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AE 8900 : Space Object Detection in Images Using Matched Filter
Bank and Bayesian Update

Timothy S. Murphy ∗ and Marcus J. Holzinger, †

Georgia Institute of Technology, Atlanta, GA, 30332

Brien Flewelling ‡

Air Force Research Lab, Albuquerque, NM, 87116

Electro-optical sensors, when used to track space objects, are often used to produce detections for some orbit
determination scheme. Instead, this paper proposes a series of methods to use electro-optical images directly in
orbit determination. This work uses the SNR optimal image filter, called a matched filter, to search for partially
known space objects. By defining a metric for measuring matched filter template similarity, a bank of matched
filters is efficiently defined by partitioning the prior knowledge set. Once partitioned sets are known, the matched
filter bank can be localized to regions of the sky. A method for hypothesis testing the result of a matched filter
for a space object is developed. Finally, a framework for orbit determination based on the matched filter result is
developed. Simulation shows that the analytic results enable a better framework for implementing matched filters
for low SNR object detection.

Nomenclature

Spaces and Sets

A = Space of Measurement arcs, Am
R = Real Numbers
Z = Integers
SO(2) = Space of directions in R3

Ar = Orbit arc
Am = Measurement arc
Oi = Subset of SO(2) which observed by observer i
S = Set of orbits
S0 = Prior set of orbits
Sk = Partition set of orbits
T = Exposure time of sensor
A = admissible region set representation

Matrices, Vectors, and Scalars

Z = Measured image (ADU)
M = Measured image signal content (ADU)
W = Measured image noise content (ADU)
M0 = Predicted image signal content (ADU)
x = Space object state space representation
r = Orbital position
oi = Position of observer i
ρ = vector from observer to space object
xu = Undetermined states from a measurement
xd = Determined states from a measurement
k = Observer parameters
i = denotes which observer is being considered
j = denotes which pixel in an image is being considered
zj = Element of Z (ADU)
µj = Element of M (ADU)
wj = Element of W (ADU)
nz = Number of pixels which containing signal
∆θ = angle between two vectors
dmax = Maximum threshold for the measurement dissimilarity metric
aj = pixel values for a matched filter templates, M0

zMF = result of a particular matched filter evaluation
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Functions

gMF = Matched filter function
hi = Instantaneous measurement function for observer i
h̃i = Pixel measurement function for observer i
φ = Flow function for orbital mechanics
dMDM = Measurement dissimilarity metric (MDM)
f = Probability density function (PDF)

I. Introduction
The current Space Situation Awareness (SAA) problem involves,

as part of it, the determination of a full description of the position and
velocity of space objects (SO). The Space Surveillance Network (SSN)
tracks upwards of 17,000 space objects of diameters greater than 10
cm. Small objects of diameter less than 10 cm which are not actively
tracked still pose a threat to space assets [1]. Events like the Iridium-
Cosmos collision highlight not only the possibility of future collisions
but the potential for new space debris to be created [2]. It is predicted
that similar high profile collisions will occur every 5 to 9 years [3].
Space and ground based electro-optical sensors (EOS) play a key role
in tracking objects outside of Low Earth Orbit (LEO), where radar per-
formance drops off. It can also be seen as an affordable alternative
to radar technologies which tend to be costly [4]. Many of the small
objects not already tracked by the SSN provide low strength optical
signals, making detection by EOS difficult. In particular, the ability of
an EOS to reliably detect a SO in a particular image is characterized
by the Signal-to-Noise Ratio (SNR) defined as the ratio of the relevant
signal strength to the standard deviation of the corrupting noise. Coder
et. al. showed that lowering the algorithm-required SNR for image
processing has the same sensitivity as lowering the the sensor-required
signal strength [5]. Any research avenues which can allow sensors to
effectively detect SO with lower SNR should be explored.

With prior information on an object, methods like rate tracking and
matched filtering can enable lower SNR detections [6]. The matched
filter (MF) is an image filter which provides a SNR gain, allowing in-
formation to be extracted from images with low SNR. Matched filter-
ing originates in image and signal processing; the original formulation
dates back to the 1960s as a way to detect a signal in a high noise en-
vironment [7]. It has been applied to a variety of relevant problems
from dim asteroid detection to multi-frame moving target detection [8]
[9]. A MF is based on a convolution of a known or hypothesized sig-
nal structure, called a template, with a measured image. Therefore, a
MF requires a hypothesis or hypotheses on what signals should be ex-
pected. The most common way to generate a template is the velocity
filter which linearizes the dynamics over an EOS exposure time for a
particular hypothesis orbit [6]. If the underlying signal is unknown, a

1



MURPHY, HOLZINGER, AND FLEWELLING 2

brute force bank of velocity filters can be used [10]. The first problem
with past use of the MF in SSA applications is the dynamics agnos-
tic approach. The velocity filter linearization assumption is not always
correct, especially when sensors contain significant rotation or distor-
tion. The second, more relevant problem is prior knowledge is treated
with a binary availability. Currently, a known space object is stored
as a two line element (TLE). Many SO which either do not exist in
the space object catalog or have not received updating measurements
for long time periods may not be accurately described by their TLE
or other prior information. There have been large pushes to properly
model prior knowledge through methods like the admissible region and
Gaussian mixture models [11] [12] [13]. These prior PDFs can be non
zero over large ranges of orbital positions, implying any MF based on
them should be a bank of plausible matched filters. This statistically
rigorous framework can and should be the basis for hypothesis signals
in a MF or MF bank. Work has also been done to incorporate hypothe-
sis testing into SSA MFs, which will be included in this work [14].

While this paper focuses on matched filters as an SNR optimal
technique, there are a multitude of methods for detecting and track-
ing low SNR space objects. Examples include multi-object filtering
[15], multiple hypothesis testing [16], multi-frame matched filters [9],
Track-Before-Detect, [17], Shift and add methods [18], and more. All
of these methods, when applied to SSA images, rely on determining
how an object moves through the sky around a certain observer. The
work in this paper shows how to use partial orbit knowledge to generate
hypothesized signals expected in images. While not explicitly explored
in this paper, the hypotheses this paper formulates can be used as the
basis for any of the above methods.

When considering an EOS attempting to measure a partially known
object with low SNR, two problems are defined which are addressed in
this paper. First, how can an EOS signal be predicted by partial orbit
knowledge and how can that information be used to detect a SO? This
paper approaches this problem by modeling a partially known SO as
a set of possible orbits. The set of possible orbits is mapped into the
frame of an EOS, providing a framework to rigorously search for an
object. A metric will be used to partition this set and define a bank of
matched filters [19]. Second, how can the results of this MF Bank be
incorporated into the existing SSA framework? Methods involving hy-
pothesis testing on matched filter results will be used to generate a like-
lihood function [14]. Then the likelihood will be applied in a Bayesian
update formulation on the prior information, reformulated as a PDF,
as a sequential particle filter. Another result which this paper will de-
velop solves a problem with MF implementation for SSA. The MF is a
discrete convolution of a known signal template with the measurement
image. Traditionally, this is calculated over the entire image, but for
SSA, the location of the SO is typically known. Large computation
times can be saved if the MF is only calculated in certain localized ar-
eas. The framework which is developed for search for partially known
SO easily allows for a localized matched filter search, which this paper
will include.

