Analytical Structural Weight Estimation of Conceptual Launch Vehicle Fuselage Components with the Georgia Tech Structural Tool for Rapid Estimation of Shell Sizes (GT-STRESS)

> Virgil L. Hutchinson, Jr. Georgia Institute of Technology AE 8900 Dr. John Olds, Advisor May 3, 2004

List of Figures	iii
List of Tables	v
List of Symbols	vi
Abstract	ix
Introduction	1
Motivation	2
Overview of Procedure	5
Vehicle Geometry	6
Weights Definition	7
External Loads	8
Running Loads	15
Structural Sizing	19
Implementation of Analytical Methodology into GT-STRESS Computer Program	27
Verification and Correlation with Existing Launch Vehicle Components	37
Integration of GT-STRESS into Multidisciplinary Environment	52
Conclusion	55
Acknowledgements	55
References	56
Appendix A: Example GT-STRESS Input file	58
Appendix B: Default Propellant Text File	60
Appendix C: Default Material Text File	61
Appendix D: Input Files for the EELV Verification Case	62
Appendix E: Input Files for the External Tank Verification Case	65
Appendix F: Output Files Generated for the EELV Verification Case	69
Appendix G: Load Variation for each Load Condition of EELV Verification Case	75
Appendix H: Load Variation for each Load Condition of ET Verification Case	77
Appendix I: Contributing Analyses Spreadsheets used within ModelCenter	79

Table of Contents

List of Figures

1.	Visual Representation of Vehicle Geometry Approximation	6
2.	Visual Representation of Vehicle Weight Definition	7
3.	Effective Length of Cylindrical Tanks with Various End Closures	8
4.	Shear Force Accuracy of Discretized vs. Theoretical Method for End Loaded Cantilevered Beam	12
5.	Shear Force Accuracy of Discretized vs. Theoretical Method for Uniformly Loaded Simple Support Beam	12
6.	Bending Moment Accuracy of Discretized vs. Theoretical Method for Uniformly Load Simple Support Beam	
7.	Bending Moment Accuracy of Discretized vs. Theoretical Method for End Loaded Cantilevered Beam	14
8.	Axial Force Accuracy of Discretized vs. Theoretical Method for Uniform Loaded Cantilevered Beam	15
9.	Shear Stress Distribution over an Elliptical Section	17
10.	Bending Moment Distribution over an Elliptical Section	19
11.	Model for General Instability Failure	23
12.	Shape and Dimensions of Frame Cross Section	24
13.	Convergence Process for Determining Structure Component Weight	30
14.	MDA Model of GT-STRESS Program Operation	36
15.	Boeing Delta-IV Heavy EELV	38
16.	Space Shuttle External Tank	41
17.	Axial Load Variation along the EELV Fuselage for each Load Condition	43
18.	Axial Load Variation along the ET for each Load Condition	44
19.	Fuselage Shell and Frame Thickness Variation along the EELV	45
20.	Shell and Frame Thickness Variation along the ET	45
21.	Linear Regression of Structural Weight	48
22.	Linear Regression of Primary Weight	49
23.	Regression Comparison of Structural Weight Results from GT-STRESS and PDCYL.	50
24.	Regression Comparison of Primary Weight Results from GT-STRESS and PDCYL	51
25.	Design Structure Matrix	54
26.	ModelCenter Interface of Multidisciplinary Analysis Demonstration	43
27.	Axial Force Variation along the Fuselage for each Load Condition of the EELV	75
28.	Shear Force Variation along the Fuselage for each Load Condition of the EELV	75

List of Tables

I.	Stiffened Shell Configuration Factors for Wide Column Shell	22
II.	Example GT-STRESS Input File Geometry Definition	28
III.	GT-STRESS Keyword for Stiffened Shell Configurations	31
IV.	Example Material Definition Section of GT-STRESS Input File	31
V.	Example Loadcase Definition Section of GT-STRESS Input File	32
VI.	Propellant Keywords from Default Propellant Database	33
VII.	Material Keywords from Default Material Database	34
VIII.	Abbreviated Version of the Default Material Text File	34
IX.	GT-STRESS Output Files	31
Х.	Dimensions, Masses, and Structure Properties of the EELV	38
XI.	EELV Load Cases and Required Parameters	39
XII.	Actual Structural Component Weights for the EELV	40
XIII.	Dimensions, Masses, and Structure Properties of the ET	40
XIV.	ET Load Cases and Required Parameters	41
XV.	Actual Structural Weights for the ET	42
XVI.	Actual and Calculated Structural Weights for the EELV and ET	46
XVII.	Actual and Correlated Structural Weights for the EELV and ET	54

List of Symbols

%_fuel	percent fuel remaining
A	cross-sectional area
a	semi-major axis
A_f	stability frame cross-sectional area
axial_accel	axial acceleration
b	semi-minor axis
С	farthest from the neutral axis along the y-axis
C_{f}	Shanley constant (1/16,000)
cg	Center of Gravity
D	depth of cross section
d	component center of gravity location
Ε	Modulus of Elasticity
E_f	modulus of elasticity for the frame
$(EI)_f$	required stability frame stiffness
g_{axial}	axial acceleration
h	elliptical perimeter factor
h	liquid propellant height level
Ι	Area Moment of Inertia
I_y	Area Moment of Inertia with respect to y-axis
k_c	shape correction factor for circumference of non-circular shell cross sections
k_{f}	stability frame stiffness coefficient
K_{mg}	minimum gage parameter
L	stability frame spacing
lb	pound(s)
M	Bending Moment
т	minimum shell weight equation exponent
n	number of iterations
N_{I}	maximum principal stress
N_{eq}	equivalent running load in the material
norm_accel	normal acceleration

N_x	longitudinal running load
N _{xaxial}	axial force contribution to the longitudinal (axial) running load
N _{xbend}	bending stress contribution to the longitudinal (axial) running load
N _{xhead}	head pressure contribution to the longitudinal running load
N _{xullage}	ullage pressure contribution to the longitudinal running load
N_{xy}	transverse (shear) running load
N_y	circumferential running load
N_{yhead}	head pressure contribution to the circumferential running load
Nyullage	ullage pressure contribution to the circumferential running load
Р	axial force
P_{ell}	perimeter of ellipse
p_{head}	head pressure
$P_{non-circular}$	perimeter of non-circular cross section
p_{ullage}	ullage pressure
r	radius
R^2	coefficient of variation
R_t	radius of curvature
t	total equivalent structure thickness
t_f	smeared equivalent stability frame thickness
t_{mg}	minimum gage thickness of material
t_s	equivalent shell thickness
$t_{s,B}$	equivalent shell thickness due to buckling failure
$t_{s,mg}$	equivalent shell thickness due to minimum gage restriction
t_s , UTS	equivalent shell thickness due to ultimate tensile strength failure
t_s, y_s	equivalent shell thickness due to yield strength failure
V	shear force
W	component weight
Wactual	actual component weight
$W_{calculated}$	component weight from the current iteration
W_{f}^{\prime}	stability frame weight per inch
Wlast	component weight from the previous iteration

W _{next}	component weight value fed back to the weight definition
W _{PDCYL}	component weight calculated from PDCYL
WSTRESS	component weight calculated from GT-STRESS
W_T	total estimated structural weight
W_{x}	axial distributed load
w_y	normal distributed load
У	value of the estimated weight
α	convergence relaxation factor
β_0	y-intercept of the regression line
β_1	slope of the regression line
Δx	interval between each fuselage station
3	shell buckling efficiency
Θ_s	slope of beam deflection
$ ho_c$	Radius of Curvature in relation to the curvature of a beam
ρ _f	density of stability frame material
$ ho_p$	propellant density
ρ_s	density of shell material
σ_{axial}	axial stress
σ_{bend}	bending stress
σ_{eq}	equivalent stress in the material
σ_h	normal stress in hoop (circumferential) direction
σ_{hhead}	normal stress due to head pressure in hoop (circumferential) direction
$\sigma_{hullage}$	normal stress due to ullage pressure in hoop (circumferential) direction
σ_l	normal stress in axial (longitudinal) direction
σ_{lhead}	normal stress due to head pressure in axial (longitudinal) direction
$\sigma_{lullage}$	normal stress due to ullage pressure in axial (longitudinal) direction
$\sigma_{maxbend}$	maximum bending stress
σ_{UTS}	ultimate tensile strength
σ_{YS}	yield strength
$ au_{max}$	maximum shear stress
$ au_{xymax}$	maximum shear stress

Abstract

Many conceptual launch vehicles are designed by the integration of various disciplines, such as aerodynamics, propulsion, trajectory, weights, and aeroheating. In the determination of the total vehicle weight, a large percentage of the vehicle weight is composed of the structural weight of the vehicle subsystems, such as propellant tanks. The weight of each subsystem is derived from the material composition and structural configuration required to withstand the load conditions it experiences during the vehicle operation.

Mass estimating relations (MERs) are often used to estimate the vehicle structural weight in relation to geometric parameters of the vehicle. MERs created from data available from existing vehicles are only valid for the load conditions experienced by those particular vehicles and they may not take into account the variation in load conditions due to a vehicle's trajectory or weight. The vehicle structural weight can also be determined using multi-dimensional finite element (FE) models. Though this high-fidelity technique provides very accurate results, the creation, preparation, and analysis of complex FE models to predict structural weight can require a large amount of computational effort and can also be very time consuming.

Instead of employing multi-dimensional FE models, a simplified beam approximation model of the vehicle can be used for structural weight estimation. The vehicle is modeled as a simply supported beam defined by a sequence of cross sections. The inert masses, propellant masses, and accelerations are modeled as point and distributed loads over their position in the fuselage. The running loads required to size the thickness of the surface panels are calculated using a simply supported beam theory with the distributed loads on the beam as a function of axial and circumferential position. From the determined panel thickness and material properties, the structural weight is calculated. Estimating the tank structural weight requires minimum computational effort and time while providing accurate results. This study discusses the beam structural analytical method, describes the implementation of the technique into a software tool based upon the RL computer program to calculate running loads⁴, and explores the application of the simplified beam approximation method to the weight estimation for structural components of an Evolved Expendable Launch Vehicle (EELV) and the External Tank of the Space Shuttle.

Introduction

Conceptual launch vehicle design involves the integration of various disciplines to generate a complete vehicle design. Disciplines included in the conceptual design synthesis are aerodynamics, propulsion, trajectory, weight and sizing, and aeroheating. The estimated vehicle weight is an important parameter involved in acquiring the required information from each discipline. Aerodynamic coefficients, required thrust, projected trajectory, and sized propellant masses are all direct and indirect functions of the vehicle weight. In the determination of the total vehicle weight, a large percentage of the vehicle weight is composed of the structural weight of the vehicle subsystems, such as propellant tanks, interstages, and fuselage structure. The weight of each subsystem is derived from the material composition and structural configuration required to withstand the load conditions it experiences during the vehicle operation.

There are two methods commonly used by the aerospace industry to estimate the loadbearing structural weight of launch vehicles: empirical mass estimating relations (MERs) determined from existing vehicle data and detailed finite element structural analysis. Empirical regressions of existing vehicle structure data that form the MERs to calculate structural weight are not capable of considering the varying load conditions that a particular vehicle experiences due to its trajectory or weight. The creation, preparation, and analysis of complex multidimensional finite element models provide an accurate prediction of the load-bearing structural weight, but this procedure can require a large amount of computational effort and can also be very time consuming.

Instead of employing these traditionally defined techniques, a methodology based on fundamental beam structural analysis has been developed for the rapid estimation of the loadbearing structural weight of the launch vehicle fuselage and its associated components. By creating a simplified beam approximation model of the vehicle, the method utilizes the vehicle component weights, load conditions, and basic material properties to analytically estimate the structural shell and stability frame weight. Implementation of this methodology into a fast-acting software tool for conceptual design resulted in the creation of a computer program, Georgia Tech Structural Tool for Rapid Estimation of Shell Sizes (GT-STRESS). The input format and basic operation of GT-STRESS is derived from RL, a computer program to calculate fuselage running loads, which was developed by Jeff Cerro, formerly of Lockheed Martin Engineering & Science Services. The method was applied to an existing Evolved Expendable Launch Vehicle (EELV) and the External Tank (ET) of the Space Shuttle for verification and correlation. Using statistical techniques, the relationship between the estimated load-bearing structure weight calculated by GT-STRESS and the actual structure weights were determined.

Motivation

Current Methods of Weight Estimation

Two methods commonly available to the aerospace industry for the estimation of loadbearing structural weight for launch vehicle fuselage and its associated components are empirical mass estimating relations (MERs) and detailed finite element structural analysis. The advantages and limitations of each method presents are expounded within the following sections.

Mass Estimating Relations

Empirical MERs are the least complex method for weight estimation. Information of fuselage component weights from a database of existing vehicles in addition to various key configuration parameters of the vehicle are required to produce a linear regression of the data. The regression results in an equation for the component structural weight as a function of the configuration parameter for the existing vehicle. The configuration parameter is then scaled to determine an estimate of the component structural weight for the vehicle under investigation. Accuracy of the weight predicted from MERs depends upon the quality and quantity of the database available for existing vehicles and the similarity of the weight and configuration between the vehicle under investigation and the existing launch vehicles. Though empirical MERs are lower fidelity methods for weight estimation, the rapid weight approximation from the

regression equations allow them to be very useful in conceptual design.

Finite Element Analysis

Finite element analysis (FEA) is described as *the matrix method of solution of a discretized model of a structure*.¹ Structures are modeled as a multi-dimensional system of discrete (or finite) elements connected together at nodal points. Each element possesses a certain geometric composition and set of physical characteristics. Forces are applied at nodal points,

and each point is capable of displacement. Mathematical equations are formed for each element relating the displacements of its surrounding nodal points to the corresponding nodal forces.¹

The assembly of elements representing the entire structure is a large set of simultaneous equations that, when combined with the loading condition and physical constraints on the structure, are solved to find the unknown nodal forces and displacements. The resulting nodal forces and displacements are then replaced into each element to generate stress and strain distributions for the entire structural model. The stress and strain distributions are then exported to a structural sizing program to determine the unit weight of the elements over the entire structural model.¹

Improved, Intermediate Method Needed

Preliminary subsystem weights of conceptual launch vehicles are conventionally obtained from MERs based on the regression of existing vehicles. This method is not always preferred and reliable for studies of unconventional vehicle concepts. Since the weight estimations are based upon existing vehicles, their application to unconventional configurations and loading conditions are questionable. For instance, the use of aircraft MERs to determine the structural weight of a horizontal take-off and landing reusable launch vehicle may be suspect due to the fact that the configuration and loading conditions of the vehicle with an orbital trajectory will be vastly different than that of a conventional aircraft. Also, these relations do not provide a straightforward method to assess the impact of advanced technologies and materials to the vehicle weight.

Finite element structural analysis methods for determining structural weight are often inappropriate for conceptual design. The idealized structural model of the vehicle must be created off-line and is incapable to being subjected to dynamic changes due to modifications in other vehicle parameters. The analysis of a moderately complex finite-element models can require a large amount of computational effort and can also be very time consuming, which can lead to a bottleneck in the vehicle design synthesis. For these reasons, the finite-element method is more relevant for use in detailed vehicle design.

In order to develop a method to accurately determine structural weight of the vehicle fuselage and components at a minimized cost of time and computational effort, an analytical approach that uses beam theory structural analysis was formed. A simplified beam

3

approximation model of the vehicle is created for structural weight estimation. The vehicle is modeled as a simply supported beam defined by a sequence of cross sections. The inert masses, propellant masses, and accelerations are modeled as point and distributed loads over their position along the longitudinal axis of the fuselage. The running loads required to size the thickness of the fuselage and component shells are calculated using a simply supported beam theory with the distributed loads on the beam as a function of axial and circumferential position. From the determined panel thickness and material properties, the structural weight is calculated. Since the analysis is conducted station-by-station along the fuselage, the distribution of the loads and vehicle geometry are accounted for, which gives an integrated weight that accounts for local conditions.

The approach of an analysis based exclusively on fundamental structural principals will result in an accurate estimation of the vehicle structural weight only. Non-optimum weights for fuselage and component primary structure, such as bulkheads, minor frames, coverings, fasteners, and joints, are not estimated within the structural analysis and must be predicted from correlation to existing vehicles.

Overview of Procedure

Prior to the start of the actual analysis, the vehicle geometry and preliminary subsystem weights are defined along the fuselage. The vehicle geometry is modeled by a sequence of elliptical cross sections, which are defined by their location, semi-major axis, and semi-minor axis. The locations and weights of the inert masses and propellant masses are also defined, along with the accelerations, percentage of propellant available, and ullage pressure for each load condition. Detailed structural analysis of the fuselage begins with the calculation of the vehicle center of gravity, which allows for the determination of the simple support reaction loads. The combination of the defined vehicle weights and reaction loads are used for the integral calculation of vehicle loads on a station-by-station basis. The three types of external loads considered are axial force, shear force, and bending moment. These three stress resultants are calculated for each defined load condition at each fuselage station. The calculations of all the stress resultants consider the acceleration and amount of propellant available for each load condition.

After determining the external loads along each station of the fuselage, the in-plane shell stress resultants or running loads are calculated. The longitudinal bending moment, longitudinal axial, and transverse (shear) running loads are functions of their associated external loads and the cross section parameters. Contributions from the internal pressure running loads in the propellant tank area of the fuselage to the longitudinal and circumferential running loads are computed based on the ullage pressure and head pressure for each load condition. Once the running loads are determined at each fuselage station for each load condition, the maximum running load from the entire set of defined load conditions are selected to be used to determine the amount of shell material required at each section based on a *worst-case scenario*.

The maximum running loads at each fuselage station are used to calculate the amount of material required to preclude failure at the most critical point. The most critical point of the cross section is assumed to be the outermost location of the shell circumference. The failure modes considered are ultimate strength, yield strength, and buckling. A material minimum gage restriction is also imposed as a final failure criterion. There are also three types of stiffened shell configurations available for prevention of buckling failure of the fuselage shell structure: simple integrally stiffened shell concept, Z-stiffened shells, and a truss-core sandwich shell design.² Each shell configuration is accompanied with longitudinal frames to prevent general instability.

