
An evaluation of three commercially available
integrated design framework packages for use in

the Space Systems Design Lab

by Andrew Thomas Scott
submitted to Dr. John Olds

April 26th, 2001

A. Scott

- ii -

Table of Contents

1. List of Tables . iii

2. List of Figures . iv

3. List of Symbols and Acronyms . v

4. Introduction . 1

5. Evaluation Criteria . 4

a. Hardware support . 4

b. Disciplinary Analysis Integration . 4

c. Disciplinary Analysis Distribution . 7

d. System Level Analysis Methods . 9

e. Data Collection . 10

f. Usage . 10

6. Evaluation Methodology .11

7. Overall Comparison Chart . 12

8. ModelCenter . 13

9. iSIGHT . 20

10. AML . 27

11. Summary .32

12. References .34

A. Scott

- iii -

LIST OF TABLES

Table 1 SSDL Hardware Breakdown . 4

Table 2 Disciplinary Analysis Tools . 4

Table 3 Optimization Algorithms available in ModelCenter 17

Table 4 Design of Experiment options in ModelCenter . 17

Table 5 Optimization Algorithms available in iSIGHT . 23

Table 6 Design of Experiment options in iSIGHT 24

A. Scott

- iv -

LIST OF FIGURES

Figure 1 Design Structure Matrix for a typical space launch vehicle 1

Figure 2 Early Design Practices . 2

Figure 3 Sample Command-line tool . 5

Figure 4 Sample Excel-based tool . 6

Figure 5 Distributed Design . 7

Figure 6 Monolithic Codes . 8

Figure 7 Integrated Design Framework . 8

Figure 8 Design Structure Matrix of simplified RLV test problem 11

Figure 9 Custom Scripts and Variable Linking in ModelCenter 16

Figure 10 Optimization run in ModelCenter . 18

Figure 11 File parsing in iSIGHT . 21

Figure 12 Optimization and Problem Setup in iSIGHT . 22

Figure 13 Sample AML code . 27

Figure 14 Geometric modeling in AML . 28

A. Scott

- v -

LIST OF SYMBOLS AND ACRONYMS

APAS . Aerodynamic Preliminary Analysis System

CABAM . Cost and Business Analysis Module

DOE . Design of Experiments

DOT . Design Optimization Tools

DSM . Design Structure Matrix

GE . General Electric

GUI . Graphical User Interface

IDEAS . Integrated Design Engineering Analysis Software

IPREP . Interplanetary Preprocessor

ISE . Intelligent Synthesis Environment

MDO . Multi-disciplinary Design Optimization

MDOL . Multi-Disciplinary Optimization Language

POST . Program to Optimize Simulated Trajectories

RaDEO . Rapid Design Exploration and Optimization

RLV . Reusable Launch Vehicle

SCORES . SpaceCraft Object-oriented Rocket Engine Simulation

SCREAM Simulated Combined-Cycle Rocket Engine Analysis Module

SHABP . Supersonic/Hypersonic Arbitrary Body Program

SSDL . Space Systems Design Lab

TCAT . Thermal Calculation Analysis Tool

UDP . Unified Distributed Panel

A. Scott

- 1 -

INTRODUCTION

In the design of any complex system, it customary to find that the decomposition

of such a system divides the analysis of the problem into several smaller sections that

focus on applicable engineering disciplines. This approach to design has not only been

well established but, for very large systems, is the only realistically feasible direction to

take. Unfortunately, it is extremely rare to find a problem that can be divided in such a

way that the inputs and outputs of the disciplinary analyses do not heavily rely on one

another. Because of the natural coupling that will arise between different disciplines, the

design problem requires not only the system level requirements are met, but also that the

results of each discipline are consistent with one another. Figure 1 illustrates the typical

design structure matrix (DSM) used by the Space Systems Design Lab (SSDL) for its

space vehicle design work.

Within the past decade, significant improvements have been made in the various

methods by which these problems are typically approached. The simplest and earliest

method is by simple iteration amongst the disciplines. Using reasonable guesses as a

Configuration
& Packaging

Aerodynamic
Analysis

Propulsion
Analyisis

Trajectory &
Performance

Thermal
Protection
Systems

Operations &
Saftey

Cost &
Economics

Weights &
Sizing

Figure 1: Design Structure Matrix for a typical space launch vehicle

A. Scott

- 2 -

good starting point, analysis begins with one discipline, which, in turn, passes its verified

results to the other disciplines that require them. Whenever the results of one discipline

affect the inputs of a previously run discipline, iteration is required until the coupling

variables converge to within acceptable tolerances. In traditional engineering

environments, this iteration is accomplished by each disciplinary expert physically

receiving his appropriate inputs, performing his analysis, and then physically giving the

results to the other experts that require them.

Depending on the number and fidelity of the

individual disciplines, this process can take a

great deal of time to acquire a single

converged design. When optimization

schemes are employed at the system level, the

number of design points that must be evaluated grows quite large, and the overall design

process can easily take months of time.

Following the well know paradigm that “time is money,” it is a natural goal to

want to reduce the turn-around time of the design process as much as possible. Towards

this effort, several innovations have been made. The speed with which disciplinary

analyses can be performed is steadily increasing as improvements in processing speed are

constantly being made. Advanced optimization schemes reducing or eliminating the

amount of disciplinary iteration have been developed [1]. Additionally, the advent of the

Internet and advancements in electronic communications have made the transfer of

information between engineers extremely fast and accurate. However, with all these

advances a new bottleneck in the design process has arisen . . . organization. With all

these improvements the amount of information that must be maintained, recorded and

distributed has quickly become quite cumbersome. It is with these issues in mind that

efforts have been made toward the development of integrated design frameworks that

handle the collection, organization & distribution of information amongst various

disciplinary analyses. Common to all such computational frameworks is an interface

through which the user can define the flow of information between disciplines as well as

how and when disciplinary analyses are run. Once these interrelationships are defined, it

Figure 2: Early Design Practices

A. Scott

- 3 -

is logistically much easier for the engineer to perform a wide variety of system level

design analyses, such as optimizations, trades and response surface approximations.

There have been many attempts to develop good computational frameworks.

Some earlier implementations have been specific to a single type of problem with

interfaces to various analyses more or less “hard-wired”. While this kind of framework

might be very good for the kind of design problem it was created for, this type of

implementation is typically inflexible in what it can do. As the development of such a

framework is a technically difficult and time consuming process, such problem-specific

frameworks are usually not the most realistic solutions as they themselves take a great

deal of time and knowledge to develop. Recently, various companies in the computer

software industry have developed integrated design framework software that is not

restricted to any particular kind of design problem. By providing an easy means for the

user to integrate their own disciplinary analyses, these computational frameworks allow

the engineer to organize the design process of nearly any type of problem.