The first contribution of this paper is the development of a matched
filter based on true object dynamics. The second contribution of this
paper is to define a metric which measures the similarity of EOS sig-
nals. The third contribution will be to introduce the SSA community to
set partitioning based on metrics, and apply this theory to the matched
filter bank. The fourth contribution will be to localize the matched fil-
ter bank to specific areas of an image based on partitioning. The fifth
contribution will be show how matched filter results can be used as the
measurement likelihood for a Bayesian update. The final contribution
is the application of this framework to detect low SNR and dim space
objects with an electro-optical sensor.

The paper organization is as follows. Section II introduces the
concepts behind a MF which the reader should be familiarized with.
Section III - A defines the problem set up and some of the functions
this paper will use. Section III - B defines the framework for the par-
titioning process and the measurement dissimilarity metric. Section
III - C develops a matched filter based partition for searching for par-
tially known SO. Section III - D derives the measurement dissimilarity
metric. Section III - E uses the measurement dissimilarity metric to
develop an implementation for the partitioning process. Section III -
F develops the localized matched filter process. Section IV gives intu-
ition into how to implement this methodology. Section V simulated the

matched filter bank to demonstrate strengths. Appendix VI is included
as a review of the basics of admissible regions theory.

II. Matched Filter
This section reviews the concepts of matched filtering, image gen-

eration and processing, and mapping of continuous distributions to dis-
crete images.

First, define a measurement as Z(t0, tI) ∈ Zd1×d2 which is a ma-
trix of pixel values, which are measured in analogue to digital units
(ADU), for an EOS. Assume that the pixel zj consist of some signal µj
and zero mean Gaussian read noise wj .

zj = µj + wj (1)
wj ∼ N (0, σw,j) (2)

Note that in this formulation, µj is equivalent to the mean of the
measurement zj . In order to have zero mean read noise in practice, an
effective background subtraction method is needed [20]. The values
t0 and tI represent the beginning time and length of the observer ex-
posure, respectively. This allows the definition of the integration time
set,

T = [t0, t0 + tI ] (3)

Each pixel is a integration of photons (or some unit of measure
such as ADU) from a particular direction in the sky, and is therefore a
function of the integration time set, zj(T ). The matrix of pixels can be
broken into signal and noise

Z(T ) = M(T ) + W(T ) (4)

M(T ) ∈ Zd1×d2 , W(T ) ∈ Zd1×d2

The pixel-wise SNR for a particular pixel, zj(T ), in Z(T ) for a
fixed time interval is defined in Equation (5).

SNR(zj(T )) =
E[zj(T )]√

E[(zj(T )− E[zj(T )])2]

=
µj(T )

σw,j
(5)

Total object SNR is calculated as

SNR
(∑

zj(T )
)

=
E[
∑
zj(T )]√

E[(zj(T )− E[zj(T )])2]

=

∑
µj(T )√∑
σ2
w,j

(6)

≈
√
nz
µ̄j(T )

σw
(7)

where nz is the number of pixels, µ̄j is the average signal value over the
pixels being considered, and σw is some approximate per pixel noise.
These SNR equations, Equation (7) in particular, rely on a simplifi-
cation of noise properties in true images, and should only be taken
as approximations. The MF is predicated on a hypothesized signal
structure, which we will refer to as a template, M0(T ) ∈ Zd3×d4 ,
which is a hypothesis of the signal contained in M(T ). M0(T ) is a
smaller or equal dimension matrix than M(T ), that is d1 ≥ d3 and
d2 ≥ d4 due to the constraint that the observed true signal cannot be
larger than the entire optical frame. It should be noted that M0(T ) is
not always a function of the exposure time, but could be predicated on
any number of factors. For optical observation, the signal is dependent
on the timing of the exposure making M0(T ) dependent on the timing
of the exposure. A matched filter can then be defined as a mapping
gMF : Zd1×d2 × Zd3×d4 → Zd1×d2

Z′(T ) = gMF (Z(T ),M0(T )) (8)
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The matched filter gives an optimal SNR gain for linear image
filters [21] [22]. In other words, if the predicted signal M0(T ) is
identical to the measured signal in M(T ), the resulting SNR will be
maximized. In practice, the function gMF is a discrete convolution of
M0(T ) centered on every pixel in Z(T ). Although the words corre-
lation and convolution are often used interchangeably, the calculation
that is preformed is a convolution integral, while the resulting values
are often referred to as the correlation between the template and signal.
These results may be normalized to make perfect correlation positive
one and perfect anti-correlation negative one.

III. Theory
A. Definition of Problem and Dynamics
This Subsection will present the background material for the paper.
Consider a space object, with a state x(t) composed of position and
velocity r(t) and ṙ(t), seen by an optical observer at position and ve-
locity o(t) and ȯ(t) along line-of-sight vector, ρ(t). It should be noted
that while this paper will assume x(t) ∈ R6, as position and velocity,
this can be generalized to any formulation of an orbit as well. The ob-
server itself could be either ground based or space based. The geometry
are illustrated in Figure 1.

r(t)

o(t)

ρ(t)

ṙ(t)

ȯ(t)

Figure 1. Geometry of general observer problem.

At an instantaneous time, an EOS measures a unit vector ρ̂(t). This
allows the following partition of the state

x′(t) =
[
xTd (t) ẋTd (t) xTu (t)

]T
xd(t) = ρ̂(t) ∈ SO(2)

ẋd(t) = ˙̂ρ(t) ∈ R2

xu(t) = [ρ(t) ρ̇(t)]T ∈ R+ × R

Note that ρ = ρρ̂. As a reminder, SO(2) is the set of directions
in R3. It can be represented by unit vectors and can also be thought of
as the set of points that lie on the unit sphere or celestial sphere. It is
easy to see that x′ is simply a representation of x = [rT vT ]T in an
observer-centric, spherical coordinate frame. Therefore, there exists a
transformation between the two representations of the state

x′(t) = m(x(t);ki(t)) (9)

where ki(t) is a parameter vector containing oi(t) and ȯi(t), observer
i, and any other information needed on the observer. Multiple mea-
surements or a non-zero exposure time allow inference of the rate of
change of the unit vector, allowing the following further definition

x′d(t) = [xTd (t) ẋTd (t)]T (10)

In general, ẋd is inferred from two xd measured at different times.
It is useful to define the following instantaneous measurement function,
which maps an orbit at a particular time to a measurement as seen by a
particular observer, i.

xd(t) = hi(x(t);ki(t)) (11)

This paper works heavily with sets of orbits which will be mapped
to a particular EOS measurement space.. In general, if S is a set of
orbits at time t, then

Si(t) = hi(S(t);ki(t)) (12)

gives these orbits mapped into points in SO(2), centered around oi.
For ease of notation, the parameter vector k may be dropped from
Equation (11), but is always implied.

Matched filtering relies on predicting the image that an optical ob-
server will produce based on the presence of a particular SO. The actual
measurement obtained is the integration of a time-varying line-of-sight
unit vector, ρ̂(t), over an exposure time t ∈ T = [t0, t0 + tI ]. Each
bin on the CCD obtains photons from a small subset of SO(2). As
the line-of-sight vector ρ̂(t) changes over the exposure, it illuminates
different pixels, producing an image that the user sees. This process,
which can be seen in Figure 2, is defined as the mapping

M(T ) = h̃i(x
′
d(t); T ,ki(t)) (13)

which represents the model for a particular observer’s mapping
from angular space into pixel values. This transformation may include
further observer parameters which are also contained in the observer
parameter vector, ki.