The material properties for the fuselage and its associated components are assumed isotropic and homogeneous, which include a generic laminate and core configuration of a composite material. From utilizing the failure criterion and selecting the appropriate shell configuration and material, the shell and frame thickness at each fuselage station are determined. The calculated shell and frame thickness are integrated station-by-station to ascertain the structural weight of the vehicle fuselage and components.

Vehicle Geometry

The geometry of the vehicle fuselage is modeled as a sequence of elliptical cross-sections centered about the longitudinal axis. Each cross-section is defined by its position along the longitudinal axis of the fuselage, semi-major axis, and semi-minor axis. The semi-major and semi-minor axes of cross-sections at undefined fuselage stations are determined from linear interpolation between the two defined boundary cross-sections. A visual representation of the geometric approximation of the vehicle is presented in Figure 1.

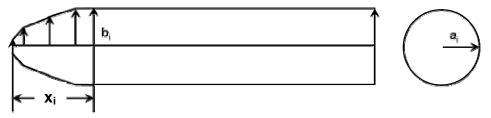


Figure 1. Visual Representation of Vehicle Geometry Approximation.

The use of elliptical cross-sections allows for the modeling of conceptual vehicles with a circular cross-section fuselage, slightly elliptical fuselage, or varying cross-sections shape along the fuselage length. The beam theory structural analysis utilized by this analytical method to determine the external stress resultants on the fuselage does not require any cross-sectional information. Yet in order to calculate the longitudinal axial and transverse internal running loads from the external stress resultants, the cross-sectional area at each fuselage station is required. The cross-sectional area of the shell is calculated from the product of the shell thickness and the cross-section perimeter. The perimeter of the elliptical cross section is ascertained using the S. Ramanujan approximation formula³:

$$P_{ell} = \pi \left(a + b\right) \left(1 + \frac{3h}{10 + \sqrt{4 - 3h}}\right), \text{ where } h = \frac{(a - b)^2}{(a + b)^2}$$
(1)

The maximum error of this formula for determining the elliptical perimeter is -0.04%.³

Weights Definition

After defining the geometry, the vehicle inert and propellant masses are mapped onto the beam approximation model of the vehicle. Inert masses and propellant masses are modeled as point and distributed loads over their position along the longitudinal axis of the fuselage in both the normal and axial directions. The weights are defined by the starting and ending position of the loading, and the total weight to be distributed over the range of the load. For weights acting at a single point on the vehicle, the starting and ending position of the load are the same. A visual representation of the masses mapped onto the beam approximation of the vehicle is presented in Figure 2.

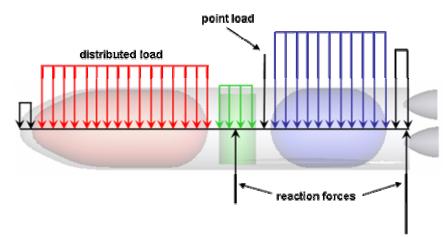


Figure 2. Visual Representation of Vehicle Weight Definition.

This methodology simulates liquid propellant contained in an integral tank structure arrangement. Also, the method does not analytically model the stress involved in the propellant tank end closures (i.e. hemispherical, elliptical). Instead an effective tank length is employed, which accounts for the distance of the tank end closures. The effective tank length for cylindrical tanks with end closures in the form of hemispherical or elliptical shape is equal to the tank barrel length plus one-third the depth of the end closures, as illustrated in Figure 3.⁵

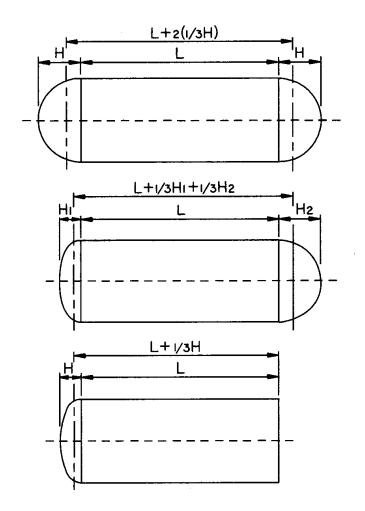


Figure 3. Effective Length of Cylindrical Tanks with Various End Closures (Jawad, *Design of Plate & Shell Structures*, p. 376).

External Loads

After defining the inert masses and propellant masses on the beam approximation model of the vehicle, the next step is modeling the external loads experienced by the vehicle at the selected load conditions. The external stress resultants are determined on a station-by-station basis along the length of the fuselage. The three external loads considered are axial force, shear force, and bending moment. Calculation of the external loads involves the defined weights of the vehicle and account for the experienced accelerations and amount of propellant available at each load condition.

Load Conditions

Prior to determining the external loads, a set of load conditions that the vehicle will be subjected to during its trajectory are defined for the structural weight estimation. Some typical load conditions used are vehicle on the pad, liftoff, maximum dynamic pressure, maximum thrust, maximum axial acceleration, the product of maximum dynamic pressure and angle of attack, and reentry. Each defined load condition also provides the location of the two simple support reaction points along with the axial acceleration, normal acceleration, propellant ullage pressure, and percent of remaining fuel at the particular point in the trajectory. Information about the load condition may be acquired from a combination of sources and programs. For the verification examples presented later within the study, the information required for each load condition was obtained from POST – a trajectory optimization program.⁶

The reaction loads determined at the simple support locations are essential in the calculation of the shear force and bending moment over the length of the vehicle, which are in a normal direction to the vehicle beam approximation model. In order to determine the axial force, the weight is distributed axially along an unsupported (free) beam model of the vehicle. Unlike the external stress resultants modeled using the simple support beam model, the calculation of the axial force does not depend on the reaction loads. Therefore the locations of the supports on vertically launched vehicles at liftoff are not important because the normal acceleration at this condition is essentially zero. After liftoff when the vehicle initiates the pitch-over maneuver of its trajectory, the locations of the reaction loads become important because the normal acceleration is no longer negligible. The locations of the simple support are determined by the user after taking into consideration such factors as the air-loading, wing loading, vehicle weight distribution, and gimbal point position of the engine at a particular point within the trajectory.

Center of Gravity

With the load conditions defined, the process to ascertain the external loads begins by determining the simple support reaction loads. First the location of the vehicle's center of gravity is calculated by the following:

$$cg = \frac{\sum_{i=1}^{n} W_{i}d_{i}}{\sum_{i=1}^{n} W_{i}}$$
(2)

where *n* is the total number of component masses defined. Utilizing Newton's 1^{st} Law that *the resultant force acting on a particle is zero*⁷, the simple support reaction loads for each load condition are calculated by summing the moments about second location to determine the first reaction load, and then summing the forces in the y-direction to determine the second reaction load. Once the reaction loads are determined they are added to the vehicle weight definition. Since the accelerations and weight definition varies throughout the vehicle trajectory, the reaction load values are updated for each load condition.

Shear Force

For homogeneous materials, the combination of Hooke's law and the flexure formula with the definition of the radius of curvature results in the following relation for the curvature of a beam subjected to a bending moment $(M)^8$:

$$\frac{1}{\rho_c} = \frac{M}{EI} \tag{3}$$

where ρ_c is the radius of curvature. From calculus, the curvature of a plane curve is expressed mathematically as⁹:

$$\frac{1}{\rho_c} = \frac{d^2 y/dx^2}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}$$
(4)

where the y is the deflection of the beam at any point x along its length. The slope of the beam at any point x is

$$\theta_s = \frac{dy}{dx} \tag{5}$$

For many problems in bending the slope is very small, which allows the denominator of eq. (4) to be taken as unity. Therefore substituting eq. (3) into eq. (4) yields the following equation that relates the bending moment to the deflection of the beam:

$$\frac{M}{EI} = \frac{d^2 y}{dx^2} \tag{6}$$

From Euler-Bernoulli beam theory, the equilibrium equations for a beam subjected to pure bending give the following relations for shear force (V) and normally distributed loading (w_v) at a point on the beam¹⁰:

$$-w_{y} = \frac{dV}{dx}$$
(7)

$$V = \frac{dM}{dx} \tag{8}$$

By successfully differentiating eq. (6) and substituting into eq. (7) and (8) yields the following:

$$\frac{V}{EI} = \frac{d^3 y}{dx^3} \tag{9}$$

$$\frac{-w_y}{EI} = \frac{d^4y}{dx^4} \tag{10}$$

The combination of eq. (9) and (10) yields eq. (7), and the integration of the distributed load in this equation yields the shear load, as defined by eq. (11)

$$V = -\int w_y dx \tag{11}$$

Following this fundamental structural analysis principle, the approximate integration of the distributed load of the defined component weights and the reaction loads station-by-station along the length of the fuselage yields the shear load at each station. Since the distance between each station along the fuselage, Δx , is relatively small compared to the overall vehicle length, the discretized technique is accurately determines the shear load over the vehicle. The distance between between each fuselage station for this study was one inch. The discretized form of eq. (11) is

$$V = -\int w_{y} \Delta x \tag{12}$$

The normal acceleration for each load condition is also applied at each station to transform the distributed weight to the normal distributed load. Also, the percentage of propellant is applied to the propellant weights at the associated tank fuselage stations for each load condition. The accuracy of the discretized method versus the theoretical method in predicting the shear force of a cantilevered beam with an end load and a simply supported beam under uniform load are presented in Figures 4 and 5, respectively.

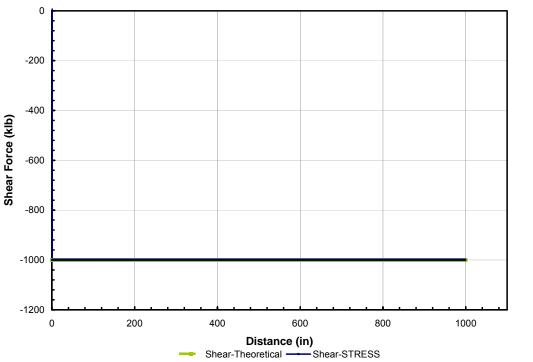


Figure 4. Shear Force Accuracy of Discretized vs. Theoretical Method for End Loaded Cantilevered Beam

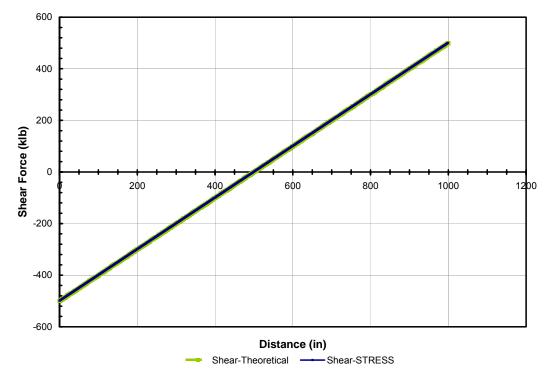


Figure 5. Shear Force Accuracy of Discretized vs. Theoretical Method for Uniformly Loaded Simple Support Beam

Bending Moment

Euler-Bernoulli equilibrium equations for a beam subjected to pure bending eq. (8) show that the integration of the shear force will result in the bending moment. By following the same procedure used for the shear load, the approximate integration of the shear load station-by-station along the fuselage length yields the bending moment at each fuselage station. The discretized form of eq. (8) is

$$M = \int V \Delta x \tag{13}$$

The accuracy of the discretized method versus the theoretical method in predicting the bending moment of a simply supported beam under uniform load and a cantilevered beam with an end load are presented in Figures 6 and 7, respectively.

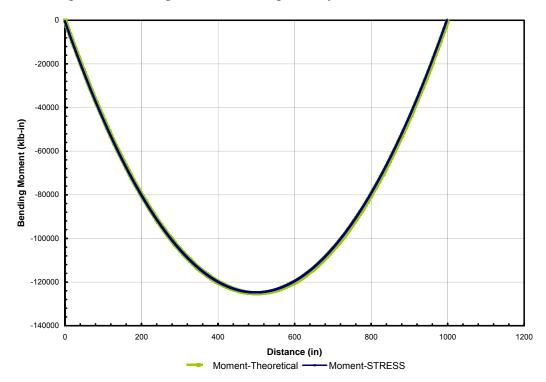


Figure 6. Bending Moment Accuracy of Discretized vs. Theoretical Method for Uniformly Loaded Simple Support Beam

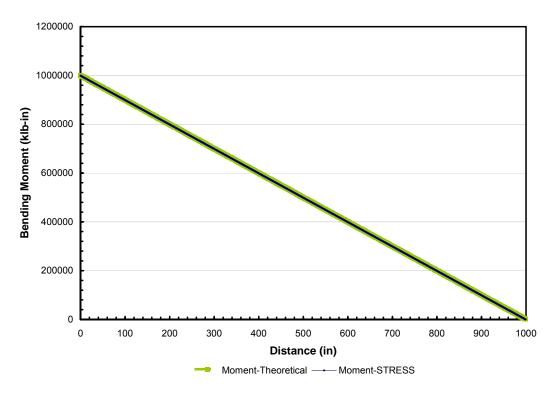


Figure 7. Bending Moment Accuracy of Discretized vs. Theoretical Method for End Loaded Cantilevered Beam

Axial Force

From Euler-Bernoulli beam theory, the equilibrium equations for a beam subjected to axial loads give the following relations for axial load and axially distributed loading at a point on the beam¹⁰:

$$-w_x = \frac{dP}{dx} \tag{14}$$

Therefore the integration of the distributed load in eq. (14) yields the axial load:

$$P = \int -w_x dx \tag{15}$$

Following the same procedure for the shear force and bending moment, the approximate integration of the axial load station-by-station along the fuselage length yields the axial load at each fuselage station. The discretized form of eq. (15) is

$$P = \int -w_x \Delta x \tag{16}$$

The accuracy of the discretized method versus the theoretical method in predicting the axial force of a cantilevered beam with under uniform load is presented in Figure 8.

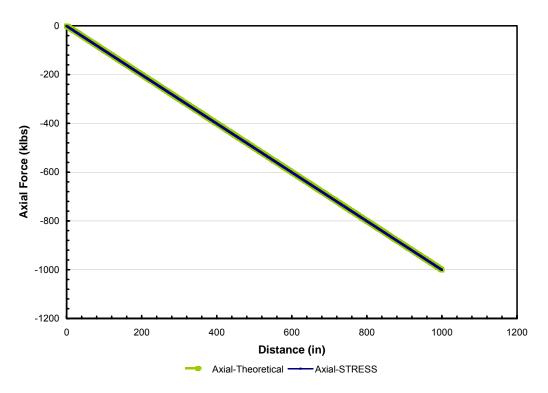


Figure 8. Axial Force Accuracy of Discretized vs. Theoretical Method for Uniform Loaded Cantilevered Beam

Also, the axial force contributions for the propellants are not added to the integral tank axial force calculation until the end of the tank is reached due to the inability of rest of the tank to withstand axial loads⁴. There is no structure within the tank that can resist the axial motion of the fluid except for the bulkheads at the ends of the tank. The reaction onto the axial load by the tank increases as the fluid becomes closer to the bulkhead, and also increases along the meridian of the bulkhead. Instead of modeling the distribution of the fluid axial load along the distance of the tank, the total axial load contribution from the propellant is loaded at the end of the tank to more accurately model the weight sustained by the tank bulkheads and reduce the complexity of the analysis.

Running Loads

Running loads are the internal shell stress resultants used to size the thickness of the shell for the fuselage and its associated components. Running loads are calculated by the product of the shell thickness and the stresses derived from the external loads (bending moment, axial force, and shear force) and the internal tank pressure (ullage pressure and head pressure). The running loads in the fuselage shell are a function of axial and circumferential position and are determined on a station-by-station basis. The top and bottom sections of the shell are loaded mainly in bending stress, the side sections are loaded mainly in shear stress, and the axial stress is loaded over the entire cross section.

Since the axial stress is loaded over the entire cross section of the shell, the axial stress contribution to the total longitudinal running load is determined by the product of the axial stress and the shell thickness:

$$N_{xaxial} = \sigma_{axial} t_s = \frac{P}{A} t_s = \frac{P}{P_{ell} t_s} t_s = \frac{P}{P_{ell}}$$
(17)

where the axial stress is the quotient of the axial load and the cross-sectional area of the shell, which is the product of the shell thickness and the elliptical perimeter of the section as defined in eq. (1).

The bending stress contribution to the axial running load is determined by the product of the bending stress and the shell thickness. The bending stress is calculated using the flexure formula:

$$\sigma_{bend} = \frac{Mc}{I_{y}} \tag{18}$$

where the distance farthest from the neutral axis along the y-axis (c) is the semi-minor axis and the moment of inertia for a thin-walled elliptical cross-section is determined by the following ¹¹:

$$I_{y} = \frac{\pi}{4} t_{s} b^{2} (b + 3a)$$
(19)

Therefore the bending stress contribution to the axial running load is determined by the following:

$$N_{xbend} = \sigma_{bend} t_s = \frac{Mc}{\frac{\pi}{4}b^2(b+3a)}$$
(20)

The actual shear stress varies over an elliptical section, but since the maximum value of the shear stress is at the side of the section, the maximum shear stress for an elliptical shell section is determined by the following:

$$\tau_{xy\max} = \frac{2V}{A} \tag{21}$$

The distribution of shear stress over the elliptical cross section is presented in Figure 9.