The SSDL within the Georgia Institute of Technology, does a wide variety of

conceptual space-vehicle design using several in-house-developed disciplinary analysis

tools and industry standard legacy codes. In order to improve the efficiency and level of

design done in the lab, use of three commercially available integrated design framework

packages is investigated and evaluated. These packages are Phoenix Integration’s

ModelCenter, Engenious Software’s iSIGHT, and Technosoft’s AML. In this evaluation,

consideration is given to a wide variety of criteria addressing the needs of the SSDL and

key functionality of the software.

A. Scott

- 4 -

EVALUATION CRITERIA

Hardware Support

The bulk of the evaluation criteria for the candidate packages was based the

specific and immediate needs of the SSDL. Within the SSDL there is a fairly

heterogeneous collection of computer platforms and operating systems. Table 1

summarizes the various computers and

platforms used in the lab. Most of these

computers are designated as the personal

computers of the lab members. The two SGI’s,

two PC’s and one Mac are set aside for web

hosting and for handling computationally intensive tasks. The chosen framework

software should be able to run on as many of these machine/platform types as possible,

while being able to easily interface and communicate with analytical tools across these

platform boundaries.

Disciplinary Analysis Integration

Most of the various disciplinary tools used in the SSDL can only be run on

machines of a specific type. Table 2 summarizes information about the various

disciplinary analysis tools used

in the lab. It is a key

requirement that the selected

framework package be able to

successfully interface with the

various types of tools used in

the SSDL. These tools can be

categorized into one of three

groups based on how the user

Table 1: SSDL Hardware Breakdown

10 Gateway PC's running Windows NT
4 Dell PC's running Windows 2000
5 Macintosh Computers running MacOS
2 SGI - Unix Workstations

Table 2: Disciplinary Analysis Tools

Name Description Platform Type

AATe Operations Windows/Mac Excel based

APAS Aerodynamics UNIX GUI Aplication

CABAM Costs & Economics Windows/Mac Excel based

GT-Sizer Weights & Sizing Windows/Mac Excel based

IDEAS CAD Modeling UNIX GUI Application

IPREP Interplanetary trajectories any* command-line

Miniver TPS heat calculations UNIX command-line

POST Trajectory & Performance UNIX command-line

SCORES Liquid Rocket Engine Analysis any* command-line / Web

SCCREAM Airbreathing Engine Analysis any* command-line / Web

TCAT TPS stack sizing any* command-line
* indicates source code is available and that tool can be ported to any platform

A. Scott

- 5 -

interacts with that tool: command-line tools, Excel-based tools & GUI-tools. The selected

framework package should be capable of integrating or “wrapping” most if not all types

of these tools. Also, while the disciplinary tools will handle the bulk of analytical

calculations, the user should be allowed define custom variables and perform simple

calculations within the framework environment.

The first and most common group consists of command-line tools. These tools

usually require the user to create or modify a specific input file, execute the analysis by

typing in a command at a system prompt, and then parse a specific output file for the

desired results. Some command-line tools will instead prompt the user directly for inputs

and then output results to the screen, but these tools can nearly always be modified to

operate using files instead. Though most command-line tools are fairly straightforward,

some, like POST, require a good deal of user interaction in order to effectively use them.

Because of this it is desired that the computational framework either allow the engineer to

specify detailed rules and instructions on the use of that tool, and/or prompt the

disciplinary expert responsible for that tool to validate the results. Most of the SSDL’s in-

house-developed

command-line

tools have also

had web interfaces

developed for

them. It would be

advantageous if

the design

framework had

the ability to take

advantage of these

already-developed

web interfaces.

Figure 3: Sample command-line tool

A. Scott

- 6 -

The remaining tools developed within the SSDL are spreadsheet based, using

Microsoft Excel. Excel is particularly advantageous when developing analytical methods

that will inherently require a great deal of iteration between simple mathematical

formulas. Such is usually the case when performing weights and sizing calculations.

Additionally, the built-in capabilities of Solver allow for easy disciplinary optimizations.

When developing economic analysis tools, the use of Excel is an obviously natural

choice. Therefore, in

addition to enabling the

easy integration of

command-line based

analyses, the computational

framework should have the

capability to easily

incorporate Excel-based

tools. This support should

allow the user to specify

inputs, macros to be called,

and outputs to be retrieved.

The final class of analytical tools used in the SSDL is comprised of the complex

commercial and legacy tools that require a high level of user interaction through a GUI

interface. These include CAD programs such as IDEAS and aerodynamic analyses tools

like APAS. Because these analyses take the longest to perform, these analyses are usually

taken out of the main design loop by running them once and then appropriately scaling

their results. The effects of geometry-dependent design parameters that do not scale well,

such as packaging efficiency, are usually accounted for by response surface

approximations. This approach requires that these analyses be performed only a few

times. Since these tools require such a high level of user interaction, automation of these

disciplines within a computational framework would most likely be quite difficult.

Furthermore, as the SSDL’s traditional design methodology already isolates these types

of tools from the main design loop (see Figure 1), the ability to integrate them within the

Figure 4: Sample Excel-based tool

A. Scott

- 7 -

computational framework is not of the highest priority, nor necessarily even required.

This kind of capability would be greatly advantageous and necessary in higher-fidelity

design work where the design process requires constantly updated geometric and

aerodynamic information. As most of the SSDL’s work is at the conceptual and

preliminary design level, this level of analysis is not usually needed.

A final requirement concerning tool wrapping should address the reusability of

wrapped tools. It is desirable that once a code had been wrapped that the work required to

reuse that code be kept to a minimum. This kind of flexibility is a key capability that

distinguishes a good computational framework from inflexible, problem specific

framework solutions.

Disciplinary Analysis Distribution

The next set of evaluation criteria is concerned with how the framework is

capable of interacting with analysis codes once they are wrapped. The rational behind

these requirements is derived from the SSDL’s

ideology on good design group organization. As

mentioned before, complex design problems are

nearly always divided into several smaller

disciplinary problems. The advantage of this

strategy is that it allows engineers to be

responsible for the disciplinary sub-problems to

which their expertise is most applicable. This

allows the engineer to better focus his research and tool-development efforts in a specific

field, by not required him to have as extensive a working knowledge of other disciplines.