Camera
M0(T )

r(T )

xd(T )

Figure 2. Modeling an optical observer in Equation (13).

The prediction of objects also requires modeling the movement of
objects through space. This paper will use the flow function to map
x(t) through time.

x(t) = φ(t;x(t0), t0) (14)

For a typical SO this is practically done by integrating the nonlinear
dynamics with a differential equation solver.

The admissible region (AR) will be used throughout this paper as
an example to illustrate parts of the discussion. A review of admissible
region theory in shown in Appendix VI. When an AR is represented as
a set, the notationA will be used.

B. General Matched Filter Primed by Previous Orbital Knowl-
edge

The first contribution of this paper is proposing a MF for orbital track-
ing applications that does not require a constant velocity assumption.
Assume there exists a hypothesis orbit of a SO, x(t0). This hypothe-
sis can then be mapped to the measurement frame of an observer i via
Equation (11). This hypothesis can also be mapped forward in time
using the known flow function from Equation (14).

xd(t) = hi(φ(t;x(t0), t0),ki(t)) (15)

In reality, the result of interest is to predict the object’s trajectory
over a known integration time. By varying t, a hypothesized orbit,
x(t), can be mapped to any point in the integration time of an observer.
This hypothesis can then be used to calculate the orbit arc Ar through
R3 × T ,

Ar = {[rT (t), t]T ∈ R3 × R :

r(t) = [I3×3 03×3] φ(t;x(t0), t0), t ∈ T } (16)

This is simply the trajectory of the orbit over the integration time,
with associated time history. Ar is labeled in Figure 3. In reality, an
optical observer does not observe the true arc of the orbit, but rather the
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arc through angular space, or SO(2). Similarly, Am can be defined as
an arc through SO(2) in Equation (17).

Am = {[xTd (t), t]T ∈ SO(2)× R :

xd(t) = hi(φ(t;x(t0), t0),k(t)), t ∈ T } (17)

This measurement arc is the arcAr mapped through Equation (11).
The measurement arc and this mapping process can be visualized in
Figure 3. SO(2) is represented by a unit sphere. While the notation
of mappingAr toAm is useful for visualization purposes, the ultimate
purpose of this discussion is to map an orbit to a measurement arc. The
following mapping is defined

Am = hi(x(t); T ) (18)

which maps an orbit, x(t), with an associated integration time, T , to a
measurement arc, Am. The use of hi is a slight abuse of notation; it
is assumed that the orbit is integrated over the exposure time to allow
this new mapping. It is assumed that when hi is used, time history
is preserved alongside the position history. The time history will be
needed in Subsection D.

Observer

SO(2)

R3

Orbit Arc, Ar

Measurement Arc, Am

Figure 3. Mapping of orbit to measurement arc.

In addition, the measurement arc will ultimately be mapped to a
template which exists as predicted EOS pixel values so Equation (13)
should be redefined as

M(T ) = h̃i(Am,ki) (19)

In practice, Am should be discretized over the integration time,
and each discrete point mapped into a pixel. It is also worth noting that
Am is sensor specific. Perhaps a better notation would beAm,i, where
i denotes the sensor. It should be clear which sensor is being consid-
ered throughout this paper, so the i notation will be omitted. Modeling
phenomenology such as atmospheric blurring and distortion models is
advisable but not required. This MF template is built directly from the
hypothesized SO signal structure, accounting for observer motion, and
has no built in linearization.

Equation (18) represents the culmination of the results in this sub-
section. This measurement arc, Am is a mathematically rigorous
equivalent to the measurement an observer would take. This subsection
lays down a framework for creating templates based on orbits. The fi-
nal result is an image that models what an EOS should see. In general,
there are more considerations that should be included in template gen-
eration. This can include but is not limited to SO apparent brightness
and subpixel localization. These processes will be discussed in Section
IV.

This paper will discuss sets of measurement arcs. Typically, these
will result from mapping sets of orbits through Equation (17). This
paper will therefore define A for a given t0, tI as the set of all possible
measurement arcs.

A = {Am = hi(x, t0, tI) : x ∈ R6} (20)

This is convenient for defining subsets of A in Subsection D.

C. Matched Filter Bank Primed by Prior Distribution
This subsection will motivate the need for a bank of matched filters,
provide an explanation for how partitions can correctly define a bank
of matched filters, and finalize the definition of this partitioning. It
should be noted that, without loss of generality, a single observer is
being consider from here on, so the i notation will be dropped.

Consider prior information in the form of a set of orbits, S0, which
is referred to as the prior set. By creating s non-overlapping subsets
which cover S0, a partitioning can be created for the prior set.

S0 =

s⋃
k=1

Sk (21)

Sl ∩ Sk = ∅,∀l 6= k (22)

It is not necessary that the partitioning be non-overlapping, and
certain partitioning schemes may benefit from this condition being re-
laxed. The intention is to define each partition set, Sk, such that all
orbits from this set produce templates nearly identical to some repre-
sentative template, Mk.

Sk = {x(t) : Mk ≈ h̃(h(x(t); T ,k))} (23)

It is generally the case that a single subset set Sk ⊆ S0 will not
contain all possible orbits from a prior distribution implying a series of
sets, {Sk}k=sk=1. This is the basis on which a bank of matched filters will
be defined.

Next, an analysis of the contents of Sk will be presented. Con-
sider a nominal orbit, x̄, and its particular measurement arc, Ām, with
arbitrary time and observer parameters.

Ām = h(x̄(t); T ) (24)

The measurement mapping defined in Equation (11) maps a posi-
tion in R3 to the two dimensional space SO(2) through the equation

ρ = r− o (25)

ρ̂ =
ρ

‖ρ‖ (26)

where ‖ · ‖ is the 2-norm. Note that while ρ̂ is vector in R3, it
only has two free dimensions as an element of SO(2). Because this is
the mapping on which the measurement arc is based, different ρ inputs
which vary only in magnitude will all map to a single ρ̂. Therefore
there must exist a non-trivial set of orbits, S̄, with corresponding orbit
arcs which all map to the same measurement arc.

S̄ = {x ∈ R6 : Ām = h(x(t); T )} (27)

This is an inversion of the admissible region argument; instead of
having a measurement and creating a set of consistent orbits, consistent
orbits are being grouped together to predict a measurement. A single
partition, defined in this way, is illustrated in Figure 4. Small enough
variations in Ām will provide effectively identical templates. In order
to have an effective matched filter, the template does not necessarily
need to be perfect; it may benefit a user to have less templates with an
increased risk of imperfect matching but decreased computation time.
It is possible to define a new partition set:

Sk = {x ∈ S0 : d(Ām,h(x(t); T )) ≤ dmax} (28)

where d : A × A → R+ defines a metric which evaluates the differ-
ence between two measurement arcs. Assuming an appropriate metric
exists, all orbits in Sk produce measurement arcs similar enough to
Ām.

