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“Exploration is in our nature.

We began as wanderers, and we are wanderers still.

We have lingered long enough on the shores of the cosmic ocean.

We are ready at last to set sail...”

Carl Sagan
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SUMMARY

NASA has declared the Moon a strategic focal point for the US space program

in the coming decade. This resurgent interest in lunar exploration seeks to advance

scientific knowledge, deep-space technology, and “beyond-Earth” industry.

Specifically, humanity’s motivation for returning to the Moon in the 2020’s rests

upon four fundamental pillars as articulated by the NASA 2018 Strategic Plan. The

first is solar system science. Without the shield of a dense atmosphere and magnetic

field, the unprotected lunar surface has been bombarded by eons of meteorite im-

pacts and solar radiation. These unique conditions are ideal for studying the impact

history of the early solar system, and the composition of the stellar winds.

The second is lunar prospecting. This constant bombardment by meteorites and

stellar wind make the lunar regolith a likely home to deposits of valuable elements

that may be extracted and used to bolster lunar, Earth obit, and deep space infras-

tructure. Furthermore, with the discovery of water ice at the lunar poles, there exists

potential to harvest oxygen, hydrogen and liquid water to support permanent human

outposts. The off-world extraction, processing, and transportation of these materi-

als by commercial companies represents a new opportunity for economic growth

with minimal impact to Earth’s environment.

The third is technology validation. Lunar orbit represents a valuable testing

ground for deep-space technologies beyond the shielding effect of Earth’s magnetic

field, the GNSS constellations, and the range of standard, low power UHF and S-

Band communications systems.

The fourth is inter-planetary exploration. The development of orbital infrastruc-

ture for in-space refuelling of inter-planetary spacecraft may provide a launch point

for the missions to Mars and the outer solar system.

The importance of these advancements is evidenced through significant invest-
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ments in the Artemis, Lunar Gateway, and the Commercial Lunar Payload Services

(CLPS) programs. Unlike Apollo, these programs are built around long term, sus-

tainable science and exploration. Within this new Lunar era, there is opportunity

for small satellites to play a valuable role as pathfinders. When compared to tradi-

tional New Frontiers, Discovery, and Flagship class science missions, small satellite

architectures can be developed at low cost, on short time scales. Thus, they are ac-

cessible to academic researchers and small technology companies. This ease of

development provides a platform for the iterative testing of innovative instrumenta-

tion with potential for high scientific and commercial yield.

To be viable as pathfinders, small satellite lunar missions must limit translunar

flight time to make best use of finite spacecraft lifespans and minimize Van Allen

radiation exposure. This is possible through a high-thrust, direct injection translu-

nar trajectory from an Earth parking orbit similar to the Apollo missions. However,

such an architecture is not currently achievable with small satellite onboard propul-

sion, and dedicated lunar transfers from the world’s space agencies are expensive

and exceedingly rare. To solve this problem affordably, small satellite lunar mis-

sions must ideally fit within the current commercial launch framework of ride share

opportunities, or dedicated missions aboard small, low-cost launch vehicles.

Compatibility with commercial launch vehicles is driven by the performance

demand of direct injection lunar missions from an Earth parking orbit - a highly dy-

namic, multi-parameter astrodynamics problem. Mission performance is a function

of departure and arrival Keplerian orbital elements, and the relative states of Earth,

Moon, and Sun across the various cycles of the Earth-Moon system. Presently,

there is no reference to accurately quantity these dependencies.

This research bridges that knowledge gap with a global characterization of per-

formance demands for lunar flyby, orbit insertion, and landing missions with 0-24

kg payloads over an 18.6 year Earth-Moon nodal cycle. By the simulation and sta-
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tistical analysis of over 640,000 trajectories with high-fidelity orbital dynamics, the

performance demands of optimal monthly departures from 2020 to 2038 have been

identified and catalogued.

Through a study of periodic and secular performance trends, this thesis quan-

tifies the dependencies between mission performance and 1) departure epoch, 2)

lunar arrival Keplerian elements, and 3) payload mass. Finally, it demonstrates 4)

the viability of low-cost, high-cadence small satellite missions by mapping the mass

requirements of mission payload, propellant, and the subsystems of a translunar in-

jection stage against the lift capacity of modern commercial launch vehicles.

It is hoped that this research will serve as a useful reference for lunar mission

designers, enabling a performance comparison across payloads, departure windows,

and arrival conditions. In so doing, it might in some small way contribute to the

exciting new age of lunar exploration that lies ahead.
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CHAPTER 1

MOTIVATION AND BACKGROUND

1.1 Motivation

1.1.1 Lunar Exploration: A New Focus

The NASA 2018 Strategic Plan defines a clear shift in operational focus beyond

Low Earth Orbit (LEO), to pursue “a broader strategy to explore and utilize the

Moon and its surface” [1]. By leveraging the lunar orbit and surface as a rich

source of scientific insight, a repository of volatile materials, a challenging test-

ing ground for the validation of deep-space technologies, and the launch point for

interplanetary exploration, NASA aims to advance its planetary, heliophysics, and

astrophysics scientific objectives whilst unlocking economic growth through the

enabling of “beyond-Earth” industries.

This new strategic direction is best evidenced by NASA’s Artemis Program.

This national-scale spaceflight campaign pays homage to the pioneering feats of

Apollo in the 1960’s. Like Apollo, Artemis has spurred the development a new

heavy lift rocket, a deep space vehicle, and an ambitious, detailed timeline to es-

tablish a human presence on the moon in the 2020’s. However, Artemis also takes

NASA in an entirely new direction - one in which technology and the new com-

mercial space industry are enabling sustainable, long duration lunar exploration.

Beyond the eventual construction of the Lunar Gateway orbital platform and a per-

manent surface settlement, NASA’s Moon-centric focus creates new opportunities

for high impact science, resource prospecting, and technology validation from the

academic and entrepreneurial space sectors for years to come. Specifically, the long

term motivations behind the Artemis program’s sustainable return to lunar space
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rests upon four fundamental pillars.

First is the solar system science and missions to characterize the lunar surface

and the surrounding space environment. Vision and Voyages, the 2013-2022 Plan-

etary Science Decadal Study by the National Research Council, specifically iden-

tifies the moon as an important strategic objective, calling for future missions to

address a range of science questions [2]. Without the shield of a dense atmo-

sphere and magnetic field, the unprotected lunar surface has been bombarded by

eons of meteorite impacts and solar radiation. These unique conditions are ideal for

studying the impact history of the early solar system, and the composition of the

stellar winds. Additionally, there is a interest around recent activity at potential sur-

face vent sites, and the reconstruction of a thermal-tectonic-magmatic history of the

Moon [2]. This foundational study establishes NASA’s specific scientific priorities

and clearly places the moon as a prime research destination.

Second is orbital prospecting to characterize the nature and abundance of sur-

face volatiles (most notably hydrogen and oxygen) with potential for In-Situ Re-

source Utilization (ISRU) to support future human exploration missions and the de-

velopment of lunar, Earth-orbit, and deep space infrastructure. Per Sacksteder and

Sanders, the Moon is approximately 40 percent oxygen, stored in silicate materials

within the lunar rock and regolith [3]. While samples gathered from the equatorial

Apollo landing sites demonstrate only trace amounts of hydrogen, orbital analysis

from the 1998 Lunar Prospector mission has revealed high concentrations of water

ice at the poles - an immensely valuable, harvestable resource. If hydrogen, oxygen

and liquid water were extracted, separated, and stored, they could serve as viable

power generation and life support resources for human lunar surface operations.

Detailed research into extraction, processing, storage, and transportation of hydro-

gen and oxygen by Stancati, Jacobs, and Rauwolf [4] demonstrate the viability of

this lunar surface ISRU given adequate local supply. Orbital prospecting missions
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could identify high concentrations of volatiles, thus guiding site-selection for future

lander, sample return, and manned missions.

Third is the use of lunar space for technology validation of deep-space instru-

mentation and subsystems in the punishing environment beyond LEO. Without the

shielding effect of Earth’s magnetic field, a lunar small satellite will be exposed

to ionizing (high energy) radiation from the stellar winds, Galactic Cosmic Radi-

ation (GCR), Solar Particle Events (SPE’s), and during passage through the Van

Allen belts. As such, any subsystems must be appropriately shielded against both

long term degradation and Single Event Upsets (SEU’s). Additionally, translunar

missions must incorporate high-frequency X-Band, Ka-Band, or DSO (Deep Space

Optical) communications systems to ensure reliable connectivity with ground sta-

tions at extreme ranges, and operate autonomously through sustained communica-

tions blackout while passing around the dark side of the moon. Real-world testing

and development in this environment will enable the qualification of interplanetary

hardware to explore compelling scientific destinations throughout the solar system.

Fourth is the development of an in-space refueling and launch point to enable

exploration of Mars and the outer planets. The Lunar Gateway orbital platform

(a primary component of the Artemis program) shall support docking by multiple

spacecraft for the transfer of crew between a lunar lander/ascent vehicle and an

Orion spacecraft. A similar methodology may be applied to the in-space refueling

of interplanetary spacecraft in lunar orbit. The hydrogen and oxygen harvestable

from water ice on the lunar surface may be used as propellant for deep space explo-

ration missions that leverage advanced hybrid cycle H2/O2 rocket engines. Trans-

porting this propellant to an lunar orbiting fueling platform will require significantly

less energy than it takes to reach LEO from Earth’s surface. Once refueled after its

translunar injection and lunar orbit insertion, an interplanetary spacecraft shall re-

quire significantly less energy to escape lunar gravity and achieve a heliocentric
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interplanetary transfer orbit than it would to achieve the same transfer directly from

LEO. Such an architecture shall allow reduced wet/dry mass ratios for departure

of the Earth-Moon system, and thus more useable payload upon arrival at an inter-

planetary destination.

All four of these advancements may be supported by pathfinder missions with

small satellites. When compared to traditional New Frontiers, Discovery, and Flag-

ship class science missions, the versatility of small satellite architectures allow the

application of new, innovative instrumentation at lower cost, lower development

time, lower mission assurance demands, and - through launch vehicle ride-share

options - higher launch cadence. These conditions enable the application and it-

erative testing of technologies deemed too high-risk for traditional high-cost, long

duration satellite missions. This process is essential to raising Technology Readi-

ness Levels (TRL’s) and enabling the future pursuit of more ambitious scientific and

commercial objectives. Indeed, the NASA CubeSat Launch Initiative has funded

and launched 54 cube satellites since 2010 with an additional 47 on manifest, 64%

of which have a technology development objective.

However, current small satellite missions are almost exclusively constrained to

LEO operations, leaving translunar deployment an unexplored sector.

1.1.2 Pathfinders: Small Satellite Lunar Applications

Demand for lunar bound scientific, prospecting, and technology validation small

satellite missions is perhaps best demonstrated by the architecture of NASA’s Ex-

ploration Mission One (EM1). This mission is an autonomous test flight of the

Orion spacecraft launched aboard the Space Launch System (SLS). NASA has se-

lected thirteen 6U cube satellite missions to fly aboard the SLS Interim Cyrogenic

Propulsion Stage (ICPS) as secondary payloads, deploying at various points along

the translunar trajectory.
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Table 1.1: EM1 secondary payload small satellite missions

Mission Operator Objective

Lunar IceCube MSU
Characterize water ice deposits for future
robotic and manned surface prospecting.

SkyFire Lockheed
Surface imaging for surface characteri-
zation, landing site selection, and deep
space orbital remote sensing.

BioSentinel NASA Ames
Biological payload to heliocentric orbit
via lunar flyby to measure the effect of
deep space radiation on DNA.

NEA Scout
NASA Marshall,

JPL

Solar sail propulsion to image a near
Earth asteroid, studying orbit, rotation,
composition, and presence of volatiles.

Lunar Flashlight
NASA Marshall,

JPL

Map the lunar south pole for water ice to
assess potential for extraction by future
lander missions.

CuSP Southwest RI

Enter heliocentric orbit via lunar grav-
ity assist to measure the ”solar weather”
of dynamic particles and magnetic fields
emanating into deep space.

LunaH Map ASU
Employ neutron detector to develop a de-
tailed map of water deposites at the lunar
south pole for future human operations.

Cislunar
Explorers

Cornell
Perform a gravity assist maneuver with
on-board water electrolysis propulsion.

CU E3 UC Boulder

Use lunar gravity assist to enter a he-
liocentric orbit and achieve greatest cube
satellite comm’s distance, longevity, and
largest aggregate data volume.

Team Miles
Fluid and Reason

LLC

Deploy Model-H ion thruster to reach a
heliocentric orbit with target Earth dis-
tance of 96 million km.

EQUULEUS
Tokyo

University, JAXA

Characterize the radiation environment in
the space around Earth for protection of
electronics and humans aboard long dura-
tion missions.

OMOTENASHI JAXA
Validation of small, low cost spacecraft
for lunar surface exploration

ArgoMoon
Italian Space

Agency
Short range ProxOps with the ICPS and
testing of optical communications.
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These cube satellite missions, as detailed in table 1.1, were selected to balance a

range of strategic objectives by five NASA initiatives - the Next Space Technologies

for Exploration Partnership (NextSTEP), the Human Exploration and Operations

Directorate, the Science Mission Directorate, the Cube Quest Challenge, and the

on-going collaboration with NASA’s international partner agencies.

The broad range of missions presented in table 1.1 is indicative of the growing

value placed on lunar small satellite operations for their scientific, prospecting, and

technology validation potential. This trend is set to continue as the capability and

cost of on-board systems miniaturized for smaller spacecraft buses improves over

time. However, EM1 represents a rare opportunity for lunar passage that small

satellite missions are rarely afforded.

1.1.3 The Barrier of Translunar Injection

Small satellites transported into orbit as secondary payloads aboard governmental

space agency or commercial rockets are limited to the destination orbit of a primary

mission. Rarely does this extend beyond a geostationary transfer orbit into lunar

space, thus secondary payload small satellite missions currently lack the requisite

velocity to reach the moon upon deployment from the launch vehicle. Indeed, the

primary barrier to lunar missions is the translunar injection - an obstacle yet to be

overcome by on-board propulsion.

The NASA Ames Research Center State of the Art Report for Small Satellite

Technology [5] details the current type, performance characteristics, and develop-

ment stage of small satellite on-board propulsion systems. The highest Technology

Readiness Level (TRL) of 9 indicates that a mature technology that is flight proven,

thus representing a viable option for mission designers. TRL 9 systems are detailed

in table 1.2

Note that while many promising low-thrust technologies such as the Hall ef-
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Table 1.2: TRL 9 small satellite propulsion technologies
Type Thrust Specific Impulse
Pressurized Cold Gas 0.001N - 10N 65s - 70s
Mono-propellant: Hydrazine 0.5N - 30.7N 200s - 235s
Mono-propellant: Green 0.1N - 27N 220s - 250s
Solid Rocket Motor Tailored Sizing 210s
Resistojet 100mN 48s - 99s

fect thruster, electron spray propulsion, and ion engines demonstrate high specific

impulse and ∆v performance over long mission durations, these technologies have

yet to be scaled to small satellite form factors and thus require further development

before application on feasible lunar missions.

Pressurized cold gas thrusters are a mature, low complexity, and reliable tech-

nology by which thrust is provided through the controlled expulsion of a pressurized

gas. This technology has been applied to small satellite compatible form factors

such as the Butane powered GomSpace NanoProp 6U. Whilst this system is well

suited to attitude control, the low specific impulse of 60 s - 110 s offers relatively

low ∆v performance under the limited propellant volume offered by a small satel-

lite bus when compared to mono-propellant alternatives.

Mono-propellant propulsion systems involve a single reactant mix exposed to a

catalyst, causing rapid expansion of a directed exhaust gas to provide thrust. Hy-

drazine (N2/H4) is a common mono-propellant reactant with ample flight heritage.

Whilst the high volatility and toxicity make hydrazine difficult to handle and store,

it offers significantly higher specific impulse than cold gas thrusters. In recent years,

advancements have been made in the field of ”green” reactants for mono-propellant

systems. Green propulsion mitigates some hazards associated with hydrazine by

employing less flammable, lower toxicity fuels such as Ammonium DiNitrimide

(ADN) or HydroxlAmmonium Nitrate (HAN). Green propulsion can also offer a

greater fuel density for improved specific impulse.
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Bi-propellant space propulsion traditionally stores a liquid fuel and a liquid ox-

idizer in separate tanks, combining them inside a combustion chamber of a rocket

engine for either a catalyst induced or automatic (hypergolic) explosive reaction.

Storeable liquid bi-propellants offer higher performance than mono-propellants, but

the additional mass and complexity of multiple propellant tanks and lines precludes

application to small satellite systems.

Cryogenic bi-propellants make use of the high energy density of super-cooled

propellants and/or oxidizers stored in liquid form. These include H2/O2, RP1/O2

and CH4/O2 engines that offer very high performance and have a rich flight her-

itage in launch vehicles since the dawn of rocketry. However, it is a substantial tech-

nical challenge to maintain the propellants at a super cooled liquid state. Further-

more, the intense heat and pressure of the reaction requires a robust thrust chamber,

hence, increased mass. These challenges make cyrogenics poorly suited to small

satellite lunar missions.

Solid rocket motors offer a relatively low weight, low complexity system with

both the fuel and the oxidizer stored in a highly stable solid state. However, re-

strictions placed upon secondary payloads limit the use of pyrotechnics to mitigate

risk of an uncontrolled ignition destroying the launch vehicle and primary pay-

load. Whilst some newly developed systems such as the CAPS-3 by Digital Solid

State Propulsion (DSSP) offer non-pyrotechnic, electrically ignited solid propel-

lants, these technologies do not yet offer a thrust comparable with mono-propellant

alternatives. Were the risk of a pyrotechnic system to be deemed permissible,

the Orbital ATK Star-4G Solid Rocket is being developed specifically for a nano-

satellite scale and offers a high specific impulse of 270 s. However, this system is

currently at TRL 6 and not yet flight qualified.

Finally, Resistojet drives are the most rudimentary form of electric spacecraft

propulsion, leveraging an electric current to heat a propellant gas causing directed
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high velocity expansion. The most developed Resistojet technology is the Surrey

Satellite Technology Ltd. (SSTL) Resistojet Propulsion System with a 100 mN

thrust, and a maximum specific impulse of 99 s with a non-toxic, non-volatile ni-

trogen propellant. Similar to cold gas and DSSP Solid Rockets, this system lacks

the propulsive performance of mono-propellant thrusters.

A basic performance analysis under ideal conditions can be used to determine

the high level feasibility of translunar injection using the current TRL 9 state of the

art on-board propulsion systems. Given a favourable balance of propulsive perfor-

mance, low system mass, and high technology readiness, a mono-propellant system

will be applied with both hydrazine and green propellant alternatives.

To present an ideal case for TLI, a planar Hohmann Transfer is assumed, with

the departure point at Hohmann ellipse periapsis, and lunar arrival occurring at

Hohmann ellipse apoapsis. Initial insertion into a 400km altitude circular parking

orbit is assumed. This initial condition is commensurate with a secondary payload

mission to ISS orbit, and allows the satellite to be considered free from the effects

of atmospheric drag during the short time span of the maneuver. Only the depar-

ture TLI maneuver is considered, thus allowing a lunar flyby with no orbit insertion

maneuvers to be minimized through application of a bi-elliptic transfer. Simple

2-Body dynamics with Earth gravity are also assumed - no lunar gravity or addi-

tional perturbing effects are considered. The TLI burn is considered impulsive. The

analysis payload adopts a 6U form factor to match the EM1 secondary payloads - a

small satellite size and mass proven to be capable of high value lunar science.

A planar Hohmann Transfer represents the minimum possible energy required

to reach the moon from the specified parking orbit. As the lunar orbital motion

transects the apoapsis of the transfer ellipse, any lower ∆v would fall short of the

lunar orbital radius. This is an ideal model for assessing viability of on-board mono-

propellant systems - if an on-board system cannot achieve this Hohmann transfer,
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Figure 1.1: Simplified lunar Hohmann transfer

it cannot achieve a lunar approach under any trajectory.

To determine the required ∆v for the Hohmann transfer, one must first charac-

terize both departure and arrival points based on the 400 km parking orbit assump-

tion and mean Earth radius per NASA Goddard Space Flight Center (NASA GSFC)

Planetary Fact Sheet.

rearth = 6, 371km

alt1 = 400km

r1 = rearth + alt1

= 6, 771km

The lunar orbit is considered circular, at its minimum observed monthly orbital

radius.

r2 = 357, 000km

The position magnitudes allow computation of the semi-major axis for both the

10



parking orbit and the Hohmann transfer ellipses:

ac,1 = r1

= 6, 771km

a1 =
r1 + r2

2

= 181, 886km

The Vis-Viva equation defines the velocity of a spacecraft as a function of posi-

tion and the semi-major axis of it’s orbit ellipse assuming 2-Body dynamics:

v =

√
µ(

2

r
− 1

a
)

Where the standard gravitational parameter for Earth is:

µe = 389, 600km3s−2

Using the Vis-Viva equation allows computation of the parking orbit velocity

vc,1, and the required Hohmann Transfer perigee velocity v1:

vc,1 =

√
µe(

2

r1
− 1

ac,1
)

= 7.67kms−1

v1 =

√
µe(

2

r1
− 1

a1
)

= 10.75kms−1
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Thus, the ideal case translunar injection (TLI) ∆v can be determined:

∆vTLI = v1 − vc,1

= 3.08kms−1

This ∆vTLI can now be directly compared to velocity changes achievable through

small satellite based mono-propellant engines. The Aerojet Rocketdyne MPS-

120XW CubeSat High Impulse Adaptable Modular Propulsion System (CHAMPS)

leverages 4 MR-142 hydrazine engines with a propellant storage and delivery sys-

tem. Each hydrazine engine produces 0.26 N - 2.79 N of thrust, offering an overall

specific impulse range of 206 s - 217 s. CHAMPS offer three configurations - a base

1U version with a 1.48 kg engine wet mass, a longitudinally configured 2U x 1U

XL version, and a laterally oriented 1U x 2U XW verison. Both 2U options provide

additional propellant storage with a 2.38 kg engine wet mass. For the purpose of a

6U mission, a larger 2U unit will be applied, offering 0.98 kg of useable propellant.

To present an ideal performance case for the MPS-120 engine, the highest specific

impulse of 217 s is assumed.

mdrive,mono = 2.38kg

mprop,mono = 0.98kg

Isp,mono = 217s

Per the NASA CubeSat Launch Inititate Overview, a single cube satellite unit (1U)

typically weighs less than 1.33 kg. This mass shall be applied for the remaining 4U

to make up a 6U bus. This additional mass shall encompass the vehicle subsystems

required for a lunar mission, including the scientific instrumentation payload, an

attitude control system (ACS), a Guidance, Navigation, and Control system (GNC),
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an on-board computer (OBC), a communications system, and a power supply. Thus,

the total vehicle wet (initial) mass is assumed to be:

mwet = mdrive,mono + 4m1U

= 7.70kg

The total vehicles dry (final) mass after complete propellant expenditure is assumed

to be:

mdry = mwet −mprop,mono

= 6.72kg

The rocket equations defines the achievable ∆v as a function of Isp and mass ratio.

Assuming field free space and constant magnitude and direction of exhaust velocity

(a valid assumption for high-thrust chemical engines per Prussing and Conway [6]:

∆v = gIspln(
mwet

mdry

)

Where g is the 0.0098 km/s2 acceleration due to gravity at Earth surface.

Thus, a 6U CubeSat powered by a 2U MPS-120 hydrazine mono-propellant

engine is capable of:

∆vmono = 0.29kms−1

Under ideal assumptions, the best-in-class MPS-120 only achieves 9.4% of the

∆v required for TLI of a 6U small satellite under ideal conditions - a significant

shortfall.

Select green mono-propulsion options offer an improved propellant density to
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the hydrazine thruster. The Bradford Engineering 1N High Performance Green

Propulsion (HPGP) is powered by Ammonium DiNitrimide (ADN) and capable

of 0.25 N - 1 N of thrust, with a 204 s - 209 s specific impulse range. Unlike

the hydrazine MPS-120, this thruster has not been specifically discretized into a

cube satellite compatible configuration. However, the 178 mm overall length and a

low thruster mass of 0.38 kg enable integration into a 2U x 2U package assuming

1U x 2U for propellant storage tanks. For a comparative analysis, this engine is

assumed to offer the same propellant storage dry mass and volume as the MPS-120

hydrazine thruster (an assumption based on similar propellant storage geometry),

with a greater propellant mass due to the 22% density difference between hydrazine

and ADN. Thus, the mass of the 1N HPGP drive system is derived as follows:

mthruster,green = 0.38kg

mtanks,green = mdrive,mono −mprop,mono

= 1.40kg

mdrive,green = mthruster,green +mtanks,green

= 1.78kg

The propellant mass is given by the relative density of hydrazine to ADN:

mprop,green = 1.22(mprop,mono)

= 1.20

Thus, a 6U spacecraft mass can be calculated under the 1.33 kg assumption for the
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remaining 1U x 2U sections:

mwet = mdrive,green + 2m1U

= 4.44kg

mdry = mwet +mprop,green

= 5.64kg

For the ideal case, one assumes the maximum 1N HPGP specific impulse of 209 s.

Per the Rocket Equation:

∆vgreen = 0.49kms−1

The low-mass construction and improved propellant density of ADN result in a

demonstrable performance increase when compared to hydrazine. However, the 1N

HPGP engine provides only 16% of TLI ∆v demand for a 6U small satellite under

ideal conditions.

Based on this analysis, it was concluded that no current TRL 9 small satellite

on-board propulsion systems are yet capable of achieving TLI. In order to open

new opportunities for translunar missions, a supplementary TLI stage is required to

provide significantly higher propulsive performance and greater flexibility than rare

and highly specific ride share trajectories.

The NASA 2018 Strategic Plan [1] provides a clear mandate for greater presence

in lunar space. Through the Commercial Lunar Payload Services (CLPS) program,

NASA aims to invest $2.6 Billion from 2018-2028 to leverage the growing capabil-

ities of the commercial space sector to improve lunar access. An economic oppor-

tunity therefore exists to develop mission architectures that use a TLI stage based
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on proven propulsion technology and the competitive commercial launch vehicle

market.

However, with different scientific and commercial objectives requiring unique

launch dates and lunar orbital elements, an essential prerequisite to this vision

of increased lunar access is a global characterization of key performance metrics.

Specifically this characterization must quantify the impact of payload mass, lunar

arrival orbital elements, and departure epoch upon mission performance demand.

1.2 Background

Translunar space is a highly dynamic navigational environment with interrelations

between the positions and velocities of numerous celestial bodies, and orbital per-

turbations such as non-spherical gravity, atmospheric drag, solar radiation pressure

and general relativity. This complex balance of forces must be accurately applied in

the design of lunar trajectories. Given the vast distance between Earth and Moon,

small inaccuracies or simplifications to the force model can lead to large errors in a

spacecraft’s arrival state.

Fortunately, these dynamics are well defined in literature and can be distilled

into a detailed mathematical description of the Earth-Moon system.

1.2.1 The Lunar Orbit

The most important factor to consider when designing the Earth-Moon trajectory

is the relative position between Earth, Moon, and Sun. The lunar orbit demon-

strates complex kinematics due to several periodic and secular cycles within the

Earth-Moon system. Periodic cycles include the monthly lunar orbit about Earth,

the fluctuation in lunar orbit eccentricity. Secular cycles include the annual Earth

orbit about the sun, and two long term precessions in the lunar orbit caused predom-

inantly by the perturbing effects of solar gravity. The first is the apisidal precession,
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by which the major axis of the orbit ellipse rotates about Earth within the lunar

orbital plane. The second is the nodal precession, whereby the line of nodes of

the orbit ellipse - the points where the lunar orbit cross the ecliptic - rotates about

Earth upon the ecliptic. These cycles result in a time dependency in both lunar

range, and lunar declination, with important implications for transfer trajectories.

In order to model a translunar mission, the range and declination must be accurately

characterized for a given mission epoch.

This characterization was achieved through Horizons system - a tool developed

by the NASA Jet Propulsion Laboratory (JPL) for the generation of highly accurate

ephemerides for planetary bodies within the solar system. Lunar ephemerides were

generated for a full 18.6 year declination cycle from 01 January 2020 to 01 July

2038. These ephemerides provided orbital elements for the Moon with respect to

Earth’s center, expressed in both ecliptic and equatorial coordinate frames using the

mean equinox at the J2000 reference epoch.

Figure 1.2: Lunar range

On the shortest time scale, the periodic cycles may be observed. Range oscil-

lates with a 27.3 day period as the Moon travels around its month long Earth orbit.

The maximum and minimum monthly ranges occur at apogee and perigee passage
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respectively. Due to solar gravity, third body gravity, and tidal forces, the Lunar or-

bit has a time varying eccentricity. This is observed by the oscillation in minimum

and maximum apogee and perigee radius over a period of 7 months.

Figure 1.3: Lunar argument of perigee, equatorial, J2000 mean equinox

On a medium time scale, the equatorial argument of perigee for the can be seen

to pass through a full 360 degree revolution every 8.9 years - a demonstration of the

secular apisidal precession cycle. Thus, the instantaneous Earth-Moon distance is

a function of the true anomaly of the Moon in its Earth orbit (27.3 day period), the

lunar eccentricity (7 month period), and the orientation of the line of apisides (8.9

year period). The magnitude of this position vector drives the semi-major axis of

the minimum ellipse required to reach the moon.

Per the Vis-Viva equation - the greater the semi-major axis of the transfer ellipse,

the higher the required earth departure velocity becomes.

On a long time scale, the Moon’s ecliptic Right Ascension of the Ascending

Node (RAAN) is observed to pass through a full 360 degree revolution every 18.6

years - a demonstration of the secular nodal precession cycle. The obliquity of

Earth’s axis of rotation places the celestial equator at a 23.5◦ inclination to the

ecliptic, with the two planes transecting along the vernal equinox. The lunar dec-
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Figure 1.4: Lunar RAAN, ecliptic, J2000 mean equinox

lination - the angle between the Moon and the celestial equator - is driven Earth’s

obliquity, the lunar RAAN, and the Moon’s ecliptic inclination. As demonstrated,

the ecliptic inclination oscillates between 5◦ and 5.3◦.

Figure 1.5: Lunar inclination, ecliptic, J2000 mean equinox

The minimum declination of 0◦ occurs when the Moon passes through an as-

cending or descending node. The maximum declination fluctuates between low and

high values. The low maximum occurs when the line of nodes of the celestial equa-

tor and the lunar orbit plane are aligned. The angular difference in the inclinations
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is thus 23.5◦ - 5.3◦ = 18.2◦. The high maximum occurs when the line of nodes of

the celestial equator and the lunar orbit plane are 180◦ out of alignment (co-linear

line of nodes, with opposite ascending nodes). The angular difference in the incli-

nations is thus 23.5◦ + 5.3◦ = 28.8◦. Thus, the monthly minimum and maximum

lunar declination oscillates over the 18.6 year nodal cycle.

Figure 1.6: Lunar declination, equatorial, J2000 mean equinox

This pattern corresponds to an oscillation in the Moon’s equatorial inclination.

Figure 1.7: Lunar inclination, equatorial, J2000 mean equinox

The performance demand for efficient lunar trajectories is reliant upon lunar
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range and declination at the departure epoch. Given a fixed parking orbit radius

and inclination, the mission epoch will dictate the required parking orbit RAAN,

and the true anomaly of the TLI burn. These parameters may be used to align the

transfer trajectory to intersect the Moon at any epoch. Upon arrival, relative veloc-

ity between the spacecraft will be driven by the lunar orbital radius and the angle

between transfer and lunar orbital planes. Thus, the relative positions at departure

also dictate the ∆v necessary for orbit insertion upon arrival.

To understand the approximate ∆v and time of flight magnitudes required for

lunar trajectories, it is beneficial to analyze the data from a range of unique translu-

nar mission architectures that have successfully flown, or have reached a mature

stage in design with high fidelity analysis.

1.2.2 Apollo Architecture

A rich source of information for comparative analysis are the Apollo missions. The

Apollo 10, 11, and 12 Mission Reports [7][8][9] accurately detail mission opera-

tions including burn times, durations and ∆v’s for TLI, orbit insertion, and landing

maneuvers performed by the Saturn-IVB, the Command/Service module, and the

lunar lander, as well as the properties of Earth departure and lunar arrival parking

orbits.

The architecture for these missions includes a circular parking orbit with an

average altitude of approximately 170 km. From this parking orbit, a single TLI

burn places the spacecraft into a free return transfer. Upon arrival, the spacecraft

is directly inserted into a parking orbit of approximately 100 km altitude circular.

The advantages of this architecture is that a circular parking orbit that allows the

adaptable, on-the-fly selection of transfer orbit argument of perigee and is well

suited to ride share opportunities. The disadvantage is that a free return trajectory

has an apogee beyond the lunar radius, therefore, the transfer orbit is not optimally
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Figure 1.8: Apollo trajectory, circular parking orbit, free return

energy efficient.

Presented below are the outbound mission metrics of Apollo 10, 11, and 12.

Table 1.3: Earth-Moon segment characteristics for the Apollo 10, 11, 12 [7][8][9]
Metric Mission

Apollo 10 Apollo 11 Apollo 12
Earth Dep. Orbit [km] 160.3 x 165.1 159.6 x 162.1 185.1 x 189.7
Lunar Arr. Orbit [km] 95.3 x 98.2 86.6 x 105.7 87.4 x 106.4

Translunar Inj. ∆v [m/s] 3049 3182 3205
S-IVB Sep Burn ∆v [m/s] 6 6 -

Mid-Course 1 ∆v [m/s] 15 6 19
Total Flyby ∆v [m/s] 3070 3194 3224

Lunar Orbit Ins. ∆v [m/s] 909 889 881
Lunar Orbit Corr. ∆v [m/s] 42 48 50
Total Orbit Ins. ∆v [m/s] 4021 4131 4155
Com. Mod. Sep ∆v [m/s] - 1 1

Descent Burn ∆v [m/s] - 23 19
Landing Burn ∆v [m/s] - 2112 2003∗

Total Landing ∆v [m/s] - 6267 6178
Translunar Time [hh:mm:ss] 80:25:08 80:11:36 87:48:48

∗ ∆v not presented. Extrapolated from burn time and engine parameters.