This strategy of distributed design not only ensures quality engineering in each discipline

but also lends itself to a very natural distribution of work. It is desired that the framework

software take advantage of this well-established organization of labor and expertise.

Figure 5: Distributed Design

A. Scott

- 8 -

Efforts have proven that trying to

automate and compile the analyses of every

discipline into a single “monolithic” analysis

tool has many disadvantages. Such an effort

removes the distributed team of experts from the

design process. This requires that the system-

level user be either an unrealistic “super-

engineer” or simply disadvantaged by not be

able to readily identify and correct problems that a disciplinary expert could. Additionally

the development of such monolithic codes, is quite cumbersome and usually produces

very problem-specific solutions.

A good computational framework should combine the efficiency and speed of

monolithic codes with the practical distribution of labor and expertise found in distributed

design. A well-integrated design framework should be capable of allowing the

disciplinary analyses to be run on the experts’ machines under their supervision, while

the overall design

process is coordinated

and directed by a

central system-level

user. In this way, the

disciplinary experts

could locally maintain

their analytical tools,

and, the

computational load of the design would be distributed over several machines. To further

keep the experts “in the loop” the best framework implementation would allow the

disciplinary expert to monitor, verify, modify and approve the results of his tool before

they are used returned to the system level operations of the framework. Naturally, the

option to allow disciplinary tools to run unattended should also be available.

Figure 7: Integrated Design Framework

Figure 6: Monolithic Codes

A. Scott

- 9 -

In addition to the accommodating the needs of the more-traditional methods used

to organize design problems, the design framework should be able to take advantage of

the computational benefits provided by advanced Multi-disciplinary Design Optimization

(MDO) methods [1]. Specifically, the framework should be capable of executing

distributed tools in parallel. Not only does this capability speed up the overall process,

but also distributes the computational load amongst numerous machines. In addition to

allowing different analyses to run in parallel, the framework should be able to thread

several instances of the same tool to run at once. This capability should enable the user to

simultaneously analyze multiple design points from a Design of Experiments (DOE).

System Level Analysis

With the means to wrap and distribute analytical tools at the disciplinary level

fully considered, attention must be turned to the computational framework’s capabilities

at the system level. The desired framework should have a wide variety of analytical

schemes available at the system level. The range of methods available should include

support for zero and first-order optimization methods, DOE methodologies, and

stochastic methods such as Genetic Algorithms and Simulated Annealing. Additionally,

there should be an easy means by which the user can supply and integrate his own

optimization algorithms. This ability should range from simple scripting for convergence

loops to an easy means to integrate external optimization codes. As with any optimization

problem, modifications are usually required to the internal parameters of the algorithm;

the included optimization methods should have as many of these parameters available to

the user as possible. The option for the user to supply gradient information directly to the

optimizer should also be available. Response Surface methods should be capable of

determining the required array of design point analyses, while also allowing the user to

supply his own. The SSDL also uses a good deal of probabilistic simulations in its

various studies; therefore, the inclusion of Monte Carlo simulation capabilities in the

framework would be a great asset.

A. Scott

- 10 -

Data Collection

In addition to final results, there is great deal of information that the user should

be able to track and record during any system level analysis. At the basic level the

computational framework should keep track of any and all changes made to the system-

level variables, disciplinary coupling variables, constraints and objectives. The user

should be able to save and load convergence histories, DOE runs and simple design point

evaluations for later retrieval, analysis and comparison. Additionally, the user should be

able to custom configure what data is recorded and when. Because, things invariably will

go wrong, the framework package should provide the ability to stop an optimization

process and restart it either from the last or any previous point in the iteration history.

Built-in graphing capabilities should be quite extensive providing the user with a wide

range of options. Finally, all information should be stored in a format that is easily

exported to external programs such as Excel.

Usage

The final group of evaluation criteria looks at the use of the candidate framework,

primarily, how easy it is to use and learn. Considerations include overall user-

friendliness, the ease with which tools can be wrapped and distributed, and the difficultly

or lack thereof in setting up and performing system-level analysis. The product should be

easy to learn, providing good documentation and several example problems and/or

tutorials. The availability and quality of customer support is also an important

consideration. As part of an institute of higher learning and training, knowledge and

proficiency with the product should be a marketable and valuable skill for the lab

members. This implies that the framework package should be well supported and used by

several Governmental and Commercial organizations in the space industry. Finally, as the

SSDL operates under a budget, due consideration must be given to what if any the cost

will be for obtaining and using the product.

A. Scott

- 11 -

EVALUATION METHODOLGY

So that the evaluation & comparison is as fair and thorough as possible, attempts

were made to implement a common design problem in each of the candidate frameworks.

The problem chosen was to find the optimal configuration for a single-stage-to-orbit

reusable launch vehicle (RLV). The analysis of this problem was simplified to involve

only three disciplines: trajectory & performance, propulsion, and weights & sizing. A

vehicle configuration & geometry was used for which aerodynamic data was already

available. POST, which was used for the trajectory analysis, is an industry standard

legacy code that is run by creating and modifying a detailed input file, commonly

referred to as an input deck. Results from POST are written into a similarly detailed

output file. In the SSDL, POST is set

up to run in a command-line fashion

on either of two SGI workstations.

For the propulsion analysis, an in-

house developed tool, SCORES, was

chosen. This code has a web

interface, but can also be run at the

command line on either of the two

Unix machines. Finally, the weights

and sizing was performed by another in-house tool, GT-Sizer, which is Excel-based and

uses the built-in Solver to photographically rescale the vehicle. This problem, while

simple, exhibits most of the key functional requirements that the SSDL would expect of a

good frameworks package. The disciplinary tools used, represent industry standard

legacy codes and custom in-house-developed tools. This set of tools must also be run on

different machines and platforms. Additionally, it is a design problem with which the lab

is very familiar, making it well suited as a test case for whatever optimization and

system-level analysis capabilities are provided in the framework package. The chart on

the following page summarizes the conclusion of the evaluation. Detailed explanations of

the evaluation are provided for each candidate in the sections that follow.