Prior knowledge is often some probability density function (PDF),
available from an a posteriori estimate. In the extreme case of object
discovery, this PDF may be large, consisting of an admissible region,
or a large Gaussian mixture or discrete particle distribution. For this
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analysis, it is necessary to define a prior set of orbits, S0. In the case
of a PDF, this could be thought of as the interior of an iso-probability
surface of the PDF which is used to create this prior set, S0

S0 , {x ∈ R6 : f(x) > fmin} (29)

where the function f : R6 → R+ is the prior PDF over the state space.
The next subsection will go on to define a suitable metric, d, for

Equation 28.

Camera

S0

Sk

Figure 4. A non trivial region of orbits will all map to a single MF template.

D. Measurement Dissimilarity Metric
A bank of MF are desirable for large prior distributions, but due to com-
putation time it is also useful to choose a minimal number of templates.
This subsection is concerned with creating a framework to allow simi-
lar templates to be grouped together. Conversely, templates which are
sufficiently different in shape should not be grouped together. There-
fore, a measure of similarity of templates is necessary. As it has been
shown before, the measurement arc Am defined in Equation (17) is a
mathematical equivalent to the MF template, M0(t). There could be
many ways to compare similarity of measurement arcs, but a metric
has many desirable properties. The most important feature of metrics
which motivates this discussion is the existence of a large body of work
on partitioning metric spaces. Previous work on partitioning metric
spaces will be discussed in Subsection E, after the metric to be used
has been defined [19].

The first step is to choose an existing metric to compare arc similar-
ity. First, consider the similarity of two points on the celestial sphere,
ρ̂a(t) and ρ̂b(t). The distance between points on the surface of a
sphere, along the surface of the sphere, is called the great-circle dis-
tance or orthodromic distance and is defined as:

∆θa,b(t) = 2 sin−1

(
||ρ̂a(t)− ρ̂b(t)||

2

)
(30)

This particular formulation of the orthodromic distance assumes
ρ̂a(t), ρ̂b(t) are both unit vectors. The unit vector assumption makes
orthodromic distance equivalent to the angle between the unit vec-
tors, in radians. A metric which compares two measurement arcs is
desirable. When considering the entire measurement arc, integrating
∆θa,b(t) over a predefined exposure time, [t0, t0 + tI ] takes into ac-
count how two measurement arcs differ over the relevant time inter-
val. Thus the measurement dissimilarity metric (MDM) for a given
[t0, t0 + tI ] is defined in Equation (31).

dMDM (ρ̂a(t), ρ̂b(t)) =

t0+tI∫
t0

∆θa,b(τ)dτ (31)

This metric can be wrapped into the measurement arc notation de-
fined in Subsection B. Given a particular measurement arc, Am,a, de-
fines a time-varying unit vector, ρ̂a(t) over a predefined time interval
[t0, t0 + tI ]. Therefore, the MDM can be directly computed between
two measurement arcs.

dMDM (Am,a,Am,b) =

t0+tI∫
t0

∆θa,b(τ)dτ (32)

Lemma III.1. The measurement dissimilarity metric defined in Equa-
tion (32) over a fixed time interval, [t0, t0 + tI ], is a metric on A, the
set of measurement arcs, for any pair ρ̂a(t) ∈ Am,a, ρ̂b(t) ∈ Am,b,
that is, it satisfies the following:

1. dMDM (Am,a,Am,b) ≥ 0 ( non-negativity )

2. dMDM (Am,a,Am,b) = 0 if and only if ρ̂a(t) = ρ̂b(t)
( coincidence )

3. dMDM (Am,a,Am,b) = dMDM (Am,b,Am,a) ( symmetry )

4. dMDM (Am,a,Am,c) ≤ dMDM (Am,a,Am,b) +
dMDM (Am,b,Am,c) ( triangle inequality )

Proof. Non negativity follows directly from the range of the functions
involved.

||ρ̂a − ρ̂b|| ∈ [0, 2]

sin−1

(
||ρ̂a(t)− ρ̂b(t)||

2

)
∈ [0, π/2]

∆θa,b(t) ≥ 0

t0+tI∫
t0

∆θa,b(t)dt ≥ 0 (33)

For coincidence, first note that
t2∫
t1

f(t)dt = 0 ⇐⇒ f(t) =

0, ∀t ∈ [t1, t2], for any continuous function f(t) and arbitrary val-
ues of t1 and t2. Next, note that over the range of inputs, x ∈
[0, 1], sin−1(x) = 0 ⇐⇒ x = 0. This directly implies 2. This is
equivalent to saying the only way the measurement dissimilarity metric
can be zero is if the measurement arcs are identical.

For symmetry, note that ||ρ̂a − ρ̂b|| = ||ρ̂b − ρ̂a|| for an arbitrary
pair of unit vectors. 3 follows immediately.

The shortest distance along the surface of a sphere between two
points is the orthodromic distance. Therefore ∆θa,c(t) ≤ ∆θa,b(t) +
∆θb,c(t) must be true, because ∆θa,b(t)+∆θb,c(t) represents another
path along the surface of a sphere from a to c. Remember the following
property of integrals

fa(t) ≤ fb(t)⇒
t2∫
t1

fa(t)dt ≤
t2∫
t1

fb(t)dt

which is true for any t1 and t2.

t0+tI∫
t0

∆θa,c(t)dt ≤
t0+tI∫
t0

∆θa,b(t)dt+

t0+tI∫
t0

∆θb,c(t)dt (34)

This gives the triangle inequality.

Thus, the MDM is a metric on A, the set of measurement arcs,
allowing partition methods to be applied to A. The desired partitioning
will, however, be occurring on orbits which exist as elements in R6.
The MDM can also be defined over a set of orbits because of the onto
mapping from orbits to measurement arcs, Equation (18). This can also
be shown by acknowledging that ρ̂a(t) is a function of x(t).
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∆θa,b(t) = 2 sin−1

(
||ρ̂a(x(t))− ρ̂b(x(t))||

2

)

dMDM (xa,xb) =

t0+tI∫
t0

∆θa,b(τ)dτ (35)

The following corollary will show that the MDM is a pseudo-
metric on R6, or any set of orbits.

Corollary III.2. The measurement dissimilarity metric defined in
Equation (31) over a fixed time interval, t ∈ [t0, t0 + tI ], is a pseudo-
metric on R6×R for any pair of orbits xa(t),xb(t), that is, it satisfies
the following:

1. dMDM (xa(t),xb(t)) ≥ 0 ( non - negativity )

2. dMDM (xa(t),xb(t)) = dMDM (xb(t),xa(t)) ( symmetry )

3. dMDM (xa(t),xc(t)) ≤ dMDM (xa(t),xb(t)) +
dMDM (xb(t),xc(t)) ( triangle inequality )

Proof. Non negativity and symmetry follow from Lemma III.1. Every
orbit will map to a measurement arc which exists on A.

First fix three orbits, xa, xb, and xc. Because the mapping from
orbits to measurement arcs is onto, these orbits map to single time-
varying unit vectors, ρ̂a(t), ρ̂b(t), and ρ̂c(t). The triangle inequality
follows from Lemma III.1.