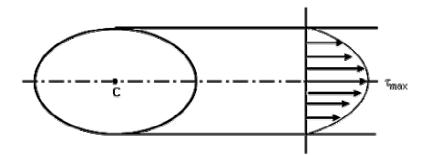


Figure 9. Shear Stress Distribution over an Elliptical Section

The shear running load is determined by the product of the maximum shear stress and the shell thickness. Since the cross-sectional area of the shell is the product of the thickness and perimeter, the shear running load is calculated by the following:

$$N_{xy} = \frac{2V}{P} \tag{22}$$

The internal tank pressure has a contribution to the axial running load and also has the only contribution to the circumferential running load. Two pressures contribute to the running loads: ullage pressure and head pressure. Ullage pressure is the gauge pressure that is developed by the pressurization of the propellant within the tank.⁸ The weight of the pressurant is assumed negligible.⁸ The ullage pressure is defined for each load condition. Head pressure is the pressure based on the height level of the propellant within the tank, and it is determined by the following:

$$p_{head} = \rho_p g_{axial} h \tag{23}$$

where the height level (*h*) and axial acceleration (g_{axial}) for the head pressure are defined for each load condition. The distribution of the head pressure, which is also known as hydrostatic distribution, shows that in an incompressible fluid at rest the pressure varies linearly with depth. Therefore the pressure must increase with depth in order to *hold up* the fluid above it.²³

The normal stress in the hoop (circumferential) and axial (longitudinal) directions for a cylindrical tank with a circular cross section are determined by the following:

$$\sigma_h = \frac{pr}{t_s} \tag{24}$$

$$\sigma_l = \frac{pr}{2t_s} \tag{25}$$

Instead of restricting the fuselage cross-sectional shape to a circle, this analytical method utilizes a general elliptical cross section which allows for both elliptical and circular sections. From

membrane stresses in pressure vessel theory, the radius of curvature for the elliptical cross section can replace the circular radius in the calculation of the hoop and axial pressure stresses.¹² Using calculus, the radius of curvature of an ellipse as a function of angle is determined by the following¹³:

$$R_{t} = \frac{\left(a^{2}\sin^{2}\theta + b^{2}\cos^{2}\theta\right)^{3/2}}{ab}$$
(26)

Since the radius of curvature varies at different points along the edge of the cross section, the following criteria was developed to select the angle for the maximum radius of curvature value based on the lengths of the semi-major and semi-minor axes:

- for a < b, $R_{t,max}$ is at 0° and 180°
- for a > b, $R_{t,max}$ is at 90°
- for a = b, $R_{t,max} = a = b = r$ (circular section)

Replacement of the radius with the radius of curvature for the determination of the hoop and axial pressure stresses are presented by the following:

$$\sigma_h = \frac{pR_t}{t_s} \tag{27}$$

$$\sigma_l = \frac{pR_l}{2t_s} \tag{28}$$

The contribution of the tank ullage and head pressures to the longitudinal and circumferential running loads are calculated by the product of the shell thickness and the axial and hoop stress, as shown below:

$$N_{xullage} = \sigma_{l_{ullage}} t_s = \frac{p_{ullage} R_l}{2}$$
(29)

$$N_{xhead} = \sigma_{l\,head} t_s = \frac{p_{head} R_t}{2} \tag{30}$$

$$N_{yullage} = \sigma_{hullage} t_s = p_{ullage} R_t \tag{31}$$

$$N_{yhead} = \sigma_{hhead} t_s = p_{head} R_t \tag{32}$$

After obtaining the individual contributions from the external loads and internal tank pressures, the total longitudinal, circumferential, and transverse running loads are determined by the following:

$$N_x = N_{xbend} + N_{xaxial} + N_{xullage} + N_{xhead}$$
(27)

$$N_y = N_{yullage} + N_{yhead} \tag{28}$$

$$N_{xy} = \frac{2V}{P} \tag{22}$$

The total axial, hoop, and shear running loads are calculated station-by-station along the fuselage for each load condition. The maximum values of the axial, hoop, and shear running loads from all of the load cases at each station along the fuselage length are used to determine the shell material thickness based on the *worst-case* scenario. This ensures that the vehicle structure will be able to withstand all of the load conditions throughout the trajectory. For each station the maximum bending moment about the neutral axis (y-axis) for an elliptical section occurs at 90° and $270^{\circ 12}$, the maximum bending shear stress for the section occurs at 0° and $180^{\circ 9}$, and the axial stress remains constant over the entire cross section. The distribution of bending moment and shear stress along the elliptical cross section, which reflect the location of the maximum values, are displayed in Figures 9 and #, respectively.

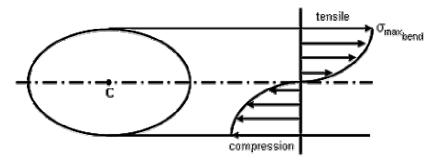


Figure 10. Bending Moment Distribution over an Elliptical Section

Therefore the *worse-case* scenario shell will be modeled as the maximum thickness corresponding to the maximum shear stress and bending moment at their respective locations to prevent structural failure. A factor of safety of 1.5 is also applied to each running load.

Structural Sizing

The maximum running loads determined at each fuselage station are used to calculate the amount of shell material required to preclude failure. The most critical point of the shell thickness is assumed to be the outermost location of the circumference, which is the position of the maximum stress experienced. The failure modes considered are ultimate strength, yield strength, and buckling. A material minimum gage restriction is also imposed as a final failure

criterion. The shell thickness is selected as the maximum thickness from the failure modes at each fuselage station.

Ultimate Strength Failure

Ultimate strength failure is based on the maximum principal stress and describes when a material fails suddenly by fracture without apparent yielding.⁸ According to the maximum normal-stress theory, the failure of a brittle material will occur when the maximum principal stress in the material reaches a limiting value that is equal to the ultimate tensile strength of the material (σ_{UTS}).⁸ The equation for the maximum principal stress is given by the following:

$$N_{1} = \frac{N_{x} + N_{y}}{2} + \sqrt{\left(\frac{N_{x} - N_{y}}{2}\right)^{2} + N_{xy}^{2}}$$
(29)

The equivalent isotropic thickness of the shell material is determined by the following:

$$N_1 = \sigma_{UTS} t_{s,UTS} \tag{30}$$

$$t_{s,UTS} = \frac{N_1}{\sigma_{UTS}}$$
(31)

Yield Strength Failure

For a homogeneous, isotropic material subjected to a general three-dimensional state of stress, the equivalent stress in the material is defined by the following equation:

$$\sigma_{eq} = \left[\sigma_x^2 + \sigma_y^2 + \sigma_z^2 - \sigma_y\sigma_z - \sigma_z\sigma_x - \sigma_x\sigma_y + 3(\tau_{yz}^2 + \tau_{xz}^2 + \tau_{xy}^2)\right]_{2}^{1/2}$$
(32)

The equivalent running load is defined by the following equation:

$$N_{eq} = \left[N_x^2 + N_y^2 + N_z^2 - N_y N_z - N_z N_x - N_x N_y + 3\left(N_{yz}^2 + N_{xz}^2 + N_{xy}^2\right)\right]^{\frac{1}{2}}$$
(33)

Since the in-plane stress resultant normal to the plane (N_z) is assumed negligible, eq. (33) is reduced to the following equation:

$$N_{eq} = \left[N_x^2 + N_y^2 - N_x N_y + 3\left(N_{xy}^2\right)\right]^{\frac{1}{2}}$$
(34)

The Von-Mises strength criterion postulates that under combined loading, the safe stress level is such that the equivalent stress is smaller than the allowable stress, which is the material yield strength.

$$\sigma_{eq} \le \sigma_{yield} \tag{35}$$

The equivalent shell material thickness based on the failure criteria is determined by the following:

$$N_{eq} \le \sigma_{yield} t_{s,YS} \tag{36}$$

$$t_{s,YS} \ge \frac{N_{eq}}{\sigma_{yield}}$$
(37)

In order to minimize the shell material weight, the shell thickness for the yield strength failure is equal to the quotient of the equivalent running load and the material yield stress.

Minimum Gage Restriction

The minimum gage restriction is used to enforce that the material thickness not be smaller than the minimum material thickness. The equivalent shell material thickness based on the minimum gage restriction is determined by the following:

$$t_{s,mg} = K_{mg} t_{mg} \tag{38}$$

where K_{mg} is the minimum gage parameter that relates the shell thickness to the minimum material thickness. This parameter is derived from the fuselage skin and shell arrangement for various stiffened shell configurations typically used in aerospace vehicles by Mark Ardema and company in *Analytical Fuselage and Wing Weight Estimation of Transport Aircraft*.¹

Buckling Failure

The maximum running loads determined at each fuselage station are used to size both the fuselage stiffened shell and general-stability frames required to preclude buckling failure. The calculations to size the fuselage shell assume a wide column behavior of the shell, and the required stability ring frames are sized using the Shanley criterion.¹⁴

Stiffened Shell

The fuselage is modeled as a long, wide column with a (length-to-width ratio ≥ 10). For shell type structures, such as a fuselage, a large portion of the material must resist axial loads caused by bending. Given that the material is also used to form the shell, the column must be spread out over a considerable width. Since the width is many times larger than the column's

thickness, buckling can occur only in a direction normal to the plane of the column. If further assumed that the edges are unsupported or to the effect that such support is negligible, the bending stiffness across its width may be neglected. Therefore the wide column may be thought of as a series of individual columns placed side by side and equally loaded.¹⁴

Minimum weight equations for wide column stiffened shells were determined by Crawford and Burns in 1963.¹⁵ The form of the equation is the following:

$$\frac{N_x}{LE} = \varepsilon \left(\frac{t_s}{L}\right)^m \tag{39}$$

where ε is the shell buckling efficiency, *m* is the equation exponent, *L* is the frame spacing, and *E* is the modulus of elasticity for the shell material. The shell buckling efficiency and equation exponent are a function of certain proportions of the stiffened shell configurations under consideration. For each equation, these geometric proportions have been varied in order to obtain a maximum shell buckling efficiency, which will in turn result in a minimum shell thickness and a minimum weight for the shell.¹⁵ All of the shell configurations used within this study has an equation exponent equal to 2, which then solving for the shell thickness leads to the following equation:

$$t_{s,B} = \sqrt{\frac{N_x L}{E\varepsilon}}$$
(40)

The shell buckling efficiency and equation exponent values are given for each shell configuration in Table I.

Shell Configuration	3	т	K_{mg}
Simple unflanged integrally stiffened	0.656	2	2.463
Z-stiffened	0.911	2	2.475
Truss-core sandwich	0.605	2	4.310

Table I. Stiffened Shell Configuration Factors for Wide Column Shell.

Stability Frame

In addition to the stiffened shell, ring frames are sized to prevent general instability failure of the fuselage using the Shanley criterion. The Shanley criterion is based on the principle that the frames act as elastic supports for the wide column shell.¹ To predict the general instability failure that could occur with the stiffened-shell segment between two frames,

Shanley associated the behavior of the structural system to the fundamental model of general instability failure – two hinged bars supported by two springs, as displayed in Figure 11.

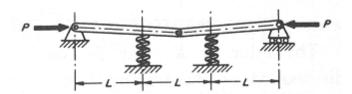


Figure 11. Model for General Instability Failure (Shanley, *Weight Strength Analysis of Aircraft Structures*, p. 65).

By modeling the shell segment as the hinged bars and the frames as the two springs located midway between each bar, Shanley derived the following expression to determine the required frame stiffness to prevent general instability.¹⁴

$$(EI)_f = \frac{C_f M D^2}{L} \tag{41}$$

The experimentally obtained value of the Shanley constant, C_f , is 1/16,000.¹⁴ By solving the expression for the Shanley's constant, which remains constant for any cross-sectional shape, the following equation is derived¹⁴:

$$C_f = \frac{(EI)_f L}{MD^2} \tag{42}$$

Deriving the expression based on the Shanley constant permits the frame problem to be handled independently of the parameters involved with the sizing the stiffened shell.

Shanley also defines the frame weight per inch length by the following expression:

$$W'_{f} = \frac{\pi k_{c} D^{2} M^{\frac{1}{2}} \rho_{f}}{L^{\frac{3}{2}}} \left(\frac{C_{f}}{k_{f} E_{f}} \right)^{\frac{1}{2}}$$
(43)

where k_f is frame stiffness coefficient, k_c is the shape correction factor for circumference of noncircular shell cross-sections, and E_f is the modulus of elasticity for the frame. The frame stiffness coefficient is determined from the quotient of the moment of inertia of the frame crosssection and the cross-sectional area of the frame.

$$k_f = \frac{I_f}{A_f^2} \tag{44}$$

Manufacturers generally use I-beam and C-shape section beams for stability ring frames within the vehicle fuselage. This methodology uses a C-shape section beam defined by Shanley for fuselage ring frames.¹⁴ The dimensions and shape of the beam are presented in Figure 12.

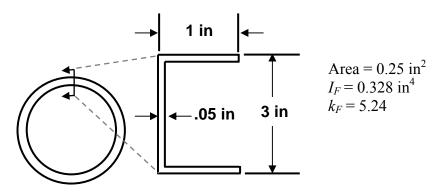


Figure 12. Shape and Dimensions of Frame Cross Section.

The shape correction factor for non-circular cross-sections allows for the application of the Shanley formulas, which are based on circular cross sections, to non-circular cross sections. The factor is calculated by dividing the perimeter of the non-circular section by the product of pi and the depth of the cross-section (D).

$$k_c = \frac{P_{non-circular}}{\pi D} \tag{45}$$

The depth of the cross-section is the diameter of a circular section and the larger of the major or minor axes for an elliptical section.

Dividing the frame unit weight by the frame density yields the ring frame cross-sectional area with respect to the fuselage cross section.

$$A_{f} = \frac{\pi k_{c} D^{2} M^{\frac{1}{2}}}{L^{\frac{3}{2}}} \left(\frac{C_{f}}{k_{f} E_{f}}\right)^{\frac{1}{2}}$$
(46)

Equating the expression of the ring frame cross-sectional area to the general cross-sectional area of a circular shell (the product of the section perimeter and the frame thickness) and solving for the thickness results in the *smeared* equivalent thickness of the frames.

$$t_{f} = \frac{k_{c}D^{2}}{2} \sqrt{\frac{C_{f}\pi N_{x}}{L^{3}k_{f}E_{f}}}$$
(47)

Assuming that the shell is buckling critical, the total thickness is the sum of the buckling shell thickness and the *smeared* frame thickness.

$$t = t_{s,b} + t_f = \sqrt{\frac{N_x L}{E\varepsilon}} + \frac{k_c D^2}{2} \sqrt{\frac{C_f \pi N_x}{L^3 k_f E_f}}$$
(48)

Minimizing the total thickness with respect to the frame spacing and solving for the frame spacing yields an expression for the frame spacing that is a function of the coefficient parameters and cross-section depth.

$$L = \left(\frac{3}{2}k_c D^2 \left(\frac{\rho_f}{\rho_s}\right) \sqrt{\frac{C_f \pi E_s \varepsilon}{k_f E_f}}\right)^{\frac{1}{2}}$$
(49)

Typically the frames used to support general stability and the fuselage shell are made of the same material. In special cases, major frames that are used to withstand the impact of large stress loads throughout the vehicle (i.e. landing gear, thrust structure) might be made of steel or other types of materials. This study assumes that the shell and frame materials are the same.

Structural Shell and Frame Sizing

The fuselage shell must satisfy all failure criteria at each station. The shell thickness was determined by selecting the maximum thickness according to the ultimate strength, yield strength, buckling, and minimum gage failure.

$$t_{s} = \max(t_{s,UTS}, t_{s,YS}, t_{s,B}, t_{s,mg})$$

If $t_s = t_{s,B}$, the shell structure is buckling critical, and the equivalent isotropic thickness of the frames (t_f) is computed using the given equation from Shanley. If $t_s > t_{s,B}$, the shell structure is not buckling critical at the optimum frame sizing. The frames are resized to make the selected shell thickness buckling critical ($t_s = t_{s,B}$). New frame spacing is computed using the shell buckling thickness equation as

$$L = \frac{t_s^2 E_s \varepsilon}{N_x}$$
(50)

This new frame spacing is used with the frame thickness equation to resize the frame.

The total thickness of the fuselage structure is calculated by the summation of the shell and *smeared* frame thicknesses. The total ideal fuselage structural weight is determined by the summation of the shell and frame weight at each station along the length of the fuselage.

$$W_T = \sum P_{elli} \left(\rho_s t_{si} + \rho_f t_{fi} \right) \Delta x_i$$
(51)

where the quantities subscripted *i* depend on position along the length of the fuselage, and distance between each station (Δx_i) is one inch.

Implementation of Analytical Methodology into GT-STRESS Computer Program

The methodology developed from fundamental beam structural analysis was implemented into a computer program to allow for the rapid estimation of the load-bearing structural weight of the launch vehicle fuselage and its associated components. Rapid approximation of the vehicle structural weight permits this design tool is useful for conceptual vehicle design studies.

The Georgia Tech Structural Tool for the Rapid Estimation of Shell Sizes (GT-STRESS) is a C++ constructed computer program that utilizes the previously described fundamental beam structural analysis to calculate the required running loads for sizing the fuselage shell and frames based on selected material and shell structure properties. From the determined shell thickness and selected material properties, the structural weight is calculated. The program simulates a launch vehicle fuselage fueled by liquid propellant contained in an integral tank structure arrangement.

The information input and basic operation of GT-STRESS are derived from RL, a computer program to calculate fuselage running loads, which was developed by Jeff Cerro, formerly of Lockheed Martin Engineering & Science Services.⁴ GT-STRESS accepts a specified input text file that describes the geometry, preliminary subsystem weights, and the load conditions experienced by the vehicle. After operation the program computes the fuselage structure weight and other vehicle component weights (i.e. propellant tanks, interstages) as specified in the input file. Along with the resulting structural weight, the program will also generate output files that contain the summary of the information received from the input file, external stress resultants over the vehicle length for each load condition, running loads for the overall vehicle, shell and frame thickness for the overall vehicle, and a structural weight breakdown based on fuselage and structural components.

GT-STRESS Input File

The program input for GT-STRESS is a text input file derived from the RL input format that describes the geometry, preliminary subsystem weights, and the load conditions experienced by the vehicle. Keywords located within the input file are utilized by the program to recognize the relevant information required to run the program. All of the data within the input file is free field format (separate values on a line by whitespace). The first line within the file is a onehundred character max descriptive title. The second line beginning with the keyword *oal* is the overall fuselage length in inches.

The next section is the vehicle geometry section. The geometry definition begins with the keyword *geom* and ends with the keyword *end_geom*. Between these two keywords are the input for the *x* location, semi-major axis, and semi-minor axis for each elliptical cross section used to define the vehicles geometry. Each line has the geometric information for one cross section, and all of the parameters are given in inches. The minimum and maximum amount of sections defined within the input file are two and ten, respectively. The initial *x* location must be at zero inches and the final *x*-location must be at the value of the overall fuselage length. An example of the geometry definition section from the input file is listed in Table II.