Figure 8: Design Structure Matrix of
simplified RLV test problem

Integrated Design Framework
Criteria List

Operating System Support
Unix - SGI
Windows NT/2000
Macintosh OS

Disciplinary Level
Analysis Integration

Support for easily defined internal calculations
Support for command-line tools
Support for web-based tools
Support for Excel based tools
Support for GUI/CAD applications
Reusability of wrapped tools

Analysis Distribution
Capability to run analysis locally
Ability to distribute analyses to other machines
Ability to automate the execution of analyses
Ability for end user to monitor/verify/modify & approve results
Ability to run several different analyses in parallel
Ability to simultaneously run several distributed instances of the same analysis

System Level
Analysis Methods

Easy set up of the design structure matrix and data-flow
Zero-order search methods
1st-order search methods
Design of Experiments / Response Surface Methods
Stochastic methods
Monte Carlo Simulations
Easy means to integrate user-supplied optimizer
Ability for user to directly supply gradients
Ability to accommodate discrete variables

Data Collection
Ability to track all changes to all variables, objectives and constraints
Ability to save and restore convergence histories, DOE and point evaluations
Ability to start and stop and restart optimizations for previous point in iteration history
Data stored in an easily managed format
Extensive graphing capabilities

Usage
Overall User-friendliness
Short Learning Curve
Extensive, easy to use documentation
Tutorials & Examples available
Availability & Quality of customer support
Wide use in Governmental & Commercial space industry

Cost

M
od

el
 C

en
te

r
IS

ig
ht

A
M

L

--

--

--

--
--
--
--
--
--

--
--
--
--
--
--
--
--
--

--
--
--
--
--

Excellent
Good
Fair

Poor
Non-Existant
Could not be evaluated--

--

A. Scott

- 13 -

MODELCENTER

ModelCenter is developed by Phoenix Integration, which is located in the

Virginia Tech Corporate Research Center. Phoenix Integration was started by two

Virginia Tech doctoral students, Scott Woyak and Brett Malone, and their mentor, Arvid

Myklebust, a professor of mechanical engineering. Woyak was a PhD candidate in

Mechanical Engineering working in a CAD lab on a software integration project funded

by IBM. Malone was a PhD candidate in Aerospace Engineering doing research on

computer-aided aircraft design for NASA in the ACSYNT (AirCraft Synthesis) Institute.

The two teamed up with Myklebust to found Phoenix in 1995. The complete software

package required to set up this integrated design framework actually includes a second

auxiliary program, called Analysis Server. The latest release of the core program

ModelCenter, version 3.0, is currently available for Windows NT only. Analysis Server,

now in version 2.0, is written in Java, and is available in an already-ported form for both

Windows NT and Unix platforms. A generic version of Analysis Server is also available

which, because it is written in Java, can be ported to any machine platform, including

Macintosh. This kind of installation was successfully done on an Macintosh running OS

X. ModelCenter and the Analysis Server work seamlessly together, to allow the user to

integrate disciplinary analyses across various platforms.

Perhaps the simplest way to describe how these two programs work together is by

comparison to a similar and more familiar architecture. Analysis Server operates much

like a Web Server, only instead of hosting web pages, the content it hosts are disciplinary

analyses. The user sets up his analysis by creating a “.fileWrapper” file that specifies how

input files are created, what executions must be performed, and how to parse output files

for results. Once wrapped, the user can then “publish” this analysis by moving the

“.fileWrapper” file to an appropriately designated folder.

Analogous to a Web browser, the ModelCenter program can access and utilize

these wrapped analyses by negotiating with any number of Analysis Server programs

being run on different machines. The machines running Analysis Server can be of

different platforms types, effectively allowing the user to integrate analysis from multiple

A. Scott

- 14 -

platforms into a single model. In testing, it was quite easy to run ModelCenter from

outside the Georgia Tech network and then access and integrate analyses that were hosted

by machines within the SSDL. By expansion, it should be possible to incorporate

Analysis Server hosted analyses from anywhere in the world into a single, central

ModelCenter model. Though security issues are not a large concern for the SSDL, it is

possible to place restrictions on who is able to access and use the analyses hosted on an

Analysis Server.

Analysis Server is not only capable of hosting command-line type analyses, but

Excel-based analyses as well. Similar to the means to wrap command-line codes, the user

creates an “.excelWrapper” file that contains information detailing the input and output

cells as well as what Excel macros must be called. Additionally, the latest version of

Analysis Server has included the ability to define different methods for Excel-based tools

that can be used to call other macros within the Excel workbook as desired. The user also

has the option to either make the Excel application visible in the foreground or run

unobtrusively in the background. Using the Analysis Server to wrap Excel-based tools

allows the user to run that analysis on machines other than local ModelCenter machine.

However, the option is available to wrap an Excel spreadsheet directly in ModelCenter

and run the program locally. Though the Analysis Server program can be installed on

Macintosh system, the support for Excel-based tools is limited to the Windows version.

ModelCenter does advertise integration with Parametric Technology

Corporation’s Pro/Engineer CAD software. As the SSDL uses SDRC’s I-DEAS CAD

package for its geometric modeling, this feature was not examined. Additionally, there is

some limited geometric modeling capabilities available in ModelCenter, but as this was

not a major feature the SSDL was looking at, its potential uses were not fully explored.

ModelCenter has also recently announced successful integration with Dassault Systemes’

CATIA software, but again, this capability was not reviewed.

Through the use of the Analysis Server, ModelCenter makes reusing wrapped

codes inherently a very easy task. Once a code is wrapped and set up on a specific

machine, it simply a click and drag to add it to any new design project. If a particular

A. Scott

- 15 -

disciplinary tool needs to be run on a different machine, it is simply a matter of moving

the appropriate files and installing and starting the Analysis Server on that machine. The

easy to Link Editor in ModelCenter allows the user to define the data flow between

disciplines. Using the defined data flow, ModelCenter keeps track of variable

dependency and can be configured to either automatically run an analysis whenever an

input is changed, and/or when an invalid output is demanded. The most recent version of

the Analysis Server has added the capability to prompt the user for verification of

disciplinary results before continuing. This capability allows the disciplinary experts to

review and if necessary modify the results of their analyses before they are sent to the

system-level operations of ModelCenter. Unfortunately, this valuable capability seems to

be limited to either operate in an “always pause” or “never pause” fashion. Ideally, the

user should be able to also specify conditions under which the analysis will prompt the

user for verification.

Many sophisticated optimization strategies, such as collaborative optimization,

organize the data flow between the system level optimizer and the disciplinary analyses

in such a way that the latter are allowed to run independently from one another in

parallel. Unfortunately, the current version of ModelCenter does not possess the

capability to either run different analysis in parallel or distribute several instances of

single analysis to multiple machines.

The attempts to analyze the simplified RLV problem met with good success.