The translunar (all pre-lunar arrival) segments of Apollo 10, 11, and 12 have ∆v
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expenditures of 3.07 km/s, 3.19 km/s, 3.22 km/s respectively. These numbers pro-

vide a sample for the expected mission performance demands of a direct approach

free return trajectory from a circular parking orbit within the 159.6 km - 189.7 km

altitude range. The post LOI and LOC ∆v values of 4.02 km/s, 4.13 km/s, 4.16

km/s demonstrate the performance demand for lunar orbit insertion. Likewise the

Apollo 11 and 12 post descent and landing burn ∆v values of 6.27 km/s, and 6.18

km/s demonstrate the performance demand for lunar landing.

1.2.3 Exploration Mission 1 Architecture

Another valuable data point is the trajectory design for Exploration Mission 1

(EM1) - the first mission of the Artemis program. Whilst this mission is yet to

fly, it has been modelled with the NASA Johnson Space Flight Centre Copernicus

mission optimization software and represents a high-fidelity, flight ready mission

design. Trajectory Design Considerations for EM1 by Dawn et. al. [10] details the

arrival and departure conditions, along with detailed performance metrics for the

ICPS and Orion maneuvers.

Figure 1.9: EM1 trajectory, eccentric parking orbit, near-Hohmann

This mission provides an interesting contrast to the Apollo trajectories as it per-
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forms a powered lunar flyby rather than lunar insertion. Furthermore, the translunar

segment of EM1 has two significant departures from the Apollo model. First, it

makes use of an eccentric Earth parking orbit (1800 km x 185 km apogee/perigee

altitudes). Second, it makes use of a near-Hohmann transfer rather than a free re-

turn trajectory (in the context of this research, near-Hohmann means departure at

periapsis, arrival at apoapsis, without any further simplifying assumptions).

The advantage of this trajectory is increased energy efficiency by applying more

mechanical energy to the parking orbit before TLI, and departing upon a more ef-

ficent near-Hohmann transfer to minimize performance demand. The disadvantage

is that a high apogee departure orbit is very specific, requiring a powerful launch

vehicle and very specific launch window (potentially instantaneous). As such, this

architecture does not fit well with small commercial launch vehicles, or with ride

share opportunities (the market for which are predominantly circular orbits).

Presented below are the outbound mission metrics of EM1.

Table 1.4: Earth-Moon segment characteristics for EM1 [10]
Metric Mission

EM1
Earth Dep. Orbit [km] 185 x 1806

Lunar Arr. Perilune [km] 100
Translunar Inj. ∆v [m/s] 2864.3

Vehicle Sep Burn ∆v [m/s] 2
Total ∆v [m/s] 2866

Translunar Time [hh:mm:ss] 140:00:00

A lower ∆v of 2.87 km/s can be observed, demonstrating the effects of depar-

ture and arrival conditions on the overall ∆v requirement. Firstly, the high Earth

parking orbit apogee of 1806 km ensures a comparatively large perigee velocity

when the TLI burn is initiated. Secondly, EM1 does not follow an Earth free return

trajectory. The spacecraft arrives at the moon close to the apogee of its transfer

orbit, thus, the transfer orbit has a lower semi-major axis and correspondingly, a
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lower target perigee velocity for the TLI burn.

1.2.4 Beresheet/Chandrayaan 2 Architecture

At the time of writing, the most recent lunar missions were those of Beresheet and

Chandrayaan 2. The Beresheet lander was launched by Israel’s SpaceIL aboard a

SpaceX Falcon 9 on 22 February 2019. Though the failed landing attempt resulted

in loss of the craft, the Beresheet successfully achieved lunar orbit insertion. Whilst

no detailed analysis of achieved performance was found in current literature, it is

interesting to view the qualitative advantages and disadvantages of these trajecto-

ries. In contrast to Apollo and EM-1 trajectories which make use of powerful cryo-

genic translunar S-IVB and ICPS stages, the 585 kg Beresheet lander was propelled

by a smaller 400 N Leros 2B Hydrazine/Mixed Oxides of Nitrogen thruster. This

comparatively low thrust-to-weight ratio meant a longer burn duration. To improve

efficiency (as discussed below) the translunar injection was split into four shorter

apogee raising burns. The final apogee was equivalent to the lunar orbital radius

and was correctly phased to allow lunar capture on 04 April 2019.

Figure 1.10: Beresheet/Chandrayaan 2 trajectory, multiple apogee raising burns,
phasing orbits

The Chandrayaan 2 mission was launched by the Indian Space Research Orga-
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nization aboard a GSLV on 14 July 2019. In the same fashion as Beresheet, Chan-

draayan 2 applied six successive apogee raising maneuvers to reach lunar radius.

Though the Vikram lander crashed during descent to the lunar surface, the space-

craft successfully achieved insertion on 20 August 2019, and the orbital portion of

the vehicle remains functional.

These trajectories both made use of the Oberth effect as proposed by Hermann

Oberth in Ways to Space [11] by burning in short segments as close as possible

to perigee in order to maximize the increase in specific kinetic energy from each

maneuver. The trade off for this efficiency is an increase in flight times from the

direct approach taken by EM-1, (5.8 days vs. 42 days for Beresheet and 37 for

Chandrayaan 2), and multiple passes through the Van Allen radiation belts.

1.2.5 Gravity Recovery and Interior Laboratory Architecture

The JPL Gravity Recovery and Interior Laboratory (GRAIL) mission launch from

Cape Canaveral aboard a Delta II rocket on 10 September 2011. As presented

by Parker and Anderson in JPL’s Low Energy Lunar Trajectory Design [12], the

two spacecraft (GRAIL A and GRAIL B) achieved translunar injection via a low

energy, weak stability boundary transfer (WSBT). The WSBT architecture required

a TLI burn that overshot the lunar radius. Gravitation due to a precise orientation of

Earth, Moon, and Sun altered the shape of the orbit such that when each spacecraft

fell back towards Earth after apogee, they intercepted the Moon at perigee for a

reduced relative velocity, therefore optimal orbit insertion.

The advantage of this trajectory is a lower orbit insertion ∆v compared with a

direct injection such as Apollo. Furthermore, the arrival vector and timing can be

tailored with minor course correction maneuvers to achieve any arrival inclination

or RAAN. The disadvantage are a long flight time of 70-120 days and a precise

departure epoch that limits adaptability to commercial rise share opportunities.
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Figure 1.11: GRAIL trajectory, weak stability boundary transfer [12]

The advantage of this trajectory is a lower orbit insertion ∆v compared with

a direct injection such as Apollo. Furthermore, the arrival vector and timing can

be tailored with minor course correction maneuvers to achieve any arrival inclina-

tion or RAAN. The disadvantage is a long flight time of 70 to 120 days and tight

limitations on launch epoch.

1.2.6 Optimal Lunar Pathfinder Architecture

To select an optimal mission architecture for lunar pathfinders, the advantages and

disadvantages of each unique architecture reviewed above were compared in the

context of small satellite missions.

An important factor for small satellite missions is translunar flight time, and the

additional mission assurance that long flight times demand. Traditional Discovery

and Flagship class vehicles designed for the rigors of long periods in deep space

undergo years of analysis, environmental testing and qualification before flight. The

associated costs rightly foster an aversion to technical risk, but such conservatism
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comes at the expense of innovation. These missions rarely push the boundaries of

space technology by trialing high performance, less proven on-board instruments,

or by adopting challenging, high-risk, high-yield mission architectures.

Pioneering small satellite missions provides an avenue for rapid advancement

in lunar science and deep space technology with little consequence in the event

of individual mission failure. This prospect does, however, come with limitations.

When compared to Discovery and Flagship class counterparts, small satellites are

inherently more vulnerable to the ionizing radiation of the deep space environment.

Furthermore, decay in the performance of low-weight, low-cost batteries and solar

cells are provide an additional time limiting factor. To account for this, a direct

translunar trajectory similar to Apollo or EM1 would be favourable for pathfinder

missions. This approach maximizes the portion of operational life a satellite spends

collecting data in lunar orbit or on the surface, rather than in transit.

The corresponding flight time of 3 - 5 days would enable satellites with month-

long deep space lifetimes to be viably applied on lunar missions. Adopting phasing

loops such as those of the recent Beresheet and Chandrayaan 2 missions, or adopt-

ing a weak stability boundary transfer similar to GRAIL may add weeks or even

months to the translunar travel time. Though more mass efficient, these trajectories

limit access to spacecraft with a design life sufficient to endure the long voyage, and

risk reduction to justify the human capital required to support extended operation.

Though not an intractable problem, it dulls the unique advantage of rapid, low cost

iteration.

Another important factor in enabling increased mission volume is access to cost

competitive commercial launch vehicles, either by dedicated launch aboard a small,

low cost rocket, or through ride share aboard a larger rocket with a high payload

capacity and lower cost-per-kilogram ($/kg) performance. Ride share places two

restrictions upon a lunar mission. Firstly, the translunar injection must occur from a
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standard, readily available LEO parking orbit that services other satellite customers.

The market for ride share is predominantly to circular orbits, not a mission specific

high eccentricity transfer orbit with dedicated alignment and phasing. Secondly,

the vehicle required to complete the mission must fit within the mass limitations

and fairing form factor of the cost competitive launch vehicles of the current and

near-future commercial launch market.

The mission architecture selected for this research was a circular Earth parking

orbit (similar to Apollo), a single TLI burn for direct injection into a near-Hohmann

transfer (similar to EM1), insertion into circular parking orbit, then a half-orbit de-

scent and landing sequence. As discussed in Chapter 2, this configuration serves

as a sound architectural “baseline” that limits translunar flight time and Van Allen

exposure, adopts a near-Hohmann transfer for the most efficient direct injection

trajectory, and utilizes a versatile parking orbit that is compatible with small com-

mercial launch vehicles and ride share opportunities.

1.2.7 Lunar Arrival Conditions

Further important drivers for mission performance are the conditions at the lunar

arrival. A small satellite pathfinder mission is likely to require objective-dependant

lunar orbit parameters. Potential objectives include using Earth, lunar, and solar

gravity to maintain a specific orbital geometry, insertion into a particular post-

flyby geocentric or heliocentric trajectory, ensuring the ground trace transects a

geographic region of interest for orbital imaging, or landing at a precise lunar lati-

tude and longitude.

Consider a Lunar Centered, Lunar Fixed (LCLF) rotating frame with the lunar

prime meridian and equator as fixed datums. The geometry of the arrival trajectory,

be it a flyby, orbit insertion, or landing architecture, may be characterized through

the Keplerian orbital elements. By utilizing a lunar fixed rotating frame, the ground
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trace can be made to transect a particular region of geographic interest for imagining

or landing by tailoring select orbital elements.

The adjustment of lunar orbital elements determine the required velocity vector

upon arrival at the lunar sphere of influence (driven by departure parameters at

the TLI burn phase), as well as subsequent orbit insertion, orbit adjustment, and

landing maneuvers. Therefore, variation in the lunar orbital elements will, like the

departure epoch and trajectory architecture, affect the cumulative mission ∆v, and

thus, performance demand.

Figure 1.12: Ground trace targeting with lunar orbit Keplerian elements

1.2.8 Knowledge Gap

Through a review of past and future missions (Apollo 10 [7], Apollo 11 [8], Apollo

12 [9] EM1 [10], Beresheet, and Chandrayaan 2), along with holistic guidance on

lunar trajectory design per Parker and Anderson, it was observed that the perfor-

mance demands of lunar missions are highly case dependant, or subject to simpli-
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fied assumptions with limited variable parameters.

No reference currently exists to accurately characterize the dependency of per-

formance demand upon four important variable parameters. First is the dependency

upon variability in payload mass to cover a range of small satellite form factors

and masses that would prove viable as lunar pathfinder vehicles. Second is the

dependency upon the periodic and secular cycles of the Earth-Moon system (in-

cluding lunar orbit, eccentricity fluctuation , the characterization of which would

allow the identification of optimal departure phasing. Third is the dependency upon

lunar arrival Keplerian elements to target specific post flyby trajectories, specific

orbital geometries, or ground trace intersections with geographic regions of inter-

est. Fourth is the dependency upon arrival architecture to cover lunar flyby, orbit

insertion, and landing scenarios.

Finally, no reference exists to compare a multi-parameter performance map to

gauge compatibility of small satellite pathfinders with cost-competitive commercial

launch vehicles as a dedicated or ride share mission.

1.3 Objectives

The value proposition of this thesis is to fill the aforementioned knowledge gap by

leveraging high-performance computing to map the performance demand for di-

rect injection lunar pathfinder missions. This map characterizes variability over a

broad range of small satellite payload masses, departure epochs, arrival elements,

and arrival architectures over a complete 18.6 year Earth-Moon nodal cycle. The

results of this analysis are to provide lunar mission designers with a versatile ref-

erence for preliminary planning, including optimal phasing and compatibility with

commercial launch vehicles in the current and near-future market.

To define performance this study focuses primarily on three mission metrics

most relevant to mission designers:
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Translunar Flight Time: the elapsed time between TLI and passage through

lunar periapsis (perilune).

Delta Velocity (∆v): the cumulative total velocity change required to achieve

all maneuvers. Used for cross mission comparison.

Mission Mass: the cumulative total mass of payload, spacecraft, and propellant

- the total mass that must be lifted into an Earth parking orbit by a launch vehicle.

Used for vehicle scoping.

Specifically, this thesis sought to answer four questions.

1.3.1 Research Question 1: Payload Mass Dependency

What is the relationship between mission mass and payload mass for lunar flyby,

orbit insertion, and landing trajectories?

Hypothesis 1: Payload Mass Dependency

Without gravity losses, the ∆v demand does not change with overall vehicle mass.

Based on the rocket equation, it is hypothesized that propellant consumption, and

therefore mission mass, must increase in proportion to payload mass such that the

wet/dry mass ratio is maintained.

1.3.2 Research Question 2: Arrival Orbital Element Dependency

What is the relationship between mission mass and the arrival LCLF inclination and

right ascension of the ascending node for lunar flyby, orbit insertion, and landing

trajectories?

Hypothesis 2: Arrival Orbital Element Dependency

Arrival at a 0◦ inclination corresponds to entry into the lunar sphere of influence at

the shortest possible orbital radius from Earth. Given this requires a marginally less
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energetic transfer orbit, it is hypothesized that a 0◦ arrival corresponds to the lowest

propellant consumption, therefore mission mass, and that increasing or decreasing

inclinations progressively increase mission mass. Upon insertion into a lunar orbit,

it is predicted that a specific LCLF RAAN can be achieved by waiting for the moon

to turn beneath the orbit over its 27.3 day rotation, thus RAAN has no effect on

mission mass. RAAN is only defined upon orbit insertion, therefore does not pertain

to flyby missions

1.3.3 Research Question 3: Departure Epoch Dependency

What is the relationship between mission mass and the departure (TLI ignition)

epoch for lunar flyby, orbit insertion, and landing trajectories?

Hypothesis 3: Departure Epoch Dependency

Transfer orbit energy is driven by lunar range (defining travel distance), and dec-

lination (defining relative inclination and velocity upon arrival). It is hypothesized

that flyby mission mass is optimized at minimum lunar range, and that orbit in-

sertion and landing mission mass is minimized at the lowest relative inclination

between the transfer orbit and lunar orbit at major standstill (the point of highest

lunar inclination with respect to the equator).

1.3.4 Research Question 4: Launch Vehicle Compatibility

Are direct injection, translunar missions for 0 - 24 kg small satellite payloads com-

patible with cost-effective launch vehicles in the near-future commercial market?

Hypothesis 4: Launch Vehicle Compatibility

It is hypothesized that the mission mass required for all direct injection, translu-

nar missions within the parameter space can be delivered to the required parking
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orbit by the SpaceX Falcon 9 and Blue Origin New Glenn heavy lift vehicles. Fur-

thermore, it is hypothesized that smaller, low-cost commercial launch vehicles can

provide frequent, dedicated parking orbit delivery to a subset of translunar missions

for flyby and orbit insertion missions at lower payload masses.
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CHAPTER 2

TECHNICAL APPROACH

In order to answer the research questions posed in chapter 1, this research followed

a technical methodology made up of three progressive steps.

First, a parameter space of lunar pathfinder payload masses, departure epochs,

arrival elements, and arrival architectures was designed to encompass a wide range

of scientifically/commercially compelling pathfinder mission configurations. Sec-

ond, a translunar trajectory design algorithm was designed to generate optimal mis-

sion architectures for each parameter set within the parameter space. This algorithm

was based upon a high-fidelity dynamics for the Earth-Moon system to ensure ac-

curate solutions. Finally, the trajectory design algorithm was used to derive precise,

optimal, direct lunar trajectories for comparative analysis.

2.1 Parameter Space

2.1.1 Fixed Parameters

Earth Parking Orbit Geometry

A fixed 400km altitude circular orbit is far from optimized for minimizing the TLI

burn - it was instead selected for its ubiquity. 400km is an arbitrary LEO orbit

readily accessible to current commercial launchers and flies underneath the South

Atlantic Anomaly and Van Allen Belts, ensuring the critical TLI burn occurs when

the chance of a single event failure due to TIR is minimal. The assumption of

a standard circular orbit at deployment from the payload plate (as opposed to a

tailored high apogee elliptical orbit with a perigee carefully aligned for the TLI

burn) is conducive to ride-share opportunities aboard heavy lift vehicles that offer
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competitive $/kg to orbit performance.

Earth Parking Orbit Inclination

The fixed Earth parking orbit inclination of 28.5◦ was selected as the latitude, there-

fore minimum directly accessible inclination achievable from Kennedy Space Cen-

ter. This is the same parking inclination selected for the Apollo missions. KSC

was selected for its ability to support a wide range of cost-competitive commer-

cial rockets. According to the FAA’s Annual Compendium of Commercial Space

Transportation, 2018, flight tested launch vehicles supported at KSC (available for

non-defense applications) are the Space X Falcon 9, Orbital ATK Minotaur C, Or-

bital ATK Pegasus XL, and the Rocket Lab Electron. Vehicles at an advanced stage

of development and likely supported at KSC in the near-future are the Blue Origin

New Glenn, Firefly Alpha, and Virgin Orbit LauncherOne. Furthermore, it offers

the lowest inclination direct insertion from US soil - a favourable characteristic for

maximum mass-to-orbit. For these reasons, Kennedy was considered the optimal

US based launch site for a lunar mission aboard a cost-competitive commercial

rocket. Given that launch site selection is not a flexible decision for mission design-

ers, and that any alternative US-based site will not out-perform KSC, the launch

site inclination was considered a fixed parameter.

Lunar Parking Orbit Geometry

A fixed 100km was chosen as the lunar arrival perigee for its practical relevance to

scientific mission design. Parker and Anderson adopted the same approach, stating

that “many spacecraft have been inserted into very similar orbits, including Lunar

Prospector, Kaguya/ Selenological and Engineering Explorer (SELENE), Chang’e

1, LRO, and GRAIL”[12]. Furthermore, a 100 km lunar parking orbit also closely

matches the arrival altitude of the Apollo missions for ease of comparative analysis.
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2.1.2 Variable Parameters

Payload Mass

The first variable parameter is payload mass. The miniaturization of spacecraft sen-

sors and subsystems allows high-impact science in low-weight, low-volume buses.

Given part standardization, low mass, and growing flight heritage, the standard cube

satellite form factor was considered the most efficient payload focal point. Centered

upon on the nominal form factor of 6U cube satellite (proven to yield high scientific

value through the secondary payloads selected for EM1), a payload variability of 0

- 12U (0 - 24 kg at 2 kg/U per chapter 1) was deemed reasonable to provide a viable

range of options for small satellite pathfinder spacecraft.

Departure Epoch

To ensure the parameter space encompassed the performance dependencies of the

full periodic (lunar orbit, and lunar eccentricity fluctuation), and secular (Earth or-

bit, apisidal precession, and nodal precession) cycles, an 18.6 year analysis period

from 01 Jan 2020 00:00:00.000 to 01 Jul 2038 00:00:00.000 at 2 day intervals was

selected as the range and resolution of departure epochs.

Arrival Keplerian Elements

With the lunar parking orbit fixed at 100 km circular, targeting a ground trace tran-

section with a geographic region of interest for orbital fly-over or landing may be

achieved by tailoring two Keplerian elements - the Lunar Centered Lunar Fixed

(LCLF) Right Ascension of the Ascending Node (RAAN) and inclination. To en-

compass a broad range of targeted longitudes and latitudes, LCLF inclinations of

-135◦ to 135◦ at 45◦ intervals (180◦ is a less efficient retrograde equatorial orbit

than the 0◦ prograde alternative therefore is not included).
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As arrival LCLF RAAN for a direct injection transfer is dictated by departure

epoch, a specific RAAN must be achieved by waiting in lunar orbit as the tidally

locked Moon rotates beneath the spacecraft for a maximum coast period of one ro-

tation period (27.3 days). As this coast period does not effect mission performance,

it is not considered a variable parameter within the trajectory design algorithm.

Arrival Architecture

To encompass a range of pathfinder mission options, lunar flyby, orbit insertion,

and landing arrival architectures are applied.

2.1.3 Parameter Space Summary

Table 2.1: Parameter space summary
Variable Parameter Min:Res:Max
Payload Mass 0 : 3 : 24 kg
Departure Epoch 01 Jan 2020 : 2 days : 01 July 2038
Arrival Inclination -135 : 45 : 135◦

Arrival Architecture Flyby, Orbit Ins. Landing

Total number of cases 642,033

2.2 The General Mission Analysis Tool: GMAT

A high-fidelity mission trajectory was required for each unique combination of pa-

rameters. This trajectory and the associated performance characteristics were com-

puted for each parameter set using the General Mission Analysis Tool (GMAT)

developed by NASA GSFC.

GMAT was selected for five reasons. First, it supports high-fidelity modelling

of the relevant orbital dynamics. Second, it contains differential correction and

optimization tools required to solve trans-lunar trajectories based on variable inputs.

38



Third, the efficiency of the underlying ANSI C++ code allows fast computation,

enabling a wide parameter space. Fourth, the software is open source, with open

guidance documentation for easy validation of the underlying mathematical model

and the quality control that comes from a widely tested and updated software. Fifth,

GMAT is independently validated by over 13,000 core code tests run nightly [13]

at GSFC and certified as a TRL 9 software. Finally, it has proven heritage in real-

world application, having contributed to 9 NASA missions.

A GUI version of the application was used for algorithm design, testing, and

for automated script generation. The Linux based GMAT console version was then

used for actual analysis due to a significantly faster run time without the GUI over-

head. A simple shell script was written to automatically cycle input parameters

through the GMAT script, appending solutions as a single line ’string’ to an output

text file for data processing.

The subsequent sections provide definitions of applied time scales and coor-

dinate systems, a description of the underlying mathematical architecture for the

orbital dynamics, and a detailed characterization of the trajectory design algorithm

applied using the NASA GMAT source code.

2.3 Time Scales

2.3.1 International Atomic Time: TAI

International Atomic Time defines the uniform passage of time as observed upon the

Earth geoid, and is discretized into standard international seconds. SI seconds are

precise temporal units based upon the radioactive decay of Cesium-133 as measured

and averaged across a global network of atomic clocks. Due to its precision, TAI

serves as the basis for numerous time scales.
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2.3.2 Terrestrial Time: TT

Dynamical times are defined as the independent variable of planetary and lunar

ephemerides, thus, they are measured through observations of the sun, planets, and

moons. TT is the dynamical time specific to geocentric ephemerides. Per Mon-

tenbruck and Gill [14], it is the time in 86400 SI second days that would be mea-

sured by an ideal clock upon the surface of the geoid. TT agrees with TAI at a

constant positive offset of 32.184s:

TT = TAI + 32.184s (2.1)

TT is important as the defining time scale of the fundamental astrodynamical

J2000 reference epoch 01 January 2000 12:00:00 TT.

2.3.3 Universal Time: UT1

Solar time is based upon a day marked by successive passages of the sun across

the prime meridian in the geocentric celestial sphere. However, due to the eccentric

orbit of Earth about the sun, the length of a solar day is subject to seasonal drift as

Earth passes between perihelion and apohelion. Therefore, it is not a suitable datum

for accurate time keeping. Instead, mean solar time is based upon the meridian

passage of a fictitious “mean sun” which undergoes a constant daily shift in its Earth

Fixed RAAN at a rate determined through observations and analytical methods.

Universal Time UT1 is a mean solar time determined through observation of the

Greenwich Mean Sidereal time - the measurable Greenwich hour angle of the vernal

equinox.
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2.3.4 Coordinated Universal Time: UTC

UTC is a realization of the mean solar time based upon the atomic time scale. It is

based upon TAI with its accurate SI second, but includes a constant offset of “leap

seconds” such that UTC always matches UT1 to within 0.9s. The annual leap offset

between UT1 and UTC (∆UT1), and the cumulative leap seconds between UTC

and TAI (∆TAI) are catalogued by the International Earth Rotation and Reference

Systems Service (IERS), whereby:

UTC = UT1 + ∆UT1 (2.2)

and

UTC = TAI + ∆TAI = TT − 32.184s+ ∆TAI (2.3)

UTC is the standard scale of time used across this analysis to define all departure

and arrival epochs, burn times, and coast times. The UTC time of the fundamen-

tal J2000 epoch (defined in the TT scale as 01 January 2000 12:00:00.000) is 01

January 2000 11:58:55.815986276 [15].

2.4 Time Formats

2.4.1 Julian Date: JD

The Julian Date (JD) is the number of days elapsed since a reference epoch of noon,

01 January 4713 BC in the Julian calendar [15]. Thus, the J2000 epoch occurs at

JD 2451545 TT, or JD 2451544.999257130 UTC.

2.4.2 Modified Julian Date Format: MJD

To reduce the numerical size of the epoch variable, the Modified Julian Date is

appiled. MJD is the number of days elapsed since a second, more recent JD format
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reference epoch. GMAT uses 05 January 1941 12:00:00.000 as this reference, thus:

MJD = JDday − 2430000 (2.4)

Therefore, the J2000 epoch occurs at MJD 21545 TT, or MJD 21544.999257130

UTC. MJD is the numerical input applied by GMAT for ease of epoch based calcu-

lations. It is important to note that the GMAT form of MJD differs from the standard

convention that utilizes a reference epoch of 17 November 1858 12:00:00.000.

2.4.3 Gregorian Date: GD

Whilst MJD is convenient for computation, all important mission epoch results

are processed into the recognizable and intuitive Gregorian form of ”dd MM yyyy

HH:mm:ss.SSS” UTC.
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2.5 Coordinate Frames

2.5.1 Earth Centered Inertial Frame: ECI

Earth Centered Inertial (ECI) is fixed with respect the celestial field, with its origin

at Earth’s center of mass. The X axis lies upon the mean vernal equinox - the

intersection of the J2000 mean equatorial plane and the J2000 mean ecliptic - in

the direction of the constellation Aries. The Z axis is aligned with Earth’s polar

axis of rotation at the J2000 epoch, whilst the Y axis lies on the equatorial plane,

counter-clockwise positive of the X-axis, to complete a right handed set.

Figure 2.1: ECI frame

2.5.2 Earth-Moon Rotating Frame: EMR

The Earth Moon Rotating frame (EMR) is formed by a set of object referenced axes

defined by the relative position of Earth and Moon. These axes are characterized

by 6 vectors within the ECI inertial frame. The first is the position vector R of the
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center of mass of the moon relative to the center of mass of Earth. The second is

the velocity vector V of the Moon’s motion within the ECI frame (ie. its velocity

with respect to Earth). The third, N, is the cross product of the R and V vectors,

forming a right handed set. The remaining three vectors are opposite and equal to

the first three.

Figure 2.2: EMR frame

2.5.3 Lunar Centered Inertial Frame: LCI

Lunar Centered Inertial (LCI) is fixed with respect to the celestial field, with its

origin at the Moon’s center of mass. The X axis is aligned with the intersection of

the Moon’s equator and Earth’s equator at the J2000 epoch. The Z axis is aligned

with the Moon’s axis of rotation, whilst the Y axis lies upon the equator, counter-

clockwise positive from the X axis, to complete a right handed set.

44



Figure 2.3: LCI frame

2.5.4 Lunar Centered Lunar Fixed Frame: LCLF

Lunar Centered Lunar Fixed (LCLF) originates at the Moon’s center of mass. The

X axis lies upon the lunar equatorial plane, aligned with the Lunar prime meridian

(0 degrees longitude) as defined by JPL’s Development Ephemeris model DE405

included with the GMAT source code. The Z axis is aligned with the Moon’s axis

of rotation. The Y axis lies upon the equatorial plane, east-positive of the X-axis, to

complete a right handed set. The LCLF frame is used to define the orbital elements

and Cartesian states for lunar observation orbits and precision landing operations

dependant upon specific lunar latitudes and longitudes.
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Figure 2.4: LCLF frame

2.5.5 Velocity Normal Bi-Normal Frame: VNB

The Velocity Normal Bi-Normal Frame (VNB) is fixed with respect to the instan-

taneous spacecraft motion and centered upon the spacecraft center of mass. The V

axis is aligned with the spaceraft velocity vector. The N axis is aligned with the

orbit normal (the angular momentum, or cross product of the radial position and

velocity). The B axis completes the right handed set.

2.6 Orbital Dynamics: The Equations of Motion

This section details the underlying mathematical model used to characterize the

forces of the Earth-Moon System, and the equations of motion that describe the

passage of a spacecraft passing through it. A high-fidelity dynamics model was

considered a fundamental requirement of this research in order to provide a mean-

ingful assessment of mission performance for lunar mission designers.
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Including higher-order acceleration terms into the equations of motion (for im-

proved fidelity) comes at a cost to computational speed. A test run of the GMAT

algorithm applied to a simple lunar landing trajectory was used to compare speeds

with simple three body equations of motion (accounting for Earth and lunar grav-

ity), and a complex equations of motion with higher order terms. The run times on

a quad core Macbook were 25.763683 seconds versus 36.779985 seconds - an 11

second difference. Whilst not an issue for a single test case, this increased duration

adds 12.7 days of computation for every 100,000 parameter combinations that are

run through the algorithm.

Access to the Georgia Institute of Technology’s super-computing capability

through the Partnership for an Advanced Computing Environment (PACE) network

made the implementation of a high-fidelity propagator possible by running multiple

analyses in parallel across 80 cores.

The underlying differential equations of motion applied by the numerical prop-

agator to describe the trajectory of a spacecraft flying through the Earth-Moon sys-

tem are constructed from accelerations due to all significant forces acting upon the

spacecraft in Earth and lunar spheres of influence.

These accelerations are central body gravitation ¨̄rCB, third-body gravitation

¨̄rTB, and the perturbing accelerations due to central-body non-spherical gravity

¨̄rNS , atmospheric drag ¨̄rAD, solar radiation pressure ¨̄rSR, relativistic correction ¨̄rRC ,

and spacecraft thrust ¨̄rST thus:

¨̄rspacecraft = ¨̄rCB + ¨̄rTB + ¨̄rNS + ¨̄rAD + ¨̄rSRP + ¨̄rRC + ¨̄rST (2.5)

The relative magnitudes of the various contributing accelerations are demon-

strated by Montenbruck and Gill in Satellite Orbits chapter 3, figure 3.1 [14]. The

precise formula of each acceleration as defined within the GMAT Mathematical

Specification [15] is detailed in the following sections.
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Figure 2.5: Relative acceleration of perturbing effects in Earth Orbit, Satellite Or-
bits, Figure 3.1 [14]

2.7 Central-Body and Third-Body Gravity

Each reference frame with which the spacecraft Cartesian state is defined originates

at the centre of mass of the predominant gravity well. As a result, the instantaneous

acceleration acting upon a spacecraft due to the gravitational attraction of planetary
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bodies is purely a function of spacecraft and third body positions relative to the

central body about which the reference frame is defined.

As detailed by Prussing and Conway in Orbital Mechanics section 1.3 [6], it is

appropriate to represent each planetary body is a point mass under two conditions.

Firstly, the spacecraft must always lie outside of the external sphere of all attract-

ing planetary bodies. This condition is obviously met - no trajectory resulting in

an impact event with Earth or Moon would be considered a particularly promising

basis for a lunar mission. Secondly, the mass distribution within the planets must

be spherically symmetric. This condition is perfectly valid for all planetary bodies

beyond the Earth-Moon system. Given the extreme distance, the vectors between

the spacecraft and the centers of multiple non-spherically symmetric mass concen-

trations inside the planet converge beyond any meaningful error. Earth and Moon

are however, a different matter. As presented in figure 2.5, the perturbing effects

of spherical asymmetry exert a significant influence when a spacecraft is in close

proximity to a non-spherical planetary body. To account for this, these effects are

managed as separate perturbations.

Thus, the assumption of point-mass gravity sources valid, and accelerations due

to central and third body gravitation is derived from two of Newton’s laws as set

forth in Principia Mathematica Philosophiae Naturalis. These are the second law

of motion, and the law of gravitation.

The second law of motion states that the external force applied to a body is

equal the rate of change of the linear momentum of the body. Thus, per Prussing

and Conway [6]:

ΣFexternal =
d

dt
(mv̄)

= m
dv̄

dt
(2.6)
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Newton’s law of gravitation states that the force due to the gravitational attrac-

tion between two point-mass bodies is proportional to the product of their masses,

inversely proportional to the square of their separation distance, and acts in the di-

rection defined by the unit vector aiming from the first mass to the second. Thus,

per Prussing and Conway [6]:

Fgravity = G
m1m2

r2
r̄

r
(2.7)

where coefficient G is the empirically determined Constant of Gravitation:

G = 6.67259 × 10−11m3kg−1s−2

To determine the acceleration acting upon the spacecraft, equations 2.6 and 2.7

must be applied to the spacecraft (mass ms), the central-body (mass mj), and n

third-bodies (mass mk where k = 1...n) within an inertial frame. Consider the

system in figure 2.6:

Figure 2.6: N-Body inertial reference frame
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The position of the spacecraft relative to the central body is given by:

r̄ = r̄s − r̄j (2.8)

The second time derivative of equation 2.8 (refer to Prussing and Conway [6] for

full derivation) provides the acceleration of the spacecraft with respect to the central

body expressed in terms of spacecraft and central-body inertial accelerations.