Table II. Example GT-STRESS Input File Geometry Definition

0 1 1	•
160 85 8	35
600 200 2	200
1800 200 2	200
2000 100 1	00
end_geom	

Preliminary vehicle weights are defined in the next section. The section begins with the keyword weights and ends with the keyword end weights. For each line within the weight section, a one word description is entered for each uniformly distributed weight. Following the description is the beginning x-location of the load (in inches), then the ending location, and then the total weight in pounds to be distributed over the given range. For point loads the end location equals the beginning load location. Propellant loads have a slightly different input that allows the program to obtain additional propellant property information. For propellant loads, the keyword *propellant* is entered at the beginning of the line, followed by the beginning load location, ending load location, and weight. Following the weight value is a descriptor of the propellant type. The propellant type descriptor instructs the program to select and store the proper propellant density from a text file database that is external to the GT-STRESS program. Head pressure loads contribution to the overall bending and axial forces within the tank area of the fuselage are computed using the selected propellant density. Note that the structural weight for the propellant tanks are entered under separate descriptors in order to allow their weight to be used as feedback variables for vehicle weight convergence without including the propellant weight. GT-STRESS operation limits the maximum amount of weights defined within the input

file to thirty-five in order to minimize the computational effort of the program and ensure that the time required to determine the structure weight is kept within a few minutes.

The following section identifies the vehicle components sized by GT-STRESS. Structural components are subsystem components of the fuselage structure selected from the weight definition to have their actual weight value calculated and replaced into the weight definition. The section begins with the keyword structure and ends with the keyword end structure. Each line contains the one word description from the weights section that describes the structural component. GT-STRESS uses these components as feedback variables to converge the vehicle structural weight by fixed point iteration (FPI). Weight values defined for each of these components within the weights section are perceived as initial guess values. After the first analysis of the vehicle by GT-STRESS, these initial weight values are replaced by the structural weight calculated using the analytical method within the program. Once the weight values are replaced, GT-STRESS runs another iteration of analysis of the vehicle and calculates new values of the structural components weight and vehicle weight based on the new initial values taken from the last iteration. This iteration continues until the difference between the previous and present values of the total vehicle structural weight reaches absolute convergence. The absolute convergence criteria programmed within GT-STRESS is that the difference between the vehicle weight values is less than or equal to 1×10^{-4} pounds. After the vehicle structural weight has converged, weight values of the structural components are recalculated and included in an output file by the program. A flow chart of the convergence process to obtain the structural component weight is displayed in Figure 13.

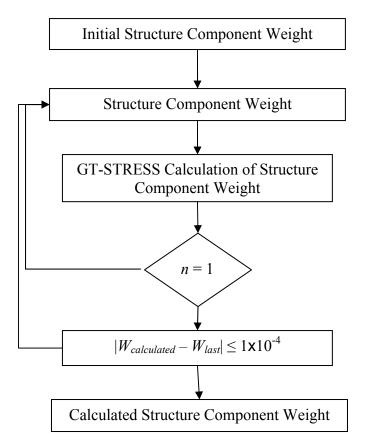


Figure 13. Convergence Process for Determining Structure Component Weight.

The shell and frame materials along the length of the vehicle are defined in the next section. The section begins with the keyword *material* and ends with the keyword *end_material*. The first line in this section beginning with the keyword *default_shell* identifies the default shell configuration for the fuselage, which would be one of the three stiffened shell configurations defined in Table I. The second line beginning with the keyword *default_mat*, is the default material selected for the fuselage. Both the shell and frame are composed of the same material within the program. GT-STRESS uses the default shell configuration and material to calculate the thickness and weight of the shell and frame at each station where the material and shell configuration is not specifically defined. Each following line until the end of the section is describes the material and shell structure types that are different from the default selections along the length of the fuselage. The line begins with a one-word material defined within a text file database external to the program. A variety of homogeneous isotropic materials and a generic composite material defined within the database file. Following the material description is the beginning *x*-location of the material (in inches), then the ending location, and then a one-word

description of the shell configuration type for the given range. The coefficient information for the shell configurations presented in Table I are hard coded into the GT-STRESS program and recognized by the associated keywords presented in Table III. Any discrepancy between the material or shell configuration descriptions in the input file and their recognition by GT-STRESS program will result in the replacement of their associated values with the values of the defaults defined in the input file. If there is any discrepancy between the default descriptions and their recognition by GT-STRESS, then their associated values will be replaced with the default values hard coded within GT-STRESS for aluminum and Z-stiffened shell configuration. An example of the material definition section from the input file is listed in Table IV.

Table III. GT-STRESS Keyword for Stiffened Shell Configurations.

Shell Configuration	GT-STRESS Keyword
Simple unflanged integrally stiffened	simple
Z-stiffened	z-stiffened
Truss-core sandwich	sandwich

Table IV. Example Material Definition Section of GT-STRESS Input File.

material		
default_shell	z-stiffene	ed
default_mat	aluminum	
aluminum	180 200	z-stiffened
other	250 300	z-stiffened
beryllium	501 1000	z-stiffened
titanium	1080 2000	z-stiffened
end_material		

The final input section defines the load conditions experienced by the vehicle. Each load condition or loadcase is defined in its individual section. The section begins with the keyword *loadcase* #, where # is a sequential loadcase number beginning with 1 for the first load condition, and ends with *end_loadcase*. GT-STRESS is limited to a maximum of fifteen loadcases. Formatting for all of the loadcase sections are the same. A descriptive loadcase title of 80 characters is entered on the first line beginning with the keyword *title*. The locations of the two simple support reaction points are specified by the keywords x1 and x2. Normal and axial accelerations for the load condition are specified in g's by the keywords *axial_accel* and *normal_accel*. The sixth line, which begins with the keyword *prop_ullage*, defines the propellant tank ullage pressure in psi for each of the propellants defined within the *weights*

section. Following *prop_ullage*, each subsequent pressure value is associated with the order the propellant is defined within the weights section. The next line beginning with the keyword *pct_fueled* defines the percent of propellant remaining within the tanks at the particular load condition. Each subsequent percent value after the *pct_fueled* keyword is associated with the order the propellant is defined within the *weights* section. An example of the loadcase definition section from the input file is listed in Table V.

Table V. Example Loadcase Definition Section of GT-STRESS Input File.

loadcase 1	
title	Liftoff
xl	160
x2	1440
axial_accel	1.32
normal_accel	0.5
prop_ullage	25 25
pct_fueled	100 100
end_loadcase	

After the final loadcase is defined, the last line of the file ends with the *end_loadcase* keyword for the final loadcase. Any subsequent lines after this line will result in an error in the GT-STRESS and cause the program to not operate. An example GT-STRESS input file is located in Appendix A.

GT-STRESS Propellant and Material Property Files

The propellant densities used to calculate the head pressure load and the material properties used to size the fuselage shell and frame structures are located in text files that are external to the GT-STRESS program. The propellant and material text files are propellant.txt and material.txt, respectively. These files are placed into the same file directory as the GT-STRESS program executable, and the incapability of the program to locate these files will result in immediate termination of the program.

Located within the propellant text file is a database of typical liquid propellants¹⁸ and HEDM-based propellants¹⁹ used for launch vehicles and keyword descriptions used to identify these propellants. The propellant type descriptor within the *weights* section for a propellant is used to locate the appropriate density within the propellant file. If the propellant descriptor is not found within the file, GT-STRESS gives an error message and terminates the program immediately. The propellants and propellant descriptors within the default propellant file are defined within Table VI.^{18, 19} The propellant text file is located in Appendix B.

Keyword	Propellant
LOX	Liquid Oxygen
LH2	Liquid Hydrogen
H2O2	Hydrogen Peroxide
N2O4	Nitrogen Textroxide
RP1	Rocket Fuel
N2H4	Hydrazine
MMH	Monomethyl Hydrazine
UDMH	Unsymmetrical Dimethyl Hydrazine
FL, F2	Liquid Flourine
CH4, METHANE	Methane
JP	Jet Fuel
QUAD	Quadricyclane(C7H8)
BCP	BCP(C6H8)
AFRL1	AFRL-1
CINCH	CINCH(C4H10N4)
OCTAD	Octadiyne(C8H10)

Table VI. Propellant Keywords from Default Propellant Database.^{18, 19}

The material properties for the fuselage and its associated components are assumed isotropic and homogeneous, which also include a generic laminate and core configuration of an aerospace grade composite material. The materials database file contains keyword descriptions of each material along with their associated modulus of elasticity, density, ultimate tensile strength, yield strength, and minimum gage thickness. Material descriptions defined within the *material* section of the input file are used to identify the appropriate material properties within the material file. In the case that the material description given in the input file is not located within the file, GT-STRESS will use the properties of the default material. Yet if the default material description is not located within the default material file, GT-STRESS will output an error message of the situation to the screen and use the aluminum material properties that are hard coded into the program. The materials and material descriptors within the default materials file are defined within Table VII.²⁰ An abbreviated version of the default material text file is presented in Table VIII. The material text file is located in Appendix C.

Keyword	Material
aluminum	Aluminum
titanium	Titanium
beryllium	Beryllium
magnesium	Magnesium
steel	Steel
composite	Aerospace Grade Carbon Fiber Epoxy Composite
al-li	Aluminum Lithium

Table VII. Material Keywords from Default Material Database

Table VIII. Abbreviated Version of the Default Material Text File

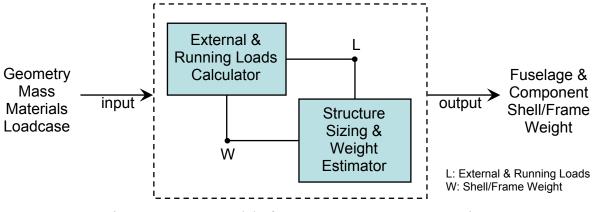
Material	E(psi)	rho(lb/in^3)	UTS(psi)	YS(psi)	min gauge(in)
aluminum	10300000	0.101	67000	55000	0.0056
titanium	16000000	0.160	130000	124000	0.0075
beryllium	43900000	0.0666	53700	34800	0.0056
magnesium	6500000	0.064	39000	24000	0.0056
steel	29700000	0.284	108000	68200	0.0075
composite	27557171	0.065029	117481	76870	0.0375
al-li	11200000	0.0918	74000	65300	0.0056

Using the external files as a database for the material and propellant properties provides the ability for the addition and modification of material and propellant keywords and properties within the database without affecting the functionality of the program or changing the program source code.

GT-STRESS Program Operation and Output

At the execution, the GT-STRESS program prompts the user to enter the name of the input file, the root name of the output file, and the value of the convergence relaxation factor. After entering the relaxation factor value GT-STRESS starts operation by reading in the geometry, preliminary weight, material, and loadcase data from the input file. The program continues by initiating the analysis to determine the external loads and running loads required to size the shell and frame material and ascertain the fuselage structure weight.

After the first analysis of the vehicle by GT-STRESS, the initial weight values of the components defined in the *structure* section of the input file are replaced by the structural weight calculated using the analytical method within the program. Typically there are 3-5 structural components for each stage of an expendable liquid propellant launch vehicle and 5-10


components for reusable launch vehicles. Once the component weight values are replaced, GT-STRESS runs another iteration of analysis and calculates new values of the components weight and vehicle weight based on the new initial values taken from the last iteration. After each iteration GT-STRESS outputs the current calculated vehicle structural weight and iteration number to the screen. This fixed point iteration (FPI) process continues until the difference between the previous and present values of the total vehicle structural weight reaches absolute convergence.

If the convergence process of the vehicle becomes unstable or the value of the component initial masses are vastly different from the converged computed values, reaching convergence for the vehicle structural weight can require a larger amount of iterations. Therefore relaxation was integrated into the FPI process to introduce damping into the convergence process and improve the stability. A relaxation factor (α) is introduced into the feedback variables of the FPI process by the following expression:

$$W_{next} = \alpha W_{calculted} + (1 - \alpha) W_{last}$$
(52)

where W_{last} is the component weight from the previous iteration, $W_{calculated}$ is the component weight from the current iteration, and W_{next} is the component weight value fed back to the weight definition. Relaxation essentially takes a weighted average value of the component weight calculated from the previous and present iterations and feeds back this value to the weight definition. These averaged values of the feedback variables allows the vehicle weight to reach convergence quicker for a stable problem with extreme initial masses or reach a happy medium for an unstable problem. The relaxation factor value is between 0 and 1. A value of zero will only feedback the initial component masses, a value of one will continue feeding back the recent calculated value for each iteration as the basic FPI process, and $\frac{1}{2}$ is an average value. An equivalent Multidisciplinary Analysis (MDA) model of the program operation is presented in Figure 13.

After the vehicle structural weight has converged, weight values of the structural components are recalculated and a series of output files are generated by the program. The output files and explanations of their contents are presented in Table V.

File Extension	Description
.cog	center of gravity information for each iteration
.dat	shell & frame weight by component and fuselage
.lod	external stress resultants and running loads over the vehicle length for each load condition
.out	shell & frame weight by component and fuselage for each iteration
.siz	shell and frame thickness for the overall vehicle
.sum	summary of the information received from the input file

Table IX. GT-STRESS Output Files.

Verification and Correlation with Existing Launch Vehicle Components

The analytical methodology for determining the structural weight of the fuselage and associated components of launch vehicles was applied to an existing Evolved Expendable Launch Vehicle (EELV) and the External Tank (ET) of the Space Shuttle for verification and correlation. These two vehicles were selected for validation of the methodology because extensive non-proprietary weight breakdown statements for the vehicles were available and the required information for the load cases could be determined from their trajectories. After calculating the load-bearing structural weight of the vehicle components, statistical techniques were used to estimate the relationship between the weight calculated by GT-STRESS and the actual vehicle load-bearing structural weights.

Evolved Expendable Launch Vehicle Analysis

The EELV used for verification of the methodology investigated in this study is based on the Boeing Delta-IV Heavy EELV, which is displayed in Figure 15. The launch vehicle geometry, inert masses, propellant masses, material type, and structural configuration are very similar to that of the Delta-IV Heavy. The trajectory for the EELV was modeled after the Geostationary Transfer Orbit (GTO) mission for the Delta-IV Heavy and simulated using POST. Majority of the information used to estimate the values for the vehicle parameters and trajectory came from the *International Reference Guide to Space Launch Systems*.¹⁶ The dimensions, masses, and structure properties of the EELV are presented in Table X.

After collecting all of the required information, a GT-STRESS input file was created for the vehicle. The load conditions examined for the vehicle were liftoff, maximum dynamic pressure (max q), maximum dynamic pressure and angle of attack (max q-alpha), maximum thrust, and maximum axial acceleration. The required parameters for each load case were obtained from the simulated trajectory determined by POST and are listed in Table XI. Since GT-STRESS's modeling capability is limited to a single fuselage with all of its associated components arranged in-line throughout the length of the vehicle, the Liquid Rocket Boosters (LRBs) were modeled as point loads at their attachment location to the core booster. The LRB structure remains constant at the point for the load conditions it is involved with and the propellant loads are modeled by their percentage with each load condition. In the final load condition the LRBs are not modeled with the vehicle since they have already separated, and this load condition has an independent input file from the others since the weight statement for the input file was different from the others.

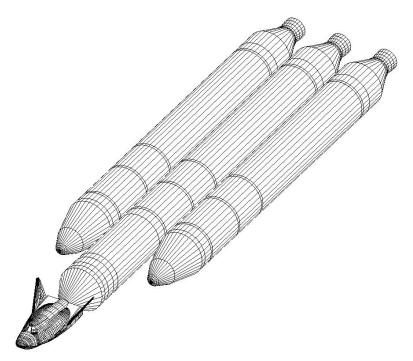


Figure 15. Boeing Delta-IV Heavy EELV

	Stage 1	Stage 2
Dimensions		
Length	133.9 ft	39.9 ft
Diameter	16.7 ft	16.7 ft
Mass		
Propellant Mass	440 klb	60 klb
Inert Mass	59 klb	7.7 klb
Gross Mass	499 klb	67.7 klb
Structure		
Туре	Tanks: isogrid	LH ₂ tank: isogrid
	Interstage: skin-stringer	LOX tank: monocoque
	Centerbody: skin-stringer	
Material	Tanks: aluminum	aluminum
	Interstage: graphite-epoxy	
	Centerbody: graphite-epoxy	

Table X. Dimensions, Masses, and Structure Properties of the EELV.¹⁶

Load case	1	2	3	4	5
title	liftoff	max q	max q-alpha	max thrust	max axial accel
x1 (in)	2284	0	0	0	0
x2 (in)	2285	2285	2285	2285	2285
axial_accel (g's)	1.1945	1.44	2.193	5.6162	6.0
normal_accel (g's)	6.92E-5	0.0001	0.514	0.0012	6.4E-4
prop_ullage (psi)*	30	30	30	10	10
	30	30	30	10	10
	30	30	30	10	
	30	30	30	10	
pct_ fuel (%)*	100	71	53.3	7.28	5.26
	100	71	53.3	7.28	5.26
	100	67	36	10	
	100	67	36	10	

Table XI. EELV Load Cases and Required Parameters.

*order of propellant tanks: CCB LOX, CCB LH₂, LRB LOX, LRB LH₂

The focus of the analysis for the EELV was the common core booster (CCB). Within the CCB the focus of the analysis is determining the structure weight of the components of the first stage since the geometry and weights for second stage and fairing are not given in detail. The structural components that are selected are the first stage liquid hydrogen tank, liquid oxygen tank, centerbody (intertank), and interstage. The propellant tanks structure type was substituted with the truss-core sandwich configuration since GT-STRESS could not accommodate the isogrid structure type. The graphite-epoxy for the interstage and centerbody were substituted with the composite material defined in the material database since the properties of that particular graphite-epoxy were unknown. Actual weights of the structural components under investigation are listed in Table XII. The input files for the EELV are located within Appendix D.

Component	Weight (lb)
EELV LOX tank	4926
EELV LH2 tank	10937
EELV Centerbody	3719
EELV Interstage	5365

Table XII. Actual Structural Component Weights for the EELV.

Space Shuttle External Tank

The entire inert mass, propellant mass, material, and geometry information for the space shuttle external tank was made available from the *Shuttle Design Data and Mass Properties* comprised by Lockheed Martin Engineering & Science Services.¹⁷ The dimensions, masses, and structure properties of the ET are presented in Table XIII. A picture of the space shuttle external tank is presented in Figure 16.