Using ModelCenter, the Excel-based GT-Sizer code was wrapped and run on a Windows

NT machine. POST and SCORES were wrapped and set up to run on each of the two

Unix machines. All of the codes were easily integrated into a common model allowing

for system-level analysis and optimization. Using this model, optimizations were

performed on the design using a simple iterative method, a response surface

approximation and collaborative optimization [2]. Both the simple iterative and response

surface methods worked well and were far easier to set up and run with ModelCenter

than without. Though successful application of collaborative optimization to this problem

has not yet been achieved, the progress made so far would not have been realistically

possible without some framework package such as ModelCenter.

A. Scott

- 16 -

At the system level, ModelCenter does possess some very attractive features,

though the various means of analysis are somewhat limited. For example, ModelCenter

has a limited number of built-in optimization schemes and lacks the ability to execute

analyses in parallel. The Link Editor (see Figure 9) in ModelCenter provides a very easy

to use “click and drag” approach to defining the flow of data between different analyses.

Additionally, new variables can be easily introduced at the system level and nicely

organized into appropriate assemblies. Input variables can either have their values

directly specified or defined by formulas that use other variables as arguments. More

complicated internal calculations can be accommodated using the script component. This

script component can also be used to define more sophisticated methods of data flow

such as convergence loops. Conveniently, the user has a wide variety of scripting

languages to choose from when creating custom scripts.

Figure 9: Custom Scripts and Variable Linking in ModelCenter

A. Scott

- 17 -

For system-level optimizations, ModelCenter has provided a front end to the

popular and commercially available Design Optimization Tools (DOT) developed by

Vanderplaats Research & Development, Inc. This is the very optimization package that

the SSDL often uses in its optimizations. This package includes a variety of optimization

methods as summarized in Table 3. The latest

version of ModelCenter has allowed the user

access to nearly all of the internal parameters

available with these methods. Unfortunately, there

is currently no built-in means to directly supply

gradient information to the optimizer, leaving the

analyst with finite difference methods as the only option for gradient calculations. Also,

while ModelCenter does allow the user to specify internal variables as being integers, the

built-in optimization tool is not designed to explicitly handle these kinds of variables.

The capabilities provided for performing DOE studies in ModelCenter are quite

good. A list of the options available is provided in Table 4. In addition to being able to

automatically determine the array of design point

evaluations required for the level of study desired,

ModelCenter allows the user to supply his own

series of DOE runs. A good number of different

design arrays are available providing various

levels of accuracy. Once analysis is complete,

ModelCenter provides some limited options for

analyzing the collected results.

ModelCenter does not provide any Zero-order or Stochastic optimization

methods, nor does it include any built-in capability to perform Monte Carlo simulations.

However, the capabilities of the previously mentioned script component are extensive

enough to allow the user to write complete custom optimization schemes. Additionally,

one can integrate external optimization codes into ModelCenter using procedures

specified in the documentation. This process, as it is somewhat more complicated,

requires a good bit of programming know-how. However, it does work, and was

Table 4: Design of Experiment options in
ModelCenter

Name Level

Full Factorial (any level) any

1/2 Fractional Factorial Design 2

Foldover Design 2

Placket Burman Design 2

Taguchi L16 Design 2

Central Composite Deisgn 3

Face Centered Central Composite Design 3

Box Behnken Design 3

Table 3: Optimization Algorithms available in
ModelCenter

Name

Variable Metric Method (unconstrained)

Conjugate Gradient Method (unconstrained)

Method of Feasible Directions

Sequential Linear Programming

Sequential Quadratic Programming

A. Scott

- 18 -

successfully used to integrate the SSDL’s version of DOT with the added functionality to

directly supply gradients.

As any system-level analysis progresses, ModelCenter tabulates the values of all

variables in the design problem. These values can easily be plotted vs. iteration number

(see Figure 10) or each other. Any results can be saved and restored, and are easily

exportable to Excel. At the click of a button the values of all variables can easily be

restored to a previous state. Although an optimization process can be restarted from any

point in the iteration history, it will unfortunately be a “cold-start” with any information

that the optimizer might have collected about the design space up to that point being lost.

Figure 10: Optimization run in ModelCenter

A. Scott

- 19 -

Overall, ModelCenter is very user-friendly. Most of the operations are performed

with simple mouse commands and are usually very intuitive. A very good tutorial is

provided with ModelCenter that walks the user through nearly all the capabilities of

ModelCenter and the Analysis Server. From experience and observation, ModelCenter

takes only a few days to pick up the basics and a week or two to master. Documentation

is online, and is very good with several examples to illustrate various points. At the same

time, the documentation is not so cumbersome that information becomes difficult to find.

Technical support can also be obtained from ModelCenter directly via email. Responses

are usually very helpful and take about a day or two. ModelCenter is currently being

evaluated and used within the Intelligent Synthesis Environment (ISE) and the Advanced

Concepts projects of NASA. Boeing and Lockheed Martin (Denver) have also adopted

ModelCenter in their aerospace design activities. Finally, as the SSDL is part of the

academic community, Phoenix Integration has agreed to provide licenses for

ModelCenter and the Analysis Server free of charge.

A. Scott

- 20 -

iSIGHT

iSIGHT’s origins date back to the late 70’s and early 80’s when Dr. Siu Tong

worked on the concept of a “software robot” to perform the manual iteration typically

performed by engineers in the design process. This research was the basis for Dr. Tong’s

dissertation at MIT. This software was further developed, under the name “Engineous,”

over an 11-year span during Dr. Tong’s employment with the General Electric Company

(GE). Shortly after Dr. Tong left GE, he founded Engineous Software in 1996 and the

product was renamed iSIGHT. Dr. Tong continues to oversee the development iSIGHT

as Engineous Software’s board chair. Engineous Software is based out of North Carolina

and has offices worldwide. iSIGHT is developed for Windows NT and Unix-based

platforms. iSIGHT provides no support for Macintosh computers.

iSIGHT is based on its custom Multidisciplinary Optimization Language

(MDOL). Though this language is not too difficult to learn and use, the GUI’s within the

iSIGHT application usually allow the user to avoid direct interaction with this language

for simple tasks. MDOL is based on the use of what is referred to as “blocks”. There are

great many different types of blocks, each of which handles specific operations. Such

operations include the overall control flow of the design problem, analysis code

wrapping, simple internal calculations and system-level analysis methods. Within the

iSIGHT GUI, these blocks are graphically represented, and the properties of each can

modify by simply clicking on them.