The pseudo-metric does not have a coincidence property because
the mapping from orbits to measurement arcs is not one-to-one. How-
ever, Subsection E will discuss metrics rather than psuedo-metrics. In
order to enable metric space partitioning based on pseudo-metrics, co-
incident objects are considered as one object [23]. This is equivalent to
saying all orbits that produce the identically same streak are the same
object. Such a simplification is the inversion of the admissible region
argument. Instead of having a measurement and creating a set of con-
sistent orbits, consistent orbits are being grouped together to predict a
measurement. EachA is an individual object in the space to be parti-
tioned. This definition is a mathematical necessity, but does not change
the partition process in the next subsection. A prior set could be rede-
fined by grouping admissible regions analytically, but such an analysis
is unnecessary and not included in this paper.

One question remains: is the MDM robust to the presence of sen-
sor dynamics and distortion? If a sensor is rotating, all objects in a
measurement frame appear to arc and rotate through the measurement
frame. Furthermore, this rotation can be different depending on where
an object is in the sensor frame. Sensor distortion can alter streaks as
a function of where they occur in the frame. Different templates will
then be needed for different localized areas. Equation (19) includes an
assumed dependence on k, the parameter vector which includes o, ȯ.
The parameter vector can be expanded to include parameters on local
sensor distortion and observer rotation to address this. For typical dis-
tortion and rotation models, the number of distinct templates should be
minimal The error produced by not including a correct should be small
for most narrow field of view sensors. The localization analysis in Sub-
section F should further reduce this problem. An in-depth analysis of
these effects and how best to localize them is out of the scope of this
paper.

E. Metric-Based Partitioning
The properties of a metric seem obvious and trivial at first glance, but
in fact a wide variety of partition methods exist. A good discussion
of metric-based search and partition methods can be found in the text
Similarity Search: The Metric Space Approach by Zezula et al. [19].
An overview of the concepts and methods will be discussed here. The
broad approach falls into two categories, ball partition (BP) methods
and generalized hyperplane tree (GHT) methods [24] [23]. The liter-
ature is rich with implementations of these methods. Most variations
of methods are attempts to improve methods for particular situations
or overcoming general pitfalls. The bulk of these methods are simply
a reworked BP or GHT method. This subsection will aim to introduce
the field of metric-based partitioning.

BP is the first method and is based around a predetermined maxi-
mum distance, dmax. It can be visualized in Figure 5a. First, a max-
imum dissimilarity of two measurements, dmax, is defined as suffi-
cient difference for templates to be unique. Once a dmax is set, BP
is straightforward. BP is implemented by choosing a series of pivot
points, xk ∈ S0. Each partition Sa is a ball centered at a respective
pivot, xa, with a radius dmax

Sk = {x ∈ S0 : dMDM (x, xk) ≤ dmax} (36)

It should be noted that BP typically violates, Equation 22, that is
the partitions overlap each other. This does not change the end result
of the algorithm, so it is nothing more than a mathematical observa-
tion. The second method is analogous to the Voronoi diagram. It can
be visualized in Figure 5b. The generalized hyperplane tree (GHT) is
implemented by setting a number of pivots and then binning the rest of
the space by defining hyperplanes of equal metric distance from each
pair of pivots. Each partition is then the set of points which are closer
to a particular pivot than any other pivot.

Sk = {x ∈ S0 : dMDM (x, xk) ≤ dMDM (x, xl)} (37)

In practice, the set is represented as a discrete point-wise approxi-
mation and the points are sorted. This can be done as a single run, with
a large number of pivots, or recursively, gradually adding pivot points.

S0

xa

xb

xc

xd

(a)

S0

xa

xb

xc

xd

(b)

Sa

Sb

Sc

Sd

Sa

Sb

Sc

Sd

Figure 5. Ball partition and generalized hyperplane methods [19]

The hyperplanes can be calculated analytically in theory, but in
practice this is difficult. An easier approach to this may be to calcu-
late a Taylor series expansion of the MDM around all desired pivot
points. This allows the hyperplanes to be approximated, but has all the
problems that come with linearization. If discrete partitioning becomes
computationally costly, this may be a solution. Computation of this
expansion is out of the scope of this paper.

In this process, a few questions still exist: what should dmax be set
as and why, and how fine does the discrete point-wise approximation
need to be?

A higher value of dmax will result in fewer partitions, while a lower
dmax will give more partitions. The accuracy of the templates will be
dependent on how large the chosen dmax is. The computation time
will be directly proportional to the number of templates chosen as well.
Therefore, a “best” dmax is difficult to define and will be problem de-
pendent.

A proposed way is to assure that the two measurements with
dMDM ≤ dmax appear essentially the same to an observer. Therefore,
dmax should be based on the pixel size of the sensor sx, the exposure
time, texp, and length of the measurement arc L. The MDM as derived
gives arc dissimilarity integrated over a time period. This gives weight
to higher exposure times, which is is undesirable, so normalization by
exposure time is necessary. dMDM (ρ̂1(t), ρ̂2(t))/texp is the average
difference between two measurements, and is independent of exposure
time. If this value were equal to the pixel size of the sensor, on average
each pixel will have an error equal to one pixel. With long streaks over,
100 pixels, this could be a one pixel error everywhere or a ten pixel
error over a tenth of the streak. What is desirable is that, at most, a
single pixel has an error of one pixel.
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dMDM (ρ̂1(t), ρ̂2(t))/texp <
sx
L

(38)

L is the number of the pixels in the streak and allows dmax to
be normalized for larger or smaller length streaks. If L varies from
template to template, the maximum possible streak length should be
used. This value in practice is very restrictive, and for this reason has
not be implemented in the simulation results section. More analysis on
how to analytically define a threshold for this process is needed.

The methods described thus far rely on a discrete point-wise ap-
proximation. As with any such approximation, sufficient particles are
needed to allow the approximation to be representative of the set. This
implies highly dimensional sets will be difficult to model. Exploiting
sub-spaces of lower dimensionality is recommended, such as admissi-
ble regions. Insufficient particles can also lead to poorly defined parti-
tion set boundaries.

There are a wealth of specific implementation methods for BP,
GHT, and more methods in the literature [25], [26]. This paper aims
to introduce the concepts of similarity search as a way to solve prob-
lems in set-based SSA applications. For the simulations and results
produced for this paper, a simple ball partitioning method was imple-
mented. As the algorithms proposed in this paper mature, more work
will be required to evaluate more optimal strategies for partitioning.

F. Localized Matched Filtering
The matched filter involves a discrete convolution of the template over
the measurement image. The matched filter can be applied over the
entire measurement image, but is a computationally costly process. If
certain templates can be skipped or searched in only a local area, large
computation times are saved. This subsection will define a method
by which the partition sets can be used to localize the matched filter
search.

When a particular hypothesis orbit is mapped into the sensor frame,
Am has an associated location in that frame. Each partition Sk, as
defined, is a set of hypothesis orbits. If a particular anchor time, t∗, is
defined a particular partition can be mapped into SO(2).

S ′k = {xd ∈ SO(2) : xd = h(φ(t∗; t0,x(t0)),k(t0)),x(t0) ∈ Sk, }
(39)

For this particular partition’s template to be necessary, the observer
must be looking at the object during the exposure time.