¨̄r = ¨̄rs − ¨̄rj (2.9)

Solving equation 2.9 requires expressions for ¨̄rs and ¨̄rj . These terms are ob-

tained by applying Newton’s Second Law of Motion and Law of Gravitation. Ap-

plying 2.6 and 2.7 to the spacecraft inertial acceleration ¨̄rs yields:

ms ¨̄rs =
∑

Fs,external

= G
msmj

r3
r̄ +

n∑
k=1

G
msmk

r3sk
r̄sk

= G
msmj

r3
r̄ +G

n∑
k=1

msmk

|rk − r|3
(r̄k − r̄)

¨̄rs = G
mj

r3
r̄ +G

n∑
k=1

mk

|rk − r|3
(r̄k − r̄) (2.10)

Similarly, applying 2.6 and 2.7 to the central body inertial acceleration ¨̄rj yields:
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mj ¨̄rj =
∑

Fj,external

= G
mjms

r3
r̄ +

n∑
k=1

G
mjmk

r3k
r̄k

¨̄rj = G
ms

r3
r̄ +G

n∑
k=1

mk

|rk|3
(r̄k) (2.11)

Substituting equations 2.10 and 2.11 into 2.9, yields:

¨̄r = G
mj

r3
r̄ +G

n∑
k=1

mk

|rk − r|3
(r̄k − r̄)−G

ms

r3
r̄ −G

n∑
k=1

mk

|rk|3
r̄k

By simplification, we arrive at the n-body equation of motion:

¨̄r = − µ
r3
r̄ +G

n∑
k=1

(
r̄k − r̄
|rk − r|3

− r̄k

|rk|3

)
(2.12)

where µ = G(ms +mj). Thus, we have terms for accelerations acting upon the

spacecraft from central body gravitation:

¨̄rCB = − µ
r3
r̄ (2.13)

and third-body gravitation:

¨̄rTB = G

n∑
k=1

(
r̄k − r̄
|rk − r|3

− r̄k

|rk|3

)
(2.14)

It can be observed in figure 2.5 that perturbing accelerations due to third-body

gravitation is low in comparison to central-body, atmospheric drag and non-spherical

gravity whist in LEO. However, as altitude increases, these Earth-based perturba-

tions decline whilst third-body acceleration steadily increases. Given the approxi-

mately 400,000 km Earth-Moon distance, third-body gravitation represents the pri-

mary acceleration after central-body gravitation for much of the trans-lunar trajec-

tory once the spacecraft departs LEO and enters translunar space.

52



Planetary positions at each analysis epoch are generated from JPL’s Planetary

and Lunar Development Ephemeris 405 (DE405). This ephemeris is provided with

the GMAT source code through the NASA SPICE binary file DE405AllPlanets.bsp.

The JPL ephmerides are sets of Chebyshev polynomials fit to planetary Cartesian

states at fixed time steps. The polynomials are derived from integrating the n-body

equations of motion for all planetary bodies in the solar system with corrections to

fit observation data from laser ranging of the moon, radar ranging of the inner plan-

ets and select asteroids and DSN satellite ranging to deep space probes and orbital

spacecraft. It is noted by Standish in the JPL Planetary and Lunar Ephemerides,

DE405/LE405 Memorandum that “the ephemerides of the four innermost planets

along with the moon and the sun are all well-known with respect to each other be-

cause of the accurate ranging observations to which the ephemerides are adjusted”

[16]. It is pertinent to note that the Moon in particular is very well defined due to

accurate and frequent laser ranging made possible by reflectors at the Apollo land-

ing sites. The accuracy of DE405 for inner planets is considered 0.001 arcseconds,

which was verified “by the arrival of the Pathfinder Spacecraft at Mars in July 1997,

where the ephemeris error was about 0.001 arcseconds, corresponding to 1 km at

that distance” [16]. The outer planets are considered less accurate due to the re-

liance on optical measurements for range and range rate measurements, however,

given the extreme distance between the outer planets and the Earth-Moon system,

even large positional errors of hundreds of thousands of kilometers for Jupiter and

Saturn have a negligible effect on the spacecraft-to-planet relative position vector

and thus, the resulting acceleration.

2.7.1 Non-Spherical Gravity

In the previous section, the n-body equations of motion was derived to describe

pure Keplerian motion without perturbing effects. It was assumed that all bodies
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within the system were spherically symmetric. Physically, this means that the grav-

itational pull of each body must be accurately represented by a single mass acting at

a point source. In reality, the non-spherical shape of Earth causes significant pertur-

bations on the motion of spacecraft in Earth orbit as demonstrated by the multiple

J term accelerations in figure 2.5. The magnitude of this perturbation is driven by

the geodetic position and altitude of the spacecraft, and a geopotential model that

accurately describes the mass distribution of the planet, including equatorial bulge,

polar contraction, mountains, and oceans.

To handle non-spherical gravity, one must define the inertial acceleration in-

duced by a planet as the gradient of the gravitational potential U , that describes the

planet’s distribution of mass [15]:

¨̄r = ∇U (2.15)

This gravitational potential for an arbitrary mass distribution is expressed as the

sum of individual mass elements that make up a planet [14]:

U = G

∫
ρ(s)d3s̄

|r̄ − s̄|
(2.16)

where s̄ is the vector between the planets center of mass and a contributing mass

element, ρ(s) is the element density, |r̄ − s̄| is the distance between the element and

the spacecraft.

This expression can be expanded using spherical harmonics to describe gravi-

tational potential as a distribution over the surface of a sphere. This is achieved by

representing equation 2.16 as a summation of Legendre polynomials on a spherical

basis. First, one defines the conversion between Cartesian and spherical coordi-
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nates:

x = r cosφ cosλ

y = r cosφ sinλ (2.17)

z = sinφ

where φ is latitude (positive north), λ is longitude (positive east), and r is range

from the planets center of mass:

r =
√

(x2 + y2 + z2)

As presented by Pines in A Uniform Representation of Gravitational Potential

and its Derivatives [17], gravitational potential may be expressed in spherical terms

of φ, λ, and r through the spherical harmonic expression:

U =
µ

r

(
1 +

∞∑
n=1

(R
r

)n
n∑

m=1

Pnm(sinφ)(Cnm cosmλ+ Snm sinmλ)

)
(2.18)

where µ and R are the gravitational parameter and radius of the central planet,

Pnm are the Legendre polynomials of degree n, order m. Cnm and Snm are the

corresponding empirically derived gravitational coefficients that describe the mass

distribution of the planet, representing the density term ρ(s) in equation 2.16.

The Legendre polynomials are defined by Rodrigues’ formula in Lundberg’s

Recursion Formulas of Legendre Functions for Use with Nonsingular Geopotential
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Models [18]:

Pn0(u) = Pn(u) =
1

2nn!

dn

dun
(u2 − 1)n (2.19)

Pnm(u) = (1− u2)m/2 d
m

dum
Pn(u) (2.20)

The partial derivatives of the gravitational potential must be taken to determine

the gravity gradient. In the form of equation 2.18, the partial derivatives yield a

singularity at zero degree latitudes. Thus, a spacecraft positioned directly over a

pole has an undefined gravitational potential. To correct this, GMAT adopts Pines’

expression for gravitational potential [17]. This method applies a new basis of

modified Cartesian terms:

s =
x

r
t =

y

r
u =

z

r
= sin(φ)

By substituting trigonometric terms sinmλ and cosmλ for real and and imagi-

nary terms rm(s, t) and im(s, t), Pines converts equation 2.18 to [17]:

U =
µ

r

(
1 +

∞∑
n=1

(R
r

)n
n∑

m=1

Anm(u)|Cnmrm(s, t) + Snmim(s, t)|

)
(2.21)

where Anm(u) is the derived Legendre function - the mth derivative of the de-

gree n Legendre polynomial of variable u = sin(φ) [17]:

Anm(u) =
dm

dum
(Pn(u)) =

1

2nn!

dn+m

dun+m
(u2 − 1)n (2.22)

Continuing with Pines’ uniform method, GMAT applies recursive formulas to
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compute the real and imaginary positional terms rm(s, t) and im(s, t) [17]:

r0 = 1

r1 = s

rm = srm−1 − tim−1

i0 = 1

i1 = s

im = sim−1 + trm−1

For numerical stability, the mass coefficients Cnm and Snm and Legendre func-

tion Anm are normalized, thus preventing inaccuracies due to poorly scaled coeffi-

cient arrays. GMAT employs the normalization function Nnm [15]:

Nnm =

[
(n−m)! (2n+ 1)!

(n+m)!

]1/2
(2.23)

to compute the normalized spherical harmonic harmonic coefficients C̄nm and

S̄nm [15]:

C̄nm =
Cnm

Nnm

S̄nm =
Snm

Nnm

(2.24)

Likewise, the derived Legendre function is normalized by:

Ānm = NnmAnm (2.25)

Like the rm and im terms, Ānm can be computed through the use of recursive

formulas. GMAT initializes these recursions with the diagonal terms Ā11 and Ānn:

Ā11 =
√

3 cos(φ) (2.26)

Ānn = cosφ

√
2n+ 1

2n
Ān−1,n−1 (2.27)
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The remaining non-diagonal terms can then be found via the recursive formula

[15]:

Ānm = u

[
(2n+ 1)(2n− 1)

(n−m)(n+m)

]1/2
Ān−1,m

−

[
(2n+ 1)(n−m− 1)(n+m− 1)

(2n− 3)(n+m)(n−m)

]1/2
Ān−2,m (2.28)

With elements of equation 2.21 now defined and normalized, accelerations may

now be derived through its partial derivatives.

2.7.2 Atmospheric Drag

As demonstrated in figure 2.5, atmospheric drag acts as the dominant perturbation

for orbital altitudes below 200km. Though drag reduces exponentially with altitude

as the atmosphere thins, it continues to have a measurable impact on an orbiting

space craft throughout LEO altitudes up to 1000km.

Acceleration due to drag acts in the direction opposite to the spacecraft velocity

relative to the atmosphere. Thus, this acceleration always acts to slow the space-

craft, and is defined by:

¨̄rAD = −1

2
ρv2relative

CDAD

ms

v̂relative (2.29)

where ρ is the atmospheric density at the current altitude, CD is the aerodynamic

drag coefficient describing the interaction of the atmosphere with the spacecraft

materials, ms is the spacecraft mass, and AD is the cross sectional area normal to

the velocity relative to atmosphere vrelative. This cross sectional area is considered

constant - a valid assumption for a spacecraft whose orientation is maintained by

an active attitude control system.

vrelative requires that spacecraft velocity be converted from the inertial frame,

58



to the Earth fixed frame to define its flight through a “still” atmosphere, with a

correction then applied for local wind speed. It is assumed that the atmosphere

rotates with Earth

vrelative = v − ωE × r + vw (2.30)

where v is the spacecraft velocity in the intertial frame, ωE = 0.729×10−4rads−1

is the angular velocity of Earth’s rotation, r is the orbital radius, and vw is the local

wind-speed. Note that for the altitudes studied herein, the low atmospheric density

and the extreme velocity of the spacecraft when compared to wind speed, the vw

term is negligible.

The atmospheric density as applied in equation 2.29 is a complex function of al-

titude, temperature, and atmospheric dynamics. As altitude increases, the density of

atmospheric constituents naturally decreases, though this occurs at different rates.

At various strata throughout the Homosphere, Thermosphere, and Exosphere, the

atmosphere transitions from a turbulent mix of constituents, to nitrogen dominant,

molecular oxygen dominant, then molecular hydrogen dominant states.

These density strata are not, however, driven by altitude alone. Temperature

has a significant effect on atmospheric density, and is itself a function of many

parameters, typically ranging between 200K and 2000K. The sun is the cause of

variation in atmospheric temperature. As described by Montenbruck and Gill [14],

there are three primary effects of solar radiation on the upper atmosphere. First,

the diurnal exposure to solar ultraviolet radiative heating [14] produces a day-night

density cycle. Due to Earth’s obliquity, these densities are a function of time, and

geographic latitude. Second, is heating due to extreme ultraviolet radiation [14].

Essentially, this is a cyclical variation in radiation magnitude described by a 27 day

short-term cycle driven by the rotation of the Sun, and an 11 year long-term cycle

driven by Sun spot fluctuations. The third solar influence comes in the form of solar
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wind [14]. Waves of solar particles collide with molecules in the upper atmosphere

and Earth’s magnetic field. The resulting geomagnetic storms have been observed

to alter temperature and total upper atmospheric density for multiple days.

The dependencies of atmospheric density upon a multitude of parameters make

it notoriously difficult to model, and current methods rely on thermodynamic mod-

elling augmented by empirical measurements of satellite orbital decay through the

upper atmosphere. Jacchia 1971 is widely used in literature after its adoption by

the Committee on Space Research as the International Reference Atmosphere [14].

This model is based on an analytical model for density as a function of tempera-

ture and altitude (originally Jacchia 1965), improved through analysis of real-world

satellite orbital decay through the upper atmosphere.

The Jacchia-Roberts model is a further development. As described by Mon-

tenbruck and Gill [14], this variant uses the Jacchia 1971 equations for altitudes

between 90 km and 125 km. Above 125km, a different temperature model is ap-

plied such that the underlying equations can be integrated analytically. This ap-

proach eases computational demand through a closed form solution that avoids the

need for numerical integration between each propagation step or large coefficient

arrays, whilst agreeing closely with the original yet computationally expensive Jac-

chia 1971. Due to the industry validation of Jacchia 1971 and the performance of

the Roberts variation, Jacchia-Roberts has been selected for implementation within

GMAT as the atmospheric density model for this analysis. The model is defined in

full by Long et. al. [19].

2.7.3 Solar Radiation Pressure

Solar radiation pressures results from the transfer of momentum as the spacecraft is

continually impacted by photons emitted from the sun in the form of stellar wind.

As demonstrated in figure 2.5, the induced acceleration is in the order of 10−10 km/s
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- significantly less than other perturbations in LEO. However, solar radiation pres-

sure remains constant regardless of altitude, thus in translunar space, it eventually

exerts a greater comparative influence than Earth non-spherical and atmospheric

drag terms.

The acceleration always acts in the direction of the Sun-to-spacecraft vector

r̄SRP = r̄sol− r̄s, provided the spacecraft is not eclipsed by Earth, Moon, Venus, or

Mercury. The magnitude of the solar radiation pressure is a function of solar flux φ

- a measure of energy passing through an area over a given time interval:

φ =
∆E

A∆t
(2.31)

The force exerted upon a spacecraft by this flux is [14]:

FSRP =
Φ

c
AS (2.32)

where c is the speed of light, and AS is the projected spacecraft area normal to

the solar flux. Per Montenbruck and Gill [14], solar flux at 1 AU from the sun is

approximately constant at 1367 Wm−2. The solar radiation pressure is therefore:

PSRP =
FSRP

AS

=
Φ

c
= 4.56 × 10−6 Nm−2 (2.33)

Applying the above pressure term, the perturbation due to solar flux is charac-

terized by:

¨̄rSRP = −PSRP
CRAS

ms

ˆ̄rSRP (2.34)

where m is the spacecraft mass and ˆ̄rSRP is the unitized Sun-spacecraft vector.

CR is this the radiation pressure coefficient equivalent to 1 + ε, where ε is the

reflectively of the spacecraft surface, ranging from zero (completely absorbent) to

one (completely reflective).
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2.7.4 Relativistic Correction

In accordance with the theory of general relativity, the acceleration of a spacecraft

is perturbed whilst in the vicinity of a planetary body. Unlike the other perturbing

factors presented above, relativistic error manifests not through an applied force,

but through a deviation in the passage of time as measured aboard the spacecraft,

and at the geocenter of the local planetary body. This temporal dilation - whereby

time passes more slowly for an observer closer to a gravity source - is induced

by the curvature in four-dimensional space-time due to a planetary body’s mass.

For high precision orbit determination, a correction may be applied to spacecraft

acceleration to account for such relativistic effects.

It is worth noting that errors due to general relativity are small. It may be ob-

served in figure 2.5 that near Earth’s surface, the perturbation in spacecraft accel-

eration due to relativity induced error is in the order of 10−10 km/s2, and reduces

linearly with altitude. This magnitude is lower than that of dynamic solid tide and

albedo radiation perturbations, both of which are omitted due to their negligible

effect on a trans lunar mission duration. However, GMAT allows the inclusion

of an analytical relativistic correction term that requires no numerical integration

between propagation steps or external coefficient arrays. Given that the inclusion

of this term provides an increase in accuracy at little computational expense, the

decision was made to include it with the force model.

Per the GMAT Mathematical Specification [15], relativistic correction is com-

puted via:
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¨̄rRC =
µ

c2r3

((
4
µ

r
− v2)r̄ + 4(r̄ · v̄)v̄

)

+ 2

((
3

2
v̄CB/Sol ×

(
−µr̄CB/Sol

c2r3CB/Sol

))
× v̄

)

+ 2
µ

c2r3

(
3

r2
(r̄× v̄)(r̄ · J̄) + (v̄× J̄)

)
(2.35)

where c is the speed of light, µ and J are respectively the gravitational parame-

ter and specific angular momentum of the central body, r̄ and v̄ are respectively the

position and velocity of the spacecraft within the central body J2000 inertial coor-

dinate frame, and r̄CB/Sol and v̄CB/Sol are respectively the position and velocity of

the central body with respect to the sun.

The vector for central body specific angular momentum, J , is derived via:

J̄ = R
I/F
CB =

[
0 0

2

5
R2

CBωCB

]
(2.36)

where RCB is the central body equatorial axis, ωCB is the central body angular

velocity, and RI/F
CB is the rotation matrix for body-fixed to inertial frame transfor-

mations.

2.7.5 Spacecraft Thrust

Real-world thrusters exhibit a mass flow gradient once the propellant feed valves

are opened as the engine ramps up from static, to full mass flow rate ṁ. Similarly,

there is a gradient in the combustion chamber temperature from a cold start to a

stable, sustained burn.

From Space Mission Design and Analysis by Larson and Wertz [20], specific

impulse of a chemical rocket Isp is proportional to the square root of the chamber
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temperature Tchamber and average molecular weight of the exhaust gases Mexhaust:

Isp = K

√
Tchamber

Mexhaust

(2.37)

The engine thrust is equivalent to the product of specific impulse and mass flow

rate of propellant:

Fthrust = Ispṁg (2.38)

Examining equations 2.37 and 2.38, it may be observed that variability in Tchamber

or ṁ will result in variability in an engine’s thrust and specific impulse. However,

for the selected pressure regulated propellant system, the high pressure helium tank

driving a 2.6 MPa feed pressure to the propellant tanks ensures a fast build up in

mass flow rate to the engine (and subsequently combustion chamber temperature)

such that any latency is in the order of seconds. This is comparatively short com-

pared to the proposed TLI burn duration’s (in the order of hundreds of seconds),

and LOI burn duration’s (in the order of tens of seconds).

Driving additional accuracy into engine performance would require a polyno-

mial thrust profile reflecting detailed mass flow and temperature data from hot fire

testing of the selected engine. Such an undertaking would be an unjustified com-

plexity - the intent of the engine model is not to fully characterize a specific engine.

Instead, it is to approximate a viable high-thrust chemical engine and capture the

effects of finite burn maneuvers (and corresponding efficiency losses) on the overall

performance.

Therefore, for the purpose of this analysis, spacecraft propulsion has been mod-

elled as constant thrust, constant specific impulse. In practical terms, this is syn-

onymous with an ideal high-thrust engine with a step change from “on” to “off”,

and no latency or variability in its mass flow rate or chamber temperature. Under

this model, GMAT takes thrust force and Isp parameters as constants whereby no
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temperature or pressure dependencies need be computed [15].

With the full engine thrust magnitude considered active (and at full mass flow

rate) for the full duration of each burn, the thrust scale factor fs and duty cycle fd

are both at unity. The thrust vector is computed by [15]:

F̄thrust = fsfdFthrustR̄
ˆ̄T

= FthrustR̄
ˆ̄T (2.39)

where R̄ is the rotation matrix between spacecraft VNB and body-centered in-

ertial frames, and ˆ̄T is the spacecraft VNB frame thrust direction unit vector.

The total mass flow rate of fuel and oxidiser is thus:

ṁ =
Fthrust

Ispg
(2.40)

The acceleration induced by spacecraft thrust is a function of the thrust force,

and mass. As a thrusting burn expends mass in the form of exhausted propellant,

the mass term is time dependant throughout the burn duration of time t:

¨̄rthrust =
1

ms(t)
FthrustnR̄T̂ (2.41)

The time dependent spacecraft mass is a function of fixed mass mfixed, and the

consumable fuel mass mf , and oxidizer mass mo:

ms(t) = mfixed +mf (t) +mo(t) (2.42)

The overall mass flow rate of consumables passing through the engine is com-

puted in equation 2.40. This value may be discretized into fuel and oxidizer mass
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flow rates using the oxidizer/fuel ratio o/f :

ṁ = ṁo + ṁf

ṁo =
o/f

1 + o/f
ṁ (2.43)

ṁf =
1

1 + o/f
ṁ (2.44)

As constant mass flow is assumed, the time dependent mass terms applied in

equation 2.42 may be derived through a linear relationship. Combining mass flow

rates from equations 2.43 and 2.44 with pre-burn masses mf,0 and mo,0, the fuel

and propellant mass after burn duration t is derived via:

mo(t) = mo −
o/f

1 + o/f
ṁt (2.45)

mf (t) = mf −
1

1 + o/f
ṁt (2.46)

2.8 Numerical Propagators

Two propagators were constructed in GMAT to transition the spacecraft state for-

ward and backward in time by numerically integrating the equations of motion -

Near Earth Propagator (NEP) and Near Moon Propagator (NMP). The Ordinary

Differential Equation solver used in the propagators was the Runge-Kutta 8th order

integrator with 7th order error correction using the Prince and Dormand coeffi-

cients - the Prince Dormand 78 method for short. Prince Dormand was selected for

its favourable computational accuracy for lunar trajectories when compared with 6

alternative integrators that may be applied within a GMAT simulation. In Verifica-
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tion and Validation of the General Mission Analysis Tool (GMAT), Hughes et. al.

apply a “loop test” by propagating 6 unique control case orbits (ISS LEO, Molniya,

Lunar flyby, Mars transfer, and two finite burns) as defined in figure 2.7.

Figure 2.7: GMAT integration test cases, Verification and Validation of the General
Mission Analysis Tool (GMAT), table 8 [13]

Each test case was propagated with all 7 available integrators, then back-propagated

for the same number of time steps. The initial and final positions were then com-

pared as a measure of accuracy. Though Prince Dormand 78 had the longest run

time for the lunar flyby case, it also demonstrated the greatest accuracy with zero

integration error to the mm level as shown in figure 2.8.

Figure 2.8: Comparison of GMAT integrator performance, Verification and Valida-
tion of the General Mission Analysis Tool (GMAT), table 9 [13]

NEP and NMP are similar in architecture, with each applying the following
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integration configuration:

– Integrator: Prince Dormand 78

– Min time step: 0

– Max time step: 86400

– Accuracy: 10−12

The force model applied by each propagator was driven by the configuration

of the equations of motion. Both NEP and NMP applied the following common

elements:

– Third body gravitation from the Sun , Venus, Mars, Jupiter, and Saturn, ¨̄rTB

– Solar radiation pressure, ¨̄rSRP

– Relativistic correction, ¨̄rRC

– Spacecraft thrust, ¨̄rST

In addition to these shared accelerations, the NEP propagator has the following

unique elements:

– Central body gravitation from Earth, ¨̄rCB,earth

– Third body gravitation from the Moon, ¨̄rTB,moon

– Degree 10, order 10 gravitational harmonics with JGM3 coefficients, ¨̄rNS,earth

– Atmospheric drag, ¨̄rAD

Likewise, the NMP propagator has the following unique elements:

– Central body gravitation from the Moon, ¨̄rCB,moon

– Third body gravitation from Earth, ¨̄rTB,earth

– Degree 10, order 10 gravitational harmonics with LP165P coefficients, ¨̄rNS,moon

The selected force models inherent to NEP and NMP have two notable sets of

exclusions. First are JGM3 and LP165 geopotential spherical harmonics of degree

and order greater than 10. The second are n-body gravitational acceleration from

Mercury, Saturn, Uranus, Neptune, and Pluto. These exclusions were made to sim-

plify the equations of motion and improve computational speed on the condition
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that they did not significantly decrease accuracy on lunar mission time scales. To

validate this assumption, a GMAT analysis was run to compare the “applied” force

model (NEP) to a “complete” model of JGM3 degree and order 70, and all nine

planets considered for n-body gravitation.

The analysis used the Prince Dormand 78 integrator to propagate identical space-

craft from an identical initial state and epoch, though acted upon by the two different

force models. To best reflect the primary analysis, each spacecraft had a 41.5 kg

dry mass, a constant 635 N thrust, 317 s specific impulse chemical thruster, and a

100 kg propellant load. The spacecraft was placed in a 400 km altitude, 28.5 degree

inclination circular parking orbit with zero RAAN, TA, and AOP, at an epoch 01

Jan 2020 00:00:00.000 UTC. A boundary value solver was used to apply a finite

burn, varying its duration until, at cut-off, each spacecraft would coast to an apogee

of 400,000 km with a tolerance of 0.1 km - an approximation of lunar distance.

Below is presented the apogee radius, burn duration, residual propellant, and a

positional deviation from the “complete” model solution.

Table 2.2: Force model comparison
Parameter Complete Model Applied Model
Apogee radius [km] 399999.950717 399999.998886
Burn duration [s] 437.587372 437.587394
Residual propellant [kg] 10.646774 10.646769
∆ x 0 0.073723
∆ y 0 0.400397
∆ z 0 0.190650
Normalized ∆ 0 0.449556

As evidenced by these results, the final spacecraft positions deviate by 449.56

m between the complete and applied force models after a 5 day, 6 hour, 58 minute

flight time. This is equivalent to a 0.0002% deviation in lunar orbital radius upon

arrival at the nominal 100km perilune altitude. Burn duration’s differ by 0.00002 s,

resulting in a negligible deviation in efficiency loss during the finite burn maneuver.
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The residual propellant masses differ by 0.000004 kg, resulting in negligible de-

viation the spacecraft mass during the propagation. The comparative computation

times between applied and complete running on a quad-core Macbook were 2.7180

s and 4.2260 s - thus the applied model offered a 40% reduction. For an analysis

with hundreds of thousands of runs required to cover all combinations of input pa-

rameters, it was judged that the observed computational performance improvement

justified the minor reduction in accuracy.

2.9 Solver

Each mission trajectory was constructed in stages using a differential correction

solver. This numerical technique solves a boundary value problem in order to

determine the specific control variables that satisfy defined arrival condition con-

straints for a given trajectory segment. The Newton-Raphson method was selected

as the solver algorithm after several GMAT test runs demonstrated a more robust

convergence than the Broyden and Modified Broyden alternatives. Furthermore,

the Newton-Rapshon method demonstrates quadratic convergence when appropri-

ate initial values are provided.

Figure 2.9: Newton-Raphson method differential correction

Where x1..m are control variables, y1..n are control variable dependent con-

straints placed upon a certain arrival conditions. Thus y1 = f1(x1..m), y2 = f2(x1..m),
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... , yn = fn(x1..m). Expressed in matrix form:

x =



x1

x2
...

xm


, y =



y1

y2
...

yn


=



f1(x1..m)

f2(x1..m)

...

fn(x1..m)


(2.47)

The Newton-Raphson method computes the partial derivatives of y with respect

to x via forward finite differencing with a defined control variable perturbation ∆x:

∂y1
∂x1

=
y1(x1 + ∆x1)− y1(x1)

∆x1
(2.48)

Thus, the algorithm may compute the Jacobian matrix of the control variables

and constraints:

Jy(x) =



∂y1
∂x1

∂y1
∂x2

. . . ∂y1
∂xm

∂y2
∂x1

∂y2
∂x2

. . . ∂y2
∂xm

...
... . . . ...

∂yn
∂x1

∂yn
∂x2

. . . ∂yn
∂xm


(2.49)

For the remainder of section 2.9, numerical subscripts refer to Newton-Raphson

iteration.

By generating a Jacobian in this fashion, the Newton-Raphson method performs

a series of iterations until converging upon a set of control variables that meet the

constraints targeted by the solver. Given control variables xi (for iteration i) and

perturbation ∆x, finite differencing is applied to generate a new estimate, xi+1, via:

xi+1 = xi + Jyi(xi)
−1yi (2.50)

The solver is initialized by defining:

– Constraint targets y∗
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– Constraint tolerances ∆ymax

– Control variable initial values x0

– Control variable perturbation ∆x

– Control variable upper limit xupper

– Control variable lower limit xlower

– Solver maximum step-size xmax

Once these attributes are chosen, the solver will run through the following con-

trol loop:

1. Using the initial control variable (eg. duration of TLI burn and true anomaly

in Earth parking orbit), propagate the spacecraft from the departure point

using the appropriate NEP or NMP propagator until the targeted arrival con-

dition is met (eg. arrival at perilune), or a time limit is reached.

– Input: x0

– Output: y0 = f(x0)

2. Returning to the departure point, adjust the control variables by the perturba-

tion. This becomes the control variable for iteration i = 1.

– Input: x0, ∆x

– Output: x1 = x0 + ∆x

3. Propagate spacecraft for a set duration, or until the targeted arrival condition

is met (eg. arrival at perilune). GMAT computes constraint value at final

spacecraft location (eg. deviation from a targeted 100 km perilune), and ap-

plies the finite difference method to compute the Jacobian.

– Input: x1, y∗

– Output: y1 = f(x1), Jy1(x1)

4. Achieve convergence criteria;

(a) If the constraint falls within tolerance of its specified target (eg. +/- 1

km from a targeted 100 km perilune), the current estimates for control
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variables are output as solutions:

– Input: y1, ∆ymax

– Output: x

(b) If the constraint does not meet tolerance, the Newton-Raphson method

is applied, using the constraint value and Jacobian to generate a new es-

timate for the control variables. The entire control loop is repeated until

either convergence or the maximum number of iterations is reached.

– Input: y1, ∆ymax, Jy1(x1)

– Output: xi+1

Due to quadratic convergence, the differential correction solver can build trajec-

tories faster than an optimizer, however, convergence using the Newton-Raphson

method relies upon sound initial values for the control variables. In the example

given above, the control parameters are TLI burn duration and parking orbit true

anomaly, whilst the targeted arrival condition is a perilune altitude of 100 km with

a +/- 1 km tolerance constraint. For the burn to be optimal, it must occur slightly

ahead of the perigee of a near-Hohmann transfer ellipse between Earth and moon.

Thus the initial true anomaly estimate must place the spacecraft close to this point

in Earth parking orbit. Similarly, for the TLI burn to accurately reach a 100 km

perilune approximately 400,000 km away (a very tight target) its duration must be

initialized to provide a ∆v closely matching the true value for any hope of conver-

gence.

Furthermore, the initial burn duration must be placed slightly below the duration

required to reach the targeted arrival. This ensures the solver gradually increases

the burn duration control variable, bound by the maximum iterative step size, un-

til converging at the lowest viable value, the solution corresponding to minimum

propellant consumption.

This example highlights the need for intelligent initial estimates. Without robust
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inputs, the solver will not converge, or will converge onto a sub-optimal solution. To

ensure robust performance, a succession of solver loops were applied in the design

of maneuvers. The initial loop allows broad variation in limited input parameters

with a coarse constraint tolerance. Each loop progressively tightens this tolerance

and introduces more input parameters to build initial conditions for the next, more

accurate loop.

2.10 Spacecraft Model

The equations of motion detailed in the sections above draw upon several spacecraft

driven parameters, namely:

– Spacecraft mass, ms

– Fixed mass, mfixed

– Fuel mass, mf

– Oxidizer mass, mo

– Drag area, AD

– Drag coefficient, CD

– Solar flux area, AD

– Solar radiation pressure coefficient, CS

– Thrust force, Fthrust

– Specific impulse, Isp

In order to quantify these performance and mass characteristics, it was neces-

sary to make a series of estimates based upon a basic systems level design of a TLI

stage. This section details that design process, cataloguing the underlying assump-

tions and sources for component characteristics.

Recognizing that navigation, communication, power, and environmental en-

durance are non-trivial factors beyond LEO, the design of the TLI stage assumes a

“baseline” mission model that employs direct lunar transfer and orbit insertion with
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single burns at optimal locations. This architecture, discussed in chapter 1, ensures

faster transfer times to maximize scientific return and minimize passage through the

Van Allen belts.

This model provides a robust upper bound for propellant demand for a given

payload departing on a given epoch to a given lunar arrival condition. If a long

flight times and multiple Van Allen belt passages are considered viable for a certain

mission, designers may use this result as a starting point for further optimization

with mission specific parameters. Propellant mass may be further reduced with the

introduction of multiple phasing loops that minimize inefficiency due to the Oberth

Effect during TLI and LOI burns.

The assumptions of this baseline model are summarized in table 2.3 and provide

design guidance for the TLI stage.

Table 2.3: Baseline mission assumptions

Flyby
Orbit

Insertion
Landing

Form factor compatible with con-
temporary commercial launcher
fairings

x x x

Self contained TLI capability from
circular parking orbit

x x x

Storeable, hypergolic, bipropellant
with proven flight heritage

x x x

Thrust always applied along space-
craft longitudinal axis

x x x

Single burn TLI maneuver directly
to perilune

x x x

Single burn LOI maneuver directly
to a circular parking orbit

x x

Constant thrust descent and landing
maneuvers

x

To size the spacecraft envelope, fairing sizes for current or soon to be avail-

able cost-competitive commercial launch vehicles were used as a benchmark. The
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FAA’s 2018 Annual Compendium of Commericial Space Transportation[21] de-

tails specifications for commercial US launchers compatible with KSC operations.

The launch vehicles detailed below are currently available, or are in production for

flight testing by 2020. Vehicles exclusive to government or military customers are

excluded.

Table 2.4: Kennedy Space Center compatible launch vehicles

Launch Vechicle Company
Fairing diameter

[m]
Fairing Length

[m]
New Glenn Blue Origin 7 Undisclosed
Falcon 9 Space X 5.2 13.2
Alpha Firefly 2 5
Minotaur C Orbital ATK 1.6 2.2
Launcher One Virgin Orbit 1.4 3.6
Pegasus XL Orbital ATK 1.2 2.1
Electron Rocket Lab 1.2 2

The most compact envelope of 1.2 x 2 m was selected as an upper envelope limit

to ensure compatibility across the full range of viable near-term launch options.