The wrapping capabilities for command-line tools are quite good. The options

available when generating and parsing input and output files are quite extensive.

iSIGHT’s capabilities in this area make dealing with complicated files slightly easier than

with ModelCenter. The File Parser portion of iSIGHT (see Figure 11) provides the user

with a GUI that allows him to easily define exactly how to search for and identify

particular variables. Simple instructions, such as searching backwards through a file, are

more straightforward in iSIGHT than in ModelCenter, and the interface allows the user to

see the results of his parsing commands as he writes them. iSIGHT also provides an

interface to Excel-based applications, allowing the user to specify inputs, define macros

A. Scott

- 21 -

that must be run for the analysis, and which outputs to retrieve. Here, iSIGHT’s

capabilities are not as extensive as ModelCenter’s but certainly adequate. iSIGHT also

provides integration with MSC/NASTRAN, a commercial finite analysis code, but this

feature was not reviewed.

Once an analysis tool is wrapped, iSIGHT does possess the ability to save this

configuration for inclusion into other design problems, but there are some limitations to

its reusability. In iSIGHT, links between various analyses are not explicitly defined. If a

variable is to be coupled between two analyses, it must be similarly named in each. Data

flow is defined by specifying the order in which the analyses are to be run. Therefore,

when reusing wrapped analyses, variable names might need to be modified to ensure

proper integration with the rest of the model. However, at the same time, this strategy

simplifies problem definition as links between disciplines do not need to be explicitly

Figure 11: File parsing in iSIGHT

A. Scott

- 22 -

specified. Also, the need to have identical variables defined multiple times within

different analyses is eliminated.

When setting up the design structure matrix and data flow of a problem, iSIGHT’s

capabilities are thorough and well implemented. The ability to include logic based control

flow, such as while-loops, if and case statements is built in with very easy-to-use

graphical interfaces for each. Unlike in ModelCenter, the user does not need to create a

custom scripts to create this kind of control; it is built in. Additionally, iSIGHT also

provides the ability to specify parallel branches in data flow, and allow analysis codes to

actually run in parallel. This capability is greatly advantageous when working with

complex design problems that use optimization strategies designed to take advantage of

this. The parallel execution of analyses also extends to the ability to run several instance

of the same analysis at once, enabling more than one run within a DOE to be computed at

the same time.

Figure 12: Optimization and Problem Setup in iSIGHT

A. Scott

- 23 -

iSIGHT’s major limitations come in its ability to easily distribute the execution of

analyses to other machines, especially across platform boundaries. It is fairly easy to set

up an Excel-based analyses to run on the same NT machine that iSIGHT runs. It is

similarly easy to integrate command-line analyses that run on Unix machines, when also

running iSIGHT on a Unix platform. However, when a problem requires that analyses

cross platform boundaries, integration becomes fairly difficult. The wrapping instructions

for a given analysis are maintained in the problem definition at the system level.

Therefore, whenever one wants to distribute an analysis to another machine, he must

share a common directory structure with the machine running iSIGHT. This is usually not

a problem when sticking to either Unix or Windows machines, but become quite tedious

when using both. Additionally, the support for Excel-based analyses is limited to

allowing their execution on the same NT machine on which iSIGHT is running. Needless

to say, the advantage of being able use parallel execution is greatly reduced when several

of those analyses must be run on the same machine. With regards to keeping disciplinary

experts “in-the-loop,” iSIGHT does not provided any means prompt disciplinary experts

for verification of analysis results. However, iSIGHT does provide extensive capabilities

for the expert to set up several knowledge-based rules that govern how an analysis will

run, and what additional instructions must conditionally be performed. Though this

strategy is not as good as allowing the disciplinary expert to directly monitor and verify

results during system level analysis, it is better than nothing.

iSIGHT’s greatest strengths lie in the area of system-level analysis and

optimization. iSIGHT includes a wide range of optimization methods, including several

gradient-based algorithms, genetic algorithms,

simulated annealing, and methods which can

accommodate discrete and integer variables. These

methods are listed in Table 5. Access is made available

to all the internal parameters of these methods, and

documentation is provided on how each of them work.

Directly supplying gradient information is possible for

those methods that can use it. Doing so does require the

Table 5: Optimization Algorithms
available in iSIGHT

Name

Exterior Penalty -ADS

Modified Method of Feasible Directions -ADS

Sequential Linear Programming -ADS

Method of Feasible Directions -CONMIN

Mixed Integer Optimization - MOST

Sequential Quadratic Programming - DONLP

Sequential Quadratic Programming - NLPQL

Successive Approximation Method

Genetic Algorithm

Simulated Annealing

Directed Heuristic Search

A. Scott

- 24 -

user to have a more solid understanding of the MDOL, it is not too difficult to implement.

iSIGHT also provides the ability to run Monte Carlo simulations.

The support for Design of Experiments and Response Surface approximations is

extremely thorough. Several options are available when determining the array of

experiments required for a response surface formulation. Table 6 summarizes the general

categories of DOE techniques available in iSIGHT. For each option in the table, there are

several more options available that allow the user further refine what kind of study is

performed. For example, when selecting Orthogonal

Arrays, it appeared that nearly all of the well-used

Taguchi arrays were available. The ability for the user

to import custom DOE runs is also available. The

capability to specify noise variables and produce

ANOVA tables is included. Additionally, there is added support for creating and using

response surface approximations to replace the actual analysis of extremely

computationally intensive codes. While iSIGHT does provide the ability to integrate user

supplied optimization packages, the variety of optimization methods included is so

extensive, it is doubtful the SSDL’s needs would ever require this option to be used;

consequentially this capability was not extensively examined. Another aspect of

iSIGHT’s system-level analysis that was found to be particularly innovative was the

automatic inclusion of particular constraint variable in all optimizations. This variable

indicates whether an analysis ran properly or not. Using this special constraint, if during

an optimization, a configuration is chosen that causes one of the disciplinary analyses to

fail, rather than halt the optimization process, that point design is heavily constrained.

This allows the optimization to continue while directing the optimizer away from design

points that cause problems for the analytical tools.

iSIGHT also includes a very detailed and flexible means for monitoring/reviewing

the results. This capability allows the user to create custom tables containing only the

variables, constraints and objectives of interest. The graphing capabilities of iSIGHT

provide a wide variety of options, nearing the capabilities typically found in programs

like Microsoft’s Excel. One also has the option to define several different page layouts,

Table 6: Design of Experiments
options in iSIGHT

Name

Full Factorial Design

Orthogonal Arrays (Taguchi)

Latin Hypercubes

Central Composite Design

A. Scott

- 25 -

which can display various combinations of plots and tabulated results. Results can be

easily stored and reviewed, however, the ability to reset the current values of all design

variables to a previously saved point, does not seem to be available.