Oi = {xd ∈ SO(2) : xd in observer frame at t∗} (40)

When a MF template is used to search an image, it is tiled over
the pixels. This is done by choosing an anchor pixel in the template,
typically the center pixel. This anchor pixel is aligned with each pixel
in the image and then the convolution is evaluated. S ′k is the set of all
unit vectors which can be generated from the partition set Sk at t∗. If
the anchor pixel is defined as the location of the object at t∗, a search
space can be defined

Sk,i = Oi ∩ S ′k (41)

Sk,i represents the search space for template k in an image taken
by observer i. This can be seen in Figure 6, where each template has
local areas where it should be evaluated.

This method will yield one of two results. First, Sk,i can be empty,
in which case the template does not require searching for a particu-
lar image. Second, Sk,i is non-empty, and the template need only be
searched over a subset of Oi. More generally, this illustrates a funda-
mental problem of searching for partially known SO: the search space
defined by prior knowledge can be larger than what can be captured
by a single measurement. The prior set, S0, and the subsets, S ′k can
inform sensor tasking. For example, a tasking scheme could be to take
a minimum number of observations to observe the entire set, S0. Task-
ing schemes for observing partially known space objects based on this
framework is considered future work. Sensor pointing and orienta-
tion must be known in order to implement this method. In the case

Sensor Frame Oi

Si,a

Si,bSi,c

Si,d

Figure 6. Localized searching of the sensor frame for partitions a through
d

of significant uncertainty in pointing, search areas should be expanded
appropriately (e.g. one pixel of point uncertainty implies one pixel of
padding on search spaces is needed).

G. Probability of Detection and Likelihood Map from Matched
Filter

Hypothesis testing on matched filter results is not a new concept [14].
Multiple methods exist and this paper makes no claims about which is
best or worst. Instead, this subsection will present one possible formu-
lation.

Consider a matched filter template which consists of n non-zero
pixels aj . When calculating the matched filter for a particular position,
each pixel in the template is associated with a particular measurement
pixel, zj . Then the matched filter correlation is calculated by

zMF =

n∑
j=1

ajzj (42)

As per Section II, assume that the pixels consist of some signal, µj ,
and zero mean i.i.d. Gaussian read noise, wj , shown in Equations (1)
and (2). Note that in this formulation, µj is equivalent to the mean of
the measurement zj . In order to have zero mean read noise in practice,
an effective background subtraction method is needed to remove arti-
facts including dark current and hot pixels. Under these assumptions,
zMF is distributed as follows:

E[zMF ] =

n∑
j=1

ajµj

Var[zMF ] = E

[(
n∑
j=1

ajwj

)2]
= σw

n∑
j=1

a2j

zMF ∼ N (Σµj , ασw) (43)

where α is a scaling factor dependent on the actual weights, aj . A hy-
pothesis test is desired for determining if there is signal present which
is effecting zMF . This equivalent to asking if zMF has a mean of zero
or a mean greater than zero. Consider the null and test hypotheses for
a binary hypothesis test, for a matched filter

H0 : zMF ∼ N (0, ασw)

H1 : zMF ∼ N (β, ασw), β > 0 (44)
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For binary hypothesis testing, a probability of false alarm is set,
pFA, which in term defines an integration threshold, zTH , based on
the null hypothesis PDF, f0(z).

pFA =

∞∫
zTH

f0(z)dz (45)

The test hypothesis PDF, f1(z), is then integrated over, giving a
probability of detection.

pDetect =

∞∫
zTH

f1(z)dz (46)

For more on this subject, see [27]. This hypothesis test can be used
to determine if there is significant evidence that the predicted signal
exists in the predicted location. Because the matched filter gives an op-
timal SNR gain, this test should maximize pDetect, though an explicit
proof of this claim is out of the scope of this paper.

H. Orbit Determination and Sequential Bayesian Filter
The main motivating case for this research is an admissible region hand
off for fast and accurate orbit determination. The basic case of this is
trivial; if two observers with geometrically diverse locations observe
a SO, the exact position can be triangulated [28]. For the case of ob-
servers at different times and positions attempting to perform orbit de-
termination on a particular space object, more analysis is needed. First,
consider the aforementioned matched filter bank, preformed on an ad-
missible region detected by observer i, Ai. This admissible region
can be propagated forward to time t0, forming S0 and mapped into
the sensor frame of a second observer j. If a statistically significant
detection is made by the matched filter bank, a measurement can be
made. This measurement, made by observer j, will consist of the de-
terminable states for an EOS:

x′d,j(t0) = [α(t0), δ(t0), α̇(t0), δ̇(t0)]T (47)

If the calculated x′d,j(t0) is not consistent with the location and rate
of the template used to detect it, then the measurement can be disre-
garded; the object that has been detected is not consistent with any hy-
pothesis generated from S0. Assuming, the measurement and template
are consistent, an admissible region, Aj , can be constructed. Now,
there exists two sets S0 and Aj both represented by orbits at a par-
ticular time, t0. Furthermore, it is known that both admissible regions
contain an orbit consistent with a particular measurement, x′d,j(t0).
This implies a non zero intersection of the two admissible regions, that
is,

S0 ∩Aj 6= ∅ (48)

Fujimoto and Scheeres showed that if two arbitrary admissible re-
gion intersect, there is a diminishingly low probability that they were
not generated from the same object [29]. This statement implies that
whatever orbit in S0 that could create the measurement xd,j(t0), are the
intersection of these two admissible regions, and therefore the correct
orbit. The Fujimoto and Scheeres paper works with exact admissible
regions and draws the conclusion that the intersection must necessarily
be a single point in the state space. This can be expanded ton include
uncertainties in the measurements of S0 andAj , implying a non-point
intersection.

S ′0 = S0 ∩Aj (49)

where S ′0 is a new set of orbits. The new set, S ′0, can also be written as
Ai ∩Aj . Note that by definition S0 ⊇ S0 ∩Aj , implying that this
calculation consists only of deleting parts of S0 =Ai. The knowledge
obtained from x′d,j(t0) can be used to rate track the object or inform
an online matched filter [30].

The problem with this approach is that new measurements can ei-
ther be significantly noisy or the probability of detection may be below
one. In these cases, a sequential Bayesian update scheme, in the form
of a particle filter, can be formulated to operate directly on hypothesis
test results. At this point, the prior set must be instead thought of as a
prior PDF. The uncertainty in S0 can either be represented by a known
prior PDF or with a uniform prior similar to an admissible region.

P (x(t0)|S0) = P (S0) (50)

The new measurement defines a Bayesian update

P (x|x′d,j(t0)) =
P (x′d,j(t0)|x)P (x|S0)

P (x′d,j(t0))
(51)

The measurement likelihood map, P (x′d,j(t0)|x), can be calcu-
lated from the localization of xd,j(t0). The localization of xd,j(t0)
must necessarily be calculated from the matched filter result, which is
represented by the hypothesis test in Equation (44).

P (x′d,j(t0)|x) = P (zj > 0 ∀ j ∈ [1, . . . , n]) (52)

The right hand side of Equation (52) is equivalent to the hypothesis
test in Equation (44). The matched filter can be built into a Bayesian
update, allowing the matched filter bank to be built into a particle-based
filter. It should be noted that while this paper’s results will only include
a basic particle filter, this likelihood can apply to a wide range of filters
including random finite set and multi-target filters.