A storeable, hypergolic, bi-propellant engine has been selected as the propul-

sion architecture for its proven heritage aboard missions with long durations and

requirements for multiple burns. The technology began in the Apollo era with

Aerozine 50/Nitrogen Tetroxide used as the fuel/oxidizer combination for the Com-

mand and Service Module and Lunar Module main engines and RCS thrusters. The

technology has since developed into a mature system with significantly greater per-

formance than TRL 9 monopropellant, hot gas, and cold gas alternatives, whilst

offering greater long duration operability than cryogenics.

Of particular applicability to lunar mission architectures is the Leros engine de-

veloped in England by Royal Ordnance. The Leros line has successfully flown mul-

tiple interplanetary missions, including NASA’s NEAR Shoemaker, Mars Global

Surveyor, Mercury MESSENGER, and Juno. It has also achieved TLI and LOI for
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SpaceIL’s Beresheet lunar lander.

The 635 N thrust, 317 s specific impulse Leros 1B Hydrazine/Mixed Oxides

of Nitrogen (MMO) engine [22] was used as the model for spacecraft propulsion

for this analysis. This selection was based on multiple favourable characteristics.

First, through a simple GMAT validation, its thrust performance proved capable of

performing a single TLI burn from a 400 km parking orbit given a mission mass of

490.50 kg (the maximum mission mass for the spacecraft configuration defined in

this section) with propellant remaining for LOI and landing.

Second, the engine line has a proven track record in deep space (Juno, Mercury

MESSENGER - Leros 1B) and lunar (Beresheet - Leros 2B) applications, making

it a feasible, well-tested option for lunar mission designers using this study to scope

a preliminary TLI stage.

Third, the engine can accomodate long burn durations and multiple restarts -

both crucial factors for a translunar mission. Leros 1B has achieved a 3,426 s max-

imum single burn, 6,797 s cumulative burn duration, and 18 restarts through trajec-

tory correction and momentum dumping maneuvers throughout the MESSENGER

mission [23].

Fourth, the 635 N Leros 1B mass is only slightly higher than the 4.3 kg, 458

N Leros 1C alternative. Though 458 N may indeed offer sufficient thrust for the 0

- 24kg payload range, without significant mass or volumetric penalties, the higher

thrust option was preferred.

Based on the Leros 1B, the TLI stage main engine characteristics are:

– Thrust = 635 N [22]

– Specific impulse = 317 s [22]

– O/F ratio = 0.541:0.459 [22]

– Max restarts = 18

– Max single burn duration = 3,426 s [23]
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– Max single cumulative burn duration = 6,797 s [23]

The choice of a hydrazine is another baseline assumption that may be further

optimized by mission designers. As demonstrated in chapter 1 - safer, green propel-

lants may soon offer higher Isp than hydrazine. A designer may therefore consider

hydrazine a conservative approximation, and later apply the improved performance

characteristics of a green engine system as the technology matures to TRL 9 status.

The spacecraft was configured following the mission design architecture laid

forth by Wiley and Wertz[20]. The vehicle was discretized into subsystems as fol-

lows:

Figure 2.10: TLI stage subsystems architecture

The propulsive elements - most notably the propellant storage and management

hardware - are the primary driver of mass on the vehicle. As previously described,

the Leros-1B hydrazine/MON thruster was selected as the main engine.

The propulsive architecture was based upon NASA’s Mercury MESSENGER

spacecraft. MESSENGER was a successful Discovery Class science mission to

Mercury orbit. The core architecture was an interplanetary vehicle consisting a

Leros-1B main engine with a pressure regulated propellant management system

to feed the engine. Within this system, a small reservoir of pressurized helium

supplies gas for injection into the propellant tanks. The helium maintains positive
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internal pressure, forcing fuel and oxidizer into the combustion chamber of the main

engine. The hypergolic nature of hydrazine and MON causes violent instantaneous

combustion without the need for a catalyst.

An on-board attitude determination and control system (ADCS) maintains space-

craft thrust direction either directly aligned or opposed to the spacecraft velocity

vector during burn phases. A cold gas ADCS propellant such as nitrogen was con-

sidered as an alternative for its low cost and complexity, but given a large reservoir

of high energy density hydrazine on board, hot gas thrusters where selected to elim-

inate an additional nitrogen tank system. For inertial pointing control, a 12 thruster

configuration was selected to provide 3-axis control (4 for pitch, 4 for roll, 4 for

yaw). Given the shared propellant and lines, the ACDS thrusters were considered a

part of the propulsion system for mass estimation.

Wiley et. al. [24] detail the mass and performance metrics of the MESSENGER

propulsion system. The vehicle was designed to carry a large suite of scientific

instruments for a long duration mission to orbit around Mercury. MESSENGER

has a wet mass of 1130 kg and a propellant load of 600 kg[24]. Using the rocket

equation, MESSENGER’s ∆v capacity can be computed assuming a Leros Isp of

317 s.

∆v = gIspln
mwet

mwet −mpropellant

= 2.354km/s

Based on the Apollo 11 mission report[8], a direct approach lunar landing mis-

sion from an Earth parking orbit requires a ∆v in the order of 6.269 km/s. To

achieve this performance increase, significant improvements were required to MES-

SENGER’s mass ratio. This was achieved by through a significantly lighter max-

imum payload mass (24 kg vs. MESSENGER’s 47.2 kg [25]), tank design safety
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margins commensurate with the reduced mission assurance requirments of a non-

Discovery Class mission, reduced thermal and radiation shielding proportional to

solar distance and mission life (including the exclusion of a large ceramic and ti-

tanium sunshade), body mounted solar panels, and the use of modern, low mass

satellite subsystems.

For ease of design and validation, the lunar craft will adopt similar 200 l tita-

nium oxidizer and fuel tanks to those used by MESSENGER, placed symmetrically

about the spacecraft centerline (thrust direction) for mass balance. To fit within the

defined envelope diameter of 1.2 m when positioned side by side, the radius of the

propellant tanks will be restricted to 0.25 m. Per Wiley and Wertz[20], space grade

Ti-6AI-4V Titanium alloy has the following mechanical properties:

Table 2.5: Ti-6AI-4V Titanium mechanical properties

Density ρti 4.43 ×103 kg/m3

Ultimate Tensile Strength σu,ti 900 ×103 N/m2

Tensile Yield Strength σy,ti 830 ×103 N/m2

Each tank consists of two hemispherical end caps and a cylindrical center sec-

tion sized to achieve the tank volume of 0.2 m3. With a tank radius limited to 0.25

m, the resulting tank height is 1.185 m. Wall thicknesses for the cylindrical and

spherical sections were determined per Larson and Wertz [20] using the material

stress relationships:

σ =
pr

t
(cylindrical) (2.51)

σ =
pr

2t
(spherical) (2.52)

The tank operating pressure p matches that of MESSENGER. From Wiley et al
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[24], the maximum expected operating pressure was 2.24 MPa. In accordance with

table 11-48 of Larson and Wertz [20], a design factor of safety of 25% was applied

to the titanium yield strength, reflecting that all flight units would be hydrostatically

proof tested. Thus, the tank wall thicknesses are computed using equations 2.51 and

2.52.

ttank,cyl = 1.25
pr

σy,ti
= 0.844mm

ttank,end = 1.25
pr

2σy,ti
= 0.422mm

These thicknesses can be directly compared to equivalent sections of the MES-

SENGER tanks[24] which were designed at 1 mm and 0.5 mm - a slight increase

reflective of the more conservative design approach befitting a Discovery-Class mis-

sion. The wall thickness values was used to derive a total titanium volume vtank,ti.

As recommend by Larson and Wertz [20], a 30% factor was applied to the subse-

quent tank mass calculation to account for tank systems (lines, valves, regulators,

attachment hardware etc). The resulting mass for each of the two propellant tanks

was therefore:

mtank = 1.3vtank,tiρti = 7.127kg

The MESSENGER tanks are pressurized by a reservoir of gaseous helium stored

at a maximum expected operating pressure of 25.55 MPa. The mass of helium re-

quired to maintain the propellant tanks at operating pressure is given by Larson and

Wertz [20]:

mhe =
ppropvprop
RTi

[ k

1− phe
pi

]
(2.53)

where ptank and vtank are the propellant tank pressure (2.24 MPa) and volume

(0.2 m3) respectively. R is the helium gas constant of 2077.3 J/(kg K) [20], Ti is the
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initial gas temperature of 300 K[20], and k is the helium specific heat ratio of 1.67

[20]. phe is the initial gas pressure of 25.55 MPa, and pi is the instantaneous gas

pressure - considered to be the propellant tank operating pressure. The pressurant

helium mass was thus found to be 2.633 kg. The pressurant tank was considered a

small, spherical, titanium design of radius 0.1 m placed atop the propellant tanks.

With a supplementary systems factor of 20%, the pressurant tank mass mpress was

computed to be 1.259 kg through the same method as detailed for the propellant

tank masses.

The 4.1 kg Leros 1B [26] was allocated an additional 10% mass for attachment

hardware bringing the total main engine mass estimate to 4.5 kg. Per Larson and

Wertz table 10-12 [20], each of the 12 attitude control thrusters was estimated at

0.35 kg. The total mass of the spacecraft propulsion system was therefore consid-

ered:

mprop = mengine + 12mADCS + 2mtank +mpress +mhe = 26.84kg (2.54)

To guide the spacecraft along its nominal trajectory, and to achieve accurate

inertial pointing control during main engine burns, the spacecraft required a GNC

system for attitude determination with respect to the celestial field, and state propa-

gation within a defined coordinate frame. Upon the guidance of Larson and Wertz,

table 11-6 [20], this was achieved using a star tracker and inertial measurement unit

(IMU). Accurate navigation was assumed to be possible with a Kalman filter using

range and range rate measurements between Earth-based ground stations and the

on board communications system. Control logic for the main engine and ADCS

system will be run directly by the on board computer. The NASA State of the Art

Small Satellite Technology report [5] was used to select modern, high performance

instrumentation with optimized mass and form factors. A 0.185 kg ST-16RT2 star

82



tracker from Sinclair Interplanetary, and a 0.75 kg LN-200S fibre optic gyro were

used to estimate the mass of the GNC subsystem:

mGNC = mstartracker +mIMU = 0.935kg (2.55)

Deep space communications typically require a high system mass given the

need for large antenna arrays. This mass was limited by selection of JPL’s 1.2

kg Iris V2 X-Band transceiver and 0.998 kg folding high-gain X-Band antenna[27].

This combination was optimized for deep space small satellite operations and offers

proven performance after successful operation aboard NASA’s 6U MarCO mission

to Mars flyby. The system provides communications for navigation and telemetry

in translunar space. The mass estimate for the communication system is therefore:

mcomms = mtransceiver +mantenna = 2.198kg (2.56)

Attitude control, guidance, and navigation processing, as well as command and

data handling functions are enabled by a space rated 0.130 kg AAC Sirus on board

computer. For redundancy in the case of an SEU, two Sirius units (one primary,

one back up) were considered in the command and data handling subsystem mass

estimate:

mCDH = 2mOBC = 0.260kg (2.57)

The power system mass was a function of the spacecraft’s power demand. Op-

erational power for the propulsion system was drawn from Wiley’s characterization

of MESSENGER [24] (linearly interpolated for a two tank configuration), whilst

power for subsystems selected from the SOASST report were sourced from sup-

plier data. Total power P was derived as follows:

Solar arrays with storage batteries are a simple power system architecture with
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Table 2.6: Spacecraft subsystem power demand
System Power Draw [W]
Propellant tank heaters 41.06
Pressurant tank heater 10.10
Propellant line heaters 43.40
Main engine heater 16.00
Startracker 0.50
IMU 12.00
Transceiver 35.00
Antenna array 5.00
OBC’s 2.60
Total Power 165.67

proven operational heritage. The NanoPower BPX Li-ion batteries were selected

from the SOASST report [5] for a high energy density ρE of 154 Wh/kg. 29.5%

- 30.7% efficiency SolAero XJT cells were chosen for the solar arrays. Like the

X-Band antenna, these cells were flight proven in deep space aboard the MarCo

mission, achieving a 72 W production from a 0.6 kg array mass. To ensure sufficient

battery charge during passage through Earth or lunar eclipse, the battery capacity

C was scoped to provide a full 165.67 W for two hours. Panels are considered

fixed rather than articulating - a low mass design. Correct panel orientation can be

maintained during trans lunar cruise by the ADCS system. From Larson and Wertz

table 10-27 [20], the mass of the power control unit (PCU) required to regulate

power distribution across the spacecraft can be estimated by 0.02 kg/W of the total

power demand. Based on these assumptions, the mass of the power system was
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derived:

C = 2P = 331.33Wh

mbatteries =
C

ρE
= 2.152kg

marray =
0.6

72
P = 1.38kg

mPCU = 0.02P = 3.313kg

mpower = mbatteries +marray +mPCU

= 6.845kg (2.58)

In accordance with Larson and Wertz table 10-10 [20], an additional allowance

for structural mass may be estimated as 8% to 12% of the overall subsystems mass.

The mean value of 10% was assumed, which encompasses a small aluminium vault

for the avionics, and landing skids capable of withstanding a soft touchdown with

minimal residual propellant mass at lunar surface gravity. Finally, from Larson and

Wertz table 10-27 [20], the electrical harness must be assumed as 1% to 4% of the

vehicle. Given the simplicity of the electrical systems onboard, the harness mass

was assumed at to be 2%. With a maximum payload of 24 kg, spacecraft dry mass
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could now be computed:

msubsystems = mprop +mGNC +mcomms +mCDH +mpower

= 37.084kg

mstructural = 0.1msubsystems

= 3.708kg

mharness = 0.02(msubsystems +mstructural)

= 0.741kg

mdry = msubsystems +mstructural +mharness +mpayload

= 65.5kg

By leveraging a lower payload mass, thin tanks, and state of the art subsystem

components, the spacecraft dry mass has been kept to a minimum. The total stack

height can be estimated by addition of the major volumetric components that must

be longitudinally positioned. Assuming a 0.4 m vacuum optimized nozzle for the

main engine, the derived tank height of 0.879 m, and a 0.3 m tall 12U cube sat

payload, the total stack height is 1.679. With a total diameter of 1.2 m (driven by

the tank radius), the spacecraft fits within the targeted 1.2 m x 2.0 m form factor.

The tank volume, propellant density and o/f ratio drives a maximum propellant

mass of 425 kg. Therefore:

mwet = mdry +mprop = 490.50kg (2.59)
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Thus, an estimate for potential ∆v may be derived using the rocket equation:

∆v = gIspln
mwet

mdry

= 6.261km/s (2.60)

The spacecraft design yields a significantly higher ∆v potential than MESSEN-

GER, and is comparable to that of Apollo 11.

This completes the description of the design ethos and underlying assumptions

used to generate the physical characteristics of the TLI stage for application to the

mathematical model.

2.11 Summary of the Mathematical Architecture

The previous sections have defined the constituent parts of the mathematical ar-

chitecture for this analysis. Atomic Time, Terrestrial Time, Coordinated Universal

Time and the J2000 epoch provide a universal temporal reference point for defining

events within a time varying celestial field of moving gravitational sources. The

inertial, body-fixed, and body-relative reference frames allow the characterization

of position and velocity in space.

The equations of motion accurately describe the dynamics acting upon a space-

craft during its passage through the Earth-Moon system. These dynamics encom-

pass central body and non-spherical gravitation from Earth and Moon, n-body grav-

itation from the Sun, Venus, Mars, and Jupiter, atmospheric drag, solar radiation

pressure, relativistic correction, and finite duration spacecraft thrust.

Earth and Moon centered propagators apply the equations of motion though

the Runge-Kutta Prince Dormand 78 numerical integration method. This technique

allows propagation of a spacecraft state over mission phases with respect to a refer-

ence frame centered upon a central body center of mass.

The Newtown-Raphson boundary value solver applies finite differencing to solve
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input parameters necessary for a targeted end state after propagation. This solver

will be used to build mission trajectories.

2.12 Trajectory Design Algorithm

The GMAT algorithm is one of the key innovations of this research. It was writ-

ten to design direct translunar flyby, orbit insertion, and landing trajectories using

the mathematical components demonstrated in the previous section. The complete

algorithm is provided in appendix G, and provides a robust tool for the design of

direct injection translunar trajectories based upon any compination of input param-

eters within the defined parameter space.

Each phase of this algorithm builds the initial conditions for the next, more

accurate phase, until convergence to viable mission architecture. This method cul-

minates in the design of translunar injection (TLI), lunar orbit insertion (LOI), incli-

nation adjustment (IAB), perigee lowering (PL), circularization (C), deorbit (DO),

braking (B), and landing (L) burns.

Note that due to the structuring of the NEP and NMP propagators, the problem

is not broken into a piece-wise structure with spheres of influence centered around

a single gravitational point source. Instead, all gravitational point sources are active

for all phases of the trajectory, even when close to Earth or lunar surface. This

method is computationally slower than a piece-wise approach, but provides greater

accuracy and ensures no convergence failures at sphere of influence transitions.

Sensitivities to lunar and solar gravity that are normally a concern at the sphere of

influence boundary are already accounted for by the equations of motion.

The only differences between NEP and NMP are Earth atmosphere (included

for NEP), and the gravitational harmonics model (Earth JGM3 for NEP, and Lunar

LP165 for NMP). As the non-spherical lunar gravity components have minimal

effect on an inbound arrival trajectory, the switch between NEP and NMP occurs at
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lunar periapsis (perilune) arrival. Therefore, the lunar gravitational harmonics are

included through lunar orbit and landing phases.

The following section provides an overview of the algorithm.

2.12.1 Phase 1: Coarse TLI to Target Moon

Solver Control Variables

– ECI RAAN

– ECI AOP

Solver Constraints

– EMR right ascension = 0◦

– EMR declination = 0◦

2.12.2 Phase 2: Fine Impulse TLI and LOI

Solver Control Variables

– ECI RAAN

– ECI AOP

– TLI ∆v

– LOI ∆v

– IAB ∆v

Solver Constraints

– LCI B-Vector angle = Target Inclination

– LCI Perilune altitude = 100 km +/- 10 km

2.12.3 Phase 3: Coarse Finite TLI Burn

Solver Control Variables

– TLI duration

– ECI true anomaly
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Figure 2.11: Algorithm phases 1 and 2

Solver Constraints

– ECI right ascension = Phase 2 ECI right ascension

– ECI orbital radius = 350,000 km

2.12.4 Phase 4: Fine Finite TLI Burn

Solver Control Variables

– TLI duration

– ECI true anomaly

Solver Constraints

– LCI B-Vector angle = Target inclination

– LCI perilune altitude = 100 km +/- 10 km

– ECI right ascension = Phase 3 ECI right ascension

2.12.5 Phase 5: Fine Finite LOI and IAB Burns

Solver Control Variables
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Figure 2.12: Algorithm phases 3 and 4

– LOI duration

– IAB duration

Solver Constraints

– LCI eccentricity = 0

– LCLF Inclination = Target inclination

2.12.6 Phase 6: RAAN Coast

Solver Control Variables

– Coast duration

Solver Constraints

– LCLF RAAN = Target RAAN

2.12.7 Phase 7: Fine Tune Parking Orbit for Landing

Solver Control Variables

– PL duration

– C duration
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Figure 2.13: Algorithm phase 5

Figure 2.14: Algorithm phase 6

Solver Constraints

– LCI perilune altitude = 100 km +/- 1 km

– LCI eccentricity = 0
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2.12.8 Phase 8: Initiate Descent

Solver Control Variables

– DO duration

Solver Constraints

– LCI perilune altitude = 22 km

Figure 2.15: Algorithm phases 7 and 8

2.12.9 Phase 9: Final Approach

Solver Control Variables

– Approach duration

Solver Constraints

– Range from landing site = 250 km
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2.12.10 Phase 10: Braking, Parabolic Free-fall, and Landing

Solver Control Variables

– B duration

– Free-fall duration

– L duration

Solver Constraints

– Free-fall surface tangential velocity @ 2.5 km = 10 m/s

– Post landing LCLF altitude = 0 m/s

– Post landing surface normal velocity = 0 m/s

Figure 2.16: Algorithm phases 9 and 10
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CHAPTER 3

RESULTS

3.1 Data Filtration and Indexing

3.1.1 PACE Output

The 2020 - 2038 analysis period with 2 day intervals provided a trajectory and

mission data for 3397 independent epochs across the nodal cycle. This breadth of

samples enabled the analysis of trends in mission performance due to the 18.6 year

precession of the line of nodes, the 8.9 year translation of the line of apsides, the 1

year Earth orbit, the 7 month lunar eccentricity fluctuation, and the 27.3 day lunar

orbit.

The 9 payload increments across a scale from 0 kg to 24 kg gave representation

to a realistic suite of small satellite buses - from miniature 1U spacecraft used for

technology validation, to 12U spacecraft capable of high value lunar science.

Flyby, orbit insertion, and landing trajectory profiles were computed, along with

7 lunar orbit inclinations between -135◦ and 135◦ to encompass prograde and ret-

rograde orbits from equatorial to polar. This ensured representation of a detailed

set of arrival conditions upon which propellant consumption and flight time were

dependant.

The combination of these parameters resulted in 642,033 lunar trajectories run

through the GMAT algorithm on PACE clusters. The output for each of these mis-

sions was a single line string exported by GMAT. This string encoded the input

parameters, along with all output metrics that proved useful for comparative anal-

ysis, including departure orbital elements, arrival orbital elements, burn durations,

propellant consumption, mission mass and flight time.

95



The Linux header script used to cycle the input parameters through the GMAT

algorithm compiled the individual strings into three text files; one each for Flyby,

Orbit Insertion, and Landing.

3.1.2 Filtering

The first step in post-processing the GMAT output was the identification and treat-

ment of outliers. Numerous outliers observed as having high deviations from the

running means in several parameters. Specifically, these anomalies manifested as

mission mass extremums of µ +100/-0 kg, translunar flight time extremums of µ

+600/-2 days, and arrival inclination extremums of µ +30/-30 ◦.

Figure 3.1: Pre-filtered GMAT data: Flyby mission mass

The above plot shows all raw flyby data for mission mass, flight time, and arrival

inclination. Through figure 3.1, one can observe 9 distinct strata of mission mass

values. These strata correspond to the 9 payload masses. Numerous data points lie

irregularly spaced outside of these strata, in some cases by hundreds of kilograms.

Figure 3.2 shows several extreme flight time outliers. These include flight times

that are several hundreds of days longer, and several days shorter than adjacent

data points. Figure 3.2 demonstrates 4 distinct strata in absolute arrival inclination,

or for the flyby case, B-Vector angle. There represent the 0◦, 45◦, 90◦, and 135◦
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Figure 3.2: Pre-filtered GMAT data: Flyby flight time

Figure 3.3: Pre-filtered GMAT data: Flyby arrival inclination

positive/negative pairs. However, there is also significant noise, where the target

inclinations have not been achieved to within tolerance. These outliers translated to

related metrics including ∆v, burn duration, and propellant consumption mass.

A random sample of outliers was selected for singular test runs through the

GMAT algorithm. All tested samples demonstrated convergence failures in one

or more of the algorithms targeting sequences. This resulted in one of three be-

haviours.

First, when the finite TLI burn failed to converge on a correct arrival B-Vector

angle, the arrival inclination error was large. To counter this error, the IAB burn
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would require a long duration (therefore increased propellant) to actively alter the

orbital plane. This case resulted in a high missions mass.

Second, when the parking orbit RAAN and AOP variations failed to converge

upon an acceptable perilune during the finite burn phases, the targeting sequence

would continually increase the burn duration in search of a solution. Without an

upper bound, this would lead to a burn duration ”run-away” in some cases. When

the targeting sequence reached its maximum number of iterations, the subsequent

targeting sequences would continue to completion, though the desired arrival in-

clination and perilune altitude could not be achieved. This case resulted in a short

flight time, high mission mass, and high lunar orbit semi-major axis.

Third, in very rare cases, the coarse impulsive burn targeting sequences would

fail to find the moon. After reaching the iteration limit without convergence, the fine

adjustment segments would follow suite, sending the spacecraft into a highly ellip-

tic Earth orbit until, eventually, a perilune condition (the closest approach within

the LCI frame) was met. This case resulted in a long flight time.

Figure 3.4: Root-cause analysis for GMAT convergence failures

None of these cases reflect a realistic scenario, but rather a failure of the algo-

rithm to converge. As such, they can be filtered from the data without altering the

validity of the overall sample.

After trial and error, it was found that the convergence failures could be elimi-

nated through three simple filters applied to the result strings. First, perilune radius
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was restricted to 2470 km (730 km altitude), translunar flight time was restricted

to 3 - 6 days, and arrival inclination was restricted to +/- 10◦ from target. The

post-filter results for the flyby trajctories can be observed in figures 3.5, 3.6, and

3.7.

Figure 3.5: Post-filtered GMAT data: Flyby mission mass

Figure 3.6: Post-filtered GMAT data: Flyby translunar flight time

3.1.3 Indexing

A series of MATLAB scripts were the written to process the filtered data from the

text files into three epoch-ordered arrays; flyby (FB), orbit insertion (OI), and land-
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Figure 3.7: Post-filtered GMAT data: Flyby arrival inclination

ing (LN) profiles. The data within each array was structured by mission parameter,

payload mass and arrival inclination.

GMAT strings FB → MATLAB reader FB → array FB

GMAT strings OI → MATLAB reader OI → array OI

GMAT strings LN → MATLAB reader LN → array LN

Where:

array FB = FB. < parameter > . < payload > . < inclination >

array OI = OI. < parameter > . < payload > . < inclination >

array LN = LN. < parameter > . < payload > . < inclination >

As an example, calling up an epoch-ordered vector of mission mass data for the

24 kg payload, -135◦ inclination orbit insertion case could be achieved through the

following MATLAB commands:

>> OI.missionmass.p 24.i n135

This form enabled simple handling and plotting of any metric within the output
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string for analysis of patterns across the range of input parameters.

3.1.4 Analysis of Filtered Results

To allow detailed analysis of the filtered results, MATLAB was used to discretize

and plot the indexed arrays by mission profile, payload, and inclination over short

and long time scales to study emergent trends in the data. With 642,033 GMAT

strings encoding several million output parameters, it was essential that data pro-

cessing and trend recognition be done graphically. The open-source Shape Lan-

guage Modelling Toolbox developed by John D’Errico was used prolifically for

least-squares spline modelling to aid data visualization and trend identification.

3.2 Flyby

The first year (01 Jan 2020 - 01 Jan 2021) of flyby epoch and mission mass data

was plotted for each payload and arrival inclination. The data was then spline fitted

using the SLM toolbox as demonstrated by the 24 kg, 90◦ inclination sample in

figure 3.8.

Figure 3.8: Flyby: Sample data curve fit

This sample (representative of the behaviors observed in all other payload/in-
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clination sets) demonstrates two points of interest. The first is a clear epoch depen-

dency. The mission mass oscillates between local maximum and minimum values

with a period of approximately 27.3 days, or one lunar orbit. This observation im-

plies a direct relationship between the lunar orbit true anomaly, and the amount of

propellant, thereby the amount of energy required to reach it. Second, the mag-

nitude of this dependency is small. Figure 3.8 demonstrates that for the largest

payload mass of 24 kg, a favourable monthly departure epoch allows between 0.5

and 0.6 kg of mission mass reduction when compared to a worst-case epoch.

The SLM splines for all payload masses were then compiled to asses the effects

of payload mass on mission mass. As demonstrated by the 90◦ inclination sample

in figure 3.9, each consecutive 3 kg increase in payload mass corresponds to a

near constant increase in mission mass of 8.2 kg incorporating both the additional

payload itself, and the corresponding additional propellant.

Figure 3.9: Flyby: Sample mission mass across payload masses

This sample demonstrates that each 3 kg increment in payload mass has a sig-

nificantly higher impact on flyby trajectories than departure epoch.

As with payload mass, SLM splines were compiled for all arrival inclinations

to study the effects of arrival inclination upon mission mass. As demonstrated by
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a 24 kg payload sample in figure 3.10, each arrival inclination demonstrates the

same monthly oscillations. The lowest average mission mass is observed as cor-

responding to a 0◦ arrival (as highlighted in red). Epoch dependent variations in

mission mass are observed to be very slight, in the order of 0.1 - 0.2 kg. As a result,

flyby mission performance may be considered insensitive to departure epoch for the

practical purposes of mission design.

Figure 3.10: Flyby: Sample mission mass across arrival inclinations

To accurately characterize the distribution of mission metrics across the various

inclinations, the mission mass values at the base of each oscillation were selected

as points of interest. These minima represent optimal departures phasing for each

month, thus, they are important in the design of efficient translunar trajectories.

The data arrays for each mission profile were filtered for these minima, and the

corresponding mission mass, epoch, flight time, and burn duration were catalogued

for comparative analysis.

For the one year sample of a 24 kg payload mission, figure 3.11 demonstrates

the statistical distribution of mission mass and flight time for optimal monthly de-

partures across the inclination range. The bars of the histogram (quantified by the

left axis) represent the mean mission mass of all 12 monthly minima within the
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sample period of 01 Jan 2020 to 01 Jan 2021. Black error bars bound a single stan-

dard deviation range about the mean (+/- 1 σ) as an indication of variance. The

magenta line (quantified by the right axis) denotes the mean flight time across the

monthly minima with magenta arrows again bounding the +/- 1 σ.

Figure 3.11: Flyby: Sample mean optimal mission mass and flight time distribution

The prograde equatorial arrival inclination of 0 corresponds to the lowest mean

mission mass for optimal monthly departures. Mission mass is observed to increase

for both higher and lower arrival inclinations, reaching its highest for the retrograde

inclinations of +/-135◦. The magnitude of the mission mass variation is very slight,

with the lowest mean (178.83 kg for 0◦ inclination) only 0.16 kg lighter than highest

mean (178.99 kg for 135◦ inclination). Therefore, flyby missions may be consid-

ered insensitive to arrival inclination for mission design purposes. With standard

deviations of approximately 0.4 days, the mean flight times have a high variance,

and therefore do not demonstrate a clear trend across inclinations. The +/- 1σ for

all flight times fall between 4 and 4.6 days. As expected, this near-Hohmann trans-

fer trajectory has a longer flight time than the more direct free-return trajectories of

Apollo 10, 11, 12 (3.4, 3.3, and 3.7 days respectively) as catalogued in chapter 1.

Across the same 2020, 24 kg payload sample, figure 3.12 demonstrates the mean
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monthly minimum burn duration of the 635 N main engine required to achieve TLI

across the range of arrival inclinations (indicated by the magenta line). Magenta

error bars bound the +/- 1◦ bounds for the monthly minimum sample. The green

histogram and error bars (quantified by the left axis) represent the mean TLI ∆v

and +/- 1σ range computed by integrating the relationship between thrust and in-

stantaneous mass over the corresponding burn duration:

∆v =

∫ tburn

t0

FT

mmission − ṁenginet
dt (3.1)

As expected, the mean ∆v values match the trend in mission mass with a min-

imum at the prograde equatorial arrival inclination of 0, increasing at higher and

lower inclinations, with a difference in extremums of only 2.8 m/s.

Figure 3.12: Flyby: Sample mean optimal ∆V and burn time distribution

A counter-intuitive result emerges upon comparison with the Apollo 10 ∆v

value from Chapter 1. Despite a lower parking orbit altitude of 160.3 km and a

less efficient free-return trajectory, TLI was acheived with a ∆v of 3049 m/s, less

than the observed 3124.2 m/s required for a 0◦ inclination arrival from a 400 km

parking orbit via a near-Hohmann transfer. This difference is due to the burn du-

105



ration. Using the powerful J2 H2/O2 engine of the S-IVB upper stage, Apollo 10

achieved TLI with a 343 s burn [8]. This short burn made use of the Oberth Effect,

whereby a burn at or close to perigee (where the spacecraft is at its highest orbital

velocity) imparts the greatest mechanical energy into the orbit per second, there-

fore, is more efficient. In contrast, the modelled trajectory achieved TLI after 555.1

s due to a lower thrust to weight ratio of the TLI stage. This translated to a steady

decrease in efficiency as the spacecraft passed further from perigee along its burn.

To understand the observed (if very slight) epoch dependencies in flyby trajec-

tory performance, a one year sample (01 Jan 2020 - 01 Jane 2021) for a 24 kg, 90◦

mission was plotted against periodic and secular cycles. First, the mission mass

vs. epoch relationship was modelled with an SLM spline, and overlaid with the

monthly optimal and worst case departures. Atop this data set, the lunar range over

the sample period as generated by JPL Horizons was overlaid. A direct correlation

can be clearly observed between the mission mass and lunar range approximately

4.3 days (the observed mean translunar flight time for a 24 kg, 90◦ mission) into the

future. That is, the lunar range at the time of spacecraft arrival.

Figure 3.13: Flyby: Sample monthly optimal and worst case mission mass vs lunar
range
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The magnitude of each minimum is directly proportional to the magnitude of

the monthly lunar perigee as it fluctuates due to a 7 month variation in lunar ec-

centricity caused by Earth tidal and third body gravitational effects. Thus, flyby

mission performance was deemed highly correlated to range, though the magnitude

of variation due to this correlation is so small that the performance is considered

insensitive to the lunar orbit and eccentricity periodic cycles. No correlation was

observed with lunar declination.

Similarly, performance was analysed against the secular cycles of Earth orbit,

apisidal precession, and nodal precession. This is best demonstrated by viewing the

monthly optimal and worst case mission mass values plotted for each arrival incli-

nation over the full 18.6 year analysis period, where lunar inclination is included as

a reference of major and minor standstills. No correlation to Earth orbit, apisidal

precession or nodal precession was observed, therefore flyby mission performance

was considered insensitive to secular cycles.

Figure 3.14: Flyby: Full nodal cycle monthly mission mass extremums vs lunar
inclination
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Figure 3.15: Flyby: Full nodal cycle monthly mission mass extremums vs lunar
inclination

Figure 3.16: Flyby: Full nodal cycle monthly mission mass extremums vs lunar
inclination

108



Figure 3.17: Flyby: Full nodal cycle monthly mission mass extremums vs lunar
inclination

Figure 3.18: Flyby: Full nodal cycle monthly mission mass extremums vs lunar
inclination
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Figure 3.19: Flyby: Full nodal cycle monthly mission mass extremums vs lunar
inclination

Figure 3.20: Flyby: Full nodal cycle monthly mission mass extremums vs lunar
inclination
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Assuming an optimal monthly departure time, the expected range in mission

mass across the analysed payloads and arrival inclinations may be characterized

statistically. Figure 3.21 provides the mission mass distribution for monthly minima

across the full nodal cycle for a 0 kg payload mass. The inclination/payload set

providing the lowest µ− 1σ mission mass across the entire sample space is 0◦/0 kg

at 113.05 kg.