In general, iSIGHT is not as user-friendly as ModelCenter, but this difference is

usually most prevalent when using capabilities that are not available in ModelCenter at

all. Because, the overall capabilities of iSIGHT are more extensive, it is a more difficult

to pick up and master, but certainly not at an intolerable level. The documentation

provided with iSIGHT is extremely thorough. At times however, it seems that the large

amount of detailed information can become somewhat overwhelming when trying to find

the answer to a specific question. However, printed versions of the documentation were

provided in addition to the electronic versions included with the software. Though

examples are provided, they are not necessarily presented in any easy to follow,

walkthrough manner. A single tutorial is available that teaches the user how to wrap a

simple code, set up an optimization, and review the results. Unfortunately, this tutorial by

no means familiarizes the user with all the capabilities available in iSIGHT, and in fact

leaves much to be desired. Additional tutorials detailing how to wrap Excel-based tools

and distribute analysis to other computers would be extremely helpful. Customer support

is available by phone and email, was quite helpful, and usually responded within a day or

less.

While iSIGHT’s capabilities are much better in many areas, its limitations are in

key areas of importance for the SSDL. These limitations became most apparent in the

attempt to implement the sample RLV problem in iSIGHT. It was fairly easy to integrate

POST and SCORES into a common iSIGHT model, as they both run on a UNIX

platform. Similarly, it was not very difficult to integrate the Excel-based GT-Sizer code

into an iSIGHT Model running on the same Windows NT machine. However, attempts to

integrate all the codes required for the sample RLV problem into one common model

were unsuccessful. This was due mainly to the limitations of iSIGHT’s abilities to

integrated codes across platform boundaries. The parallel execution and optimization

capabilities were successfully tested using just SCORES and POST together, but it was

not possible to do so with all the codes required for sample RLV problem.

A. Scott

- 26 -

iSIGHT is well used in a variety of engineering industries, including aerospace.

NASA’s ISE program is also looking at iSIGHT in its research and applications. iSIGHT

is naturally used by GE, with which it shares a strong partnership. iSIGHT is also

involved a new research program, RaDEO (Rapid Design Exploration and Optimization).

This program will unite the efforts of several organizations including NASA and

Lockhead Martin. As with Phoenix Integration, Engineous Software has graciously

provided several licenses of iSIGHT to the SSDL free of charge.

A. Scott

- 27 -

AML

The Adaptive Modeling Language (AML) is the main product of Technosoft Inc.

Based out of Cincinnati Ohio, Technsoft is headed by Dr. Adel Chemaly, who took his

technical expertise from academia to start the company which now has clients and offices

in the U.S., Mexico, and Europe. As President, Adel Chemaly oversees the development

of AML, which is available for both Unix-based systems and Windows 95/98/NT.

Macintosh support for AML is not available.

At its root, AML is

exactly what its name

describes, a modeling

language. The most basic

use of AML is through the

declaration of classes,

which inherit from AML-

developed primitives.

AML is built on the solid

philosophy of object-

oriented software design,

inheriting all the benefits

and advantage therein.

Figure 13 shows an

example of a table model

implemented in AML. To

effectively create models in

AML, the user must have

good understanding of

computer programming

practices, in particular

those of object-oriented

(define-class TABLE
:inherit-from (assembly-object)
:properties (
table-height 36.0
table-width72.0
table-depth36.0
thickness 1.0
total-weight (loop for i in (select-object
:from (the table)
:class ‘material-object
:eval ‘(the weight))
sum i)

object-list(select-object
:from (the table)
:class ‘graphic-object
:test ‘(not (eq (the) ,(the table))))

display?nil
)
:subobjects (
(origin :class ‘point-object
coordinates ‘(0.0 0.0 0.0)
display?t
)

(top :class ‘table-top
height^^thickness
width^^table-width
depth^^table-depth
display?(not (the table display>))
reference-object(the table)
orientation(list (translate (list 0.0
(- (the table-height)
(half (the thickness)))
0.0)))
)
(legs :class ‘series-object
series-prefix‘leg
class-expression‘table-leg
init-from
‘(display?(not (the table display?))

height(- !table-height !thickness)
diameter!thickness
reference-object(the table)
orientation
(list
(rotate 90.0 :x-axis)
(translate
(list (if (evenp (the index))
(- (half (the table-width))
(the thickness))
(-(the thickness)
(half (the table-width)))
)
(half (the height))
(if (> (the index) 1)
(- (half (the table-depth))
(the thickness))
(- (the thickness)
(half (the table-depth)))

))))
)
quantity4
)
)
)

Figure 13: Sample AML code

A. Scott

- 28 -

programming. AML is based on the LISP programming language, which has the

disadvantage that is fairly uncommon, requiring the most users to familiarize themselves

with the language before being becoming a proficient user of AML. Though the language

is not particularly any more difficult to learn than other object-oriented languages, such a

C++, is does have a few little quirks, like the use of reverse Polish notation for all

mathematical notations.

One of the key advantages of AML lies in its geometric modeling capabilities.

AML provides a very extensive suite of classes, functions and methods that allow the

user to parametrically build up nearly any kind of geometry. All geometric primitives are

defined by a few specific parameters, allowing the user to build more complex

geometries that depend on any number of real-world design variables. In testing, the

Figure 14: Geometric modeling in AML

A. Scott

- 29 -

geometry of simple RLV was generated in this fashion (see Figure 14). Key variables that

defined the geometry included parameters such as fuselage length and diameter, aspect

ratio and tail orientation angle, to name a few. By changing the value of these variables,

the entire geometry of vehicle is automatically regenerated in moments. AML does

provide built-in graphical user interfaces to aid in the creation and inspection of

geometries, but complicated models invariably require direct coding in AML. As much of

AML’s key functionality involves geometric modeling, it does not need nor have any

integration with other external CAD packages. AML’s geometric modeling capabilities

and user-friendliness come nowhere near those of traditional CAD packages. However,

having this capability built into the framework provides the unique advantage of allowing

the geometry and any analysis that depends on it, to always be up-to-date as a system-

level optimizer or other discipline change it.