IV. Implementation of Theory
In Figure 7, the logic for an implementation of a matched filter

bank based on the work in this paper is mapped out. Boxes 1 and 2
define the prior information for the process. Box 3 maps a prior set of
orbits to measurement arcs, which in practice are what is used to parti-
tion and generate templates. In Box 5, the pivot point xk can be chosen
in a few different ways. The simulations in this paper choose the first
pivot point randomly and choose all following pivots as the point fur-
thest in MDM from the previous pivot. Box 6 represents comparing
the distance between each point and the pivot in MDM. The measure-
ment arcs should be pre-calculated for each point to expedite this. The
time density of the measurement arcs should be chosen based on pro-
cessing power. The partitioning module should pass out both the pivot
point and the associated partition set. The subsection labeled “Local
Matched Filter” represents how to process the matched filters. L is the
intersection of the measurement frame and a particular partition. In
practice, this can be generated by mapping the measurement arcs into
the measurement frame with the desired camera model and locating all
pixels with any signal. It is useful to pad the localization matrix to ex-
pand the search area by a few rows and columns. This assures that if
the truth appears near the boundary of the search area, the matched fil-
ter correlation peak will be captured fully. If L is empty, this template
can be skipped. If L is not empty, the non-empty pixels defines the
locations where the signal should be checked.

The results should appear similar to Figure 14. The likelihood can
be used in a variety of ways: each particle’s likelihood can be eval-
uated for a particle filter update, the peak likelihood can be directly
considered as a measurement, or the likelihood itself can used seen as
the final product. Another extra processing technique which is worth
considering is point spread function (PSF) fitting [31]. This technique
involves optimizing over the underlying signal’s end points and PSF at
sub-pixel accuracy. The matched filter template with the best correla-
tion can be used an initial guess for the PSF fit. The PSF fit result can
then be used as the detection, which should lead to sub-pixel accurate
localization of endpoints.

V. Simulation Results
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1
Prior Set S0

2
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7
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8
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9
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Ball Partition Method
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Figure 7. Code Flow Diagram for implementing MF Bank

A. Problem Geometry
A medium Earth orbiting object, with parameters in Table 1 is sim-
ulated to demonstrate the admissible region hand off. The object is
simulated at the following UTC.

a (km) e Ω (rad) i (rad) ω (rad) f (rad)
1.2658e+04 0.2198 2.3863 0.3489 1.2698 0.3724

Table 1. orbital elements for simulation

UTC = [2011, 11, 12, 20, 34, 07]

Two EOS observers, o1 and o2, located in Colorado and Hawai’i
respectively, take observations of the space object at times t1 = 0s and
t2 = 120s. Consider observer 1 to be a high sensitivity sensor able to
detect this space object via conventional methods. Consider observer
2 to be a low sensitivity sensor which would normally be unable to
detect this space object. The geometry of the problem is shown in
Figure 8. The SO and observer position and velocities at the time of
the observations are:

r(t1) = [−5906.3 − 7313.5 3410.0]T (km)

ṙ(t1) = [5.0791 − 4.7364 − 0.01212]T (km/s)

r(t2) = [−5280.5 − 7860.5 3398.8]T (km)

ṙ(t2) = [5.3445 − 4.3765 − 0.17361]T (km/s)

o1 = [−1207.0 − 4746.7 4072.0]T (km)

ȯ1 = [0.34519 − 0.08777 0.0000]T (km/s)

o2 = [−5446.2 − 2431.8 2252.0]T (km)

ȯ2 = [0.17337 − 0.39759 0.0]T (km/s)

B. Observations
The first observer takes an image which leads to a detection and mea-
surement by conventional methods. An admissible region is generated
from this first observation, seen in Figure 12, as the black outline. The
admissible region throughout these simulation results is represented by
a discrete point-wise approximation of 20,000 particles. The second
observer, o2, takes low SNR observation of the SO, also at t2 = 120s.
The image can be seen in Figure 13. The image simulation is done
without star signals, to prevent false detections. Stars will present a
problem in implementation on real data, but can be avoided with good
star identification and subtraction. The image is generated with a 10
second exposure time, field of view of 10 degrees, and sidereal stare

Figure 8. Location of Observers and SO

pointing mode. The total object SNR in this image is approximately
6.8, while the maximum pixel-wise SNR in this image is approximately
1.0. Conventional methods, such as thresholding and corner detection,
fail to detect this object. Because the only orbital knowledge on this
object in the admissible region from observer 1, conventional velocity
filters cannot be implemented.

C. Partitioning
In order to give insight into the computational cost of the ball parti-
tioning, the simulation has been run for a range of MDM threshold val-
ues. For these multi-value test runs, object SNR is set to approximately
0.25, the probability of false alarm threshold is set to 0.999, and 10,000
particles are used to represent the AR. In Figure 9, the maximum likeli-
hood is shown to vary more significantly with a higher MDM threshold.
Because raw measurement SNR is constant, a perfect template should
always provide the same Likelihood. The sporadic behavior at high
MDM threshold is a result of the inability of a high MDM threshold
to consistently provide effective templates. The number of templates
and computation time are plotted against MDM Threshold on a log-log
scale in Figure 10. Computation time follows a predictable curve; more
templates proportionately leads to more computation time.

Next, a particular partitioning will be shown in more detail. In
remaining simulations, object SNR is set to approximately 1, the prob-
ability of false alarm threshold is set to 0.999, and 20,000 particles
are used to represent the AR. A maximum MDM value of dmax =
0.1 rad · s is chosen. The measurement arc is calculated for each par-
ticle, represented by a time series of unit vectors. A ball partitioning
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Figure 9. Maximum Likelihood results from varying MDM threshold.

Figure 10. Computational time results from varying MDM threshold.

algorithm based on approximate integration over the time series sorts
the particles into subsets containing consistent orbits. The partitioning
provides 80 distinct partitions with corresponding templates. Figure 11
shows a sample of the types of templates which are generated. Figure
12 shows the partitions on the original admissible region. Three par-
ticular partitions, labeled A, B, and C, will be followed more closely
through the remaining process.

Figure 11. Sampling of matched filter templates from partitioning.

Figure 12. Sets generated from partitioning, shown on original AR.

D. Observation Search
The templates with corresponding partitions are searched in the im-
age. The matched filter gives a value for each pixel in the image which
the template is centered at. Each matched filter result is then tested
via the hypothesis test in Equation (44). This gives a likelihood func-
tion over the partition, which can evaluated for all particles. Figure 14
shows the correlation maps for three templates. Figure 14a shows an
incorrect template which doesn’t produce significant SNR gain. Figure
14b shows a template with an imperfect template, illustrating the kind
of SNR gain possible in real operation. Figure 14c shows a template
primed with perfect orbital knowledge, simply to illustrate what the
ideal case can look like.

E. Orbit Update
The final step is calculate a Bayesian update on the space object. Each
particle’s likelihood is evaluated within its partition. Some particles do
not fall within the EOS image which poses a problem for the update.
These results chose to leave the statistic weights constant on all objects
without an available likelihood update. Using the new measurements,
the PDF over the original admissible region can be updated, point-wise,
similar to a particle filter update. Figure 15 shows the results of the
Bayesian update. It is important to note that this method does not make
a hard update decision and shouldn’t. Ultimately, this would be used in
a filtering scheme such as a particle filter or multiple hypothesis filter,
as the likelihood function.