Table XIII. Dimensions, Masses, and Structure Properties of the ET.¹⁶

	External Tank	
Dimensions		
Length	154.2 ft	
Diameter	27.6 ft	
Mass		
Propellant Mass	1589 klb	
Inert Mass	59.5 klb	
Gross Mass	1648 klb	
Structure		
Туре	Skin-Stringer	
Material	Aluminum	

Figure 16. Space Shuttle External Tank.

("Shuttle external tank deal extended with Lockheed", Spaceflight News, June 14, 2002)

After accumulating all of the required information, a GT-STRESS input file was created for the ET. The trajectory for the Space Shuttle ascension was simulated using the POST sample input file for the Space Shuttle. Similar to the LRBs for the EELV, the Solid Rocket Boosters (SRBs) were modeled as point loads at their attachment location to the ET. Since the amount of propellant for the SRBs change at each load condition, each load condition was ran individually in GT-STRESS because the weight statement for each input file is different. The orbiter is modeled as two point loads at the locations of the orbiter attachment bars on the ET. The load conditions examined for the ET and their required parameters are presented in Table XIV.

Load case	1	2	3	4
title	liftoff	max q	max q-alpha	max thrust
x1 (in)	1847	666	666	690
x2 (in)	1848	1372	1372	1723
axial_accel (g's)	1.2356	1.3193	1.462	2.9976
normal_accel (g's)	0	0.3857	0.3477	6.2E-6
prop_ullage (psi)*	31	31	31	30
	36	36	36	30
pct_fuel (%)*	100	83	87	3.0
	100	83	87	3.0

Table XIV. ET Load Cases and Required Parameters

*order of propellant tanks: LOX, LH₂

The focus of the analysis for the ET was determining the structural weight of the liquid hydrogen tank, the liquid oxygen tank, and the interstage. The structural components within the input file are the liquid hydrogen tank, the liquid oxygen tank, and the interstage. The input files for the external tank are located within Appendix E and the actual weights for the external tank components are in Table XV. Note that the ET Intertank weight does not include the attachment load bar for the SRBs in order to only account for the structural weight of the component.

Component	Weight (lb)
ET LOX tank	12520
ET LH2 tank	31739
ET Intertank	10374

Table XV. Actual Structural Weights for the ET.

GT-STRESS Result Data for Validation Cases

The structural component weights and total vehicle structural weight calculated by GT-STRESS for the EELV and ET are given in Table XVI. Portions of the output files generated for the EELV analysis are presented in Appendix F. Graphs of the Axial Load Magnitude along the fuselage length for each load condition of the EELV and ET are displayed in Figures 17 and 18, respectively. Graphs of the Axial Load Magnitude, Shear Load, and Bending Moment along the fuselage length for each load condition of the EELV and ET are located in Appendix G and H. A graph of the fuselage shell and frame thicknesses along the fuselage length for the EELV and ET are presented in Figure 19 and 20.

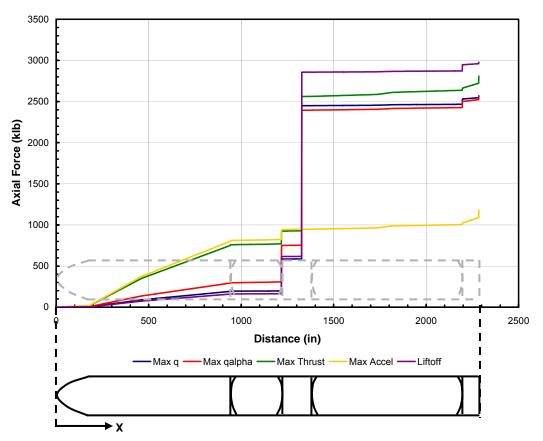


Figure 17. Axial Load Magnitude Variation along the EELV Fuselage for each Load Condition.

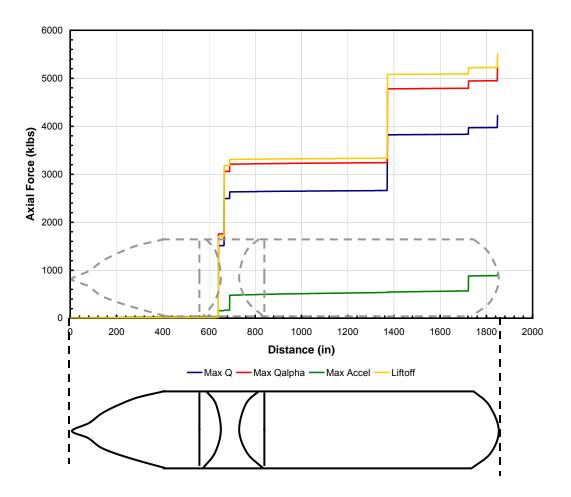


Figure 18. Axial Load Magnitude Variation along the ET for each Load Condition.

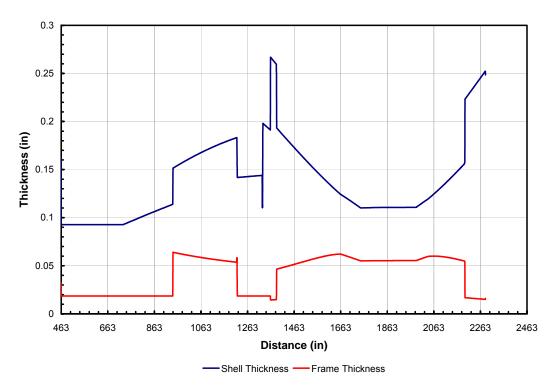


Figure 19. Fuselage Shell and Frame Thickness Variation along the EELV.

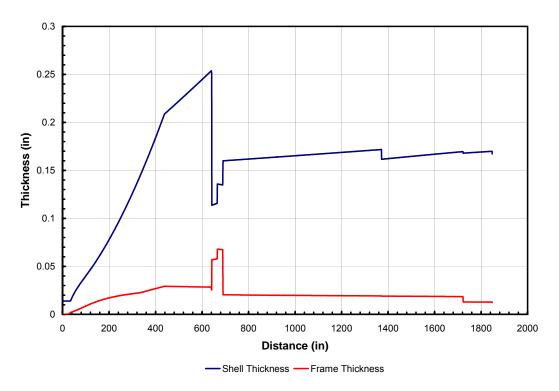


Figure 20. Shell and Frame Thickness Variation along the ET.

	Actual Weight (lb)	GT-STRESS Weight (lb)	% Error
ET LOX tank	12520	8970	28.35
ET LH2 tank	31739	22502	29.10
ET Intertank	10374	5662	45.42
EELV LOX tank	4926	3977	19.27
EELV LH2 tank	10937	9709	11.22
EELV Centerbody	3719	2036	38.77
EELV Interstage	5365	2277	57.56

Table XVI. Actual and Calculated Structural Weights for the EELV and ET.

The percent error between the actual structural component weight and the weight calculated from GT-STRESS ranges from 11.22% to 57.56%. On average, the error for the propellant tanks is significantly smaller than the error values for the other components. Regardless of the component type, the large percent error overall indicated that the structural analysis method used to estimate the fuselage stiffened shell and stability frame weight was unable to account for the total structural component weight. In order to resolve the large error, a linear regression of the actual structural weight by the calculated weight was conducted in order to determine a factor that accounts for the percentage of the structure weight not represented in the analytical method.

Regression Analysis

By determining the actual fuselage component weights from the weight statements of the two launch vehicles, a relation between the calculated load-bearing structure weights obtained from GT-STRESS and the actual load-bearing structure weights and primary structure weights are determined using linear regression. Applying linear regression develops the relation of the estimated component weights of the launch vehicle to the calculated weights from GT-STRESS using a straight line

$$y = \beta_1 x + \beta_0 \tag{53}$$

where *y* is the value of the estimated weight, β_1 is the slope of the regression line, *x* is the weight value obtained from GT-STRESS, and β_0 is the *y*-intercept. The regression line is determined by

using the *method of least squares*, where the sum of the squares of the residual errors between the actual data points and the estimated data points on the regression line is minimized. Therefore a straight line is drawn through the ordered pairs of weight data so that the collective deviation of the actual weight above or below the line is minimized. Using the regression technique allows for the formation of an expression for the estimated weight as a function of the calculated weight from GT-STRESS.

The accuracy of the regression in the prediction of the estimated component structural weight from the GT-STRESS calculated weight is represented by the coefficient of variation, which is also denoted as the R^2 value. The R^2 value is interpreted as the reduction in residual error due to the regression technique.¹ An R^2 value of 1 represents a perfect fit of the regression line to the data while an R^2 value of zero represents denotes that regression analysis does not provide any improvement in fitting the data. The regression analysis and determination of the R^2 value for the structural weight data used with this study was conducted using Microsoft EXCEL.

The regression analysis previously described is used to develop a relationship between the component structural weights calculated from GT-STRESS and the actual component weights. For the regression line the *y*-intercept term is set to zero knowing that a calculated weight of zero will result in a true actual weight of zero. This simplified version of the linear equation allows the expression to be applied to a large spread of weights and compared with other regression data for analytical weight estimation.

The analytical methodology implemented into the GT-STRESS program only predicts the load-bearing structure of the shell and stability frames. Structural weight of the components consists of all load-carrying members, which include such things as bulkheads, frames, minor frames, covering, and covering stiffeners. This classification of the structural weight is equivalent to the structural members that comprise the structures of the integral propellant tanks. Applying linear regression to the actual and calculated values of the propellant tanks of the launch vehicles used for verification yields the following equation for estimating structural weight:

$$W_{actual} = 1.3665 W_{STRESS} \tag{54}$$

The R^2 value for this linear curve-fit is 0.9948. Based on the linear regression, the calculated weight must be increased by about 36.7% to get the actual structure weight. The linear regression of the structural weight is displayed in Figure 21.

Primary weight is comprised of all load-bearing members as described for the structural weight along with supplementary structure items that are used to support the load-bearing members and secure other vehicle components to the structure. Some of these additional structure items include joints, fasteners, keel beam, fail-safe straps, attachment fittings, and pressure web.¹ This classification of the primary weight is equivalent to the structural members and secondary items that comprise the non propellant tank structures, such as the interstage, intertank, and centerbody. The resulting linear regression equation for the estimation of the primary weight from the calculated weight is

$$W_{actual} = 1.8973 W_{STRESS} \tag{55}$$

The R^2 value for this linear curve-fit is 0.9917. Based on the linear regression, the calculated weight must be increased by about 90% to get the actual primary weight. The linear regression of the primary weight is displayed in Figure 22.

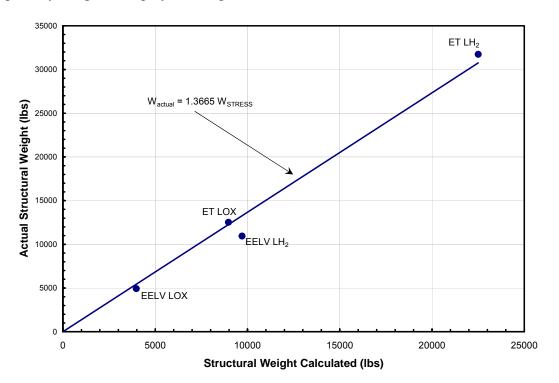


Figure 21. Linear Regression of Structural Weight.

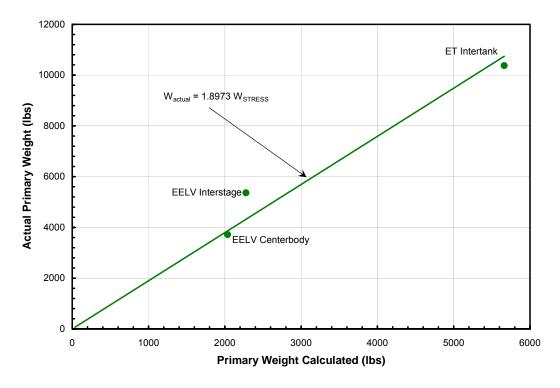


Figure 22. Linear Regression of Primary Weight.

Due to the limited quantity of data points for the regression analysis of the structural and primary weight, the resulting equations relating the component weight calculated in GT-STRESS to the actual structural and primary weights are questionable. Validation of the resulting correlation between the calculated and actual component structure weight required either a larger quantity of data points to generate a regression or that the current regression followed a trend of a larger data set that conducted a very similar analysis. In *Analytical Fuselage and Wing Weight Estimation of Transport Aircraft*, Mark Ardema and company created a computer program, PDCYL, which employed the same basic fundamental beam structure analysis used within GT-STRESS to determine the structural weight of eight conventional transport aircraft fuselage.¹ Linear regression analysis of the program generated data and the actual values yielded the following correlation for the fuselage structure and primary weights:

$$W_{actual} = 1.3503 W_{PDCYL} \tag{56}$$

$$W_{actual} = 1.8872W_{PDCYL} \tag{57}$$

The correlations between the actual and calculated structure weights from the regression of the aircraft fuselage data are very similar to the regression equations for the launch vehicle fuselage data. The trends from the regression of the structure and primary weights for both data sets are

very comparable, as displayed in Figures 23 and 24, respectively. Therefore the close resemblance of the trends and correlation of the estimated structural and primary weight from GT-STRESS to PDCYL validates that the launch vehicle fuselage and component structural weight are accurately represented.

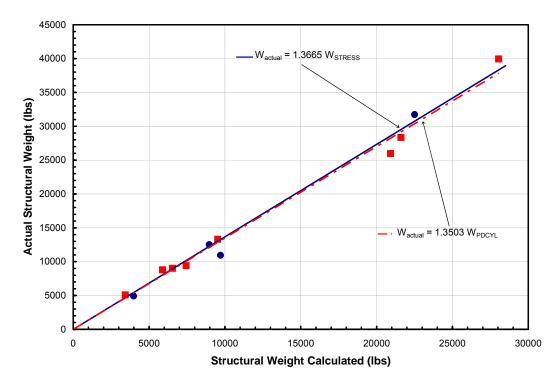


Figure 23. Regression Comparison of Structural Weight Results from GT-STRESS and PDCYL.

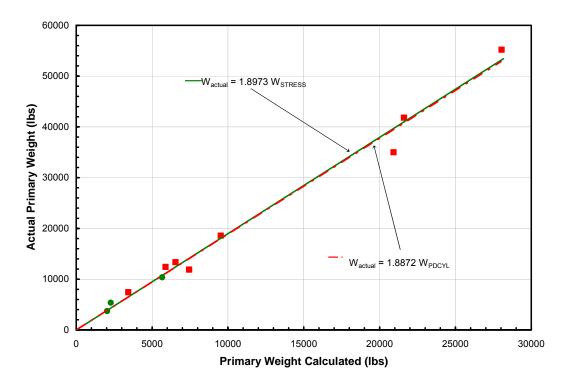


Figure 24. Regression Comparison of Primary Weight Results from GT-STRESS and PDCYL.

Integration of GT-STRESS into Multidisciplinary Environment

In addition to its functionality as a *stand alone* executable program to calculate vehicle structural weight, GT-STRESS can also be employed as another contributing analysis (CA) in the vehicle development design structure matrix. By obtaining the load condition information from the trajectory CA and the preliminary vehicle weights from the weights & sizing (W&S) CA, GT-STRESS can determine the fuselage component structural weight and primary weight. The weight breakdown of this information can be fed back to the W&S CA, and the cycle between the trajectory, W&S, and GT-STRESS CAs can continue iteration until convergence.

To demonstrate the program's ability as a CA within the design process, GT-STRESS was implemented into a multidisciplinary runtime environment program known as ModelCenter.²² A ModelCenter Filewrapper was developed for the program which allowed the generation of an input file, execution of the program, and generation of the output data within the ModelCenter environment without any external execution. The objective of this demonstration is to determine the weight of the EELV using the multidisciplinary approach for a single iteration, verify the resulting structural weights with the values generated from the stand alone GT-STRESS, and generate a weight breakdown statement (WBS) of the vehicle using the calculated weight and the regression equations. The trajectory CA is a Microsoft EXCEL spreadsheet that delivers the acceleration and percent of remaining propellant for each load condition from the POST output for the vehicle to the GT-STRESS CA. The GT-STRESS CA calculates the component structure weight using the delivered load condition information and the previously defined information from the input file, and transfers the calculated component weights to the W&S CA. The W&S CA is also a spreadsheet that multiplies the weights by their associated correlation factors and determines the entire structure weight breakdown of the vehicle. A design structure matrix (DSM) of the information process between the CA's is presented in Figure 25.

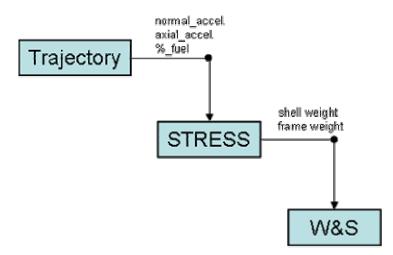


Figure 25. Design Structure Matrix.

As expected, the calculated values of the structure weight from the GT-STRESS CA were the same as the values calculated from the stand alone version, proving that the data flow of load condition information from the trajectory CA was successful. The W&S CA generated a WBS for the EELV structure weight based on the product of the weights transferred from the GT-STRESS CA and their corresponding correlation factors. Printed copies of the spreadsheets for the trajectory CA and W&S CA are located in Appendix I. A view of the ModelCenter interface with the three CAs and the resulting weight values is displayed in Figure 26. The actual component structure weight values, the GT-STRESS calculated values, and the GT-STRESScorrelated weight values are presented in Table VIII.

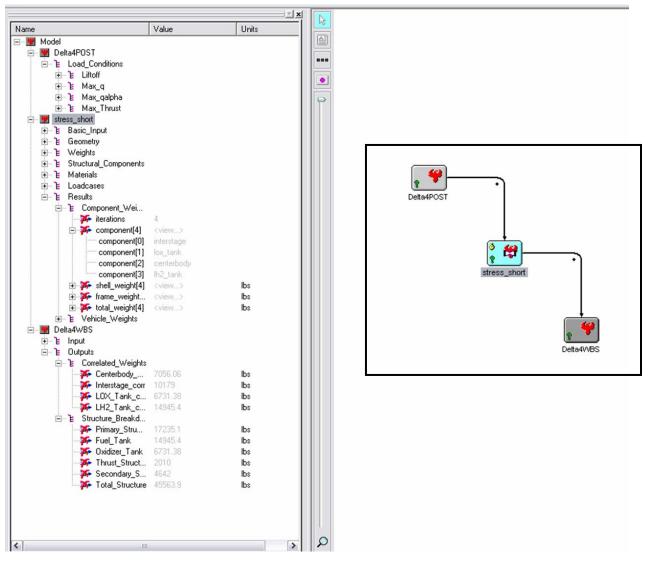


Figure 26. ModelCenter Interface of Multidisciplinary Analysis Demonstration.