Figure 3.21 provides the mission mass distribution for monthly minima across

the full nodal cycle for a 24 kg payload mass. The inclination/payload set providing

the highest µ+ 1σ mission mass across the entire sample space is 135◦/24 kg kg at

179.06 kg.

These two extremums provide the upper and lower bounds of the sample space,

such that any combination of payload mass from 0-24 kg and arrival inclination

from -135◦ to 135◦ will require a mission mass between 113.05 kg and 179.06 kg.

Whilst arrival inclination and departure epoch can be tuned for optimal perfor-

mance, the overall mission mass is dominated by payload mass. Thus, for a given

payload, flyby missions allow flexibility in launch date and arrival orbital elements

without significant impact on the required launch vehicle capacity.

The statistical distributions for all monthly minima across the nodal cycle are

provided for each payload mass within Appendices A (mission mass and flight time)

and B (∆v and burn time). This data may prove a useful reference for lunar satellite

mission designers in scoping launch vehicle capacity to suit targeted payload mass

and arrival elements.
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Figure 3.21: Flyby: Full nodal cycle mean optimal mission mass and flight time
distribution, 0 kg Payload

Figure 3.22: Flyby: Full nodal cycle mean optimal mission mass and flight time
distribution, 24 kg Payload
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3.3 Orbit Insertion

As with flyby, Shape Language Modeling was applied to the filtered orbit insertion

mission mass data for the extrapolation of parameter dependent trends. A year long

sample (01 Jan 2020 - 01 Jan 2021) for a 24 kg payload across all inclinations

clearly demonstrates the monthly oscillation commensurate with lunar range.

Figure 3.23: Orbit Insertion: Sample mission mass across lunar arrival inclinations

However, upon comparing the full range of arrival inclinations across the anal-

ysis period, one notes a significant variation in the corresponding mission mass ex-

tremums. All but one inclination shares a relatively consistent monthly minimum,

with -45◦ (displayed in red) presenting the lowest mean value of monthly minima

over a one year sample period.

Excepted from this consistency is the 0◦ case, for which greater minima varia-

tion and a notably large maxima (approximately 27 kg from the averaged maxima

of all other inclinations) may be observed.

The oscillations between monthly mission mass extremums are approximately

5 kg for all higher inclination arrivals, and approximately 30 kg for 0◦ arrivals.

As such, this sample demonstrates a significantly higher performance dependency
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on both epoch and arrival inclination than the flyby case, for which the equivalent

sample 3.10 showing an average oscillation between extremums of only 0.8 kg.

Figure 3.24 demonstrates a one year sample (01 Jan 2020 - 01 Jan 2021) at a 90◦

arrival inclination of mission mass payload dependencies. Each consecutive 3 kg

increase in payload mass corresponds to a near constant increase in mission mass

of 10.7 kg at the lower end of the payload scale, and 10.8 kg at the top end. This is

a greater relative difference than the equivalent flyby sample for which a difference

of 8.2 kg between increments was observed in figure 3.9. This result is expected,

given the addition of LOI and IAB burns resulting in a longer total burn duration,

therefore, more propellant must be carried for each additional kg of payload mass.

Figure 3.24: Orbit Insertion: Sample mission mass across payload masses

A factor that was not expected is the measurable variability in the mission mass

increase/payload increment ratio (growing by 0.1 kg over the payload range). This

result signifies a drop in efficiency as burn duration increases indicative of the

Oberth Effect. As the burn is occurring progressively further from perigee (where

the spacecraft is at its highest orbital velocity), the mechanical energy imparted

upon the spacecraft is reducing.

An interesting point to note is that, while payload mass maintains a dominant
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influence on mission mass for +/- 135◦, 90◦, and 45◦ arrival inclination, this is no

longer true for 0◦ arrival. The year long samples showed a 10.8 kg mission mass

delta between payload increments, and 30 kg mission mass delta between monthly

departure extremums. Thus, the performance improvement made by optimal selec-

tion of departure epoch equates to a 7.43 kg increase in allowable payload mass

when compared to worst case departure.

As with the flyby analysis, the data arrays for a one year orbit insertion sample

were filtered for optimal monthly departures. For the one year sample of a 24

kg payload mission, figure 3.25 demonstrates the statistical distribution of mission

mass and flight time for optimal monthly departures across the inclination range.

Both mean and +/- 1σ ranges are presented.

Figure 3.25: Orbit Insertion: Sample monthly optimal and worst case mission mass
vs lunar range

The -45◦ arrival inclination corresponds to the lowest mean mission mass. Mis-

sion mass is observed to increase for the higher inclinations, though, rather uniquely,

the +135◦ arrival has a lower mission mass than the +/- 90◦ cases for this sample.

The largest mission mass mean and variance by a significant margin is that of the

0◦ degree arrival.
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The magnitude of the mission mass variation is higher than for the flyby case,

though still not large, with the lowest mean (233.55 kg for -45◦ inclination) being

1.55 kg lighter than highest mean (235.10 kg for 0◦ inclination). With standard

deviations of approximately 0.2 days, the mean flight times have a high variance,

and therefore do not demonstrate a clear trend across inclinations. The +/- 1σ for

all flight times fall between 4.15 and 4.74 days. As expected, the near-Hohmann

transfer trajectories have a longer duration than Apollo 10, 11, and 12, and are

commensurate with the flyby equivalents.

Across the same 2020, 24 kg payload sample, figure 3.26 demonstrates optimal

monthly departure total burn duration (TLI + LOI + IAB) with ∆v mean values and

+/- 1σ bounds across the inclination range.

Figure 3.26: Orbit Insertion: Sample mean optimal ∆V and burn time distribution

As anticipated, the results are proportional to the mission mass magnitudes,

with a ∆v range from 3955 m/s to 3974 m/s from the 400 km Earth parking orbit

to a circular 100 km lunar orbit. These may be compared to the Apollo 10 , 11, and

12 magnitudes of 4021 m/s (95.3 km x 98.2 km lunar orbit), 4131 m/s (86.6 km

x 105.7 km lunar orbit), and 4155 m/s (87.4 km x 106.4 km orbit). It is intuitive

that the overall ∆v for the Apollo trajectories is slightly higher given the additional
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LOI quotient required to remove the energy of the free-return approach as opposed

to a less energetic near-Hohmann transfer. Upon lunar arrival, the thrust to weight

ratio no longer provides a comparative ∆v advantage to Apollo as it did during the

TLI segment for two reasons. First, the LOI was performed by the Command and

Service Module’s Aerozine 50/Nitrogen Tetroxide main engine (as opposed to the

more powerful S-IVB hydrolox engine that provided TLI), thus the thrust to weight

ratio of Apollo was reduced. Second, the analysis spacecraft has spent the vast

majority of it’s fuel during the TLI burn, leaving only a small portion of the original

mission mass for the 635 N main engine to decelerate, thus, it’s thrust to weight

ratio was increased.

The reason for the additional ∆v required to achieve a low arrival inclination

may be explained by visualizing the arrival vector within the LCI frame. For the

near-Homann transfer achieved by the GMAT algorithm, the relative velocity to the

moon upon arrival to the lunar sphere of influence is approximately 800 m/s (though

the exact magnitude is obviously case dependent). For a 0◦ target inclination case,

the spacecraft will arrive with some LCI Z-component velocity. The lunar gravity is

not strong enough to alter the trajectory to remove this before striking the B-plane.

As a result, a non-planar arrival with a B-Vector of 0 will still have Z-component

velocity, and thus will be inserted into a slightly inclined orbit. This is evidenced by

the unfiltered flyby data in figure 3.3 which shows a loose distribution in the arrival

inclination at the 0 B-Vector target, while showing tight distributions (implying

higher accuracy) for the higher inclinations.

The higher inclinations can be accessed with minimal inaccuracy as they pro-

vide additional degrees of freedom for tailoring the arrival vector. With slight ad-

justments in the TLI burn duration, AOP, and RAAN, these lunar arrival inclinations

can be directly targeted provided they are higher than the relative inclination of the

incoming transfer orbit, minimizing reliance upon lunar gravity for course correc-
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tion.

To correct for inaccuracy in inclination upon arrival, the IAB burn must actively

correct the inclination with a large plane change for low inclination arrivals. As

orbital plane changes are prohibitively energy intensive, the 0◦ arrivals result in a

larger overall ∆v, and therefore a higher mission mass.

To study the epoch dependency of orbit insertion missions, a one year, 24 kg

payload, 90◦ arrival sample of monthly extremums was compared to lunar range

from JPL Horizons.

Figure 3.27: Orbit Insertion: Sample monthly optimal and worst case mission mass
vs lunar range

From figure 3.34, it is immediately apparent that that the correlation between

lunar range and monthly minima is weaker than the clear causal relationship man-

ifested in the flyby results. Upon a similar superposition of lunar declination, no

clear, singular periodic cycle aligned with the monthly extemums as the driving fac-

tor for mission performance. To characterize the epoch dependency due to secular

cycles, the monthly maxima and minima mission mass values were plotted for each

arrival inclination over the full 18.6 year nodal cycle.
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Figure 3.28: Orbit Insertion: Full nodal cycle monthly mission mass extremums vs
lunar inclination

Figure 3.29: Orbit Insertion: Full nodal cycle monthly mission mass extremums vs
lunar inclination
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Figure 3.30: Orbit Insertion: Full nodal cycle monthly mission mass extremums vs
lunar inclination

Figure 3.31: Orbit Insertion: Full nodal cycle monthly mission mass extremums vs
lunar inclination
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Figure 3.32: Orbit Insertion: Full nodal cycle monthly mission mass extremums vs
lunar inclination

Figure 3.33: Orbit Insertion: Full nodal cycle monthly mission mass extremums vs
lunar inclination
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Figure 3.34: Orbit Insertion: Full nodal cycle monthly mission mass extremums vs
lunar inclination

These plots allow one to visualize the effects of the complex relationship be-

tween performance and the combined effects of the various lunar cycles. The range

at epoch is driven by the progress on the moon through its monthly orbit, and of the

presecssion of the line of apisides. As demonstrated during the analysis of flyby re-

sults, it dictates the energy of the transfer orbit and thus the ∆v required to achieve

TLI.

Declination is driven by the progressing of the moon through its monthly orbit,

the obliquity of Earth’s polar axis, the lunar ecliptic inclination, and the precession

of the lunar line of nodes. This characteristic drives the alignment of the parking

orbit to the lunar position upon arrival. Thus, it dicates the relative velocity in the

LCI frame. The lower the relative angle between the arrival vector and the lunar

velocity vector, the lower the relative velocity upon arrival, thus the less energy is

required for orbit insertion.

The trends seen above are the result of an ever changing combination of range

and declination turning through the 27.3 day, 7 month, 1 year, 8.9 year and 18.6

year cycles of the Earth-Moon system.
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In the study of these trends, several interesting observations can be made. First,

despite significantly higher epoch sensitivity in mission performance when com-

pared to the flyby case the monthly minima (designated in green) remains relatively

stable throughout the entire nodal cycle for all inclinations with the exception of

0◦. Though there is some noise around major standstill in the +/- 135◦ cases, the

variations in optimally phased mission mass are limited to approximately 4 kg. It

is the maxima that are observed as susceptible to the nodal cycle, trending towards

a higher mission mass in the first half of the cycle, then consistently dropping off

to converge to a minima near the end of the second half from 2030 to 2038. These

observations are useful in the selection of optimal phasing. From them, one can ob-

serve that an efficient launch window may be selected each month throughout the

entire nodal cycle, thus enabling lunar departure to be both frequent and adaptable

to launch opportunities.

The 0◦ arrival case shows a variation of 40 kg at the point of maximum differ-

ence between extremums, however, interesting phenomena can be seen at the points

of maximum and minimum lunar inclination. At major standstill, the lunar incli-

nation briefly equals the parking orbit inclination of 28.5◦. For this short time, the

translunar coast is perfectly planar. Under this condition, a low arrival inclination

may be accessed directly without a high IAB burn and the relative arrival inclina-

tion and velocity are low. These two factors reduce the mission mass of the monthly

worst case departure.

At minor standstill, the difference in lunar and transfer orbit inclinations reaches

a peak, and a very large IAB burn is required to achieve a 0◦ arrival and relative

velocity is large. As a result, the mission mass of the monthly optimal departures

spikes for several years.

Assuming an optimal monthly departure time, the expected range in mission

mass across the analysed payloads and arrival inclinations may be characterized
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statistically. Figure 3.35 provides the mission mass distribution for monthly minima

across the full nodal cycle for a 0 kg payload mass. The inclination/payload set

providing the lowest µ − 1σ mission mass across the entire sample space is -45◦/0

kg at 147.30 kg.

Figure 3.36 provides the mission mass distribution for monthly minima across

the full nodal cycle for a 24 kg payload mass. The inclination/payload set providing

the highest µ + 1σ mission mass across the entire sample space is 0◦/24 kg kg at

237.90 kg.

These two extremums provide the upper and lower bounds of the sample space,

such that any combination of payload mass from 0-24 kg and arrival inclination

from -135◦ to 135◦ will require a mission mass between 147.60 kg and 237.90 kg.

In contrast to flyby, the arrival inclination and departure epoch have a significant

impact on overall performance and therefore must be selected carefully by mission

designers to optimize mission mass for launch vehicle characterization.

The statistical distributions for all monthly minima across the Earth-Moon nodal

cycle is provided for each payload mass within Appendices C (mission mass and

flight time) and D (∆v and burn time).
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Figure 3.35: Orbit Insertion: Full nodal cycle mean optimal mission mass and flight
time distribution, 0 kg Payload

Figure 3.36: Orbit Insertion: Full nodal cycle mean optimal mission mass and flight
time distribution, 24 kg Payload
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3.4 Landing

Shape Language Modeling was applied to the filtered landing mission mass data for

the extrapolation of parameter dependent trends. A year long sample (01 Jan 2020

- 01 Jan 2021) for a 24 kg payload across all inclinations clearly demonstrates the

monthly oscillation as observed in the flyby and orbit insertion cases, though with

significantly more noise in the sinusoidal profile.

Figure 3.37: Landing: Sample mission mass across lunar arrival inclinations

This is due to the significant mass of landing propellant (from 53.1 kg to 63.7

kg depending on payload mass) that must be carried as payload throughout the TLI

and LOI maneuvers. The increased vehicle mass amplifies variations in overall

propellant consumption between data points. The sharp peaks at the extremums of

the monthly cycle cause the SLM toolbox to produce an erroneous fit that does not

accurately represent to the true form of the oscillations.

As a result, one must rely directly upon the filtered data to visualize monthly

trends. Whilst this technique is conservative in characterizing the maxima and min-

ima of the steep oscillations seen in the 0◦ arrival case, it provides a robust solution

for all other arrival inclinations.
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Figure 3.38: Landing: Sample mission mass filtered data

As discerned from a study of figure 3.38, the largest fluctuations between worst

case and best case monthly departure epochs over the sample period for non-equatorial

arrivals is approximately 10.8 kg of mission mass, compared to 5 kg and 0.8 kg seen

in the equivalent orbit insertion and flyby samples respectively.

Figure 3.39 demonstrates a one year sample (01 Jan 2020 - 01 Jan 2021) at a

90◦ arrival inclination for payload mass dependency.

Figure 3.39: Landing: Sample mission mass across payload masses

A 3 kg increase in payload mass corresponds to a near constant increase in
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mission mass of 16.0 kg at the lower end of the payload scale, and 16.3 kg at the

top end. This is a greater relative difference than the equivalent orbit insertion

and flyby samples for which respective differences of 10.8 kg and 8.2 kg between

increments were observed. This result proves intuitive. As well as the additional 3

kg of payload, each increment requires approximately 1.3 kg of additional landing

propellant. This combined 4.3 kg incremental step in dry + landing propellant mass

requires additional propellant consumption to facilitate longer TLI, LOI, and IAB

burns.

Like the orbit insertion case, landing missions demonstrate an efficiency reduc-

tion at longer burn durations due to the Oberth Effect. This efficiency drop mani-

fests as a 0.3 kg growth in the mission mass increase per payload increment over

the payload range.

Payload mass no longer dominates mission mass. For +/- 135◦, 90◦, and 45◦

arrival inclinations, the 10.8 kg variation between monthly departure extremums is

comparable to the 16.5 kg variation between payload mass increments. Though not

characterized by shape language modelling, one can expect the epoch dependency

of the 0◦ arrival to be substantially higher still. This 0◦ arrival upper bound was not

explored further. As any real-world lunar landing trajectories would be built around

an optimal monthly departure, understanding the precise mission mass penalty of a

worst case departure was not deemed critical.

The data arrays for a one year landing sample were filtered for the monthly min-

ima. For the one year sample of a 24 kg payload mission, figure 3.40 demonstrates

the statistical distribution of mission mass and flight time for optimal monthly de-

partures across the inclination range. Both mean and +/- 1σ ranges are presented.

The -45◦ arrival inclination corresponds to the lowest mean mission mass for

optimal monthly departures. Mission mass is observed to increase for the outer

inclinations, though, as seen in the orbit insertion case, the +135◦ arrival has a lower
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Figure 3.40: Landing: Sample mean optimal mission mass vs lunar range

mission mass than the +/- 90◦ cases for this particular sample. The largest mission

mass mean and variance by a significant margin is that of the 0◦ degree arrival which

exceeds that of the best case inclination by approximately 2.1 kg, compared to 0.2

kg and 1.4 kg observed in the flyby and orbit insertion cases respectively. One can

conclude that landing trajectories have a substantially higher dependency on each

of the input parameters than the orbit insertion profile. As with the flyby and orbit

insertion missions, the mean flight times have a high variance, and therefore do not

demonstrate a clear trend across inclinations. The +/- 1σ for all flight times fall

between 4.22 and 4.86 days.

Across the same 2020, 24 kg payload sample, figure 3.41 demonstrates the

monthly minima total burn duration (TLI + LOI + IAB + PL + C + DO + B +

L) and ∆v mean values and +/- 1σ bounds across the inclination range.

As expected, the results are proportional to mission mass magnitudes with a

sample ∆v range of 6201 m/s to 6219 m/s from the 400 km Earth parking orbit to

touchdown on the lunar surface. These values are closely aligned with Apollo 11

and Apollo 12 ∆v values of 6267 m/s and 6178 m/s respectively for similar descent

profiles. The ∆v increase at the 0◦ arrival inclination is again due to disproportion-
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Figure 3.41: Landing: Sample mean optimal ∆V and burn time distribution

ately high IAB burn durations required for plane corrections.

To study the epoch dependency of orbit insertion missions, a one year, 24 kg

payload, 90◦ arrival sample of monthly extremums was compared to lunar range

from JPL Horizons.

Figure 3.42: Landing: Sample monthly optimal and worst case mission mass vs
lunar range

From figure 3.42, it is apparent that - as with the orbit insertion missions - no

clear causal relationship can be observed between the individual periodic cycles,
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and the monthly optimal departures. To characterize epoch dependency due to sec-

ular cycles, the monthly maxima and minima mission mass values was plotted for

each arrival inclination over the full 18.6 year nodal cycle.

The blue line represents the maximum mission mass of 490 kg for which the

configuration defined in chapter 2 is valid (a bound set by the propellant tank de-

sign). Mission mass values above this line are included graphically as an indication,

though are omitted from statistical distributions presented herein.

Figure 3.43: Landing: Full nodal cycle monthly mission mass extremums vs lunar
inclination
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Figure 3.44: Landing: Full nodal cycle monthly mission mass extremums vs lunar
inclination

Figure 3.45: Landing: Full nodal cycle monthly mission mass extremums vs lunar
inclination

132



Figure 3.46: Landing: Full nodal cycle monthly mission mass extremums vs lunar
inclination

Figure 3.47: Landing: Full nodal cycle monthly mission mass extremums vs lunar
inclination
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Figure 3.48: Landing: Full nodal cycle monthly mission mass extremums vs lunar
inclination

Figure 3.49: Landing: Full nodal cycle monthly mission mass extremums vs lunar
inclination
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Assuming an optimal monthly departure time, the expected range in mission

mass across the analysed payloads and arrival inclinations may be characterized.

Figure 3.50 provides the mission mass distribution for monthly minima across the

full nodal cycle for a 0 kg payload mass. The inclination/payload set providing the

lowest µ−1σ mission mass across the entire sample space is 45◦/0 kg at 348.60 kg.

Figure 3.36 provides the mission mass distribution for monthly minima across

the full nodal cycle for a 24 kg payload mass. The inclination/payload set providing

the highest µ + 1σ mission mass across the entire sample space is 0◦/24 kg kg at

489.90 kg.

These two extremums provide the upper and lower bounds of the sample space,

such that any combination of payload mass from 0-24 kg and arrival inclination

from -135◦ to 135◦ will require a mission mass between 348.60 kg and 489.90 kg.

Given the additional propellant mass required for the multiple burns of the lu-

nar landing segment, the arrival elements and departure epoch have a pronounced

effect on overall performance - far more so than for flyby or orbit insertion mis-

sions. Therefore, these parameters must be selected carefully by mission designers

to optimize mission mass for launch vehicle characterization.

The statistical distributions for all monthly minima across the nodal cycle is

provided for each payload mass within Appendices E (mission mass and flight time)

and F (∆v and burn time).
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Figure 3.50: Landing: Full nodal cycle mean optimal mission mass and flight time
distribution, 0 kg Payload

Figure 3.51: Landing: Full nodal cycle mean optimal mission mass and flight time
distribution, 24 kg Payload
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3.5 Phased Translunar Injection

The results presented above characterize the mission mass for a multitude of lunar

missions based on a high thrust, direct injection translunar trajectory. As discussed

in chapter 2, this architecture offers a sound “baseline” measure of the performance

required to achieve cost competitive, high-cadence, lunar missions to useful range

of lunar orbits and landing sites.

It does so by leveraging flight proven bi-propellant propulsion technology. Rec-

ognizing that navigation, communication, power, and environmental endurance are

non-trivial factors beyond LEO, the fast transfer times associated with direct injec-

tion maximize scientific return over the finite life of the payload whilst minimizing

Van Allen radiation exposure.

Figure 3.52: Direct injection profile

It is, however, interesting to consider the performance improvements that can

be made through the application of phasing loops as applied to the recent Beresheet

and Chandrayaan 2 missions.
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These loops take advantage of the Oberth effect, whereby for a set thrust and

burn duration, maximum mechanical energy may be imparted upon a spacecraft

(and, correspondingly, the point of minimum mechanical energy imparted upon the

exhaust gases) when the spacecraft is travelling at its highest orbital velocity. This

occurs at periapsis passage.

For spacecraft with low thrust to weight ratios, burn duration required for translu-

nar injection may be in the order of several hundred to several thousand seconds.

At orbital speeds, this means that the majority of the TLI burn may occur far from

perigee.

By partitioning the TLI burn into a series of short maneuvers that progressively

raise the apogee altitude, each burn makes use of the Oberth effect for greater effi-

ciency, thus reducing the overall thrust duration required to reach the same transfer

orbit.

Figure 3.53: Phased injection profile

To model the performance advantages of phasing loops, a GMAT analysis was

applied to compare direct and phased lunar flyby trajectories. The algorithm prop-
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agated two spacecraft from an Earth parking orbit to an apogee of 403,898 km - the

lunar radius at the analysis epoch of 01 Jan 2020, 00:00:00 UTC per JPL Horizons

ephemerides. Spacecraft A applied a single TLI burn for a direct injection. Space-

craft B applied 3 phasing burns followed by a final TLI burn, each spaced evenly

over the perigee of each successive orbit. The GMAT algorithm adjusted timings

such that all four burns had equal duration at that the cumulative burn duration re-

sulted in zero residual propellant mass. The variable parameter used in the targeting

sequence was initial propellant mass. As a result, the trajectories produced are opti-

mized to reach an apogee at lunar distance just as the propellant tanks are depleted,

thus providing the minimum required mass ratio for TLI.

The assumptions for the TLI stage were the same as detailed in chapter 2. The

main engine provided 635 N of thrust at an Isp of 317 s. The propellants were 1021

kg/m3 Hydrazine fuel and 1370 kg/m3 MON oxidizer with a 0.541:0.459 o/f ratio.

A payload mass of 24 kg (a 12U cube satellite) was applied.

The analysis results are summarized in table 3.1.

Table 3.1: Direct vs phased translunar injection, full thrust
Spacecraft Direct, Full Thrust Phased, Full Thrust
Dry Mass [kg] 65.50 65.50
Thrust [N] 635 635
Isp [s] 317 317
Burn Duration [s] 552.61 545.77
Propellant Cons. [kg] 112.84 111.44

Mission Mass [kg] 178.34 176.94 (-1.40)

Flight Time [days] 5.37 5.81 (+0.44)

The use of the phasing loops offered a 1.4 kg reduction in mission mass for the

TLI stage configuration applied throughout this study. The flight time increase due

to the phasing loops is 0.44 days (assuming a single orbit between burns).

One might observe that with a 635 N thruster sized to enable lunar landing,
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the thrust to weight ratio achieved with a flyby propellant load is high. For orbit

insertion or landing missions, this thrust to weight ratio is greatly reduced by the

propellant mass required upon lunar arrival - a mass that is effectively carried as

payload throughout the TLI maneuvers. To emulate a lower thrust-to-weight, the

same analysis was performed at a 50% thrust level of 318 N.

Table 3.2: Direct vs phased translunar injection, half thrust
Spacecraft Direct, Half Thrust Phased, Half Thrust
Dry Mass [kg] 65.50 65.50
Thrust [N] 318 318
Isp [s] 317 317
Burn Duration [s] 1146.98 1092.49
Propellant Cons. [kg] 117.29 111.72

Mission Mass [kg] 182.78 177.21 (-5.57)

Flight Time [days] 5.38 5.85 (+0.47)

The results in table 3.2 demonstrate a 5.57 kg reduction in mission mass - a con-

siderable quantity in the context of launch vehicle lift capacity. This performance

difference is due to the efficiency losses of an increased burn duration required for

TLI with a lower thrust-to-weight ratio (driven by the Oberth Effect). The direct

approach will require the TLI burn end much farther from perigee, making the ef-

ficiency loss more pronounced. Flight time is increased by 0.47 days (assuming a

single orbit between burns).

This analysis demonstrates the increasing advantage in phased TLI architectures

as thrust-to-weight ratio reduces. Thus, mission designers may use phasing as a

strategy to improve upon the baseline performance figures published in Appendices

A - F given high payload and arrival propellant masses such as the orbit insertion

and landing cases. However, phasing can only be applied in the specific case where

the payload can tolerate increased translunar flight time and Van Allen exposure.

140



3.6 Low Thrust Propulsion

A prominent alternative to the high thrust, direct injection architecture is a low

thrust translunar trajectory. The advantage of low thrust propulsion is a signifi-

cant improvement in propellant mass efficiency due to high specific impulse. This

mission architecture is fundamentally different to the one presented throughout this

research, though it is interesting to quantify the mission mass and flight time differ-

ences for comparative analysis.

Figure 3.54: Low thrust lunar transfer

To this end, a GMAT algorithm was written to propagate a low thrust trajectory

to the lunar orbital radius. This model was based upon a mature low-thrust engine

- the Hall effect thruster.

This engine type generates an electro-magnetic field to ionize and accelerate

a small quantity of gaseous propellant to produce a directed plume of very high

velocity plasma. The Busek BHT-200 is a Hall effect thruster with proven flight

heritage aboard TacSat-2 in 2006, FalconSat-5 in 2010, and FalconSat-6 in 2018.
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Using Xenon as the gaseous propellant, the BHT-200 draws 200 W of electrical

power (250 V at 0.8 A) to produce 13.2 mN of thrust at a specific impulse of 1390

s. The dry mass for a single BHT-200 module is 1100 g.[28].

Based on iterative GMAT test runs at progressively increasing thrust levels, a

block of four BHT-200 thrusters was deemed necessary to lift a 24kg payload with

appropriate subsystem mass modifications from a 400 km parking orbit to the lunar

radius within one year.

To ensure robust results for meaningful comparison, the TLI stage systems de-

signed in chapter 2 were reconfigured to reflect an electric, low thrust propulsion

system. The original vehicle required 55.1 W to power the non-propulsive subsys-

tems. Combined with four 200 W thrusters, the total power budget for the Hall

thruster vehicle was considered 900 W (including margin). As before, battery ca-

pacity was scoped to provide full power for two hours to cover periods of eclipse,

resulting in 1800 Wh.

To service these power demand and storage requirements, the same NanoPower

BPX Li-ion batteries (154 Wh/kg) and MMA HaWK SolAero XJT solar cells (120

W/kg) as decribed in chapter 2 were used for their energy storage and generation

density. Doubling the mass of the solar cells to account for deployables (driven by

an increase in the required panel surface area), 11.68 kg of batteries and 14.94 kg

of solar panels were added to the TLI stage. Per Larson and Wertz [20], the mass

of the PCU was estimated as 2% of the total power consumption, or 18 kg.

The total mass of the system was derived from the chapter 2 vehicle mass, less

the original propulsion and power system, with the new BHT-200 thrusters and

power system then applied. Again per Larson and Wertz [20], margins of 10% and

2% of total system mass were applied to model structure and harnessing respec-

tively. The resultant low thrust TLI stage was 82.82 kg.

This configuration was modelled in GMAT, assuming a 24 kg payload (repre-
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senting a 12U spacecraft), a 10% annual decay on solar panel performance, and an

anti-velocity drag area of 1.75 m based on the kW/m2 performance of the SolAero

XJT solar cells.

The same high fidelity Near Earth Propagator was used to apply a continuous

thrust from a 400 km altitude, 28.5◦ inclination parking orbit to the mean lunar

range over the nodal cycle, 385,014 km, as derived using JPL Horizons. The GMAT

algorithm used a differential correction targeting sequence to optimize the mass of

Xenon propellant required to achieve this trajectory, similar to the phasing loop

analysis.

The algorithm converged with zero propellant residual to an optimal solution of

50.49 kg of Xenon, at a mission mass of 133.31 kg and flight time of 174.19 days. A

direct performance comparison with an equivalent 24 kg payload high thrust flyby

trajectory is provided in table 3.3.

Table 3.3: High thrust vs low thrust transfer
Spacecraft High Thrust Low Thrust
Main Engine Bi-Prop. Chemical Hall Effect
Propellant N2H4, MON Xenon
Dry Mass [kg] 65.50 82.82
Thrust [N] 635 0.0528
Isp [s] 317 1390
Burn Duration [days] 0.01 167.78
Propellant Cons. [kg] 112.84 50.49

Mission Mass [kg] 178.34 133.31 (-45.03)

Flight Time [days] 5.37 174.19 (+168.82)

As expected, the low thrust model provides a significant mass saving (45.03 kg)

due to a high specific impulse, and therefore propulsive efficiency. This is, however,

balanced by a large increase in flight time (168.82 days) due to the additional time

required to escape Earth’s gravity well under low thrust.
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The mass reductions associated with low thrust propulsion are certainly ben-

eficial in broadening compatibility with different launch vehicles. However, it is

important to note that a low thrust trajectory is a fundamentally different mission

architecture. As discussed in chapter 1, the reduced complexity and flight times of

direct, high thrust trajectories enable fast, iterative missions for technology valida-

tion and viable lunar science whilst limiting environmental endurance demands.

The additional operational complexity of a long duration passage through both

the Van Allen Belts and translunar space requires increased thermal and radiation

shielding, as well as redundant systems for adequate mission assurance. These steps

are essential in justifying the operational commitment of a multi-month transfer

for which the cost of maintaining a team of highly skilled operators and access

translunar compatible ground stations is significant. The weight penalty of these

modifications reduces the mass fraction of the primary payload, thus limiting the

scientific outcomes available from a 24 kg bus. Furthermore, a lower tolerance to

risk limits the use and validation of new, untried payload technologies - one of the

primary value propositions of the mission model proposed by this thesis.
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CHAPTER 4

CONCLUSIONS

The goal of this study was to use high-performance computing to characterize direct

injection lunar trajectories over a broad parameter space, and in so doing, demon-

strate the viability of cost-competitive, high-cadence lunar pathfinder missions us-

ing the near-future commercial launch market. The results are intended to provide

lunar pathfinder mission designers with a provide a versatile reference for prelimi-

nary planning, including optimal departure epochs, and pertinent performance de-

pendencies.

To characterize performance, this study focused on three mission metrics:

Translunar Flight Time: the elapsed time between TLI and passage through

lunar periapsis (perilune).

Delta Velocity (∆v): the cumulative total velocity change required to achieve

all maneuvers. Used for cross mission comparison.

Mission Mass: the cumulative total mass of payload, spacecraft, and propellant

- the total mass that must be lifted into an Earth parking orbit by a launch vehicle.

Used for vehicle scoping.

The 2020 - 2038 analysis period with 3397 independent epochs enabled an anal-

ysis of trends in mission performance due periodic and secular cycles within the

Earth-Moon system, including the 18.6 year precession of the line of nodes, the

8.9 year precession of the line of apsides, the 1 year Earth orbit, the 7 month lunar

eccentricity fluctuation, and the 27.3 lunar orbit.

The 9 payload increments from 0 kg to 24 kg gave representation to a realistic

suite of small satellite buses - from miniature 1U buses used for technology valida-

tion, to 12U spacecraft capable of high value lunar science. As demonstrated by the
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6U form factors planned for EM1 secondary payloads, this form factor range can

enable viable lunar pathfinder missions.

Flyby, orbit insertion, and landing trajectory profiles were computed, along with

7 lunar orbit inclinations between -135◦ and 135◦ to encompass prograde and ret-

rograde orbits from equatorial to polar. This ensured representation of a detailed

set of arrival conditions upon which propellant consumption and flight time were

dependant.

The combination of these parameters resulted in 642,033 lunar trajectories com-

puted by a customized GMAT algorithm. This large sample size provided a global

characterization of mission performance demands to answer the four research ques-

tions put forward in chapter 1.

4.1 Conclusion 1: Payload Mass Dependency

Research Question 1

What is the relationship between mission mass and payload mass for lunar flyby,

orbit insertion, and landing trajectories?