F. Sequential Particle Filter
As of now, the likelihood function update at a given time only makes
sense if it can be evaluated for all objects within the PDF. The fol-
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A
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C

Figure 13. Measurement Image taken by observer 2

a) b) c)

Figure 14. Correlation results from a variety of templates

Figure 15. Final PDF update from matched filter likelihood.

lowing results will proceed under the assumption that the measurement
likelihood can be evaluated for all particles. Two observers in Georgia
and a MEO object are simulated. Similar to the previous simulation,
the first observer takes an observation of the object and an admissible
region is created. The AR is passed off to the second observer, which
then takes a series of 9 observations. Each observation is a 10 second
exposure, sidereal stare observation, which are initiated at 20 second
intervals. The following initial parameters are used

r(t1) = [−3420.2 − 8138.0 4698.5]T (km)

ṙ(t1) = [6.5260 − 2.3753 − 0.0121]T (km/s)

o1 = [652.95 − 5284.4 3499.5]T (km)

ȯ1 = [0.3843 0.0475 0.0000]T (km/s)

o2 = [522.51 − 5281.8 3525.1]T (km)

ȯ2 = [0.3841 0.0380 0.0]T (km/s)

The final posterior PDF of the particle filter can be seen in Figure
16. The standard deviations in range and range rate space can be seen
plotted over iterations in Figure 17. The final values of the particle fil-
ter are highly dependent on factors such as process noise, image pixel
size, object SNR, and more. These plots are meant to demonstrate that
particle filter convergence is possible. Object SNR over the series of
images is shown in Figures 18 and 19. Figure 18 shows the total ob-
ject SNR calculated by Equation (7). The total object SNR, which is
the SNR of all pixels which the object appears in, gives an idea of the
total available information for an object. Figure 18 shows the maxi-
mum per pixel SNR calculated by Equation (5). The maximum per
pixel SNR gives a measure of the ability of classical detection methods
(thresholding, edge detection) to detect this object. It is worth noting
that this particle filter scales gracefully for different object SNR values.
This means that this method can be used as a general object detection
method which can capture dim space objects.

Figure 16. Final PDF update from multi-frame matched filter likelihood
particle filter.

VI. Conclusion
A methodology has been developed for obtaining low SNR detec-

tions of space objects when uncertain prior information is available.
Unlike typical matched filters, exact knowledge is not necessary with
this matched filter bank. The partitioning method that is proposed in
this paper enables efficient and mathematically rigorous generation of
the matched filter bank. A novel metric is first defined in this paper,
upon which the partition process is defined. The resulting partitions
are then used for an analytic result which allows the localization of a
matched filter. This MF bank enables a statistical update to an orbit to
be derived directly from image data. Reliable low SNR detection meth-
ods have the ability to decrease require costs for performing SDA with
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Figure 17. Standard Deviation of PF over iterations.

Figure 18. Object SNR over observation series.

Figure 19. Object SNR over observation series.

electro-optical sensors. Instead of building more monolithic telescopes,
large numbers of smaller sensors can be used to gather important SDA
data. Large, exquisite sensors can then be focused on object discov-
ery rather than catalog upkeep. Furthermore, this methodology can be
generalized to a wide variety of sensors and data types.

Appendix: VI
A typical optical measurement of a space object contains good

knowledge of angle and angle rates known as observable states, xd ∈
R4. An orbit requires six disparate data types to be fully constrained.
Historically, the final two data types are angle accelerations or range
and range rate (from radar data). This AR formulation uses range
and range rate as the final two states, known as undetermined states
xu ∈ R2. It is assumed that no information can be reliably used to de-
termine these states from measurements. The following notation was
developed by Worthy et al [32]. Using equations (9) and (11) and the
fact that the measurement cannot be dependent on xu, the following
measurement function can be written.

y(t) = h(xd;k, t) (53)

Furthermore, this implies a one to one and onto relationship be-
tween y(t) and xd

xd = h−1(y;k, t) (54)

An AR is then created by enforcing a series of constraints of the
form

gi(xd,xu;k, t) ≤ 0 (55)

gi(h
−1(y;k, t),xu;k, t) ≤ 0 (56)

It should be noted that these constraints can be thought of as hy-
potheses. The AR is then the space where all hypotheses are true. Next,
we define an admissible region,Ai ∈ R2, predicated on gi

Ai :=
{
xu|gi(h−1(y;k, t),xu; k, t) ≤ 0

}
(57)

In practice, an admissible region predicated on n constraints is
used.

A =
n⋂
i=1

Ai (58)

Next, the two most common constraints are defined. For optical ob-
server AR, the primary constraint typically considered is that of Earth-
orbiting SO, defined as gE . There exists a derivation to show the fol-
lowing equations represent energy as a function of [ρ, ρ̇] and known
parameters. The following results were originally derived for Earth
objects by Tommei et al [33]. E is the orbital energy, which must be
negative for an Earth-orbiting SO.

2E = gE(h
−1(y;k, t),xu;k, t) ≤ 0 (59)

2E = ρ̇2 + w1ρ̇+ T (ρ)− 2µ√
S(ρ)

≤ 0 (60)

T (ρ) = w2ρ
2 + w3ρw4 (61)

S(ρ) = ρ2 + w5ρ+ w0 (62)

where the constants w0−5 are functions of the parameter vector, k,
defined as
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Figure 20. Sample admissible region

w0 = ||o||2 (63)
w1 = 2ȯ · ρ̂ (64)

w2 = α̇2 cos2 δ + δ̇ (65)

w3 = 2(α̇ȯ · ρ̂α + δ̇ȯ · ρ̂δ) (66)

w4 = ||ȯ||2 (67)
w5 = 2o · ρ̂ (68)

where o and ȯ are the position and velocity of the observer, ρ̂ is the
unit vector from the angles, and ρ̂α and ρ̂δ are given by

ρ̂ = [cosα cos δ sinα cos δ sin δ]T (69)

ρ̂α = [− sinα cos δ cosα cos δ 0]T (70)

ρ̂δ = [− cosα sin δ − sinα sin δ cos δ]T (71)

A second commonly used constraint is gr , a constraint on the ra-
dius of perigee. There exists a analytic derivation for the following
[12]. It should be noted that D, E, F, and G are vector quantities.

gr(ρ, ρ̇,xd;k) = (r2min − ‖D‖2)ρ̇− P (ρ)ρ̇− U(ρ) + r2minT (ρ)− 2rminµ√
S(ρ)

≤ 0

(72)

P (ρ) = 2D ·Eρ2 + 2D · Fρ+ 2D ·G− r2minw1 (73)

U(ρ) = ‖E‖2ρ4 + 2E · Fρ3 + (2E ·G + ‖F‖2)ρ2 + 2F ·Gρ+ ‖G‖2 − 2rminµ
(74)

where the D, E, F, and G are defined as

D = q× ρ̂ (75)

E = ρ̂× (α̇ρ̂α + δ̇ρ̂δ) (76)

F = q× (α̇ρ̂α + δ̇ρ̂δ) + ρ̂× q̇ (77)
G = q× q̇ (78)

More ways exist to further constrain an admissible region. Be-
yond perigee and energy, any further restriction typically requires an
assumption about the object. For example, if the object being observed
is known to be near a GEO, constraints could be placed on semi major
axis or eccentricity. This can enable prior orbital knowledge to be used
to enhance convergence.
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