Of particular interest to the SSDL would be AML’s integration with the SHABP

portion of the aerodynamic analysis code APAS. Unfortunately, Technosoft’s efforts to

fully integrate the remaining portions of APAS, such as UDP, are still in progress. Once a

geometry has been created in the AML framework, classes are available which will

generate a mesh of that geometry, send that data to SHABP, and generate POST

aerodecks fairly seamlessly. Once set up, the geometry of the model can easily be

changed and new aerodynamic data obtained in minutes. However, unless several

aerodynamic analyses plan to be conducted, the extra time required to create a geometric

model in AML might not be worth it. Integrating codes, like SHABP, into AML requires

a great deal of development and is usually performed by AML employees specifically for

their clients. Unfortunately, AML’s strategy towards analyses integration seems more

inclined towards this type of sophisticated one-time integration with key, widely-used

analytical tools. Though this strategy produces very impressive results for the particular

analyses AML integrates, it is not the kind of flexible integration that is would be suited

for a conceptual design organization. This is especially true for the SSDL, as its members

are constantly developing new tools and changing existing ones.

Variables are defined in AML by creating instances of appropriate primitive

classes. Though AML includes menu driven and graphical interfaces to aid in the creation

A. Scott

- 30 -

of a design model, even the simple declaration of new variables requires some

programming know-how. When using formulas to define variable values, AML keeps

track of which variables depend on others, and ensures that when any value is demanded,

the appropriate calculations and analyses on which the value depends, are run. However,

simple formulas do require the use of reverse Polish notation, which does take some

getting used to.

AML claims to support the ability to integrate command-line and Excel-based

analysis codes, however these capabilities, which are key for the SSDL, are not included

in the standard release. Unfortunately, it was not possible to obtain the additional classes

that enable this functionality from Technosoft; consequentially, this feature could not be

evaluated. Without the key ability to integrate Excel-based and command-line tools, other

requirements, such as the ability to distribute these analyses could not be evaluated.

Technosoft claims to have integrated various optimization methods with AML, including

Powell’s method, a genetic algorithm, and what they referred to as MDO. However,

efforts to acquire the additional software required to test this functionality were similarly

unsuccessful.

Overall, AML is not very user-friendly to new users. Any user of AML should

have a good understanding of basic programming practices, particularly those of object-

oriented design. AML takes a few weeks to learn and several to master. Technosoft does,

however, have very good training manuals that walk the user through the various

elements and operations of AML. Documentation is very good, providing clear and

thorough explanation of how all the classes, methods and functions in AML work.

Customer support is good, being accessible via either email or phone. It is known that

AML typically works very closely with its customers in developing sophisticated analysis

models for their specific design problems.

As it was not possible to obtain the classes required to integrate Excel-based or

command-line codes, implementation of the sample RLV problem in AML was not

possible. It was possible to parametrically model the RLV’s geometry, but with this

capability alone, no system level design optimizations or analyses could be performed.

A. Scott

- 31 -

AML is currently the key partner in a design study with the Air Force, Lockhead

Martin and the SSDL. The Supersonic / Hypersonic Vehicle Design (SHVD) program

plans to integrate an impressive list of industry standard analysis codes for space vehicle

design within the AML framework. As this project has yet to really begin, no information

is available on how well this implementation is progressing. However, if this project is

successful it should leave AML with a great list of high fidelity analysis capabilities.

AML might make a good choice for design organizations that require the use of many

high fidelity, difficult to wrap codes and are willing and able to invest the time and

money to integrate those codes with AML. However, the time required to learn AML and

its lack of flexibility make it an impractical choice for an organization which primarily

does conceptual to preliminary level design such as the SSDL. Technosoft has graciously

supplied the SSDL with copies of AML free of charge.

A. Scott

- 32 -

SUMMARY

In conclusion, each the three frameworks all seem to have their strengths and

weaknesses in different areas. The ideal choice would most likely combine

ModelCenter’s user friendliness and flexibility in wrapping and distributing disciplinary

analyses, iSIGHT’s ability to run those analyses in parallel in conjunction with its

extensive system-level analysis capabilities, and AML’s integrated parametric modeling

capabilities. Sadly, such a product does not yet exist. One of ModelCenter’s key

drawbacks is its limited optimization capabilities, which do not include stochastic

methods nor support for discrete variables. ModelCenter also lacks the important ability

to perform analysis in parallel and built-in capabilities for Monte Carlo simulations.

iSIGHT, is slightly more difficult to use and its leaves much to be desired about its ability

to easily distribute analysis to multiple computers across platform boundaries. AML,

takes quite a bit of time, and preferably training, to learn and seems more oriented

towards one-time integration solutions for analysis tools.

Though none of the candidate packages currently contain all the features that the

SSDL is looking for broad lab-level, ModelCenter seems to satisfy most of the key

requirements. ModelCenter is easy to use and learn. Already the members of the SSDL

are successfully using ModelCenter in two major projects with very promising results.

Additionally, Phoenix Integration has said that the ability to run analyses in parallel will

be address in the next release sometime late in the year 2001.

iSIGHT is close second as its potential capabilities are much greater. Supposedly,

the major limitations noticed about iSIGHT are to be resolved in the release of version

6.0, due at the end of April 2001. However, even with potential improvements, iSIGHT

does take a bit longer to learn, and is not nearly as intuitive to use as ModelCenter. It is

likely though, that the SSDL will probably continue to use iSIGHT as there are there are

several specific types of system-level analysis and optimization approaches that only it

has the built-in ability to perform.

A. Scott

- 33 -

As previously mentioned, AML does not fit the needs of the SSDL well.

Technosoft’s approach to design solutions seems to be more oriented towards the

development of tightly integrated applications tailored to the specific kind of high

fidelity, configuration specific design that its customers require. The SSDL would like to

adopt a framework package that is flexible and easy to adapt to a wide range of problem

in a short time. ModelCenter bests suits this requirement as the time needed to set-up and

debug the analysis of new problems from scratch takes only about a week. However, the

SSDL will naturally continue to consider developments of these and other integrated

design framework solutions in the future.

A. Scott

- 34 -

REFERENCES

1. Acton, D.E., Olds, J. R., “Computational Frameworks for Collaborative

Multidisciplinary Design of Complex Systems” AIAA 98-4942, 7th

AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and

Optimization, St. Louis, MO, September 2-4, 1998.

2. Cormier, T., Scott, A., Ledsinger, L., McCormick, D., Way, D. W., Olds, J. R.,

“Comparison of Collaborative Optimization to Conventional Design Techniques for a

Conceptual RLV,” AIAA 2000-4885, 8th AIAA/USAF/NASA/ISSMO Symposium on

Multidisciplinary Analysis and Optimization, Long Beach, CA, September 6-8, 2000.

3. Phoenix Integration, URL: http://www.phoenix-int.com

4. Engineous Software, URL: http://www.engineous.com

5. Technosoft Inc., URL: http://www.technosoft.com