Hypothesis 1

Based on the rocket equation, it is hypothesized that propellant consumption, and

therefore mission mass, must increase in proportion to payload mass such that the

wet/dry mass ratio is maintained.

Conclusion 1

For flyby missions requiring a single translunar injection burn, payload mass was

observed to have the dominant impact on mission mass when compared to epoch

and arrival elements. As hypothesized, mission mass increases proportionally with
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payload mass at a proportionality coefficient of approximately 2.8 kg per 1 kg of

payload (8.2 kg for each measured 3 kg payload increment).

For orbit insertion missions requiring translunar injection burn, lunar orbit in-

sertion, and inclination adjustment burns, payload mass was observed to have the

dominant impact on mission mass when compared to epoch and arrival elements,

with the exception of the 0◦ arrival inclination (discussed in Conclusion 2). As hy-

pothesized, mission mass increases proportionately with payload mass. However,

an unanticipated result is that the proportionality coefficient between mission mass

to payload is no longer constant. The coefficient begins at 10.7 kg from 0 - 3kg of

payload, increasing to 10.8 kg for 21 - 24 kg of payload. Thus, for a longer cumu-

lative burn duration, the efficiency of the burn is measurably reduced as it occurs

further from perigee (the Oberth effect). This phenomenon increases the required

mass ratio and demonstrates the importance of modelling finite burn durations as

opposed to impulsive maneuvers for improved accuracy. The Oberth effect requires

more propellant be consumed to achieve the same trajectory.

For landing missions requiring translunar injection, lunar orbit insertion, and in-

clination adjustment, perigee lowering, circularization, de-orbit, braking, and land-

ing burns, payload mass was no longer observed to have a dominant impact on

mission mass. Its effect was instead observed as comparable to departure epoch

selection. The same variable proportionality coefficient observed in the orbit inser-

tion case was seen again, though the magnitude of the variation was higher due to

a longer cumulative burn time. The ratio began at 16.0 kg from 0 - 3 kg, increasing

to 16.3 kg from 21 - 24 kg.

Thus, it is concluded that mission mass increases proportionately with payload

mass, with the proportionality constant driven burn duration - a function of mass,

thrust magnitude, and specific impulse. This disproved the hypothesis that the mis-

sion mass/payload mass ratio is driven purely by maintenance of the wet/dry ratio.
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In the context of lunar mission planning, payload mass has the dominant impact

on flyby mission performance. For orbit insertion, payload mass has a dominant im-

pact compared with arrival inclination and epoch with the exception of the 0◦ arrival

inclination case, whereby arrival inclination and epoch are comparable. For land-

ing, the impact of payload mass is comparable with arrival inclination and departure

epoch for all higher inclination cases, and is low compared to arrival inclination and

departure for low inclination cases.

Payload mass has no observable impact on translunar flight time, with +/- 1σ

bounds of 4.0 - 4.6 days for flyby, 4.1 - 4.7 days for orbit insertion, and 4.4 to 4.9

for landing.

4.2 Conclusion 2: Arrival Orbital Element Dependency

Research Question 2

What is the relationship between mission mass and the arrival LCLF inclination and

right ascension of the ascending node for lunar flyby, orbit insertion, and landing

trajectories?

Hypothesis 2

Arrival at a 0◦ inclination corresponds to entry into the lunar sphere of influence at

the shortest possible orbital radius from Earth. Given this requires a marginally less

energetic transfer orbit, it is hypothesized that a 0◦ arrival corresponds to the lowest

propellant consumption, therefore mission mass, and that increasing or decreasing

inclinations progressively increase mission mass. Upon insertion into a lunar orbit,

it is predicted that a specific LCLF RAAN can be achieved by waiting for the moon

to turn beneath the orbit over its 27.3 day rotation, thus RAAN has no effect on

mission mass. RAAN is only defined upon orbit insertion, therefore does not pertain

to flyby missions
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Conclusion 2

For flyby missions, LCLF RAAN is undefined. Without an elliptical lunar orbit,

there is no line of nodes. As the moon is tidally locked with Earth, the geography

underneath the ground track was driven only by arrival inclination. LCLF RAAN,

therefore, had no effect on mission mass for the flyby case as hypothesized, though

the available regions of observation are limited.

For orbit insertion and landing missions, the 100 km circular lunar orbit was

observed to be stable over the 27.3 day revolution of the Moon in inertial space

with high fidelity orbital dynamics . Thus, any LCLF RAAN may be achieved by

waiting for the Moon to rotate beneath the orbit without additional expenditure of

energy. Upon the assumption that 27.3 days is an acceptable duration for a lunar

small satellite in a stable orbit, LCLF RAAN was deemed to have no effect on

mission mass for the orbit insertion and landing cases.

With respect to translunar flight time, LCLF RAAN has no impact on flyby, or-

bit insertion, or landing cases. Total flight time is, however, dictated by the holding

period in lunar orbit for orbit insertion and landing cases. Depending in the depar-

ture epoch, orbit insertion and landing flight times range from 4.1 - 32.0 days and

4.4 - 32.2 days respectively.

For flyby missions, a 0◦ prograde arrival LCLF inclination yielded the lowest

∆v and mission mass values relative for any given payload. These metrics increased

with the absolute value of the inclination, peaking at the +/- 135◦ retrograde orbits.

This effect was, however, small.

As hypothesized, the mission mass deviations were driven by the transfer orbit

apogee radius required to place the spacecraft at the right position on the lunar

sphere of influence for a correctly inclined approach. A 0◦ approach required the

minimum apogee radius. This apogee radius increased with absolute inclination.

However, a unique and unanticipated finding is that the +/- 1σ ranges are small. For
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a 24 kg payload mass, the +/- 1σ monthly minimum mission mass range across all

inclinations was only 178.76 kg to 179.06 kg.

Orbit insertion and landing missions were found to demonstrate a similar insen-

sitivity to absolute inclinations greater than 45◦. For a 24 kg payload, the difference

in monthly minimum mission mass between 45◦ and 135◦ was observed to be 0.8

kg for orbit insertion, and 1.9 kg for landing. However, these mission profiles were

highly sensitive at low arrival inclinations. The equivalent mission mass differences

between 45◦ and 0◦ was observed to be 2.8 kg and 5.9 kg.

This additional mission mass is a consequence of the inclination errors present

at low inclination arrivals. A non-planar arrival to a B-Vector of 0 will retain an

LCLF Z-component velocity, and thus will be inserted into a slightly inclined or-

bit. Lunar gravity is not enough to correct this inclination error passively. As a

consequence, a 0◦ inclination cannot be directly accessed upon arrival to the lunar

sphere of influence. To correct the error actively, the inclination adjustment burn

must provide a large plane change. As orbital plane changes are energy intensive,

0◦ arrivals result in a larger overall ∆v, and therefore a higher mission mass.

Higher inclinations can be directly achieved with minimal inaccuracy as they

provide additional degrees of freedom for tailoring the arrival vector. With slight

adjustments in the TLI burn duration, AOP, and RAAN, these lunar arrival inclina-

tions can be targeted with minimal requirement for passive gravitational correction

provided they are higher than the relative inclination of the incoming transfer orbit.

With respect to translunar flight time, LCLF inclination has no significant im-

pact upon flyby, orbit insertion, of landing cases.
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4.3 Conclusion 3: Departure Epoch Dependency

Research Question 3

What is the relationship between mission mass and the departure (TLI ignition)

epoch for lunar flyby, orbit insertion, and landing trajectories?

Hypothesis 3

Transfer orbit energy is driven by lunar range (defining travel distance), and dec-

lination (defining relative inclination and velocity upon arrival). It is hypothesized

that flyby mission mass is optimized at minimum lunar range, and that orbit in-

sertion and landing mission mass is minimized at the lowest relative inclination

between the transfer orbit and lunar orbit at major standstill (the point of highest

lunar inclination with respect to the equator).

Conclusion 3

For flyby missions, performance demand was highly correlated to lunar range upon

arrival as hypothesized. The mission mass was observed to oscillate in harmony

with lunar range as the Moon travelled through the 27.3 day lunar orbit periodic cy-

cle. Thus, the optimal monthly departure epoch consistently preceded lunar perigee

passage by the translunar flight time - the point where lunar range was lowest upon

arrival.

As the eccentricity of the lunar orbit changed due to gravitation effects of the

Sun and Earth, the radius of perigee (and thus, the monthly optimal performance

demand) fluctuated through a 7 month secular cycle.

No clear correlations were observed in either the periodic declination, or the

longer term secular cycles of the Earth-Moon system. Furthermore, it was observed

that the magnitudes of the range dependent performance oscillations were small -
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approximately 0.8 - 0.9 kg for the 24 kg payload case.

It was therefore concluded that, though 27.3 day cycle dependencies were clearly

observed, flyby mission performance has a low sensitivity to departure epoch in the

context of mission design.

For orbit insertion missions, the departure epoch sensitivity was considerably

more pronounced. Variations in optimal and worst case monthly departures was ob-

served to be approximately 5.0 kg for 24 kg payload sample at higher inclinations,

and 30 kg in the 0◦ case as discussed in Conclusion 2). Landing missions displayed

similar behaviour with larger magnitudes of dependency, where variations between

optimal and worst case monthly departures was observed to be 10.8 kg over the

same sample for high inclination arrivals, and >30 kg for low inclinations.

The magnitude of these oscillations is due to the dependence of the orbit in-

sertion and inclination adjustment burns upon the relative inclination and velocity

upon arrival. The lower this relative velocity, the less energy is required to achieve

the targeted lunar orbit. The relative velocity vector at arrival is a function of lunar

range and declination at departure.

The optimal and worst case monthly performance for each arrival inclination

was analysed over the full 18.6 year analysis period to characterize trends over the

full breadth of range and declination combinations. Two notable conclusions were

drawn.

First, in the 0◦ arrival inclination case, the major standstill event causes a sharp,

short term drop in monthly maximum mission mass, while the minor standstill event

causes a sharp, temporary increase in monthly minimum mission mass. These

events coincide with the minimum and maximum offsets in transfer orbit incli-

nations. At major standstill, the orbits are temporarily co-planar, thus opening a

window for efficient, low arrival inclinations without large inclination adjustment

burns. At minor standstill, the incoming transfer and lunar orbits are at the great-
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est planar offset, thus creating a temporary period where low inclination arrivals

require substantially higher inclination adjustment burns to correct large LCLF Z-

component velocities. While this behaviour was anticipated around major and mi-

nor standstill, it was expected to apply to all arrival inclinations, and manifest as

a gradual trend throughout the lunar declination cycle. This hypothesis has been

disproved.

Second, while mission mass oscillates between monthly extremums due to the

periodic cycles, the performance demand of optimally phased monthly departures

remain remarkably constant throughout the secular cycles of the Earth-Moon sys-

tem. This trend is of particular importance in the context of mission design. It

allows an optimal departure in any month of any year with minimal consequence to

mission mass, with the exception of low arrival inclinations at minor stand-still.

It was concluded that the careful selection of optimal monthly departure times

has a significant impact on both orbit insertion and landing missions.

With respect to transular flight time, no discernible epoch dependencies were

observed.

4.4 Conclusion 4: Launch Vehicle Compatibility

Research Question 4

Are direct injection, translunar missions for 0 - 24 kg small satellite payloads com-

patible with cost-effective launch vehicles in the near-future commercial market?

Hypothesis 4

It is hypothesized that the mission mass required for all direct injection, translu-

nar missions within the parameter space can be delivered to the required parking

orbit by the SpaceX Falcon 9 and Blue Origin New Glenn heavy lift vehicles. Fur-

thermore, it is hypothesized that smaller, low-cost commercial launch vehicles can
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provide frequent, dedicated parking orbit delivery to a subset of translunar missions

for flyby and orbit insertion missions at lower payload masses.

Conclusion 4

To gauge compatibility with the commercial launch market, the FAA Annual Com-

pendium of Commercial Space Transportation [21] was used to characterize the

cost and payload capacity to LEO of commercial launch vehicles for insertion of

the payload and TLI stage into the 400 km, 28.5◦ inclination Earth parking orbit.

This characterization included vehicles that currently launch from KSC, or are at an

advanced stage of development and expected to launch from KSC in the near-future.

Noting that optimal monthly performance is remarkably constant across the

Earth-Moon nodal cycle, these launch vehicle lift capacities were compared against

the highest µ + 1σ optimal departure mission mass bound for each payload mass of

the flyby, orbit insertion, and landing missions computed over the full 18.6 analysis

period.

Compatibility was characterized by three classes. First, incompatible - a lift

capacity below the required mission mass. Second, compatible as a primary cus-

tomer. This was judged as a mission mass of greater than half the lift capacity of

the vehicle, thus making the launch cost effective as a dedicated mission, or as the

primary payload aboard a ride share mission. Such a scenario would allow selection

of the launch window. Third, compatible as secondary customer. This was judged

as a mission mass of less than half the lift capacity of the vehicle, thus making the

launch cost effective as a secondary customer aboard a non-dedicated ride share

mission.

A distinction was also made between flight proven launch vehicles, and vehicles

that are currently at an advanced stage in development, but are yet to achieve orbit.

Mission mass results are mapped to launch vehicle lift capacity in tables 4.1, 4.2,
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and 4.3. Against each combination of payload and vehicle, a launch cost estimate is

provided using the quoted $/kg to LEO, and the mission mass. It should, however,

be noted that these costs are based on data provided by the launch companies. They

may be subject to variation from a wide range of factors including inflation, mission

complexity, and licensing, amongst many others. Therefore, price values should be

used for comparative analysis only. The cost of launch for New Glenn is currently

undisclosed.

As hypothesized, the New Glenn and Falcon 9 are both amply powered to sup-

port the full suite of missions, as are the Minotaur C, Alpha, and LauncherOne.

The Pegasus XL can support all except landing missions of greater than 15 kg.

The Electron cannot support landing, but can support all flyby missions, and orbit

insertion masses up to 18 kg.

As flyby missions have low sensitivity to departure epoch, they have the flex-

ibility to be launched as a secondary customer aboard ride share flights. For this

reason, it is concluded that the cost-optimal launch vehicle for this mission is the

Falcon 9 with the lowest $/kg ratio for ride share customers.

Orbit insertion and landing missions are highly departure epoch sensitive. Thus,

dedicated missions are preferable for optimal performance. It is therefore con-

cluded that Electron is the optimal launch vehicle for orbit insertion payloads up to

18 kg by offering the lowest cost for a dedicated mission. Pegasus XL is considered

optimal flight proven launch vehicle for payloads 21 - 24 kg.

Similarly, it was concluded that Pegasus XL is the optimal flight proven launch

vehicle for landing payloads 0 - 15 kg. No flight proven vehicle is sized to support

18 - 24 kg as a primary ride share payload, thus additional costs may be required to

dictate the launch window. The Alpha and LauncherOne, though unproven, would

prove effective at supporting the full range of lunar landing missions at a competi-

tive rate if the advertised payload capacity and cost prove true.
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Figure 4.1: Flyby mission launch vehicle compatibility

Figure 4.2: Orbit insertion mission launch vehicle compatibility

Figure 4.3: Landing mission launch vehicle compatibility
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4.5 Final Remarks

Fast, high frequency translunar pathfinder missions hold great promise for advanc-

ing NASA’s scientific observation, prospecting, and technology validation objec-

tives in translunar space, lunar orbit, and upon the lunar surface.

This thesis provides an accurate reference for pathfinder mission designers by

demonstrating the dependencies between mission performance demand, and depar-

ture epoch, arrival elements, and payload mass.

Characterized herein are the mission masses, ∆v and translunar flight times re-

quired to achieve optimally phased missions to a range of tailored lunar arrivals, for

a range of small satellite payloads capable of supporting pathfinder objectives. This

characterization is based upon a TLI stage with flight proven propulsion technology,

high fidelity orbital dynamics, and direct injection flyby, orbit insertion and landing

architectures compatible with both dedicated and ride share commercial launches.

To validate the solutions, the statistical distribution of optimally phased ∆v

demands was directly compared with the ∆v records for Apollo 10, 11, and 12

as catalogued by the mission reports. The close alignment between this analysis

and an independent source of empirical data provides confidence that the results are

robust.

To demonstrate that the proposed architecture is compatible with the near-future

launch market, the resultant performance demands were mapped against lift capaci-

ties for numerous cost-competitive commercial launch vehicles. This compatibility

analysis also provides estimates for comparative launch costs.

Though the payload dependency and compatibility studies are specific to small

satellite payloads from 0 - 24 kg, the epoch, arrival inclination, and arrival architec-

ture dependencies are broadly applicable to any payload class that adopts a direct

injection transfer.
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It is hoped the metrics and algorithms found within the appendices of this thesis

will serve as a useful guide for future mission designers in this exciting new era of

lunar exploration.
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APPENDIX A

FLYBY: NODAL CYCLE PERFORMANCE DISTRIBUTION FOR

OPTIMAL DEPARTURES - MISSION MASS AND FLIGHT TIME
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Figure A.1: Flyby: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 0 kg Payload

Figure A.2: Flyby: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 3 kg Payload
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Figure A.3: Flyby: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 6 kg Payload

Figure A.4: Flyby: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 9 kg Payload
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Figure A.5: Flyby: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 12 kg Payload

Figure A.6: Flyby: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 15 kg Payload

163



Figure A.7: Flyby: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 18 kg Payload

Figure A.8: Flyby: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 21 kg Payload
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Figure A.9: Flyby: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 24 kg Payload
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APPENDIX B

FLYBY: NODAL CYCLE PERFORMANCE DISTRIBUTION FOR

OPTIMAL DEPARTURES - ∆V AND BURN TIME
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Figure B.1: Flyby: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 0 kg Payload

Figure B.2: Flyby: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 3 kg Payload
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Figure B.3: Flyby: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 6 kg Payload

Figure B.4: Flyby: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 9 kg Payload

168



Figure B.5: Flyby: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 12 kg Payload

Figure B.6: Flyby: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 15 kg Payload
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Figure B.7: Flyby: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 18 kg Payload

Figure B.8: Flyby: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 21 kg Payload
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Figure B.9: Flyby: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 24 kg Payload
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APPENDIX C

ORBIT INSERTION: NODAL CYCLE PERFORMANCE DISTRIBUTION

FOR OPTIMAL DEPARTURES - MISSION MASS AND FLIGHT TIME
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Figure C.1: Orbit Insertion: Full nodal cycle mean monthly minimum mission mass
and flight time distribution, 0 kg Payload

Figure C.2: Orbit Insertion: Full nodal cycle mean monthly minimum mission mass
and flight time distribution, 3 kg Payload
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Figure C.3: Orbit Insertion: Full nodal cycle mean monthly minimum mission mass
and flight time distribution, 6 kg Payload

Figure C.4: Orbit Insertion: Full nodal cycle mean monthly minimum mission mass
and flight time distribution, 9 kg Payload
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Figure C.5: Orbit Insertion: Full nodal cycle mean monthly minimum mission mass
and flight time distribution, 12 kg Payload

Figure C.6: Orbit Insertion: Full nodal cycle mean monthly minimum mission mass
and flight time distribution, 15 kg Payload
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Figure C.7: Orbit Insertion: Full nodal cycle mean monthly minimum mission mass
and flight time distribution, 18 kg Payload

Figure C.8: Orbit Insertion: Full nodal cycle mean monthly minimum mission mass
and flight time distribution, 21 kg Payload
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Figure C.9: Orbit Insertion: Full nodal cycle mean monthly minimum mission mass
and flight time distribution, 24 kg Payload
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APPENDIX D

ORBIT INSERTION: NODAL CYCLE PERFORMANCE DISTRIBUTION

FOR OPTIMAL DEPARTURES - ∆V AND BURN TIME
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Figure D.1: Orbit Insertion: Full nodal cycle mean monthly minimum ∆v and burn
time distribution, 0 kg Payload

Figure D.2: Orbit Insertion: Full nodal cycle mean monthly minimum ∆v and burn
time distribution, 3 kg Payload
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Figure D.3: Orbit Insertion: Full nodal cycle mean monthly minimum ∆v and burn
time distribution, 6 kg Payload

Figure D.4: Orbit Insertion: Full nodal cycle mean monthly minimum ∆v and burn
time distribution, 9 kg Payload
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Figure D.5: Orbit Insertion: Full nodal cycle mean monthly minimum ∆v and burn
time distribution, 12 kg Payload

Figure D.6: Orbit Insertion: Full nodal cycle mean monthly minimum ∆v and burn
time distribution, 15 kg Payload
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Figure D.7: Orbit Insertion: Full nodal cycle mean monthly minimum ∆v and burn
time distribution, 18 kg Payload

Figure D.8: Orbit Insertion: Full nodal cycle mean monthly minimum ∆v and burn
time distribution, 21 kg Payload
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Figure D.9: Orbit Insertion: Full nodal cycle mean monthly minimum ∆v and burn
time distribution, 24 kg Payload
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APPENDIX E

LANDING: NODAL CYCLE PERFORMANCE DISTRIBUTION FOR

OPTIMAL DEPARTURES - MISSION MASS AND FLIGHT TIME
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Figure E.1: Landing: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 0 kg Payload

Figure E.2: Landing: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 3 kg Payload
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Figure E.3: Landing: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 6 kg Payload

Figure E.4: Landing: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 9 kg Payload
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Figure E.5: Landing: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 12 kg Payload

Figure E.6: Landing: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 15 kg Payload
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Figure E.7: Landing: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 18 kg Payload

Figure E.8: Landing: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 21 kg Payload
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Figure E.9: Landing: Full nodal cycle mean monthly minimum mission mass and
flight time distribution, 24 kg Payload
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APPENDIX F

LANDING: NODAL CYCLE PERFORMANCE DISTRIBUTION FOR

OPTIMAL DEPARTURES - ∆V AND BURN TIME

190



Figure F.1: Landing: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 0 kg Payload

Figure F.2: Landing: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 3 kg Payload
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Figure F.3: Landing: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 6 kg Payload

Figure F.4: Landing: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 9 kg Payload
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Figure F.5: Landing: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 12 kg Payload

Figure F.6: Landing: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 15 kg Payload
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Figure F.7: Landing: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 18 kg Payload

Figure F.8: Landing: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 21 kg Payload

194



Figure F.9: Landing: Full nodal cycle mean monthly minimum ∆v and burn time
distribution, 24 kg Payload
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APPENDIX G

TRAJECTORY DESIGN ALGORITHM

%G e n e r a l Mis s ion A n a l y s i s Tool (GMAT) S c r i p t

%C r e a t e d : 2 0 1 9 0 5 2 5 1 0 : 2 1 9 : 0 2

%Flyby , O r b i t I n s e r t i o n , Landing

%R A J Hunte r

%

% S p a c e c r a f t

%

C r e a t e S p a c e c r a f t Ar t emis ;

GMAT Ar temis . DateFormat = UTCModJulian ;

GMAT Ar temis . Epoch = ’ 2 8 8 4 9 . 5 ’ ;

GMAT Ar temis . C o o r d i n a t e S y s t e m = EarthMJ2000Eq ;

GMAT Ar temis . D i s p l a y S t a t e T y p e = K e p l e r i a n ;

GMAT Ar temis .SMA = 6778 .120000000001 ;

GMAT Ar temis . ECC = 4.83305428361925 e 1 6 ;

GMAT Ar temis . INC = 0 ;

GMAT Ar temis .RAAN = 0 ;

GMAT Ar temis .AOP = 0 ;

GMAT Ar temis . TA = 0 ;

GMAT Ar temis . DryMass = 1 ;

GMAT Ar temis . Cd = 2 . 2 ;

GMAT Ar temis . Cr = 1 . 8 ;

GMAT Ar temis . DragArea = 1 ;

GMAT Ar temis . SRPArea = 1 ;

GMAT Ar temis . Tanks = {HydrazineTank , MONTank} ;

GMAT Ar temis . T h r u s t e r s = {LEROSThuster , LEROSThusterLOI , LEROSThusterIAB , LEROSThusterEAB} ;

GMAT Ar temis . NAIFId = 1 2 3 4 5 6 7 8 9 ;

GMAT Ar temis . NAIFIdReferenceFrame = 1 2 3 4 5 6 7 8 9 ;

GMAT Ar temis . O r b i t C o l o r = Red ;

GMAT Ar temis . T a r g e t C o l o r = Tea l ;

GMAT Ar temis . O r b i t E r r o r C o v a r i a n c e = [ 1 e +70 0 0 0 0 0 ; 0 1 e +70 0 0 0 0 ; 0 0 1 e +70 0 0 0 ; 0 0 0 1 e +70 0 0 ;

0 0 0 0 1 e +70 0 ; 0 0 0 0 0 1 e +70 ] ;

GMAT Ar temis . CdSigma = 1 e +70;

GMAT Ar temis . CrSigma = 1 e +70;

GMAT Ar temis . Id = ’ S a t I d ’ ;

GMAT Ar temis . A t t i t u d e = C o o r d i n a t e S y s t e m F i x e d ;

GMAT Ar temis . SPADSRPScaleFactor = 1 ;

GMAT Ar temis . Mode lF i l e = ’ . . / d a t a / v e h i c l e / models / a u r a . 3 ds ’ ;

GMAT Ar temis . ModelOffse tX = 0 ;

GMAT Ar temis . ModelOffse tY = 0 ;

GMAT Ar temis . ModelOffse tZ = 0 ;

GMAT Ar temis . ModelRota t ionX = 0 ;

GMAT Ar temis . ModelRota t ionY = 0 ;

GMAT Ar temis . Mode lRota t ionZ = 0 ;

GMAT Ar temis . ModelSca le = 0 .00989999994635582 ;

GMAT Ar temis . A t t i t u d e D i s p l a y S t a t e T y p e = ’ Qua t e r n ion ’ ;
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GMAT Ar temis . A t t i t u d e R a t e D i s p l a y S t a t e T y p e = ’ A n g u l a r V e l o c i t y ’ ;

GMAT Ar temis . A t t i t u d e C o o r d i n a t e S y s t e m = EarthMJ2000Eq ;

GMAT Ar temis . Eu l e rAng leSequence = ’ 3 2 1 ’ ;

C r e a t e S p a c e c r a f t A r t e m i s F i n e ;

GMAT A r t e m i s F i n e . DateFormat = TAIModJulian ;

GMAT A r t e m i s F i n e . Epoch = ’21545 ’ ;

GMAT A r t e m i s F i n e . C o o r d i n a t e S y s t e m = EarthMJ2000Eq ;

GMAT A r t e m i s F i n e . D i s p l a y S t a t e T y p e = C a r t e s i a n ;

GMAT A r t e m i s F i n e .X = 7100 ;

GMAT A r t e m i s F i n e .Y = 0 ;

GMAT A r t e m i s F i n e . Z = 1300 ;

GMAT A r t e m i s F i n e .VX = 0 ;

GMAT A r t e m i s F i n e .VY = 7 . 3 5 ;

GMAT A r t e m i s F i n e . VZ = 1 ;

GMAT A r t e m i s F i n e . DryMass = 850 ;

GMAT A r t e m i s F i n e . Cd = 2 . 2 ;

GMAT A r t e m i s F i n e . Cr = 1 . 8 ;

GMAT A r t e m i s F i n e . DragArea = 1 5 ;

GMAT A r t e m i s F i n e . SRPArea = 1 ;

GMAT A r t e m i s F i n e . NAIFId = 1 2 3 4 5 6 7 8 9 ;

GMAT A r t e m i s F i n e . NAIFIdReferenceFrame = 1 2 3 4 5 6 7 8 9 ;

GMAT A r t e m i s F i n e . O r b i t C o l o r = Green ;

GMAT A r t e m i s F i n e . T a r g e t C o l o r = L igh tGray ;

GMAT A r t e m i s F i n e . O r b i t E r r o r C o v a r i a n c e = [ 1 e +70 0 0 0 0 0 ; 0 1 e +70 0 0 0 0 ; 0 0 1 e +70 0 0 0 ; 0 0 0 1 e +70 0

0 ; 0 0 0 0 1 e +70 0 ; 0 0 0 0 0 1 e +70 ] ;

GMAT A r t e m i s F i n e . CdSigma = 1 e +70;

GMAT A r t e m i s F i n e . CrSigma = 1 e +70;

GMAT A r t e m i s F i n e . Id = ’ S a t I d ’ ;

GMAT A r t e m i s F i n e . A t t i t u d e = C o o r d i n a t e S y s t e m F i x e d ;

GMAT A r t e m i s F i n e . SPADSRPScaleFactor = 1 ;

GMAT A r t e m i s F i n e . Mode lF i l e = ’ . . / d a t a / v e h i c l e / models / a u r a . 3 ds ’ ;

GMAT A r t e m i s F i n e . ModelOffse tX = 0 ;

GMAT A r t e m i s F i n e . ModelOffse tY = 0 ;

GMAT A r t e m i s F i n e . ModelOffse tZ = 0 ;

GMAT A r t e m i s F i n e . ModelRota t ionX = 0 ;

GMAT A r t e m i s F i n e . ModelRota t ionY = 0 ;

GMAT A r t e m i s F i n e . Mode lRota t ionZ = 0 ;

GMAT A r t e m i s F i n e . ModelSca le = 3 ;

GMAT A r t e m i s F i n e . A t t i t u d e D i s p l a y S t a t e T y p e = ’ Qua t e r n ion ’ ;

GMAT A r t e m i s F i n e . A t t i t u d e R a t e D i s p l a y S t a t e T y p e = ’ A n g u l a r V e l o c i t y ’ ;

GMAT A r t e m i s F i n e . A t t i t u d e C o o r d i n a t e S y s t e m = EarthMJ2000Eq ;

GMAT A r t e m i s F i n e . Eu le rAng leSequence = ’ 3 2 1 ’ ;

C r e a t e S p a c e c r a f t A r t e m i s F i n i t e B u r n ;

GMAT A r t e m i s F i n i t e B u r n . DateFormat = TAIModJulian ;

GMAT A r t e m i s F i n i t e B u r n . Epoch = ’21545 ’ ;

GMAT A r t e m i s F i n i t e B u r n . C o o r d i n a t e S y s t e m = EarthMJ2000Eq ;

GMAT A r t e m i s F i n i t e B u r n . D i s p l a y S t a t e T y p e = C a r t e s i a n ;

GMAT A r t e m i s F i n i t e B u r n .X = 7100 ;

GMAT A r t e m i s F i n i t e B u r n .Y = 0 ;

GMAT A r t e m i s F i n i t e B u r n . Z = 1300 ;

GMAT A r t e m i s F i n i t e B u r n .VX = 0 ;

GMAT A r t e m i s F i n i t e B u r n .VY = 7 . 3 5 ;

GMAT A r t e m i s F i n i t e B u r n . VZ = 1 ;

GMAT A r t e m i s F i n i t e B u r n . DryMass = 850 ;
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GMAT A r t e m i s F i n i t e B u r n . Cd = 2 . 2 ;

GMAT A r t e m i s F i n i t e B u r n . Cr = 1 . 8 ;

GMAT A r t e m i s F i n i t e B u r n . DragArea = 1 5 ;

GMAT A r t e m i s F i n i t e B u r n . SRPArea = 1 ;

GMAT A r t e m i s F i n i t e B u r n . NAIFId = 1 0 0 0 4 0 0 1 ;

GMAT A r t e m i s F i n i t e B u r n . NAIFIdReferenceFrame = 9 0 0 4 0 0 1 ;

GMAT A r t e m i s F i n i t e B u r n . O r b i t C o l o r = Blue ;

GMAT A r t e m i s F i n i t e B u r n . T a r g e t C o l o r = DimGray ;

GMAT A r t e m i s F i n i t e B u r n . O r b i t E r r o r C o v a r i a n c e = [ 1 e +70 0 0 0 0 0 ; 0 1 e +70 0 0 0 0 ; 0 0 1 e +70 0 0 0 ; 0 0 0 1 e

+70 0 0 ; 0 0 0 0 1 e +70 0 ; 0 0 0 0 0 1 e +70 ] ;

GMAT A r t e m i s F i n i t e B u r n . CdSigma = 1 e +70;

GMAT A r t e m i s F i n i t e B u r n . CrSigma = 1 e +70;

GMAT A r t e m i s F i n i t e B u r n . Id = ’ S a t I d ’ ;

GMAT A r t e m i s F i n i t e B u r n . A t t i t u d e = C o o r d i n a t e S y s t e m F i x e d ;

GMAT A r t e m i s F i n i t e B u r n . SPADSRPScaleFactor = 1 ;

GMAT A r t e m i s F i n i t e B u r n . Mode lF i l e = ’ a u r a . 3 ds ’ ;

GMAT A r t e m i s F i n i t e B u r n . ModelOffse tX = 0 ;

GMAT A r t e m i s F i n i t e B u r n . ModelOffse tY = 0 ;

GMAT A r t e m i s F i n i t e B u r n . ModelOffse tZ = 0 ;

GMAT A r t e m i s F i n i t e B u r n . ModelRota t ionX = 0 ;

GMAT A r t e m i s F i n i t e B u r n . ModelRota t ionY = 0 ;

GMAT A r t e m i s F i n i t e B u r n . Mode lRota t ionZ = 0 ;

GMAT A r t e m i s F i n i t e B u r n . ModelSca le = 1 ;

GMAT A r t e m i s F i n i t e B u r n . A t t i t u d e D i s p l a y S t a t e T y p e = ’ Qua t e rn ion ’ ;

GMAT A r t e m i s F i n i t e B u r n . A t t i t u d e R a t e D i s p l a y S t a t e T y p e = ’ A n g u l a r V e l o c i t y ’ ;

GMAT A r t e m i s F i n i t e B u r n . A t t i t u d e C o o r d i n a t e S y s t e m = EarthMJ2000Eq ;

GMAT A r t e m i s F i n i t e B u r n . Eu le rAng leSequence = ’ 3 2 1 ’ ;

C r e a t e S p a c e c r a f t A r t e m i s F i n i t e C o a r s e ;

GMAT A r t e m i s F i n i t e C o a r s e . DateFormat = TAIModJulian ;

GMAT A r t e m i s F i n i t e C o a r s e . Epoch = ’21545 ’ ;

GMAT A r t e m i s F i n i t e C o a r s e . C o o r d i n a t e S y s t e m = EarthMJ2000Eq ;

GMAT A r t e m i s F i n i t e C o a r s e . D i s p l a y S t a t e T y p e = C a r t e s i a n ;

GMAT A r t e m i s F i n i t e C o a r s e .X = 7100 ;

