. 0. 
c     modified 12/3/93, array(1) declarations changed to array(*) 
c 
      real sx(*),smax 
      integer i,incx,ix,n 
c 
      isamax = 0 
      if( n.lt.1 .or. incx.le.0 ) return 
      isamax = 1 
      if(n.eq.1)return 
      if(incx.eq.1)go to 20 
c 
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c        code for increment not equal to 1 
c 
      ix = 1 
      smax = abs(sx(1)) 
      ix = ix + incx 
      do 10 i = 2,n 
         if(abs(sx(ix)).le.smax) go to 5 
         isamax = i 
         smax = abs(sx(ix)) 
    5    ix = ix + incx 
   10 continue 
      return 
c 
c        code for increment equal to 1 
c 
   20 smax = abs(sx(1)) 
      do 30 i = 2,n 
         if(abs(sx(i)).le.smax) go to 30 
         isamax = i 
         smax = abs(sx(i)) 
   30 continue 
      return 
      end 
c 
      subroutine saxpy(n,sa,sx,incx,sy,incy) 
c 
c     constant times a vector plus a vector. 
c     uses unrolled loop for increments equal to one. 
c     jack dongarra, linpack, 3/11/78. 
c     modified 12/3/93, array(1) declarations changed to array(*) 
c 
      real sx(*),sy(*),sa 
      integer i,incx,incy,ix,iy,m,mp1,n 
c 
      if(n.le.0)return 
      if (sa .eq. 0.0) return 
      if(incx.eq.1.and.incy.eq.1)go to 20 
c 
c        code for unequal increments or equal increments 
c          not equal to 1 
c 
      ix = 1 
      iy = 1 
      if(incx.lt.0)ix = (-n+1)*incx + 1 
      if(incy.lt.0)iy = (-n+1)*incy + 1 
      do 10 i = 1,n 
        sy(iy) = sy(iy) + sa*sx(ix) 
        ix = ix + incx 
        iy = iy + incy 
   10 continue 
      return 
c 
c        code for both increments equal to 1 
c 
c 
c        clean-up loop 
c 
   20 m = mod(n,4) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        sy(i) = sy(i) + sa*sx(i) 
   30 continue 
      if( n .lt. 4 ) return 
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   40 mp1 = m + 1 
      do 50 i = mp1,n,4 
        sy(i) = sy(i) + sa*sx(i) 
        sy(i + 1) = sy(i + 1) + sa*sx(i + 1) 
        sy(i + 2) = sy(i + 2) + sa*sx(i + 2) 
        sy(i + 3) = sy(i + 3) + sa*sx(i + 3) 
   50 continue 
      return 
      end 
c 
      subroutine sscal(n,sa,sx,incx) 
c 
c     scales a vector by a constant. 
c     uses unrolled loops for increment equal to 1. 
c     jack dongarra, linpack, 3/11/78. 
c     modified 3/93 to return if incx .le. 0. 
c     modified 12/3/93, array(1) declarations changed to array(*) 
c 
      real sa,sx(*) 
      integer i,incx,m,mp1,n,nincx 
c 
      if( n.le.0 .or. incx.le.0 )return 
      if(incx.eq.1)go to 20 
c 
c        code for increment not equal to 1 
c 
      nincx = n*incx 
      do 10 i = 1,nincx,incx 
        sx(i) = sa*sx(i) 
   10 continue 
      return 
c 
c        code for increment equal to 1 
c 
c        clean-up loop 
c 
   20 m = mod(n,5) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        sx(i) = sa*sx(i) 
   30 continue 
      if( n .lt. 5 ) return 
   40 mp1 = m + 1 
      do 50 i = mp1,n,5 
        sx(i) = sa*sx(i) 
        sx(i + 1) = sa*sx(i + 1) 
        sx(i + 2) = sa*sx(i + 2) 
        sx(i + 3) = sa*sx(i + 3) 
        sx(i + 4) = sa*sx(i + 4) 
   50 continue 
      return 
      end 
c 
      subroutine sgedi(a,lda,n,ipvt,det,work,job) 
      integer lda,n,ipvt(1),job 
      real a(lda,1),det(2),work(1) 
c 
c     sgedi computes the determinant and inverse of a matrix 
c     using the factors computed by sgeco or sgefa. 
c 
c     on entry 
c 
c        a       real(lda, n) 
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c                the output from sgefa. 
c        lda     integer 
c                the leading dimension of the array  a . 
c        n       integer 
c                the order of the matrix  a . 
c        ipvt    integer(n) 
c                the pivot vector from sgeco or sgefa. 
c        work    real(n) 
c                work vector.  contents destroyed. 
c        job     integer 
c                = 11   both determinant and inverse. 
c                = 01   inverse only. 
c                = 10   determinant only. 
c     on return 
c        a       inverse of original matrix if requested. 
c                otherwise unchanged. 
c        det     real(2) 
c                determinant of original matrix if requested. 
c                otherwise not referenced. 
c                determinant = det(1) * 10.0**det(2) 
c                with  1.0 .le. abs(det(1)) .lt. 10.0 
c                or  det(1) .eq. 0.0 . 
c     error condition 
c 
c        a division by zero will occur if the input factor contains 
c        a zero on the diagonal and the inverse is requested. 