	Actual Weight (lb)	GT-STRESS Weight (lb)	% Error
ET LOX tank	12520	12257	2.10
ET LH2 tank	31739	30749	3.12
ET Intertank	10374	10742	3.55
EELV LOX tank	4926	5436	10.35
EELV LH2 tank	10937	13268	21.31
EELV Centerbody	3719	3863	3.87
EELV Interstage	5365	4320	19.48

Table XVII. Actual and Correlated Structural Weights for the EELV and ET.

Conclusion

A method based on fundamental beam structure analysis to accurately determine structural weight of the vehicle fuselage and components at a minimized cost of time and computational effort was developed. The analytical methodology was implemented into the software tool GT-STRESS for rapid estimation of fuselage & component load-bearing structural weight. The correlation and accuracy of calculating structural component weight by GT-STRESS was verified by sizing components of existing launch vehicles and comparing the results to a similar methodology employed for transport aircraft fuselage weight estimation.

Acknowledgements

The author would like to thank Jeff Cerro at NASA Langley Research Center and the members of the Space Systems Design Lab (SSDL) at Georgia Institute of Technology for their assistance and support during the development of this project.

References

- 1. Ardema, M.D., et. al, *Analytical Fuselage and Wing Weight Estimation of Transport Aircraft*. NASA/TM-110392, May 1996.
- 2. Crawford, R.F., Burns, A.B., *Minimum Weight Potentials for Stiffened Plates and Shells*. AIAA Journal, April 1963; Vol. 1: No. 4.
- 3. *Circumference/Perimeter of an Ellipse*. Numericana. Available from: http://home.att.net/~numericana/answer/ellipse.htm
- 4. Cerro, J.A., *RL*, a Computer Program to Calculate Running Loads for Integral-Tank Aerospace Vehicle Fuselages. Hampton, VA: Lockheed Martin Engineering & Science Services, April 1996.
- 5. Jawad, M.H., *Design of Plate & Shell Structures*. New York: American Society of Mechanical Engineers, 2004.
- Powell, R.W., et. al., Program To Optimize Simulated Trajectories (POST), Utilization Manual, Volume II, Version 5.2. Hampton, VA: NASA Langley Research Center, Denver, CO: Martin Marietta Corporation, October 1997
- 7. Beer, F.P. and Johnston, E.R., *Vector Mechanics for Engineers: Statics*. Sixth Edition. New York: McGraw-Hill, 1996.
- 8. Hibbler, R.C., *Mechanics of Materials*. Fourth Edition. Upper Saddle River, NJ: Prentice Hall, 2000.
- 9. Shigley, J.E., *Mechanical Engineering Design*. Second Edition. New York: McGraw-Hill, 1972.
- 10. Bauchau, O.A., *Aerospace Structural Analysis*. Atlanta, GA: Georgia Institute of Technology, December 2002.
- 11. *Fundamentals of Lightweight Design: Formulary*. Institute for Lightweight Construction, Rheinisch-Westfaeli Technical University Aachen. Available from: http://www.ilb.rwth-aachen.de/KLAUSUREN/formel.pdf
- 12. Brun, E.F., *Analysis and Design of Flight Vehicle Structures*. Fourth Edition. Cincinnati, OH: Tri-State Offset, 1965.
- 13. Ellipse. Wolfram Research. Available from: http://mathworld.wolfram.com/Ellipse.html
- 14. Shanley, F.R., *Weight Strength Analysis of Aircraft Structures*. Second Edition. New York: Dover Press, 1960.
- 15. Crawford, R.F., Burns, A.B., *Minimum Weight Potentials for Stiffened Plates and Shells*. AIAA Journal, April 1963; Vol. 1: No. 4.
- 16. Isakowitz, S.J., et. al., *International Reference Guide to Space Launch Systems*. Third Edition. Reston, VA: AIAA, 1999.
- 17. MacConochie, I.O., *Shuttle Design Data and Mass Properties*. Hampton, VA: Lockheed Martin Engineering & Science Services, April 1992.
- 18. Sutton, G.P., *Rocket Propulsion Elements: An Introduction to the Engineering of Rockets.* Sixth Edition. New York: John Wiley & Sons, 1992.
- 19. Bai, S.D., Dumbacher, P., Cole, J.W., Development of Advanced Hydrocarbon Fuels at Marshall Space Flight Center. NASA/TP-2002-211729
- 20. Wertz, J.R. and Larson, W.J., *Space Mission Analysis and Design*. Third Edition. Torrance, CA: Microcosm Press, 1999.
- 21. "Shuttle external tank deal extended with Lockheed", NASA News Release, Spaceflight Now. June 14, 2002. Available from: http://spaceflightnow.com/news/n0206/17tank/

- ModelCenter 5.0.1. Blacksburg, VA: Phoenix Integration, Inc., July 2003.
 Young, D.F., Munson, B.R., Okiishi, T.H., *A Brief Introduction to Fluid Mechanics*. Second Edition. New York: John Wiley & Sons, 2001.

Appendix A: Example GT-STRESS Input file

Test Case for integral tank program oal 2000 qeom 0 1 1 160 85 85 600 200 200 1800 200 200 2000 100 100 end_geom weights 1440 2000 10000 wing fwd_gear 160 160 1000 aft_gear 1440 1440 7000 lox_tank 150 690 8000 lh2_tank 1180 1840 12000 0 175 2025 nose intertank 690 1180 15000 1790 2000 3000 thrust_str 0 2000 20000 tps misc 0 2000 5000 2000 2000 50000 main_engines plumbing 0 2000 10000 fwd_rcs_oms 90 90 1000 2000 2000 2000 aft_rcs_oms avionics 90 90 2000 750 1140 25000 payload propellant 150 690 2000000 lox 1180 1840 200000 lox propellant end_weights structure lox_tank lh2_tank intertank end structure material default_shell z-stiffened default mat aluminum aluminum 180 200 z-stiffened 250 300 other z-stiffened 501 1000 z-stiffened beryllium titanium 1080 2000 z-stiffened end_material loadcase 1 title Liftoff x1160 1440 x2axial_accel 1.32 normal_accel 0.5 25 25 prop_ullage pct_fueled 100 100 end loadcase loadcase 2 title Max q-alpha x1 1440 x2 2000

axial_accel normal_accel prop_ullage pct_fueled end_loadcase loadcase 3	1.88 0.5 25 25 72 72
title	Subsonic Pullup
x1	1440
x1 x2	2000
axial_accel	0
normal_accel	2.5
prop_ullage	25 25
pct_fueled	0 0
end_loadcase	
loadcase 4	
title	2.0G Main Gear Landing
x1	1440
x2	1450
axial_accel	0
normal_accel	2.0
prop_ullage	10 10
pct_fueled	0 0
end_loadcase	
loadcase 5	
title	2.0 G All gear landing
xl	160
x2	1440
axial_accel	0
normal_accel	2.0
prop_ullage	10 10
pct_fueled	0 0
end_loadcase	

Appendix B:	Default Propellant	Text File	(pro	pellant.txt)
	_		<u>a</u> .	

Propellant	Density(lb/ft^3)	Description
lox	71.293	Liquid Oxygen
LOX	71.293	Liquid Oxygen
1h2	4.432	Liquid Hydrogen
LH2	4.432	Liquid Hydrogen
h2o2	88.2732	Hydrogen Peroxide
H2O2	88.2732	Hydrogen Peroxide
n2o4	89.8963	Nitrogen Textroxide
N204	89.8963	Nitrogen Textroxide
rpl	50.5667	Rocket Fuel
RP1	50.5667	Rocket Fuel
RP-1	50.5667	Rocket Fuel
n2h4	63.0523	Hydrazine
N2H4	63.0523	Hydrazine
mmh	54.8118	Monomethyl Hydrazine
MMH	54.8118	Monomethyl Hydrazine
udmh	49.2557	Unsymmetrical Dimethyl Hydrazine
UDMH	49.2557	Unsymmetrical Dimethyl Hydrazine
fl	94.2038	Liquid Flourine
 Fl	94.2038	Liquid Flourine
FL	94.2038	Liquid Flourine
f2	94.2038	Liquid Flourine
F2	94.2038	Liquid Flourine
ch4	27.7804	Methane
CH4	27.7804	Methane
methane	27.7804	Methane
METHANE	27.7804	Methane
qt	48.6938	Jet Fuel
JP	48.6938	Jet Fuel
quad	61.0982	Quadricyclane(C7H8) - MSFC Hydrocarbon
QUAD	61.0982	Quadricyclane(C7H8) - MSFC Hydrocarbon
bcp	52.7766	BCP(C6H8) - Hydrocarbon Fuel from MSFC
BCP	52.7766	BCP(C6H8) - Hydrocarbon Fuel from MSFC
afrl1	48.7001	AFRL-1 - Hydrocarbon Fuel from AFRL
AFRL1	48.7001	AFRL-1 - Hydrocarbon Fuel from AFRL
AFRL-1	48.7001	AFRL-1 - Hydrocarbon Fuel from AFRL
cinch	58.1017	CINCH(C4H10N4) - Hydrocarbon from MSFC
CINCH	58.1017	CINCH(C4H10N4) - Hydrocarbon from MSFC
octad	51.0036	Octadiyne(C8H10) - Hydrocarbon from MSFC
OCTAD	51.0036	Octadiyne(C8H10) - Hydrocarbon from MSFC

Notes	airframe/rocket casing	Aerospace Composite	Aluminum-Lithium Alloy	Just used for testing	Aerospace Grade Carbon
<pre>min gauge(in) 0.0056 0.0075 0.0056 0.0056</pre>	0.0075	0.0375	0.0056	0.0056	0.0375
YS(psi) 55000 124000 34800 24000	68200	76870	65300	65000	76870
UTS(psi) 67000 130000 53700 39000	108000	117481	74000	66000	117481
rho(lb/in^3) 0.101 0.160 0.0666 0.064	0.284	0.065029	0.0918	0.178	0.065029
E(psi) 10300000 16000000 43900000 6500000	29700000	27557171	11200000	15600000	10200000 Composite
Material aluminum titanium beryllium magnesium	steel	composite	al-li	other	composite2 10200000 Fiber Epoxy Composite

Appendix C: Default Material Text File (material.txt)