GMAT A r t e m i s F i n i t e C o a r s e .Y = 0 ;

GMAT A r t e m i s F i n i t e C o a r s e . Z = 1300 ;

GMAT A r t e m i s F i n i t e C o a r s e .VX = 0 ;

GMAT A r t e m i s F i n i t e C o a r s e .VY = 7 . 3 5 ;

GMAT A r t e m i s F i n i t e C o a r s e . VZ = 1 ;

GMAT A r t e m i s F i n i t e C o a r s e . DryMass = 850 ;

GMAT A r t e m i s F i n i t e C o a r s e . Cd = 2 . 2 ;

GMAT A r t e m i s F i n i t e C o a r s e . Cr = 1 . 8 ;

GMAT A r t e m i s F i n i t e C o a r s e . DragArea = 1 5 ;

GMAT A r t e m i s F i n i t e C o a r s e . SRPArea = 1 ;

GMAT A r t e m i s F i n i t e C o a r s e . NAIFId = 1 0 0 0 4 0 0 1 ;

GMAT A r t e m i s F i n i t e C o a r s e . NAIFIdReferenceFrame = 9 0 0 4 0 0 1 ;

GMAT A r t e m i s F i n i t e C o a r s e . O r b i t C o l o r = Blue ;

GMAT A r t e m i s F i n i t e C o a r s e . T a r g e t C o l o r = DimGray ;

GMAT A r t e m i s F i n i t e C o a r s e . O r b i t E r r o r C o v a r i a n c e = [ 1 e +70 0 0 0 0 0 ; 0 1 e +70 0 0 0 0 ; 0 0 1 e +70 0 0 0 ; 0 0 0

1 e +70 0 0 ; 0 0 0 0 1 e +70 0 ; 0 0 0 0 0 1 e +70 ] ;

GMAT A r t e m i s F i n i t e C o a r s e . CdSigma = 1 e +70;

GMAT A r t e m i s F i n i t e C o a r s e . CrSigma = 1 e +70;

GMAT A r t e m i s F i n i t e C o a r s e . Id = ’ S a t I d ’ ;

GMAT A r t e m i s F i n i t e C o a r s e . A t t i t u d e = C o o r d i n a t e S y s t e m F i x e d ;

GMAT A r t e m i s F i n i t e C o a r s e . SPADSRPScaleFactor = 1 ;

GMAT A r t e m i s F i n i t e C o a r s e . Mode lF i l e = ’ a u r a . 3 ds ’ ;
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GMAT A r t e m i s F i n i t e C o a r s e . ModelOffse tX = 0 ;

GMAT A r t e m i s F i n i t e C o a r s e . ModelOffse tY = 0 ;

GMAT A r t e m i s F i n i t e C o a r s e . ModelOffse tZ = 0 ;

GMAT A r t e m i s F i n i t e C o a r s e . ModelRota t ionX = 0 ;

GMAT A r t e m i s F i n i t e C o a r s e . ModelRota t ionY = 0 ;

GMAT A r t e m i s F i n i t e C o a r s e . Mode lRota t ionZ = 0 ;

GMAT A r t e m i s F i n i t e C o a r s e . ModelSca le = 1 ;

GMAT A r t e m i s F i n i t e C o a r s e . A t t i t u d e D i s p l a y S t a t e T y p e = ’ Qua t e rn ion ’ ;

GMAT A r t e m i s F i n i t e C o a r s e . A t t i t u d e R a t e D i s p l a y S t a t e T y p e = ’ A n g u l a r V e l o c i t y ’ ;

GMAT A r t e m i s F i n i t e C o a r s e . A t t i t u d e C o o r d i n a t e S y s t e m = EarthMJ2000Eq ;

GMAT A r t e m i s F i n i t e C o a r s e . Eu l e rAng leSequence = ’ 3 2 1 ’ ;

%

% Hardware Components

%

C r e a t e C h e m i c a l T h r u s t e r LEROSThuster ;

GMAT LEROSThuster . C o o r d i n a t e S y s t e m = Loca l ;

GMAT LEROSThuster . O r i g i n = E a r t h ;

GMAT LEROSThuster . Axes = VNB;

GMAT LEROSThuster . T h r u s t D i r e c t i o n 1 = 1 ;

GMAT LEROSThuster . T h r u s t D i r e c t i o n 2 = 0 ;

GMAT LEROSThuster . T h r u s t D i r e c t i o n 3 = 0 ;

GMAT LEROSThuster . DutyCycle = 1 ;

GMAT LEROSThuster . T h r u s t S c a l e F a c t o r = 1 ;

GMAT LEROSThuster . DecrementMass = t r u e ;

GMAT LEROSThuster . Tank = {HydrazineTank , MONTank} ;

GMAT LEROSThuster . MixRat io = [ 0 .541 0 .459 ] ;

GMAT LEROSThuster . G r a v i t a t i o n a l A c c e l = 9 . 8 1 ;

GMAT LEROSThuster . C1 = 635 ;

GMAT LEROSThuster . C2 = 0 ;

GMAT LEROSThuster . C3 = 0 ;

GMAT LEROSThuster . C4 = 0 ;

GMAT LEROSThuster . C5 = 0 ;

GMAT LEROSThuster . C6 = 0 ;

GMAT LEROSThuster . C7 = 0 ;

GMAT LEROSThuster . C8 = 0 ;

GMAT LEROSThuster . C9 = 0 ;

GMAT LEROSThuster . C10 = 0 ;

GMAT LEROSThuster . C11 = 0 ;

GMAT LEROSThuster . C12 = 0 ;

GMAT LEROSThuster . C13 = 0 ;

GMAT LEROSThuster . C14 = 0 ;

GMAT LEROSThuster . C15 = 0 ;

GMAT LEROSThuster . C16 = 0 ;

GMAT LEROSThuster . K1 = 317 ;

GMAT LEROSThuster . K2 = 0 ;

GMAT LEROSThuster . K3 = 0 ;

GMAT LEROSThuster . K4 = 0 ;

GMAT LEROSThuster . K5 = 0 ;

GMAT LEROSThuster . K6 = 0 ;

GMAT LEROSThuster . K7 = 0 ;

GMAT LEROSThuster . K8 = 0 ;

GMAT LEROSThuster . K9 = 0 ;

GMAT LEROSThuster . K10 = 0 ;

GMAT LEROSThuster . K11 = 0 ;

199



GMAT LEROSThuster . K12 = 0 ;

GMAT LEROSThuster . K13 = 0 ;

GMAT LEROSThuster . K14 = 0 ;

GMAT LEROSThuster . K15 = 0 ;

GMAT LEROSThuster . K16 = 0 ;

C r e a t e ChemicalTank Hydraz ineTank ;

GMAT Hydraz ineTank . Al lowNega t iveFue lMass = t r u e ;

GMAT Hydraz ineTank . FuelMass = 1 ;

GMAT Hydraz ineTank . P r e s s u r e = 2600 ;

GMAT Hydraz ineTank . Tempera tu r e = 2 0 ;

GMAT Hydraz ineTank . Re fTempera tu re = 2 0 ;

GMAT Hydraz ineTank . Volume = 0 . 2 ;

GMAT Hydraz ineTank . F u e l D e n s i t y = 1021 ;

GMAT Hydraz ineTank . P r e s s u r e M o d e l = P r e s s u r e R e g u l a t e d ;

C r e a t e ChemicalTank MONTank ;

GMAT MONTank . Al lowNega t iveFue lMass = t r u e ;

GMAT MONTank . FuelMass = 1 ;

GMAT MONTank . P r e s s u r e = 2600 ;

GMAT MONTank . Tempera tu r e = 2 0 ;

GMAT MONTank . Re fTempera tu re = 2 0 ;

GMAT MONTank . Volume = 0 . 2 ;

GMAT MONTank . F u e l D e n s i t y = 1370 ;

GMAT MONTank . P r e s s u r e M o d e l = P r e s s u r e R e g u l a t e d ;

%

% Hardware Components

%

C r e a t e C h e m i c a l T h r u s t e r LEROSThusterLOI ;

GMAT LEROSThusterLOI . C o o r d i n a t e S y s t e m = Loca l ;

GMAT LEROSThusterLOI . O r i g i n = Luna ;

GMAT LEROSThusterLOI . Axes = VNB;

GMAT LEROSThusterLOI . T h r u s t D i r e c t i o n 1 = 1 ;

GMAT LEROSThusterLOI . T h r u s t D i r e c t i o n 2 = 0 ;

GMAT LEROSThusterLOI . T h r u s t D i r e c t i o n 3 = 0 ;

GMAT LEROSThusterLOI . DutyCycle = 1 ;

GMAT LEROSThusterLOI . T h r u s t S c a l e F a c t o r = 1 ;

GMAT LEROSThusterLOI . DecrementMass = t r u e ;

GMAT LEROSThusterLOI . Tank = {HydrazineTank , MONTank} ;

GMAT LEROSThusterLOI . MixRat io = [ 0 .541 0 .459 ] ;

GMAT LEROSThusterLOI . G r a v i t a t i o n a l A c c e l = 9 . 8 1 ;

GMAT LEROSThusterLOI . C1 = 635 ;

GMAT LEROSThusterLOI . C2 = 0 ;

GMAT LEROSThusterLOI . C3 = 0 ;

GMAT LEROSThusterLOI . C4 = 0 ;

GMAT LEROSThusterLOI . C5 = 0 ;

GMAT LEROSThusterLOI . C6 = 0 ;

GMAT LEROSThusterLOI . C7 = 0 ;

GMAT LEROSThusterLOI . C8 = 0 ;

GMAT LEROSThusterLOI . C9 = 0 ;

GMAT LEROSThusterLOI . C10 = 0 ;

GMAT LEROSThusterLOI . C11 = 0 ;

GMAT LEROSThusterLOI . C12 = 0 ;

GMAT LEROSThusterLOI . C13 = 0 ;
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GMAT LEROSThusterLOI . C14 = 0 ;

GMAT LEROSThusterLOI . C15 = 0 ;

GMAT LEROSThusterLOI . C16 = 0 ;

GMAT LEROSThusterLOI . K1 = 317 ;

GMAT LEROSThusterLOI . K2 = 0 ;

GMAT LEROSThusterLOI . K3 = 0 ;

GMAT LEROSThusterLOI . K4 = 0 ;

GMAT LEROSThusterLOI . K5 = 0 ;

GMAT LEROSThusterLOI . K6 = 0 ;

GMAT LEROSThusterLOI . K7 = 0 ;

GMAT LEROSThusterLOI . K8 = 0 ;

GMAT LEROSThusterLOI . K9 = 0 ;

GMAT LEROSThusterLOI . K10 = 0 ;

GMAT LEROSThusterLOI . K11 = 0 ;

GMAT LEROSThusterLOI . K12 = 0 ;

GMAT LEROSThusterLOI . K13 = 0 ;

GMAT LEROSThusterLOI . K14 = 0 ;

GMAT LEROSThusterLOI . K15 = 0 ;

GMAT LEROSThusterLOI . K16 = 0 ;

%

% Hardware Components

%

C r e a t e C h e m i c a l T h r u s t e r LEROSThusterIAB ;

GMAT LEROSThusterIAB . C o o r d i n a t e S y s t e m = Loca l ;

GMAT LEROSThusterIAB . O r i g i n = Luna ;

GMAT LEROSThusterIAB . Axes = VNB;

GMAT LEROSThusterIAB . T h r u s t D i r e c t i o n 1 = 0 ;

GMAT LEROSThusterIAB . T h r u s t D i r e c t i o n 2 = 1 ;

GMAT LEROSThusterIAB . T h r u s t D i r e c t i o n 3 = 0 ;

GMAT LEROSThusterIAB . DutyCycle = 1 ;

GMAT LEROSThusterIAB . T h r u s t S c a l e F a c t o r = 1 ;

GMAT LEROSThusterIAB . DecrementMass = t r u e ;

GMAT LEROSThusterIAB . Tank = {HydrazineTank , MONTank} ;

GMAT LEROSThusterIAB . MixRat io = [ 0 .541 0 .459 ] ;

GMAT LEROSThusterIAB . G r a v i t a t i o n a l A c c e l = 9 . 8 1 ;

GMAT LEROSThusterIAB . C1 = 635 ;

GMAT LEROSThusterIAB . C2 = 0 ;

GMAT LEROSThusterIAB . C3 = 0 ;

GMAT LEROSThusterIAB . C4 = 0 ;

GMAT LEROSThusterIAB . C5 = 0 ;

GMAT LEROSThusterIAB . C6 = 0 ;

GMAT LEROSThusterIAB . C7 = 0 ;

GMAT LEROSThusterIAB . C8 = 0 ;

GMAT LEROSThusterIAB . C9 = 0 ;

GMAT LEROSThusterIAB . C10 = 0 ;

GMAT LEROSThusterIAB . C11 = 0 ;

GMAT LEROSThusterIAB . C12 = 0 ;

GMAT LEROSThusterIAB . C13 = 0 ;

GMAT LEROSThusterIAB . C14 = 0 ;

GMAT LEROSThusterIAB . C15 = 0 ;

GMAT LEROSThusterIAB . C16 = 0 ;

GMAT LEROSThusterIAB . K1 = 317 ;

GMAT LEROSThusterIAB . K2 = 0 ;

GMAT LEROSThusterIAB . K3 = 0 ;
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GMAT LEROSThusterIAB . K4 = 0 ;

GMAT LEROSThusterIAB . K5 = 0 ;

GMAT LEROSThusterIAB . K6 = 0 ;

GMAT LEROSThusterIAB . K7 = 0 ;

GMAT LEROSThusterIAB . K8 = 0 ;

GMAT LEROSThusterIAB . K9 = 0 ;

GMAT LEROSThusterIAB . K10 = 0 ;

GMAT LEROSThusterIAB . K11 = 0 ;

GMAT LEROSThusterIAB . K12 = 0 ;

GMAT LEROSThusterIAB . K13 = 0 ;

GMAT LEROSThusterIAB . K14 = 0 ;

GMAT LEROSThusterIAB . K15 = 0 ;

GMAT LEROSThusterIAB . K16 = 0 ;

%

% Hardware Components

%

C r e a t e C h e m i c a l T h r u s t e r LEROSThusterEAB ;

GMAT LEROSThusterEAB . C o o r d i n a t e S y s t e m = Loca l ;

GMAT LEROSThusterEAB . O r i g i n = Luna ;

GMAT LEROSThusterEAB . Axes = VNB;

GMAT LEROSThusterEAB . T h r u s t D i r e c t i o n 1 = 1 ;

GMAT LEROSThusterEAB . T h r u s t D i r e c t i o n 2 = 0 ;

GMAT LEROSThusterEAB . T h r u s t D i r e c t i o n 3 = 0 ;

GMAT LEROSThusterEAB . DutyCycle = 1 ;

GMAT LEROSThusterEAB . T h r u s t S c a l e F a c t o r = 1 ;

GMAT LEROSThusterEAB . DecrementMass = t r u e ;

GMAT LEROSThusterEAB . Tank = {HydrazineTank , MONTank} ;

GMAT LEROSThusterEAB . MixRat io = [ 0 .541 0 .459 ] ;

GMAT LEROSThusterEAB . G r a v i t a t i o n a l A c c e l = 9 . 8 1 ;

GMAT LEROSThusterEAB . C1 = 635 ;

GMAT LEROSThusterEAB . C2 = 0 ;

GMAT LEROSThusterEAB . C3 = 0 ;

GMAT LEROSThusterEAB . C4 = 0 ;

GMAT LEROSThusterEAB . C5 = 0 ;

GMAT LEROSThusterEAB . C6 = 0 ;

GMAT LEROSThusterEAB . C7 = 0 ;

GMAT LEROSThusterEAB . C8 = 0 ;

GMAT LEROSThusterEAB . C9 = 0 ;

GMAT LEROSThusterEAB . C10 = 0 ;

GMAT LEROSThusterEAB . C11 = 0 ;

GMAT LEROSThusterEAB . C12 = 0 ;

GMAT LEROSThusterEAB . C13 = 0 ;

GMAT LEROSThusterEAB . C14 = 0 ;

GMAT LEROSThusterEAB . C15 = 0 ;

GMAT LEROSThusterEAB . C16 = 0 ;

GMAT LEROSThusterEAB . K1 = 317 ;

GMAT LEROSThusterEAB . K2 = 0 ;

GMAT LEROSThusterEAB . K3 = 0 ;

GMAT LEROSThusterEAB . K4 = 0 ;

GMAT LEROSThusterEAB . K5 = 0 ;

GMAT LEROSThusterEAB . K6 = 0 ;

GMAT LEROSThusterEAB . K7 = 0 ;

GMAT LEROSThusterEAB . K8 = 0 ;

GMAT LEROSThusterEAB . K9 = 0 ;
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GMAT LEROSThusterEAB . K10 = 0 ;

GMAT LEROSThusterEAB . K11 = 0 ;

GMAT LEROSThusterEAB . K12 = 0 ;

GMAT LEROSThusterEAB . K13 = 0 ;

GMAT LEROSThusterEAB . K14 = 0 ;

GMAT LEROSThusterEAB . K15 = 0 ;

GMAT LEROSThusterEAB . K16 = 0 ;

%

% ForceModels

%

C r e a t e ForceModel NearMoonProp ForceModel ;

GMAT NearMoonProp ForceModel . Cen t r a lBody = Luna ;

GMAT NearMoonProp ForceModel . P r i m a r y B o d i e s = {Luna} ;

GMAT NearMoonProp ForceModel . P o i n t M a s s e s = {Ear th , J u p i t e r , Mars , Sa tu rn , Sun , Venus} ;

GMAT NearMoonProp ForceModel . Drag = None ;

GMAT NearMoonProp ForceModel . SRP = On ;

GMAT NearMoonProp ForceModel . R e l a t i v i s t i c C o r r e c t i o n = On ;

GMAT NearMoonProp ForceModel . E r r o r C o n t r o l = RSSStep ;

GMAT NearMoonProp ForceModel . G r a v i t y F i e l d . Luna . Degree = 1 0 ;

GMAT NearMoonProp ForceModel . G r a v i t y F i e l d . Luna . Order = 1 0 ;

GMAT NearMoonProp ForceModel . G r a v i t y F i e l d . Luna . StmLimit = 100 ;

GMAT NearMoonProp ForceModel . G r a v i t y F i e l d . Luna . P o t e n t i a l F i l e = ’ LP165P . cof ’ ;

GMAT NearMoonProp ForceModel . G r a v i t y F i e l d . Luna . TideModel = ’ None ’ ;

GMAT NearMoonProp ForceModel . SRP . Flux = 1367 ;

GMAT NearMoonProp ForceModel . SRP . SRPModel = S p h e r i c a l ;

GMAT NearMoonProp ForceModel . SRP . Nominal Sun = 149597870 .691 ;

%

% ForceModels

%

C r e a t e ForceModel N e a r E a r t h P r o p F o r c e M o d e l ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . Cen t r a lBody = E a r t h ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . P r i m a r y B o d i e s = {E a r t h } ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . P o i n t M a s s e s = { J u p i t e r , Luna , Mars , Sa tu rn , Sun , Venus} ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . SRP = On ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . R e l a t i v i s t i c C o r r e c t i o n = On ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . E r r o r C o n t r o l = RSSStep ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . G r a v i t y F i e l d . E a r t h . Degree = 1 0 ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . G r a v i t y F i e l d . E a r t h . Order = 1 0 ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . G r a v i t y F i e l d . E a r t h . StmLimit = 100 ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . G r a v i t y F i e l d . E a r t h . P o t e n t i a l F i l e = ’JGM3 . cof ’ ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . G r a v i t y F i e l d . E a r t h . TideModel = ’ None ’ ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . SRP . Flux = 1367 ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . SRP . SRPModel = S p h e r i c a l ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . SRP . Nominal Sun = 149597870 .691 ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . Drag . AtmosphereModel = J a c c h i a R o b e r t s ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . Drag . H i s t o r i c W e a t h e r S o u r c e = ’ ConstantFluxAndGeoMag ’ ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . Drag . P r e d i c t e d W e a t h e r S o u r c e = ’ ConstantFluxAndGeoMag ’ ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . Drag . CSSISpaceWea the rF i l e = ’ SpaceWeather All v1 . 2 . t x t ’ ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . Drag . S c h a t t e n F i l e = ’ S c h a t t e n P r e d i c t . t x t ’ ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . Drag . F107 = 150 ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . Drag . F107A = 150 ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . Drag . Magne t i c Index = 3 ;

203



GMAT N e a r E a r t h P r o p F o r c e M o d e l . Drag . S c h a t t e n E r r o r M o d e l = ’ Nominal ’ ;

GMAT N e a r E a r t h P r o p F o r c e M o d e l . Drag . Scha t t enTimingMode l = ’ NominalCycle ’ ;

%

% P r o p a g a t o r s

%

C r e a t e P r o p a g a t o r NearMoonProp ;

GMAT NearMoonProp .FM = NearMoonProp ForceModel ;

GMAT NearMoonProp . Type = PrinceDormand78 ;

GMAT NearMoonProp . I n i t i a l S t e p S i z e = 6 0 ;

GMAT NearMoonProp . Accuracy = 9.999999999999999 e 1 2 ;

GMAT NearMoonProp . MinStep = 0 ;

GMAT NearMoonProp . MaxStep = 86400 ;

GMAT NearMoonProp . MaxStepAt tempts = 5 0 ;

GMAT NearMoonProp . S t o p I f A c c u r a c y I s V i o l a t e d = t r u e ;

%

% P r o p a g a t o r s

%

C r e a t e P r o p a g a t o r N e a r E a r t h P r o p ;

GMAT N e a r E a r t h P r o p .FM = N e a r E a r t h P r o p F o r c e M o d e l ;

GMAT N e a r E a r t h P r o p . Type = PrinceDormand78 ;

GMAT N e a r E a r t h P r o p . I n i t i a l S t e p S i z e = 6 0 ;

GMAT N e a r E a r t h P r o p . Accuracy = 9.999999999999999 e 1 2 ;

GMAT N e a r E a r t h P r o p . MinStep = 0 ;

GMAT N e a r E a r t h P r o p . MaxStep = 86400 ;

GMAT N e a r E a r t h P r o p . MaxStepAt tempts = 5 0 ;

GMAT N e a r E a r t h P r o p . S t o p I f A c c u r a c y I s V i o l a t e d = t r u e ;

%

% Burns

%

C r e a t e I m p u l s i v e B u r n TLI ;

GMAT TLI . C o o r d i n a t e S y s t e m = Loca l ;

GMAT TLI . O r i g i n = E a r t h ;

GMAT TLI . Axes = VNB;

GMAT TLI . Element1 = 3 . 0 8 ;

GMAT TLI . Element2 = 0 ;

GMAT TLI . Element3 = 0 ;

GMAT TLI . DecrementMass = f a l s e ;

GMAT TLI . I s p = 318 ;

GMAT TLI . G r a v i t a t i o n a l A c c e l = 9 . 8 1 ;

C r e a t e F i n i t e B u r n F i n i t e T L I C o a r s e ;

GMAT F i n i t e T L I C o a r s e . T h r u s t e r s = {LEROSThuster} ;

GMAT F i n i t e T L I C o a r s e . T h r o t t l e L o g i c A l g o r i t h m = ’ MaxNumberOfThrusters ’ ;

C r e a t e I m p u l s i v e B u r n LOI ;

GMAT LOI . C o o r d i n a t e S y s t e m = Loca l ;

GMAT LOI . O r i g i n = Luna ;

GMAT LOI . Axes = VNB;

GMAT LOI . Element1 = 0 . 5 ;

GMAT LOI . Element2 = 0 ;
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GMAT LOI . Element3 = 0 ;

GMAT LOI . DecrementMass = f a l s e ;

GMAT LOI . I s p = 300 ;

GMAT LOI . G r a v i t a t i o n a l A c c e l = 9 . 8 1 ;

C r e a t e F i n i t e B u r n F i n i t e L O I ;

GMAT F i n i t e L O I . T h r u s t e r s = {LEROSThusterLOI} ;

GMAT F i n i t e L O I . T h r o t t l e L o g i c A l g o r i t h m = ’ MaxNumberOfThrusters ’ ;

C r e a t e F i n i t e B u r n F i n i t e T L I ;

GMAT F i n i t e T L I . T h r u s t e r s = {LEROSThuster} ;

GMAT F i n i t e T L I . T h r o t t l e L o g i c A l g o r i t h m = ’ MaxNumberOfThrusters ’ ;

C r e a t e I m p u l s i v e B u r n IAB ;

GMAT IAB . C o o r d i n a t e S y s t e m = Loca l ;

GMAT IAB . O r i g i n = Luna ;

GMAT IAB . Axes = VNB;

GMAT IAB . Element1 = 0 ;

GMAT IAB . Element2 = 0 . 1 ;

GMAT IAB . Element3 = 0 ;

GMAT IAB . DecrementMass = f a l s e ;

GMAT IAB . I s p = 300 ;

GMAT IAB . G r a v i t a t i o n a l A c c e l = 9 . 8 1 ;

C r e a t e F i n i t e B u r n F i n i t e I A B ;

GMAT F i n i t e I A B . T h r u s t e r s = {LEROSThusterIAB} ;

GMAT F i n i t e I A B . T h r o t t l e L o g i c A l g o r i t h m = ’ MaxNumberOfThrusters ’ ;

C r e a t e F i n i t e B u r n Fini teEAB ;

GMAT Fini teEAB . T h r u s t e r s = {LEROSThusterEAB} ;

GMAT Fini teEAB . T h r o t t l e L o g i c A l g o r i t h m = ’ MaxNumberOfThrusters ’ ;

%

% C o o r d i n a t e Sys tems

%

C r e a t e C o o r d i n a t e S y s t e m EarthMoonRot ;

GMAT EarthMoonRot . O r i g i n = E a r t h ;

GMAT EarthMoonRot . Axes = O b j e c t R e f e r e n c e d ;

GMAT EarthMoonRot . XAxis = R ;

GMAT EarthMoonRot . ZAxis = N;

GMAT EarthMoonRot . P r imary = E a r t h ;

GMAT EarthMoonRot . Secondary = Luna ;

C r e a t e C o o r d i n a t e S y s t e m L u n a I n e r t i a l ;

GMAT L u n a I n e r t i a l . O r i g i n = Luna ;

GMAT L u n a I n e r t i a l . Axes = B o d y I n e r t i a l ;

C r e a t e C o o r d i n a t e S y s t e m LunaFixed ;

GMAT LunaFixed . O r i g i n = Luna ;

GMAT LunaFixed . Axes = BodyFixed ;

%

% S o l v e r s

%
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C r e a t e D i f f e r e n t i a l C o r r e c t o r DC1 ;

GMAT DC1 . ShowProgress = t r u e ;

GMAT DC1 . R e p o r t S t y l e = Normal ;

GMAT DC1 . R e p o r t F i l e = ’ D i f f e r e n t i a l C o r r e c t o r D C 1 . da t a ’ ;

GMAT DC1 . Ma x im umI t e r a t i on s = 150 ;

GMAT DC1 . D e r i v a t i v e M e t h o d = F o r w a r d D i f f e r e n c e ;

GMAT DC1 . Algo r i t hm = NewtonRaphson ;

%

% S u b s c r i b e r s

%

C r e a t e Orb i tView Ear thMoonRota t ingFrame ;

GMAT Ear thMoonRota t ingFrame . S o l v e r I t e r a t i o n s = C u r r e n t ;

GMAT Ear thMoonRota t ingFrame . Uppe rLe f t = [ 0 .2541666666666667 0.4988888888888889 ] ;

GMAT Ear thMoonRota t ingFrame . S i z e = [ 0 .3951388888888889 0 . 4 7 ] ;

GMAT Ear thMoonRota t ingFrame . R e l a t i v e Z O r d e r = 5 ;

GMAT Ear thMoonRota t ingFrame . Maximized = f a l s e ;

GMAT Ear thMoonRota t ingFrame . Add = {Artemis , Ea r th , Luna} ;

GMAT Ear thMoonRota t ingFrame . C o o r d i n a t e S y s t e m = EarthMoonRot ;

GMAT Ear thMoonRota t ingFrame . DrawObject = [ t r u e t r u e t r u e ] ;

GMAT Ear thMoonRota t ingFrame . D a t a C o l l e c t F r e q u e n c y = 1 ;

GMAT Ear thMoonRota t ingFrame . U p d a t e P l o t F r e q u e n c y = 5 0 ;

GMAT Ear thMoonRota t ingFrame . NumPointsToRedraw = 0 ;

GMAT Ear thMoonRota t ingFrame . ShowPlot = f a l s e ;

GMAT Ear thMoonRota t ingFrame . M a x P l o t P o i n t s = 20000 ;

GMAT Ear thMoonRota t ingFrame . ShowLabels = t r u e ;

GMAT Ear thMoonRota t ingFrame . V i e w P o i n t R e f e r e n c e = E a r t h ;

GMAT Ear thMoonRota t ingFrame . V iewPo in tVec to r = [ 10000 0 30000 ] ;

GMAT Ear thMoonRota t ingFrame . V i e w D i r e c t i o n = E a r t h ;

GMAT Ear thMoonRota t ingFrame . V i e w S c a l e F a c t o r = 4 0 ;

GMAT Ear thMoonRota t ingFrame . ViewUpCoordinateSystem = EarthMoonRot ;

GMAT Ear thMoonRota t ingFrame . ViewUpAxis = X;

GMAT Ear thMoonRota t ingFrame . E c l i p t i c P l a n e = Off ;

GMAT Ear thMoonRota t ingFrame . XYPlane = Off ;

GMAT Ear thMoonRota t ingFrame . WireFrame = Off ;

GMAT Ear thMoonRota t ingFrame . Axes = Off ;

GMAT Ear thMoonRota t ingFrame . Gr id = Off ;

GMAT Ear thMoonRota t ingFrame . SunLine = Off ;

GMAT Ear thMoonRota t ingFrame . U s e I n i t i a l V i e w = On ;

GMAT Ear thMoonRota t ingFrame . S t a r C o u n t = 7000 ;

GMAT Ear thMoonRota t ingFrame . E n a b l e S t a r s = On ;

GMAT Ear thMoonRota t ingFrame . E n a b l e C o n s t e l l a t i o n s = On ;

C r e a t e Orb i tView L u n a I n e r t i a l F r a m e ;

GMAT L u n a I n e r t i a l F r a m e . S o l v e r I t e r a t i o n s = C u r r e n t ;

GMAT L u n a I n e r t i a l F r a m e . Uppe rLe f t = [ 0 .6513888888888889 0.04111111111111111 ] ;

GMAT L u n a I n e r t i a l F r a m e . S i z e = [ 0 .3416666666666667 0.4466666666666667 ] ;

GMAT L u n a I n e r t i a l F r a m e . R e l a t i v e Z O r d e r = 1 5 ;

GMAT L u n a I n e r t i a l F r a m e . Maximized = f a l s e ;

GMAT L u n a I n e r t i a l F r a m e . Add = {Artemis , Luna , E a r t h } ;

GMAT L u n a I n e r t i a l F r a m e . C o o r d i n a t e S y s t e m = L u n a I n e r t i a l ;

GMAT L u n a I n e r t i a l F r a m e . DrawObject = [ t r u e t r u e t r u e ] ;

GMAT L u n a I n e r t i a l F r a m e . D a t a C o l l e c t F r e q u e n c y = 1 ;

GMAT L u n a I n e r t i a l F r a m e . U p d a t e P l o t F r e q u e n c y = 5 0 ;

GMAT L u n a I n e r t i a l F r a m e . NumPointsToRedraw = 150 ;
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GMAT L u n a I n e r t i a l F r a m e . ShowPlot = f a l s e ;

GMAT L u n a I n e r t i a l F r a m e . M a x P l o t P o i n t s = 20000 ;

GMAT L u n a I n e r t i a l F r a m e . ShowLabels = t r u e ;

GMAT L u n a I n e r t i a l F r a m e . V i e w P o i n t R e f e r e n c e = Luna ;

GMAT L u n a I n e r t i a l F r a m e . V iewPo in t Vec to r = [ 10000 10000 10000 ] ;

GMAT L u n a I n e r t i a l F r a m e . V i e w D i r e c t i o n = Luna ;

GMAT L u n a I n e r t i a l F r a m e . V i e w S c a l e F a c t o r = 1 . 5 ;

GMAT L u n a I n e r t i a l F r a m e . ViewUpCoordinateSystem = EarthMJ2000Eq ;

GMAT L u n a I n e r t i a l F r a m e . ViewUpAxis = Z ;

GMAT L u n a I n e r t i a l F r a m e . E c l i p t i c P l a n e = Off ;

GMAT L u n a I n e r t i a l F r a m e . XYPlane = On ;

GMAT L u n a I n e r t i a l F r a m e . WireFrame = Off ;

GMAT L u n a I n e r t i a l F r a m e . Axes = On ;

GMAT L u n a I n e r t i a l F r a m e . Gr id = Off ;

GMAT L u n a I n e r t i a l F r a m e . SunLine = Off ;

GMAT L u n a I n e r t i a l F r a m e . U s e I n i t i a l V i e w = On ;

GMAT L u n a I n e r t i a l F r a m e . S t a r C o u n t = 7000 ;

GMAT L u n a I n e r t i a l F r a m e . E n a b l e S t a r s = On ;

GMAT L u n a I n e r t i a l F r a m e . E n a b l e C o n s t e l l a t i o n s = On ;

C r e a t e Orbi tView F a r E a r t h I n e r t i a l F r a m e ;

GMAT F a r E a r t h I n e r t i a l F r a m e . S o l v e r I t e r a t i o n s = C u r r e n t ;

GMAT F a r E a r t h I n e r t i a l F r a m e . Uppe rLe f t = [ 0 .6513888888888889 0.4988888888888889 ] ;

GMAT F a r E a r t h I n e r t i a l F r a m e . S i z e = [ 0 .3423611111111111 0 . 4 7 ] ;

GMAT F a r E a r t h I n e r t i a l F r a m e . R e l a t i v e Z O r d e r = 1 0 ;

GMAT F a r E a r t h I n e r t i a l F r a m e . Maximized = f a l s e ;

GMAT F a r E a r t h I n e r t i a l F r a m e . Add = {Artemis , Ea r th , Luna} ;

GMAT F a r E a r t h I n e r t i a l F r a m e . C o o r d i n a t e S y s t e m = EarthMJ2000Eq ;