c        it will not occur if the subroutines are called correctly 
c        and if sgeco has set rcond .gt. 0.0 or sgefa has set 
c        info .eq. 0 . 
c 
c     linpack. this version dated 08/14/78 . 
c     cleve moler, university of new mexico, argonne national lab. 
c 
c     subroutines and functions 
c 
c     blas saxpy,sscal,sswap 
c     fortran abs,mod 
c 
c     internal variables 
c 
      real t 
      real ten 
      integer i,j,k,kb,kp1,l,nm1 
c 
c     compute determinant 
c 
      if (job/10 .eq. 0) go to 70 
         det(1) = 1.0e0 
         det(2) = 0.0e0 
         ten = 10.0e0 
         do 50 i = 1, n 
            if (ipvt(i) .ne. i) det(1) = -det(1) 
            det(1) = a(i,i)*det(1) 
c        ...exit 
            if (det(1) .eq. 0.0e0) go to 60 
   10       if (abs(det(1)) .ge. 1.0e0) go to 20 
               det(1) = ten*det(1) 
               det(2) = det(2) - 1.0e0 
            go to 10 
   20       continue 
   30       if (abs(det(1)) .lt. ten) go to 40 
               det(1) = det(1)/ten 
               det(2) = det(2) + 1.0e0 
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            go to 30 
   40       continue 
   50    continue 
   60    continue 
   70 continue 
c 
c     compute inverse(u) 
c 
      if (mod(job,10) .eq. 0) go to 150 
         do 100 k = 1, n 
            a(k,k) = 1.0e0/a(k,k) 
            t = -a(k,k) 
            call sscal(k-1,t,a(1,k),1) 
            kp1 = k + 1 
            if (n .lt. kp1) go to 90 
            do 80 j = kp1, n 
               t = a(k,j) 
               a(k,j) = 0.0e0 
               call saxpy(k,t,a(1,k),1,a(1,j),1) 
   80       continue 
   90       continue 
  100    continue 
c 
c        form inverse(u)*inverse(l) 
c 
         nm1 = n - 1 
         if (nm1 .lt. 1) go to 140 
         do 130 kb = 1, nm1 
            k = n - kb 
            kp1 = k + 1 
            do 110 i = kp1, n 
               work(i) = a(i,k) 
               a(i,k) = 0.0e0 
  110       continue 
            do 120 j = kp1, n 
               t = work(j) 
               call saxpy(n,t,a(1,j),1,a(1,k),1) 
  120       continue 
            l = ipvt(k) 
            if (l .ne. k) call sswap(n,a(1,k),1,a(1,l),1) 
  130    continue 
  140    continue 
  150 continue 
      return 
      end 
c 
      subroutine sswap (n,sx,incx,sy,incy) 
c 
c     interchanges two vectors. 
c     uses unrolled loops for increments equal to 1. 
c     jack dongarra, linpack, 3/11/78. 
c     modified 12/3/93, array(1) declarations changed to array(*) 
      real sx(*),sy(*),stemp 
      integer i,incx,incy,ix,iy,m,mp1,n 
      if(n.le.0)return 
      if(incx.eq.1.and.incy.eq.1)go to 20 
c       code for unequal increments or equal increments not equal 
c         to 1 
      ix = 1 
      iy = 1 
      if(incx.lt.0)ix = (-n+1)*incx + 1 
      if(incy.lt.0)iy = (-n+1)*incy + 1 
      do 10 i = 1,n 
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        stemp = sx(ix) 
        sx(ix) = sy(iy) 
        sy(iy) = stemp 
        ix = ix + incx 
        iy = iy + incy 
   10 continue 
      return 
c 
c       code for both increments equal to 1 
c 
c       clean-up loop 
c 
   20 m = mod(n,3) 
      if( m .eq. 0 ) go to 40 
      do 30 i = 1,m 
        stemp = sx(i) 
        sx(i) = sy(i) 
        sy(i) = stemp 
   30 continue 
      if( n .lt. 3 ) return 
   40 mp1 = m + 1 
      do 50 i = mp1,n,3 
        stemp = sx(i) 
        sx(i) = sy(i) 
        sy(i) = stemp 
        stemp = sx(i + 1) 
        sx(i + 1) = sy(i + 1) 
        sy(i + 1) = stemp 
        stemp = sx(i + 2) 
        sx(i + 2) = sy(i + 2) 
        sy(i + 2) = stemp 
   50 continue 
      return 
      end 
c 
      subroutine rsquare(y,n,x,k,b,rsq) 
 real y(n),x(n,k),b(k),rsq 
 real yhat(n),yavg, sum, ssr, ssto 
 integer i,j 
c  calculate average of the components of the y matrix 
 sum=0.0 
      do i=1,n 
         sum=sum+y(i) 
 end do 
 yavg=sum/n 
c caclulate yhat matrix (the fitted values of y) 
 yhat=matmul(x,b) 
c calculate ssr (regression sum of error squares) 
 sum=0.0 
 do i=1,n 
    sum=sum+((yhat(i)-yavg)**2) 
 end do 
 ssr=sum 
c calculate ssto (total sum of error squares, not single stage to orbit!) 
 sum=0.0 
 do i=1,n 
    sum=sum+((y(i)-yavg)**2) 
 end do 
 ssto=sum 
c calculate r-squared, the coefficient of determination 
 rsq=ssr/ssto 
 return 
 end 