Appendix D: Input Files for the EELV Verification Case

geom 0 1 1 20 18 18 198 100 100 2285 100 100 end_geom	<u>Input File #1</u> EELV (with LRBs oal 2285)			
0 1 1 20 18 18 198 100 100 2285 100 100 end_geom weights fairing 0 462 7860 interstage 463 942 5365 lox_tank 943 1218 4926 strap_ons 1328 1328 114602 centerbody 1157 1387 3719 lh2_tank 1388 2196 10937 thrust_str 2197 2285 10492 main_engine 2285 2285 15394 aft_skirt 1734 1822 3488 tunnel_assem 942 942 1439 assem_prod1 363 2285 680 prop_prod 463 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 943 1218 377143 lox propellant 1327 1328 754286 lox propellant 1327 1328 25715 lh2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure material default_shell z-stiffened default_shell z-stiffened default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 0 462 sandwich composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30 30 pct_fueled 100. 100. 100	qeom				
<pre>198 100 100 2285 100 100 end_geom weights fairing 0 462 7860 interstage 463 942 5365 lox_tank 943 1218 4926 strap_ons 1328 1328 114602 centerbody 1157 1387 3719 lh2_tank 1388 2196 10937 thrust_str 2197 2285 10492 main_engine 2285 2285 15394 aft_skirt 1734 1822 3488 tunnel_assem 942 942 1439 assem_prod1 363 2285 680 prop_prod 463 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 1388 2196 62857 lh2 propellant 1388 2196 62857 lh2 propellant 1327 1328 754286 lox proppellant 1327 1328 754286 lox propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure material default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 1219 z-stiffened compos</pre>	-	1			
<pre>198 100 100 2285 100 100 end_geom weights fairing 0 462 7860 interstage 463 942 5365 lox_tank 943 1218 4926 strap_ons 1328 1328 114602 centerbody 1157 1387 3719 lh2_tank 1388 2196 10937 thrust_str 2197 2285 10492 main_engine 2285 2285 15394 aft_skirt 1734 1822 3488 tunnel_assem 942 942 1439 assem_prod1 363 2285 680 prop_prod 463 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 1388 2196 62857 lh2 propellant 1388 2196 62857 lh2 propellant 1327 1328 754286 lox proppellant 1327 1328 754286 lox propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure material default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 1219 z-stiffened compos</pre>	20 18	18			
2285 100 100 end_geom weights fairing 0 462 7860 fairing 0 462 7860 interstage 463 942 5365 lox_tank 943 1218 4926 strap_ons 1328 1328 114602 centerbody 1157 1387 3719 114 112 andettee hla_tank 1388 2196 10937 10492 main_engine 2285 15394 aftee aft_skirt 1734 1822 3488 10492 main_engine 2285 2010 assem_prod1 363 2285 2010 assem assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 1327 1328 754286 lox propellant 1327 1328 1501 1218 andettee interstage interstage interstage interstage interstage interstage interstage interstage interstage					
end_geom weights fairing 0 462 7860 interstage 463 942 5365 lox_tank 943 1218 4926 strap_ons 1328 1328 114602 centerbody 1157 1387 3719 lh2_tank 1388 2196 10937 thrust_str 2197 2285 10492 main_engine 2285 2285 15394 aft_skirt 1734 1822 3488 tunnel_assem 942 942 1439 assem_prod1 363 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 1388 2196 62857 1h2 propellant 1327 1328 157143 1ox propellant 1327 1328 125715 1h2 end_structure iox_tank ih12 interstage					
weights fairing 0 462 7860 interstage 463 942 5365 lox_tank 943 1218 4926 strap_ons 1328 1328 114602 centerbody 1157 1387 3719 lh2_tank 1388 2196 10937 thrust_str 2197 2285 10492 main_engine 2285 2285 1394 aft_skirt 1734 1822 3488 tunnel_assem 942 942 1439 assem_prod1 363 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 1327 1328 75143 propellant 1327 1328 125715 propellant 1327 1328 125715 propellant 1327 1328 1					
fairing 0 462 7860 interstage 463 942 5365 lox_tank 943 1218 4926 strap_ons 1328 1328 114602 centerbody 1157 1387 3719 lh2_tank 1388 2196 10937 thrust_str 2197 2285 10492 main_engine 2285 2285 15394 aft_skirt 1734 1822 3488 tunnel_assem 942 942 1439 assem_prod1 363 2285 680 prop_prod 463 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 62857 1h2 propellant 1327 1328 125715 1h2 propellant 1327 1328 125715 1h2 end_structure 10x_tank 1h2 11945 interstage eed_structure sandwich 2moinsite 2196 sandwich aluminum					
<pre>interstage 463 942 5365 lox_tank 943 1218 4926 strap_ons 1328 1328 114602 centerbody 1157 1387 3719 lh2_tank 1388 2196 10937 thrust_str 2197 2285 10492 main_engine 2285 2285 15394 aft_skirt 1734 1822 3488 tunnel_assem 942 942 1439 assem_prod1 363 2285 680 prop_prod 463 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 943 1218 377143 lox propellant 1388 2196 62857 lh2 propellant 1327 1328 754286 lox propellant 1328 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened co</pre>	-	0	462	7860	
lox_tank 943 1218 4926 strap_ons 1328 1328 114602 centerbody 1157 1387 3719 lh2_tank 1388 2196 10937 thrust_str 2197 2285 10492 main_engine 2285 2528 15394 aft_skirt 1734 1822 3488 tunnel_assem 942 942 1439 assem_prod1 363 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 1327 1328 125715 1h2 propellant 1327 1328 125715 1h2 propellant 1327 1328 125715 1h2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure lox_tank lh2 sandwich aluminum aluminum aluminum aluminum aluminum		463	942	5365	
centerbody 1157 1387 3719 lh2_tank 1388 2196 10937 thrust_str 2197 2285 10492 main_engine 2285 2285 15394 aft_skirt 1734 1822 3488 tunnel_assem 942 942 1439 assem_prod1 363 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 943 1218 377143 lox propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure aluminum 1388 2196 sandwich aluminum 1388 2196 sandwich aluminu aluminu aluminu aluminum 1388 2196 sandwich composite		943	1218	4926	
centerbody 1157 1387 3719 lh2_tank 1388 2196 10937 thrust_str 2197 2285 10492 main_engine 2285 2285 15394 aft_skirt 1734 1822 3488 tunnel_assem 942 942 1439 assem_prod1 363 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 943 1218 377143 lox propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure aluminum 1388 2196 sandwich aluminum 1388 2196 sandwich composite composite 1219 1361<		1328	1328	114602	
lh2_tank 1388 2196 10937 thrust_str 2197 2285 10492 main_engine 2285 2285 15394 aft_skirt 1734 1822 3488 tunnel_assem 942 942 1439 assem_prod1 363 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 943 1218 377143 lox propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure aluminum 1388 2196 sandwich aluminum 1388 2196 sandwich aluminu aluminu aluminum 1388 2196 sandwich aluminu comp		1157	1387	3719	
<pre>thrust_str 2197 2285 10492 main_engine 2285 2285 15394 aft_skirt 1734 1822 3488 tunnel_assem 942 942 1439 assem_prod1 363 2285 680 prop_prod 463 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 943 1218 377143 lox propellant 1327 1328 754286 lox propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure material default_shell z-stiffened default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 pct_fueled 100. 100 100</pre>					
<pre>main_engine 2285 2285 15394 aft_skirt 1734 1822 3488 tunnel_assem 942 942 1439 assem_prod1 363 2285 680 prop_prod 463 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 943 1218 377143 lox propellant 1327 1328 754286 lox propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure material default_shell z-stiffened default_shell z-stiffened default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 pct_fueled 100. 100 100</pre>		219	7 228	5 10492	
tunnel_assem 942 942 1439 assem_prod1 363 2285 680 prop_prod 463 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 943 1218 377143 lox propellant 1388 2196 62857 1h2 propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank sendwich interstage end_structure aluminum aluminum aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich aluminum 1388 2196 sandwich composite 0 462 sandwich loadcase 1 1219 1361 z-stiffened composite 0 462 sandwich<		2285	2285	15394	
tunnel_assem 942 942 1439 assem_prod1 363 2285 680 prop_prod 463 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 943 1218 377143 lox propellant 1388 2196 62857 1h2 propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank sendwich interstage end_structure aluminum aluminum aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich aluminum 1388 2196 sandwich composite 0 462 sandwich loadcase 1 1219 1361 z-stiffened composite 0 462 sandwich<	aft_skirt	1734	1822	3488	
assem_prodl 363 2285 680 prop_prod 463 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 943 1218 377143 lox propellant 1388 2196 62857 lh2 propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure material default_shell z-stiffened default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff xl 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 pct_fueled 100. 100. 100 100		942	942	1439	
prop_prod 463 2285 2010 assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 943 1218 377143 lox propellant 1388 2196 62857 lh2 propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank renterstage end_structure lox_tank lh2_tank renterstage end_structure aluminum aluminum aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 1219 1361 z-stiffened composite 1219 1361 z-stiffened composite 0 463 942 sandwich loadcase 1 title Liftoff x1 2284 x2 2285			2285	680	
assem_prod2 0 2285 279 2nd_stage 463 942 68662 payload 180 462 54282 propellant 943 1218 377143 lox propellant 1388 2196 62857 lh2 propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure aluminum aluminum aluminum 943 1218 sandwich aluminum 943 1218 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich loadcase 1 title Liftoff x1 x2 2284 x2 2285 axial_accel 0.0000692 0.100.100 100.100		463	2285	2010	
2nd_stage 463 942 68662 payload 180 462 54282 propellant 943 1218 377143 lox propellant 1388 2196 62857 lh2 propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure aluminum aluminum aluminum 943 1218 sandwich aluminum 943 1218 sandwich aluminum 943 1218 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 0.0000692 normal_accel 0.0000692 prop_ullage 30. <td< td=""><td></td><td>0</td><td>2285</td><td>279</td><td></td></td<>		0	2285	279	
payload 180 462 54282 propellant 943 1218 377143 lox propellant 1388 2196 62857 lh2 propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure material default_shell z-stiffened default_mat aluminum aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 0.0000692 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 not <td< td=""><td></td><td>463</td><td>942</td><td>68662</td><td></td></td<>		463	942	68662	
propellant 943 1218 377143 lox propellant 1388 2196 62857 lh2 propellant 1327 1328 754286 lox propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank structure lox_tank lh2_tank structure structure default_shell z-stiffened sandwich aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 0.0000692 normal_accel 0.0000692 prop_ullage 30. 30. 30 100. prop_ullage 30. 30. 30 100.		462	542	82	
propellant1388219662857lh2propellant13271328754286loxpropellant13271328125715lh2end_weightsstructurelox_tanklh2_tankcenterbodyinterstageend_structuredefault_shellz-stiffeneddefault_mataluminumaluminumaluminumaluminumaluminum12191361z-stiffenedcomposite0462sandwichend_materialloadcase 1titleLiftoffx12284x22285axial_accel0.0000692prop_ullage30.30.30prop_ullagegot_fueled100.100		943	1218	377143	lox
propellant 1327 1328 754286 10x propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure material default_shell z-stiffened default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 pct_fueled 1025715 lh2 1025715 lh2 102		1388	2196	62857	lh2
<pre>propellant 1327 1328 125715 lh2 end_weights structure lox_tank lh2_tank centerbody interstage end_structure material default_shell z-stiffened default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 pct_fueled 100. 100 100</pre>		1341	1328	754286	lox
<pre>end_weights structure lox_tank lh2_tank centerbody interstage end_structure material default_shell z-stiffened default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 pct_fueled 100. 100 100</pre>		1327	1328	125715	lh2
<pre>lox_tank lh2_tank centerbody interstage end_structure material default_shell z-stiffened default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 pct_fueled 100. 100 100</pre>					
<pre>lh2_tank centerbody interstage end_structure material default_shell z-stiffened default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 pct_fueled 100. 100 100</pre>					
<pre>centerbody interstage end_structure material default_shell z-stiffened default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 pct_fueled 100. 100 100</pre>	lox_tank				
<pre>centerbody interstage end_structure material default_shell z-stiffened default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 pct_fueled 100. 100 100</pre>	lh2_tank				
<pre>end_structure material default_shell z-stiffened default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 pct_fueled 100. 100 100</pre>					
<pre>material default_shell z-stiffened default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 pct_fueled 100. 100 100</pre>	interstage				
default_shellz-stiffeneddefault_mataluminumaluminum9431218aluminum13882196aluminum13882196aluminum13882196aluminum13882196sandwichcomposite463composite12191361z-stiffenedcompositecomposite0462sandwichend_materialloadcase 1ittletitleLiftoffx12284x22285axial_accel1.1945normal_accel0.0000692prop_ullage30. 30. 30pct_fueled100. 100 100	end_structure				
default_mataluminumaluminum9431218sandwichaluminum13882196sandwichcomposite463942z-stiffenedcomposite12191361z-stiffenedcomposite0462sandwichend_material10adcase 11titleLiftoffx12284x22285axial_accel1.1945normal_accel0.0000692prop_ullage30.30.30pct_fueled100.100	material				
aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material 0 462 sandwich loadcase 1 title Liftoff x1 2284 2285 axial_accel 1.1945 normal_accel prop_ullage 30. 30. 30 30 pct_fueled 100. 100 100	default_shell	z-sti:	ffened		
aluminum 1388 2196 sandwich composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material 0 462 sandwich loadcase 1 title Liftoff x1 2284 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 pct_fueled 100. 100 100	default_mat	alumi	num		
composite 463 942 z-stiffened composite 1219 1361 z-stiffened composite 0 462 sandwich end_material 0 462 sandwich loadcase 1 title Liftoff x1 2284 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 pct_fueled 100. 100 100	aluminum	943	1218	sandwi	ch
composite 1219 1361 z-stiffened composite 0 462 sandwich end_material 10adcase 1 1 loadcase 1 Liftoff x1 2284 x2 2285 2285 axial_accel 1.1945 1.1945 normal_accel 0.0000692 30. 30 30 pct_fueled 100. 100 100 100	aluminum	1388	2196	sandwi	ch
composite0462sandwichend_material1loadcase 11titleLiftoffx12284x22285axial_accel1.1945normal_accel0.0000692prop_ullage30. 30. 30 30pct_fueled100. 100 100	composite	463	942	z-stif	fened
end_material loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 pct_fueled 100. 100	composite	1219	1361		
<pre>loadcase 1 title Liftoff x1 2284 x2 2285 axial_accel 1.1945 normal_accel 0.0000692 prop_ullage 30. 30. 30 30 pct_fueled 100. 100 100</pre>	composite	0	462	sandwi	ch
titleLiftoffx12284x22285axial_accel1.1945normal_accel0.0000692prop_ullage30. 30. 30 30pct_fueled100. 100 100	end_material				
x12284x22285axial_accel1.1945normal_accel0.0000692prop_ullage30. 30. 30 30pct_fueled100. 100 100	loadcase 1				
x22285axial_accel1.1945normal_accel0.0000692prop_ullage30. 30. 30 30pct_fueled100. 100 100	title	Lif	toff		
axial_accel1.1945normal_accel0.0000692prop_ullage30. 30. 30 30pct_fueled100. 100. 100 100			228	4	
normal_accel0.0000692prop_ullage30. 30. 30 30pct_fueled100. 100. 100 100	x2		228	5	
prop_ullage30. 30. 30 30pct_fueled100. 100. 100 100					5
pct_fueled 100. 100. 100 100					
		30. 30. 30 30			
and loadaaaa			1	00. 100.	100 100
end_toadcase	end_loadcase				

loadcase 2		
title	Max q	
xl	0	
x2	2285	
axial_accel	1.44	
normal_accel	0.0001	
prop_ullage	30. 30. 30. 30.	
pct_fueled	71 71 67 67	
end_loadcase		
loadcase 3		
title	Max q-alpha	
x1 x2	0	
	2285	
axial_accel	2.193 0.514	
normal_accel	$30 \ 30 \ 30. \ 30.$	
prop_ullage pct_fueled	53.3 53.3 36 36	
end loadcase	53.5 53.5 50 50	
loadcase 4		
title	Max Thrust	
x1	0	
x2	2285	
axial_accel	5.6162	
normal_accel	0.0012	
prop_ullage	10. 10. 10 10	
pct_fueled	7.28 7.28 10 10	
end_loadcase		

Input File #2 EELV (without LRBs) oal 2285 geom 0 1 1 20 18 18 198 100 100 2285 100 100 end_geom weights fairing 0 462 7860 942 5365 interstage 463 1218 4926 lox tank 943 1157 1387 3719 1388 2196 10937 centerbody lh2_tank 2197 2285 10492 thrust_str main engine 2285 2285 15394 1734 1822 3488 aft_skirt tunnel_assem 942 942 1439 2285 680 assem_prod1 363 2285 prop_prod 463 2010 assem_prod2 0 2285 279 942 68662 2nd_stage 463 payload 180 462 54282 943 1218 377143 lox propellant 1388 2196 62857 lh2 propellant end_weights structure lox_tank lh2_tank centerbody interstage end_structure material default_shell z-stiffened default_mat aluminum aluminum 943 1218 sandwich aluminum 1388 2196 sandwich composite 463 942 z-stiffened 1219 1361 z-stiffened composite sandwich composite 0 462 end_material loadcase 1 Max Axial Acceleration title 0 x1 $\mathbf{x}\mathbf{2}$ 2285 axial_accel б 0.00064 normal_accel prop_ullage 10. 10. pct_fueled 5.26 5.26 end loadcase

<u></u>					
Input File #1					
External Tank of	E Shutt	tle (wi	ith RSRM	s at	100응)
oal 1848					
geom					
0 1	1				
438 165.6	165.6				
1848 165.6	165.6				
end_geom					
weights					
lox_tank	0	641	12520		
propellant	24	641	1362000	lox	
intertank	626	911	13480 31739		
lh2_tank	690	1848	31739		
propellant	690	1848	227000	lh2	
RSRM_1		666			
RSRM_2	1372		1409324		
tps	0	1848			
prop_mech	0	1848			
electrical	626		598		
srb_attach1	666	666	2744		
srb_attach2	1372	1372	2744		
range_safety	626	911	396		
srb_attach1 srb_attach2 range_safety mfg_var_wgt unused_liq	0	1848	708		
gases	0	1848			
sep_hardware1					
sep_hardware2					
orbiter_1			103500		
orbiter_2	1723	1723	103500		
end_weights					
structure					
lox_tank					
lh2_tank intertank					
end_structure					
material	e atit	Fford			
default_shell default mat	alumin				
end_material	arumri	Ium			
loadcase 1					
title	Ţ.ift	toff			
x1		184'	7		
x2		184			
axial_accel		1.2			
normal_accel		0			
prop_ullage		31	36		
pct_fueled		100	100		
end loadcase					

Appendix E: Input Files for the External Tank Verification Case

<u>Input File #2</u> External Tank or	F Chut	-10 (111	ith DCDM	a at 55%)
oal 1848		LIE (W.	LCII KSKM	s at 55%)
geom	1			
	1			
438 165.6	165.6			
	165.6			
end_geom				
weights				
lox_tank	0	641		
propellant	24	641	1362000	lox
	626			
lh2_tank	690	1848	31739	
propellant	690	1848	227000	lh2
RSRM_1	666	666	740502	
RSRM_2	1372	1372	876386	
tps	0	1848	7128	
prop_mech	0	1848 1848	3755	
electrical	626			
srb_attach1				
srb attach2				
range safety	-	-		
mfg_var_wgt	0	1848		
unused_liq	0	1848	391	
qases	0	1848	3948	
sep_hardware1	-			
sep_hardware2	1272	1272	442	
	1372	1372 690	442	
orbiter_1				
orbiter_2	1723	1723	103500	
end_weights				
structure				
lox_tank				
lh2_tank				
intertank				
end_structure				
material				
default_shell		ffened		
default_mat	alumin	num		
end_material				
loadcase 1				
title	Max	Dynam	ic Press	ure
x1		666		
x2		137	2	
axial_accel		1.3	193	
normal_accel		0.3		
prop_ullage		31	36	
pct_fueled		83	83	
end_loadcase		50		

Input File #3 External Tank o oal 1848	f Shut	tle (w	ith RSRM	s at	66.67%)
geom 0 1	1				
438 165.6	⊥ 165.6				
1848 165.6					
end_geom	105.0				
weights					
lox tank	0	641	12520		
		641		lox	
		911		1011	
lh2 tank	690		31739		
propellant			227000	lh2	
RSRM_1			886044		
RSRM_2			1048622		
tps	0	1848	7128		
prop_mech	0	1848	3/55		
electrical	626	911			
srb_attach1	666	666	2744		
srb_attach2		1372	2744		
range_safety	626	911	396		
mfg_var_wgt	0	1848			
unused_liq	0	1848			
gases	0		3948		
sep_hardware1	666	666	441		
sep_hardware2	1372	1372	442		
orbiter_1			103500		
orbiter_2	1723	1723	103500		
end_weights					
structure					
lox_tank					
lh2_tank intertank					
end structure					
material					
default_shell	7-eti	ffened			
default mat					
end material	011 01111				
loadcase 1					
title	Max	Q-alp	ha		
xl		666			
x2		137	2		
axial_accel		1.4	62		
normal_accel		0.3	477		
prop_ullage		31	36		
pct_fueled		87	87		
end_loadcase					

Input File #4 External Tank of Shuttle (without RSRMs) oal 1848 geom 0 1 1 438 165.6 165.6 1848 165.6 165.6 end_geom weights 0 641 12520 lox_tank propellant 24 641 1362000 lox 626 911 13480 intertank 1848 31739 lh2 tank 690 1848 227000 lh2 1848 7128 propellant 690 0 tps 1848 3755 0 prop_mech electrical 626 911 598 2744 srb_attach1 666 666 1372 1372 2744 srb_attach2 range_safety 626 911 396 1848 708 mfg_var_wgt 0 0 unused_liq 1848 391 0 1848 3948 gases orbiter_1 690 690 103500 1723 1723 103500 orbiter_2 end_weights structure lox_tank lh2_tank intertank end structure material default_shell z-stiffened default mat aluminum end_material loadcase 1 title Max Axial Acceleration x1690 $\mathbf{x}\mathbf{2}$ 1723 2.9976 axial_accel 0.0000062 normal_accel prop_ullage 30 30 pct_fueled 3 3 end_loadcase

Appendix F: Output Files Generated for the EELV Verification Case

EELV.cog - Center of Gravity File -Center of Gravity for Iteration 0 Center of gravity for loadcase 1: 1238.6 inches Center of gravity for loadcase 2: 1223.17 inches Center of gravity for loadcase 3: 1193.64 inches Center of gravity for loadcase 4: 1126.92 inches _____ Center of Gravity for Iteration 1 Center of gravity for loadcase 1: 1239.34 inches Center of gravity for loadcase 2: 1224.08 inches Center of gravity for loadcase 3: 1194.69 inches Center of gravity for loadcase 4: 1127.97 inches _____ Center of Gravity for Iteration 2 Center of gravity for loadcase 1: 1239.33 inches Center of gravity for loadcase 2: 1224.07 inches Center of gravity for loadcase 3: 1194.66 inches Center of gravity for loadcase 4: 1127.91 inches _____ Center of Gravity for Iteration 3 Center of gravity for loadcase 1: 1239.33 inches Center of gravity for loadcase 2: 1224.07 inches Center of gravity for loadcase 3: 1194.66 inches Center of gravity for loadcase 4: 1127.91 inches _____ Center of Gravity for Iteration 4 Center of gravity for loadcase 1: 1239.33 inches Center of gravity for loadcase 2: 1224.07 inches Center of gravity for loadcase 3: 1194.66 inches Center of gravity for loadcase 4: 1127.91 inches _____

EELV.dat

Simple Output File for EELV Heavy (with LRBs)

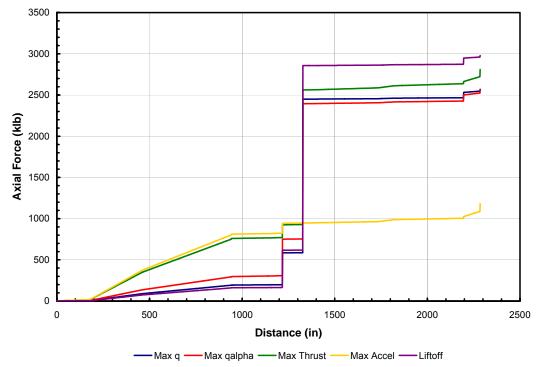
Component	Iter	Shell Wt(lbs)	Frame Wt(lbs)	Total Wt(lbs)
interstage	4	1913.69946289	178.781967163	2092.47998047
lox_tank	4	2957.35180664	1020.36401367	3977.71435547
centerbody	4	2047.62902832	280.793334961	2328.421875
lh2_tank	4	6814.54980469	2894.81567383	9709.37109375
	Total	vehicle shell weigh	t:	16829.6621094 lbs
	Total	vehicle frame weigh	t:	4261.82080078 lbs
	Total	vehicle structural	weight:	21091.4824219 lbs

 $\underbrace{EELV.lod}_{\texttt{Load File for EELV Heavy (with LRBs)}}$

Axial	Force, Shear Force, Bending N X(in) Axial(lb)	Moment and Running Shear(lb)	Loads vs. Fuselage Bending(lb-in)	
Ny_to	otal(lb/in) Nxy_total(lb/in			
	0 -20.46786118	0.001185748028	0.001185748028	-4.886907578
0	0.0005661529722	0 000071406055	0 000555044000	5 000007640
0	1 -40.93572235 0.0006120572216	0.002371496055	0.003557244083	-5.283027649
0	2 -61.40358353	0.003557244083	0.007114488166	-5.42973423
0	0.0006290588062	0.003337211003	0.00/11/100100	5.127,5125
	3 -81.8714447	0.004742992111	0.01185747981	-5.506186008
0	0.0006379188271			
	4 -102.3393097	0.005928739905	0.01778621972	-5.553099632
0	0.0006433555973			
0	5 -122.8071747 0.0006470318767	0.0071144877	0.02490070835	-5.584822178
0	6 -143.2750397	0.008300235495	0.03320094198	-5.607703209
0	0.0006496836431	0.000300233195	0.03320091190	5.007705205
	7 -163.7429047	0.00948598329	0.04268692434	-5.624988556
0	0.0006516868016			
	8 -184.2107697	0.01067173108	0.05335865542	-5.638505936
0	0.0006532533444	0 01105545000	0.00001010101	5 640266250
0	9 -204.6786346 0.0006545119686	0.01185747888	0.06521613151	-5.649366379
0	10 -225.1464996	0.01304322667	0.07825935632	-5.658284187
0	0.0006555454456	0.01501522007	0.070200002	5.050201107
	11 -245.6143646	0.01422897447	0.09248833358	-5.665736675
0	0.0006564090727			
	12 -266.0822144	0.01541472226	0.1079030558	-5.672057152
0	0.0006571417325	0.01660048000	0 1045005001	
0	13 -286.5500793 0.0006577710155	0.01660047099	0.1245035231	-5.677487373
0		0.01778621972	0.1422897428	-5.682201385
0	0.0006583173526	0.01//00219/2	0.112209/120	5.002201505
	15 -327.4858093	0.01897196844	0.1612617075	-5.686332703
0	0.0006587961689			
_	16 -347.9536743	0.02015771717	0.1814194322	-5.689982414
0	0.0006592192221 17 -368.4215393	0.02134346589	0.2027629018	-5.693231583
0	0.0006595957093	0.02134340589	0.202/629018	-5.693231583
0	18 -388.8894043	0.02252921462	0.2252921164	-5.696140766
0	0.0006599329063			
	19 -409.3572693	0.02371496335	0.249007076	-5.698762894
0	0.0006602367503			
	20 -429.8251343	0.02490071207	0.2739077806	-5.701136589
0	0.0006605118979			
	2284 -2754531.5	334.9691772	102111.7188	-6580.834961
0	1.599359989			
	2285 -2841665.75	106.3880157	102218.1094	-6788.857422
0	0.5079653263			

<u>EELV.out</u> - Basic Output File -

Component	Iter	Shell Wt(lbs)	Frame Wt(lbs)	Total Wt(lbs)	
interstage	0	1922.47436523	179.598571777	2102.0715332	
lox_tank	0	2969.68237305	1016.21014404	3985.89160156	
centerbody	0	2059.40454102	279.652984619	2339.05688477	
lh2_tank	0	6857.89306641	2895.53320312	9753.41796875	
IIIZ_CAIIK	0	0857.89300041	2095.55520512	9/53.41/908/5	
	Total veh	icle shell weight:		16907.2226562 lbs	
		icle frame weight:		4258.69775391 lbs	
	Total veh	icle structural weig	ht:	21165.9277344 lbs	
<i>a</i>					
Component	Iter	Shell Wt(lbs)	Frame Wt(lbs)	Total Wt(lbs)	
interstage	1	1913.75610352	178.787567139	2092.54394531	
lox_tank	1	2957.48706055	1020.31835938	3977.80688477	
centerbody	1	2047.73303223	280.781555176	2328.51464844	
lh2_tank	1	6815.00195312	2894.82519531	9709.82617188	
	Total veh:	icle shell weight:		16830.453125 lbs	
		icle frame weight:		4261.78466797 lbs	
		icle structural weig	ht:	21092.2324219 lbs	
Component	Ttom	Chall Mt (lha)	Enome Mt (lbs)		
Component	Iter	Shell Wt(lbs)	Frame Wt(lbs)	Total Wt(lbs)	
interstage	2	1913.69995117	178.782012939	2092.48046875	
lox_tank	2	2957.35351562	1020.36309814	3977.71557617	
centerbody	2	2047.63037109	280.793212891	2328.42333984	
lh2_tank	2	6814.54931641	2894.81542969	9709.36914062	
	Total veh	icle shell weight:		16829.6679688 lbs	
		icle frame weight:		4261.81982422 lbs	
		icle structural weig	ht:	21091.4882812 lbs	
Component	These	Chall Mt (lha)	Deceme Why (lbg)		
Component	Iter	Shell Wt(lbs)	Frame Wt(lbs)	Total Wt(lbs)	
interstage	3	1913.69946289	178.781967163	2092.47998047	
lox_tank	3	2957.35180664	1020.36401367	3977.71435547	
centerbody	3	2047.62902832	280.793334961	2328.421875	
lh2_tank	3	6814.54980469	2894.81567383	9709.37109375	
	Total veh:	icle shell weight:		16829.6621094 lbs	
	Total veh:	icle frame weight:		4261.82080078 lbs	
	Total veh:	icle structural weig	ht:	21091.4824219 lbs	
Component		Choll Wt (lbr)	Enomo Mt (lbc)		
Component	Iter	Shell Wt(lbs)	Frame Wt(lbs)	Total Wt(lbs)	
interstage	4	1913.69946289	178.781967163	2092.47998047	
lox_tank	4	2957.35180664	1020.36401367	3977.71435547	
centerbody	4	2047.62902832	280.793334961	2328.421875	
lh2_tank	4	6814.54980469	2894.81567383	9709.37109375	
	Total veh:	icle shell weight:		16829.6621094 lbs	
		icle frame weight:		4261.82080078 lbs	
	Total veh:	icle structural weig	ht:	21091.4824219 lbs	
Component	Iter	Shell Wt(lbs)	Frame Wt(lbs)	Total Wt(lbs)	
interstage	4	1913.69946289	178.781967163	2092.47998047	
lox_tank	4	2957.35180664	1020.36401367	3977.71435547	
centerbody	4	2047.62902832	280.793334961	2328.421875	
lh2_tank	4	6814.54980469	2894.81567383	9709.37109375	
				10000 000000 33	
		icle shell weight:		16829.6621094 lbs	
		icle frame weight:		4261.82080078 lbs	
	Total veh:	icle structural weig	ht:	21091.4824219 lbs	


 $\underbrace{EELV.siz}_{\texttt{Structure Sizing File for EELV (with LRBs)}}$

Shell and Frame Thicknesses, Semi-major and -minor axes, Density, and Maximum Running Loads vs. Fuselage Length

Fuselage Length					
X(in)	Shell(in)	Frame(in)	a(in)	b(in)	rho(lb/in^3)
Nx_max(lb/in)	Ny_max(lb/in)	Nxy_max(lb/in)			
0	2.58556	1.95765e-08	1	1	0.065029
99382.9	0	99373.9			
1	1.42676	1.3618e-07	1.85	1.85	0.065029
58079.4	0	53713.3			
2	0.985271	4.36862e-07	2.7	2.7	0.065029
40902.8	0	36802			
3	0.752445	1.00875e-06	3.55	3.55	0.065029
31549.1	0	27989.1			
4	0.608622	1.93903e-06	4.4	4.4	0.065029
25672.8	0	22581.2			
5	0.510956	3.31493e-06	5.25	5.25	0.065029
21640.4	0	18924.4			
б	0.4403	5.22372e-06	6.1	6.1	0.065029
18702.3	0	16286.7	011	012	0.000022
7	0.38681	7.75275e-06	6.95	6.95	0.065029
16466.5	0.50001	14294.2	0.55	0.95	0.005025
8	0.344907	1.09894e-05	7.8	7.8	0.065029
14708.1	0.344907	12735.9	7.0	7.0	0.005029
14708.1			0 (5	0 (5	0.065030
	0.311196	1.50211e-05	8.65	8.65	0.065029
13289.1	0	11483.9	0 5	o =	0.005000
10	0.283486	1.99353e-05	9.5	9.5	0.065029
12119.9	0	10456		4.0.05	
11	0.260308	2.58196e-05	10.35	10.35	0.065029
11139.8	0	9596.87			
12	0.240633	3.27616e-05	11.2	11.2	0.065029
10306.4	0	8868.16			
13	0.223723	4.08489e-05	12.05	12.05	0.065029
9589.13	0	8242.26			
14	0.209033	5.01691e-05	12.9	12.9	0.065029
8965.22	0	7698.84			
15	0.196153	6.081e-05	13.75	13.75	0.065029
8417.59	0	7222.6			
16	0.184768	7.28595e-05	14.6	14.6	0.065029
7933.06	0	6801.82			
17	0.174631	8.64053e-05	15.45	15.45	0.065029
7501.31	0	6427.34			
18	0.165549	0.000101535	16.3	16.3	0.065029
7114.17	0	6091.91			
19	0.161625	0.000109225	17.15	17.15	0.065029
6765.06	0	5789.73			
20	0.161625	0.000109328	18	18	0.065029
6448.64	0	5516.1			
2280	0.250989	0.0151519	100	100	0.101
13435.4	0	1830.39			
2281	0.251326	0.0151335	100	100	0.101
13454.3	0	1830.68	200	100	0.101
2282	0.251663	0.0151152	100	100	0.101
13473.3	0.231003	1830.98	700	700	0.101
2283	0.252001	0.0150969	100	100	0.101
13492.2	0.252001	1831.28	TOO	100	0.101
2284	0.252338	0.0150787	100	100	0.101
13511.2	0.252558	1831.57	TOO	100	0.101
2285	0.248496	0.0159978	100	100	0.101
13600.2	0.248490	780.782	TOO	100	0.101
13000.2	0	100.102			

overall	/ Heavy length			ajor,	semi-mj	nor axes):
Vehicle fairing intersta lox_tan strap_or centerbo lh2_tan thrust_s main_eng aft_skin tunnel_a assem_pr prop_pro assem_pr 2nd_stag propella propella propella	age c bs bdy c str gine ct assem cod1 bd cod2 ge ant ant ant	(descriptio	on,start 0 463 943 1328 1157 1388 2197 2285 1734 942 363 463 0 463 180 943 1388 1327 1327	, end ,	weight; 462 942 1218 1328 1387 2196 2285 2285 2285 2285 2285 2285 2285 228	7860 2092.47998 3977.714355 114602 2328.421875 9709.371094 10492 15394 3488 1439 680 2010 279 68662 54282 377143 62857 754286 125715
Structur lox_tan lh2_tan centerbo intersta	c ody	onents:				
Default	Materia l Defini n n ce ce	onfiguratio l: aluminur tion (mater	n			configuration) sandwich sandwich z-stiffened z-stiffened sandwich
Loadcase Loadcase title: x1: x2: axial_ac normal_a prop_ul pct_fue Loadcase title:	ccel: accel: lage: led:	Liftoff 2284 2285 1.1949 6.92e-09 30 100 Max q		30 100	30 100)

x1: 0 x2: 2285 1.44 axial_accel: 0.0001 normal_accel: 30 30 67 67 prop_ullage: 30 30 71 pct fueled: 71 Loadcase #3 title: Max q-alpha x1: 0 x2: 2285 axial_accel: 2.193 normal_accel: 0.514 prop_ullage: 30 30 30 30 36 pct_fueled: 53.3 53.3 36 Loadcase #4 title: Max Thrust x1: 0 2285 x2: axial_accel: 5.6162 0.0012 normal_accel: prop_ullage: 10 10 10 10 pct_fueled: 7.28 7.28 10 10 Total number of iterations: 4 Total number of weights defined: 19 Total number of load cases: 4 Total number of materials defined: 5 _____ Total vehicle shell weight:16829.6621 lbsTotal vehicle frame weight:4261.8208 lbsTotal vehicle structural weight:21091.4824 lbs

Appendix G: Load Variation for each Load Condition of EELV Verification Case

Figure 27. Axial Force Magnitude Variation along the Fuselage for each Load Condition of the EELV

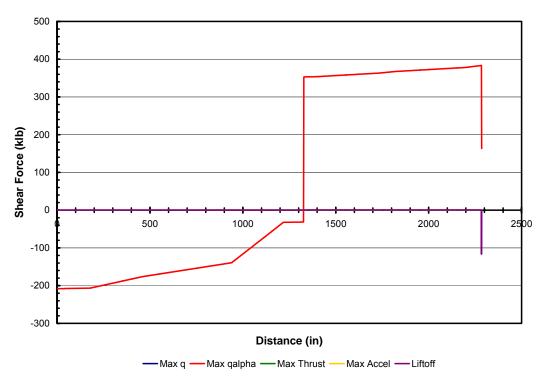


Figure 28. Shear Force Variation along the Fuselage for each Load Condition of the EELV

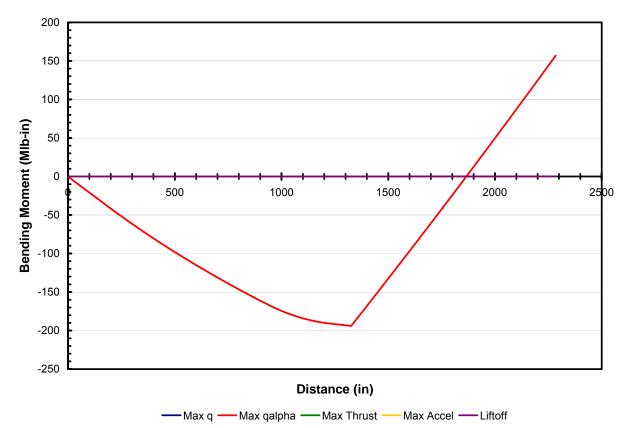
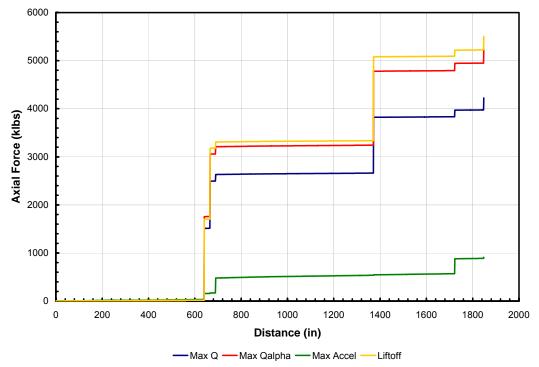



Figure 29. Bending Moment Variation along the Fuselage for each Load Condition of the EELV

Appendix H: Load Variation for each Load Condition of ET Verification Case

Figure 30. Axial Force Magnitude Variation along the Fuselage for each Load Condition of the ET

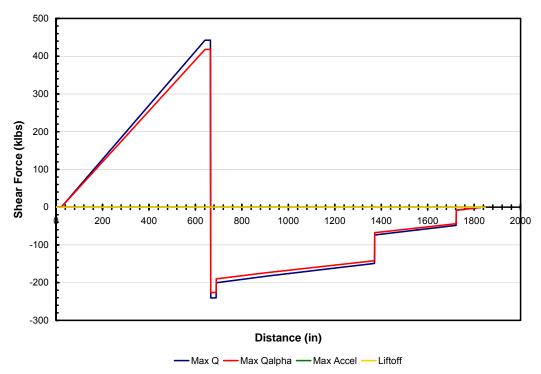


Figure 31. Shear Force Variation along the Fuselage for each Load Condition of the ET

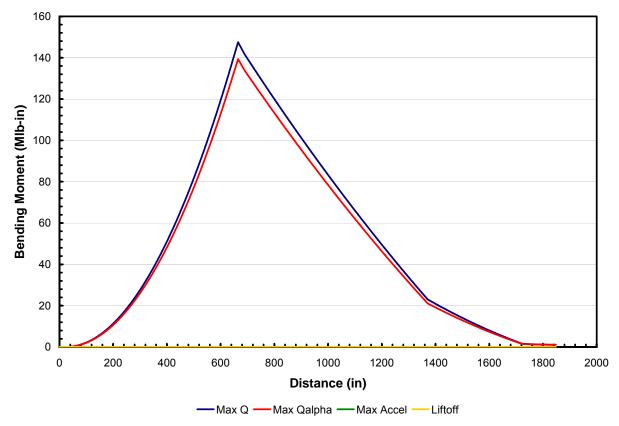


Figure 32. Bending Moment Variation along the Fuselage for each Load Condition of the ET

Appendix I: Contributing Analyses Spreadsheets used within ModelCent
--

Trajectory CA: EELVPOST.xls

% LOX 100.00% 53.00% 7.28% 5.26% % LH2 100.00% 71.00% 7.28% 5.26% LOX Propellant Axial Normal Weight, Ib Accel., G's Accel., G's 9 377142.8571 1.194445 6.92E-05 1 240306 1.44 0.0001 225102 2.193 0.514 27449.14286 5.616195 -0.001179 19848 6.000746 -0.00064 LH2 Propellant LOX Propellant 62857.14286 40051 37517 4574.857143 3308 Weight, Ib
).
 Used
 Propellant Weight
 LH.

 0
 (wprus1), lb (440000 lb - wprus1), lb V
 0
 440000 6
 6

 0
 0
 0
 280357
 280357
 9
 177381
 262619
 4

 4
 407976
 32024
 4
 23156
 6
 416844
 23156
 23156
 Propellant Normal Pro Axial accel. accel. (azb), / - ¹ ft/s² ft/s² (w -18.1268 -16.5409 -0.03794 -0.0206 38.4253 52.7263 57.1586 180.673 193.044 90 100 230 235 0 Time (s) Max Thrust Max Axial Acceleration MECO (same as Max Axial Accel.) Max Dynamic Pressure Condition Max Q-Alpha Liftoff

Weights and Sizing CA: EELVWBS.xls

Generic Weights & Sizing Spreadsheet

First Stage	Level 2 Level 1		Output from STRESS	Correlated Weight
1 Structure 1.1 Primary Structure 1.2 Fuel Tank 1.3 Oxidizer Tank 1.4 Thrust Structure 1.5 Sec. Structure	45563.86 17235.07 14945.41 6731.379 2010 4642	Centerbody Interstage LOX Tank LH2 Tank	3719 5365 4926 10937	10179.0145 6731.379
Legend				

From ModelCenter Correlated Weights Constant Calculated Weight