GMAT F a r E a r t h I n e r t i a l F r a m e . DrawObject = [ t r u e t r u e t r u e ] ;

GMAT F a r E a r t h I n e r t i a l F r a m e . D a t a C o l l e c t F r e q u e n c y = 1 ;

GMAT F a r E a r t h I n e r t i a l F r a m e . U p d a t e P l o t F r e q u e n c y = 5 0 ;

GMAT F a r E a r t h I n e r t i a l F r a m e . NumPointsToRedraw = 0 ;

GMAT F a r E a r t h I n e r t i a l F r a m e . ShowPlot = f a l s e ;

GMAT F a r E a r t h I n e r t i a l F r a m e . M a x P l o t P o i n t s = 20000 ;

GMAT F a r E a r t h I n e r t i a l F r a m e . ShowLabels = t r u e ;

GMAT F a r E a r t h I n e r t i a l F r a m e . V i e w P o i n t R e f e r e n c e = E a r t h ;

GMAT F a r E a r t h I n e r t i a l F r a m e . V iewPo in t Vec to r = [ 0 0 30000 ] ;

GMAT F a r E a r t h I n e r t i a l F r a m e . V i e w D i r e c t i o n = E a r t h ;

GMAT F a r E a r t h I n e r t i a l F r a m e . V i e w S c a l e F a c t o r = 4 5 ;

GMAT F a r E a r t h I n e r t i a l F r a m e . ViewUpCoordinateSystem = EarthMJ2000Eq ;

GMAT F a r E a r t h I n e r t i a l F r a m e . ViewUpAxis = Z ;

GMAT F a r E a r t h I n e r t i a l F r a m e . E c l i p t i c P l a n e = Off ;

GMAT F a r E a r t h I n e r t i a l F r a m e . XYPlane = Off ;

GMAT F a r E a r t h I n e r t i a l F r a m e . WireFrame = Off ;

GMAT F a r E a r t h I n e r t i a l F r a m e . Axes = On ;

GMAT F a r E a r t h I n e r t i a l F r a m e . Gr id = Off ;

GMAT F a r E a r t h I n e r t i a l F r a m e . SunLine = Off ;

GMAT F a r E a r t h I n e r t i a l F r a m e . U s e I n i t i a l V i e w = On ;

GMAT F a r E a r t h I n e r t i a l F r a m e . S t a r C o u n t = 7000 ;

GMAT F a r E a r t h I n e r t i a l F r a m e . E n a b l e S t a r s = On ;

GMAT F a r E a r t h I n e r t i a l F r a m e . E n a b l e C o n s t e l l a t i o n s = On ;

C r e a t e R e p o r t F i l e F l y b y R e p o r t ;

GMAT F l y b y R e p o r t . S o l v e r I t e r a t i o n s = A l l ;

GMAT F l y b y R e p o r t . Uppe rLe f t = [ 0 0 ] ;

GMAT F l y b y R e p o r t . S i z e = [ 0 0 ] ;
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GMAT F l y b y R e p o r t . R e l a t i v e Z O r d e r = 0 ;

GMAT F l y b y R e p o r t . Maximized = f a l s e ;

GMAT F l y b y R e p o r t . F i l ename = ’ F l y b y R e p o r t . t x t ’ ;

GMAT F l y b y R e p o r t . P r e c i s i o n = 6 ;

GMAT F l y b y R e p o r t . W r i t e H e a d e r s = t r u e ;

GMAT F l y b y R e p o r t . L e f t J u s t i f y = On ;

GMAT F l y b y R e p o r t . Z e r o F i l l = Off ;

GMAT F l y b y R e p o r t . F ixedWidth = t r u e ;

GMAT F l y b y R e p o r t . D e l i m i t e r = ’ ’ ;

GMAT F l y b y R e p o r t . ColumnWidth = 1 0 ;

GMAT F l y b y R e p o r t . W r i t e R e p o r t = t r u e ;

C r e a t e Orbi tView C l o s e E a r t h I n e r t i a l F r a m e ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . S o l v e r I t e r a t i o n s = C u r r e n t ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . Uppe rLe f t = [ 0 .2527777777777778 0.04111111111111111 ] ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . S i z e = [ 0 .3958333333333333 0.4533333333333333 ] ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . R e l a t i v e Z O r d e r = 2 3 ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . Maximized = f a l s e ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . Add = {Artemis , Ea r th , Luna} ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . C o o r d i n a t e S y s t e m = EarthICRF ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . DrawObject = [ t r u e t r u e t r u e ] ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . D a t a C o l l e c t F r e q u e n c y = 1 ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . U p d a t e P l o t F r e q u e n c y = 5 0 ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . NumPointsToRedraw = 0 ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . ShowPlot = f a l s e ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . M a x P l o t P o i n t s = 20000 ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . ShowLabels = t r u e ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . V i e w P o i n t R e f e r e n c e = E a r t h ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . V iewPo in tVec to r = [ 0 0 40000 ] ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . V i e w D i r e c t i o n = E a r t h ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . V i e w S c a l e F a c t o r = 1 ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . ViewUpCoordinateSystem = EarthMJ2000Eq ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . ViewUpAxis = Z ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . E c l i p t i c P l a n e = Off ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . XYPlane = Off ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . WireFrame = Off ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . Axes = Off ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . Gr id = Off ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . SunLine = Off ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . U s e I n i t i a l V i e w = On ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . S t a r C o u n t = 7000 ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . E n a b l e S t a r s = On ;

GMAT C l o s e E a r t h I n e r t i a l F r a m e . E n a b l e C o n s t e l l a t i o n s = On ;

C r e a t e E p h e m e r i s F i l e Ephemer i s ;

GMAT Ephemer i s . Uppe rLe f t = [ 0 0 ] ;

GMAT Ephemer i s . S i z e = [ 0 0 ] ;

GMAT Ephemer i s . R e l a t i v e Z O r d e r = 0 ;

GMAT Ephemer i s . Maximized = f a l s e ;

GMAT Ephemer i s . S p a c e c r a f t = Ar t emis ;

GMAT Ephemer i s . F i l ename = ’ F lybyEphemer i s . t x t ’ ;

GMAT Ephemer i s . F i l e F o r m a t = STK TimePosVel ;

GMAT Ephemer i s . EpochFormat = UTCModJulian ;

GMAT Ephemer i s . I n i t i a l E p o c h = I n i t i a l S p a c e c r a f t E p o c h ;

GMAT Ephemer i s . F i n a l E p o c h = F i n a l S p a c e c r a f t E p o c h ;

GMAT Ephemer i s . S t e p S i z e = I n t e g r a t o r S t e p s ;
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GMAT Ephemer i s . I n t e r p o l a t o r = Lagrange ;

GMAT Ephemer i s . I n t e r p o l a t i o n O r d e r = 7 ;

GMAT Ephemer i s . C o o r d i n a t e S y s t e m = EarthMJ2000Eq ;

GMAT Ephemer i s . Ou tpu tFormat = L i t t l e E n d i a n ;

GMAT Ephemer i s . Wr i t eEphemer i s = f a l s e ;

GMAT Ephemer i s . D i s t a n c e U n i t = K i l o m e t e r s ;

GMAT Ephemer i s . I n c l u d e E v e n t B o u n d a r i e s = t r u e ;

C r e a t e R e p o r t F i l e F l y b y S t r i n g ;

GMAT F l y b y S t r i n g . S o l v e r I t e r a t i o n s = C u r r e n t ;

GMAT F l y b y S t r i n g . Uppe rLe f t = [ 0 0 ] ;

GMAT F l y b y S t r i n g . S i z e = [ 0 0 ] ;

GMAT F l y b y S t r i n g . R e l a t i v e Z O r d e r = 0 ;

GMAT F l y b y S t r i n g . Maximized = f a l s e ;

GMAT F l y b y S t r i n g . F i l ename = ’ F l y b y S t r i n g . t x t ’ ;

GMAT F l y b y S t r i n g . P r e c i s i o n = 1 6 ;

GMAT F l y b y S t r i n g . W r i t e H e a d e r s = f a l s e ;

GMAT F l y b y S t r i n g . L e f t J u s t i f y = On ;

GMAT F l y b y S t r i n g . Z e r o F i l l = Off ;

GMAT F l y b y S t r i n g . F ixedWidth = f a l s e ;

GMAT F l y b y S t r i n g . D e l i m i t e r = ’ ’ ;

GMAT F l y b y S t r i n g . ColumnWidth = 2 3 ;

GMAT F l y b y S t r i n g . W r i t e R e p o r t = t r u e ;

C r e a t e Orbi tView LunaFixedFrame ;

GMAT LunaFixedFrame . S o l v e r I t e r a t i o n s = C u r r e n t ;

GMAT LunaFixedFrame . Uppe rLe f t = [ 0 . 0 5 0.1522222222222222 ] ;

GMAT LunaFixedFrame . S i z e = [ 0 .5451388888888888 0.6144444444444445 ] ;

GMAT LunaFixedFrame . R e l a t i v e Z O r d e r = 383 ;

GMAT LunaFixedFrame . Maximized = f a l s e ;

GMAT LunaFixedFrame . Add = {Artemis , Ea r th , Luna} ;

GMAT LunaFixedFrame . C o o r d i n a t e S y s t e m = LunaFixed ;

GMAT LunaFixedFrame . DrawObject = [ t r u e t r u e t r u e ] ;

GMAT LunaFixedFrame . D a t a C o l l e c t F r e q u e n c y = 1 ;

GMAT LunaFixedFrame . U p d a t e P l o t F r e q u e n c y = 5 0 ;

GMAT LunaFixedFrame . NumPointsToRedraw = 0 ;

GMAT LunaFixedFrame . ShowPlot = f a l s e ;

GMAT LunaFixedFrame . M a x P l o t P o i n t s = 20000 ;

GMAT LunaFixedFrame . ShowLabels = t r u e ;

GMAT LunaFixedFrame . V i e w P o i n t R e f e r e n c e = Luna ;

GMAT LunaFixedFrame . V iewPo in t Vec to r = [ 10000 10000 10000 ] ;

GMAT LunaFixedFrame . V i e w D i r e c t i o n = Luna ;

GMAT LunaFixedFrame . V i e w S c a l e F a c t o r = 1 ;

GMAT LunaFixedFrame . ViewUpCoordinateSystem = LunaFixed ;

GMAT LunaFixedFrame . ViewUpAxis = Z ;

GMAT LunaFixedFrame . E c l i p t i c P l a n e = Off ;

GMAT LunaFixedFrame . XYPlane = On ;

GMAT LunaFixedFrame . WireFrame = Off ;

GMAT LunaFixedFrame . Axes = On ;

GMAT LunaFixedFrame . Gr id = Off ;

GMAT LunaFixedFrame . SunLine = Off ;

GMAT LunaFixedFrame . U s e I n i t i a l V i e w = On ;

GMAT LunaFixedFrame . S t a r C o u n t = 7000 ;

GMAT LunaFixedFrame . E n a b l e S t a r s = On ;

GMAT LunaFixedFrame . E n a b l e C o n s t e l l a t i o n s = On ;
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C r e a t e GroundTrackP lo t LunaGroundTrackPlo t ;

GMAT LunaGroundTrackPlo t . S o l v e r I t e r a t i o n s = C u r r e n t ;

GMAT LunaGroundTrackPlo t . Uppe rLe f t = [ 0 .4861111111111111 0.3711111111111111 ] ;

GMAT LunaGroundTrackPlo t . S i z e = [ 0 .4083333333333333 0.4611111111111111 ] ;

GMAT LunaGroundTrackPlo t . R e l a t i v e Z O r d e r = 375 ;

GMAT LunaGroundTrackPlo t . Maximized = f a l s e ;

GMAT LunaGroundTrackPlo t . Add = {Artemis , E a r t h } ;

GMAT LunaGroundTrackPlo t . D a t a C o l l e c t F r e q u e n c y = 1 ;

GMAT LunaGroundTrackPlo t . U p d a t e P l o t F r e q u e n c y = 5 0 ;

GMAT LunaGroundTrackPlo t . NumPointsToRedraw = 0 ;

GMAT LunaGroundTrackPlo t . ShowPlot = f a l s e ;

GMAT LunaGroundTrackPlo t . M a x P l o t P o i n t s = 20000 ;

GMAT LunaGroundTrackPlo t . Cen t r a lBody = Luna ;

GMAT LunaGroundTrackPlo t . TextureMap = ’ Moon HermesCe le s t i aMothe r lode . jpg ’ ;

%

% Arrays , V a r i a b l e s , S t r i n g s

%

C r e a t e V a r i a b l e RAAN AOP BurnCoarse T h r u s t I s p g c TLIdV mdry mdot ;

C r e a t e V a r i a b l e mprop mwet m r a t i o t t l i m i t Ful lTankMass TLIEmptyTankMass TLIPropConsMass Miss ionMass mpayload ;

C r e a t e V a r i a b l e msubsys mengine ArrRA TA t i n i t i a l Depar tEpoch Arr iveEpoch F l i g h t T i m e I Ad j t ;

C r e a t e V a r i a b l e LOIdV MissiondV BurnLOI LOIEmptyTankMass LOIPropConsMass tLOI AdjtLOI Tota lPropConsMass

I n c l i n a t i o n B u r n T o t a l ;

C r e a t e V a r i a b l e I n i t i a l T A Burn TLICoarsePropConsMass BurnINC INCTarget abs INCTarge t B v e c t o r IABdV BurnIAB

IABEmptyTankMass ;

C r e a t e V a r i a b l e IABPropConsMass Period100km TransLunarTime P e r i l u n e E p o c h L u n a r S i d e r e a l ;

%GMAT RAANTargetArray ( 1 , 2 ) = 3 0 ;

%GMAT RAANTargetArray ( 1 , 3 ) = 6 0 ;

%GMAT RAANTargetArray ( 1 , 4 ) = 9 0 ;

%GMAT RAANTargetArray ( 1 , 5 ) = 120 ;

%GMAT RAANTargetArray ( 1 , 6 ) = 150 ;

%GMAT RAANTargetArray ( 1 , 7 ) = 180 ;

%GMAT RAANTargetArray ( 1 , 8 ) = 210 ;

%GMAT RAANTargetArray ( 1 , 9 ) = 240 ;

%GMAT RAANTargetArray ( 1 , 10) = 270 ;

%GMAT RAANTargetArray ( 1 , 11) = 300 ;

%GMAT RAANTargetArray ( 1 , 12) = 330 ;

GMAT RAAN = 0 ;

GMAT AOP = 0 ;

GMAT BurnCoarse = 0 ;

GMAT T h r u s t = 635 ;

GMAT I s p = 317 ;

GMAT g = 9 . 8 1 ;

GMAT c = 0 ;

GMAT TLIdV = 0 ;

GMAT mdry = 0 ;

GMAT mdot = 0 ;

GMAT mprop = 0 ;

GMAT mwet = 0 ;

GMAT m r a t i o = 0 ;

GMAT t = 0 ;

GMAT t l i m i t = 2520 ;

GMAT Ful lTankMass = 0 ;

GMAT TLIEmptyTankMass = 0 ;

GMAT TLIPropConsMass = 0 ;

GMAT MissionMass = 0 ;
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GMAT mpayload = PAYLOAD;

GMAT msubsys = 3 7 ;

GMAT mengine = 4 . 5 ;

GMAT ArrRA = 0 ;

GMAT TA = 0 ;

GMAT t i n i t i a l = 0 ;

GMAT Depar tEpoch = EPOCH;

GMAT Arr iveEpoch = 0 ;

GMAT F l i g h t T i m e = 0 ;

GMAT Adj t = 0 ;

GMAT LOIdV = 0 ;

GMAT MissiondV = 0 ;

GMAT BurnLOI = 0 ;

GMAT LOIEmptyTankMass = 0 ;

GMAT LOIPropConsMass = 0 ;

GMAT tLOI = 0 ;

GMAT AdjtLOI = 0 ;

GMAT Tota lPropConsMass = 0 ;

GMAT I n c l i n a t i o n = INCLINATION ;

GMAT B u r n T o t a l = 0 ;

GMAT Burn = 0 ;

GMAT TLICoarsePropConsMass = 0 ;

GMAT BurnINC = 0 ;

GMAT INCTarget = TARGETINCLINATION ;

GMAT absINCTarge t = 0 ;

GMAT B v e c t o r = 0 ;

GMAT IABdV = 0 ;

GMAT BurnIAB = 0 ;

GMAT IABEmptyTankMass = 0 ;

GMAT IABPropConsMass = 0 ;

GMAT Period100km = 14140;

GMAT TransLunarTime = 0 ;

GMAT P e r i l u n e E p o c h = 0 ;

GMAT L u n a r S i d e r e a l = 6 5 5 . 7 2 8 ;

%

% Miss ion Sequence

%

Beg inMiss ionSequence ;

GMAT ’ Find mdry ’ mdry = msubsys+mengine+mpayload ;

GMAT ’ S e t Dry Mass ’ Ar t emis . DryMass = mdry ;

GMAT ’ S e t Epoch ’ Ar t emis . Epoch = Depar tEpoch ;

GMAT ’ S e t I n c l i n a t i o n ’ Ar t emis . INC = I n c l i n a t i o n ;

GMAT ’ S t o r e P l a c e h o l d e r Fine ’ A r t e m i s F i n e = Ar temis ;

GMAT ’ S t o r e P l a c e h o l d e r F i n i t e Coarse ’ A r t e m i s F i n i t e C o a r s e = Ar temis ;

GMAT ’ S t o r e P l a c e h o l d e r F i n i t e ’ A r t e m i s F i n i t e B u r n = Ar temis ;

Toggle ’ Turn Off S e l e c t e d P l o t s ’ Ephemer i s LunaFixedFrame LunaGroundTrackPlo t Off ;

T a r g e t ’ Coarse Lunar Ta rge t ’ DC1 {SolveMode = Solve , ExitMode = Disca rdAndCont inue , ShowProgressWindow = f a l s e

} ;

Vary ’ Vary RAAN’ DC1( Ar t emis .RAAN = 0 , {P e r t u r b a t i o n = . 0 0 0 0 1 , Lower = 1 e300 , Upper = 1 e300 , MaxStep = 10 ,

A d d i t i v e S c a l e F a c t o r = 0 . 0 , M u l t i p l i c a t i v e S c a l e F a c t o r = 1 . 0} ) ;
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Vary ’ Vary AOP’ DC1( Ar t emis .AOP = 0 , {P e r t u r b a t i o n = . 0 0 0 0 1 , Lower = 1 e300 , Upper = 1 e300 , MaxStep = 5 ,

A d d i t i v e S c a l e F a c t o r = 0 . 0 , M u l t i p l i c a t i v e S c a l e F a c t o r = 1 . 0} ) ;

Maneuver ’ Apply TLI ’ TLI ( Ar t emis ) ;

GMAT ’ Save RAAN’ RAAN = Ar temis .RAAN;

GMAT ’ Save AOP’ AOP = Ar temis .AOP;

P r o p a g a t e ’ Prop To Moon ’ N e a r E a r t h P r o p ( Ar t emis ) {Ar temis . E a r t h . Apoaps is , Ar t emis . E lapsedDays = 4 . 5} ;

Achieve ’RA = 0 ’ DC1( Ar t emis . EarthMoonRot .RA = 0 , {T o l e r a n c e = 1}) ;

Achieve ’DEC = 0 ’ DC1( Ar t emis . EarthMoonRot .DEC = 0 , {T o l e r a n c e = 1}) ;

EndTarge t ; % For t a r g e t e r DC1

GMAT ’ I n i t i l a z e SC Fine ’ Ar t emis = A r t e m i s F i n e ;

T a r g e t ’ F ine Lunar Ta rge t ’ DC1 {SolveMode = Solve , ExitMode = DiscardAndCont inue , ShowProgressWindow = f a l s e } ;

Vary ’ Vary RAAN’ DC1( Ar t emis .RAAN = RAAN, {P e r t u r b a t i o n = . 0 0 0 0 1 , Lower = 9 . 9 9 9 9 9 9 e300 , Upper = 9 .999999

e300 , MaxStep = 10 , A d d i t i v e S c a l e F a c t o r = 0 . 0 , M u l t i p l i c a t i v e S c a l e F a c t o r = 1 . 0} ) ;

Vary ’ Vary AOP’ DC1( Ar t emis . TA = AOP, {P e r t u r b a t i o n = 0 . 0 0 0 0 1 , Lower = 1 e300 , Upper = 1 e300 , MaxStep = 10 ,

A d d i t i v e S c a l e F a c t o r = 0 . 0 , M u l t i p l i c a t i v e S c a l e F a c t o r = 1 . 0} ) ;

Vary ’ Vary TLI ’ DC1( TLI . Element1 = TLI . Element1 , {P e r t u r b a t i o n = . 0 0 0 0 0 0 1 , Lower = 9 . 9 9 9 9 9 9 e300 , Upper =

9 .999999 e300 , MaxStep = . 0 1 , A d d i t i v e S c a l e F a c t o r = 0 . 0 , M u l t i p l i c a t i v e S c a l e F a c t o r = 1 . 0} ) ;

Maneuver ’ Apply TLI ’ TLI ( Ar t emis ) ;

GMAT ’ Save TLIdV ’ TLIdV = TLI . Element1 ;

GMAT ’ Save RAAN’ RAAN = Ar temis .RAAN;

GMAT ’ Save AOP’ TA = Ar temis . TA;

GMAT ’ Save TA’ TA = Ar temis . TA;

P r o p a g a t e N e a r E a r t h P r o p ( Ar t emis ) {Ar temis . Luna . P e r i a p s i s , Ar t emis . E lapsedDays = 6} ;

Achieve ’ Achieve Bvec torAngle ’ DC1( Ar t emis . L u n a I n e r t i a l . BVectorAngle = INCTarget , {T o l e r a n c e = 1}) ;

Achieve ’ Achieve A l t i t u d e ’ DC1( Ar t emis . Luna . A l t i t u d e = 100 , {T o l e r a n c e = 1}) ;

EndTarge t ; % For t a r g e t e r DC1

GMAT ’ S e t ArrRA ’ ArrRA = Ar temis .RA;

%T a r g e t ’ O r b i t I n s e r t i o n Impulse ’ DC1 {SolveMode = Solve , ExitMode = DiscardAndCont inue , ShowProgressWindow =

f a l s e } ;

% Vary ’ Vary LOI ’ DC1( LOI . Element1 = LOI . Element1 , {P e r t u r b a t i o n = 0 . 0 0 0 1 , Lower = 1 e300 , Upper = 1 e300 ,

MaxStep = 0 . 0 1 , A d d i t i v e S c a l e F a c t o r = 0 . 0 , M u l t i p l i c a t i v e S c a l e F a c t o r = 1 . 0} ) ;

% Maneuver ’ Apply LOI ’ LOI ( Ar t emis ) ;

% GMAT ’ Save LOIdV ’ LOIdV = LOI . Element1 ;

% Achieve ’ Achieve ECC’ DC1( Ar t emis . Luna . ECC = 0 , {T o l e r a n c e = 0 .0 1} ) ;

%EndTarge t ; % For t a r g e t e r DC1

%P r o p a g a t e ’ Prop Z = 0 ’ NearMoonProp ( Ar t emis ) {Ar temis . LunaFixed . Z = 0} ;

GMAT ’ Find a b s L a t T a r g e t ’ abs INCTarge t = abs ( INCTarget ) ;

%T a r g e t ’ I n c l i n a t i o n Adjus tmen t Impulse ’ DC1 {SolveMode = Solve , ExitMode = DiscardAndCont inue ,

ShowProgressWindow = f a l s e } ;

% Vary ’ Vary IAB ’ DC1( IAB . Element2 = 0 . 5 , {P e r t u r b a t i o n = 0 . 0 0 0 1 , Lower = 1 e300 , Upper = 1 e300 , MaxStep =

0 . 1 , A d d i t i v e S c a l e F a c t o r = 0 . 0 , M u l t i p l i c a t i v e S c a l e F a c t o r = 1 . 0} ) ;

212



% Maneuver ’ Apply IAB ’ IAB ( Ar t emis ) ;

% GMAT ’ S e t IABdV ’ IABdV = IAB . Element2 ;

% Achieve ’ Achieve INC ’ DC1( Ar t emis . LunaFixed . INC = absINCTarge t , {T o l e r a n c e = 0 .0 1} ) ;

%EndTarge t ; % For t a r g e t e r DC1

%GMAT ’ Find MissiondV ’ MissiondV = ( abs ( TLI . Element1 ) + abs ( LOI . Element1 ) + abs ( IAB . Element2 ) ) ∗1000;

GMAT ’ Find MissiondV ’ MissiondV = abs ( TLIdV ) ∗1000;

GMAT ’ I n i t i a l i z e SC F i n i t e ’ Ar t emis = A r t e m i s F i n i t e C o a r s e ;

GMAT ’ S e t RAAN’ Ar temis .RAAN = RAAN;

GMAT ’ S e t TA’ Ar temis . TA = AOP;

GMAT ’ Find c ’ c = g∗ I s p ;

GMAT ’ Find mdry ’ mdry = Ar temis . DryMass ;

GMAT ’ Find mdot ’ mdot = T h r u s t / c ;

GMAT ’ Find mra t i o ’ m r a t i o = exp ( MissiondV / c ) ;

GMAT ’ Find mwet ’ mwet = m r a t i o∗mdry ;

GMAT ’ Find mprop ’ mprop = mwet mdry ;

%GMAT ’ Find t ’ t = ( TLIdV∗1000/ MissiondV )∗mprop / mdot ;

GMAT ’ Find t ’ t = mprop / mdot ;

GMAT ’ F i l l Hydraz ine t a n k wi th 3% margin ’ Ar t emis . Hydraz ineTank . FuelMass = ( 0 . 5 4 1 )∗mprop + 0 . 0 3∗ ( 0 . 5 4 1 )∗mprop ;

GMAT ’ F i l l MON t a n k wi th 3% margin ’ Ar t emis . MONTank . FuelMass = ( 0 . 4 5 9 )∗mprop + 0 . 0 3∗ ( 0 . 4 5 9 )∗mprop ;

GMAT ’ S e t FuelTankMass ’ Ful lTankMass = Ar temis . Hydraz ineTank . FuelMass + Ar temis . MONTank . FuelMass ;

Re po r t F l y b y R e p o r t Depar tEpoch ;

Re po r t F l y b y R e p o r t mpayload ;

Re po r t F l y b y R e p o r t I n c l i n a t i o n ;

Re po r t F l y b y R e p o r t INCTarget ;

Re po r t F l y b y R e p o r t TLI . Element1 TLI . Element2 TLI . Element3 ;

%Re po r t F l y b y R e p o r t LOI . Element1 LOI . Element2 LOI . Element3 ;

%Re po r t F l y b y R e p o r t IAB . Element1 IAB . Element2 IAB . Element3 ;

Re po r t F l y b y R e p o r t MissiondV ;

Re po r t F l y b y R e p o r t mdry m r a t i o mwet mprop ;

Re po r t F l y b y R e p o r t Ful lTankMass ;

T a r g e t ’ F i n i t e TLI Coarse ’ DC1 {SolveMode = Solve , ExitMode = DiscardAndCont inue , ShowProgressWindow = f a l s e } ;

Vary ’ Vary Burn ’ DC1( BurnCoarse = t , {P e r t u r b a t i o n = 0 . 0 0 0 1 , Lower = 0 . 0 , Upper = 1 e300 , MaxStep = 10 ,

A d d i t i v e S c a l e F a c t o r = 0 . 0 , M u l t i p l i c a t i v e S c a l e F a c t o r = 1 . 0} ) ;

Vary ’ Vary TA’ DC1( Ar t emis . TA = Ar temis . TA, {P e r t u r b a t i o n = 0 . 0 0 0 1 , Lower = 1 e300 , Upper = 1 e300 , MaxStep

= 5 , A d d i t i v e S c a l e F a c t o r = 0 . 0 , M u l t i p l i c a t i v e S c a l e F a c t o r = 1 . 0} ) ;

GMAT ’ Save TA’ TA = Ar temis . TA;

B e g i n F i n i t e B u r n ’ Begin TLI Coarse ’ F i n i t e T L I C o a r s e ( Ar t emis ) ;

P r o p a g a t e ’ Prop BurnCoarse ’ N e a r E a r t h P r o p ( Ar t emis ) {Ar temis . E l a p s e d S e c s = BurnCoarse , O r b i t C o l o r = [253 160

23 ]} ;

E n d F i n i t e B u r n ’ End TLI Coarse ’ F i n i t e T L I C o a r s e ( Ar t emis ) ;

P r o p a g a t e ’ Prop t o Apoaps is ’ N e a r E a r t h P r o p ( Ar t emis ) {Ar temis . E a r t h . Apoaps i s } ;

Achieve ’ Achieve RA’ DC1( Ar t emis . EarthMJ2000Eq .RA = ArrRA , {T o l e r a n c e = 0 . 1} ) ;

Achieve ’ Achieve RMAG’ DC1( Ar t emis . E a r t h .RMAG = 350000 , {T o l e r a n c e = 0 . 1} ) ;

EndTarge t ; % For t a r g e t e r DC1

GMAT ’ S e t Burn ’ Burn = BurnCoarse ;

GMAT ’ I n i t i a l i z e SC F i n i t e ’ Ar t emis = A r t e m i s F i n i t e B u r n ;

GMAT ’ S e t RAAN’ Ar temis .RAAN = RAAN;

GMAT ’ S e t AOP’ Ar temis .AOP = AOP;

GMAT ’ S e t TA’ Ar temis . TA = TA;
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GMAT ’ F i l l Hydraz ine Tank ’ Ar t emis . Hydraz ineTank . FuelMass = 0.541∗ Ful lTankMass ;

GMAT ’ F i l l MON Tank ’ Ar t emis . MONTank . FuelMass = 0.459∗ Ful lTankMass ;

Toggle LunaFixedFrame On ;

T a r g e t ’ F i n i t e TLI Fine ’ DC1 {SolveMode = Solve , ExitMode = DiscardAndCont inue , ShowProgressWindow = f a l s e } ;

Vary ’ Vary Burn ’ DC1( Burn = Burn , {P e r t u r b a t i o n = 0 . 0 0 0 1 , Lower = t , Upper = t l i m i t , MaxStep = 1 ,

A d d i t i v e S c a l e F a c t o r = 0 . 0 , M u l t i p l i c a t i v e S c a l e F a c t o r = 1 . 0} ) ;

Vary ’ Vary TA’ DC1( Ar t emis . TA = Ar temis . TA, {P e r t u r b a t i o n = 0 . 0 0 0 1 , Lower = 1 e300 , Upper = 1 e300 , MaxStep

= 1 , A d d i t i v e S c a l e F a c t o r = 0 . 0 , M u l t i p l i c a t i v e S c a l e F a c t o r = 1 . 0} ) ;

B e g i n F i n i t e B u r n ’ Begin TLI Fine ’ F i n i t e T L I ( Ar t emis ) ;

P r o p a g a t e ’ Prop Burn ’ N e a r E a r t h P r o p ( Ar t emis ) {Ar temis . E l a p s e d S e c s = Burn , O r b i t C o l o r = [251 0 15 ]} ;

E n d F i n i t e B u r n ’ End TLI Fine ’ F i n i t e T L I ( Ar t emis ) ;

P r o p a g a t e ’ Prop t o Moon ’ N e a r E a r t h P r o p ( Ar t emis ) {Ar temis . Luna . P e r i a p s i s , O r b i t C o l o r = [32 255 254]} ;

Achieve ’ Achieve RadPer ’ DC1( Ar t emis . Luna . RadPer = 1 8 3 7 . 4 , {T o l e r a n c e = 0 . 1} ) ;

Achieve ’ Achieve Bvec torAngle ’ DC1( Ar t emis . L u n a I n e r t i a l . BVectorAngle = INCTarget , {T o l e r a n c e = 0 . 1} ) ;

Achieve ’ Achieve RA’ DC1( Ar t emis . EarthMJ2000Eq .RA = ArrRA , {T o l e r a n c e = 1}) ;

EndTarge t ; % For t a r g e t e r DC1

GMAT ’ Save TLIEmptyTankMass ’ TLIEmptyTankMass = Ar temis . Hydraz ineTank . FuelMass + Ar temis . MONTank . FuelMass ;

GMAT ’ Find TLIPropConsMass ’ TLIPropConsMass = Ful lTankMass TLIEmptyTankMass ;

% GMAT ’ Find tLOI ’ tLOI = abs ( LOIdV∗1000/ MissiondV )∗mprop / mdot ;

Re po r t F l y b y R e p o r t Burn ;

Re po r t F l y b y R e p o r t TLIEmptyTankMass TLIPropConsMass ;

Re po r t F l y b y R e p o r t Ar t emis . LunaFixed . INC ;

Re po r t F l y b y R e p o r t Ar t emis . LunaFixed .RAAN;

Re po r t F l y b y R e p o r t Ar t emis . Luna .SMA;

Re po r t F l y b y R e p o r t Ar t emis . Luna . ECC;

Re po r t F l y b y R e p o r t Ar t emis . LunaFixed .AOP;

GMAT ’ Find Tota lPropConsMass ’ Tota lPropConsMass = TLIPropConsMass ;

GMAT ’ Find MissionMass ’ Miss ionMass = Tota lPropConsMass + mdry ;

GMAT ’ Find Arr iveEpoch ’ Ar r iveEpoch = Ar temis . UTCModJulian ;

GMAT ’ Find F l igh tT ime ’ F l i g h t T i m e = Arr iveEpoch Depar tEpoch ;

Re po r t F l y b y R e p o r t Tota lPropConsMass Miss ionMass ;

Re po r t F l y b y R e p o r t Ar r iveEpoch F l i g h t T i m e ;

Re po r t F l y b y S t r i n g Depar tEpoch mpayload I n c l i n a t i o n INCTarget TLI . Element1 TLI . Element2 TLI . Element3 MissiondV

mdry m r a t i o mwet mprop Ful lTankMass Burn TLIEmptyTankMass TLIPropConsMass Ar t emis . LunaFixed . INC Ar temis

. LunaFixed .RAAN Ar temis . Luna .SMA Ar temis . Luna . ECC Ar temis . LunaFixed .AOP Tota lPropConsMass Miss ionMass

Ar r iveEpoch F l i g h t T i m e ;

Stop ;

T a r g e t ’ F i n i t e LOI ’ DC1 {SolveMode = Solve , ExitMode = DiscardAndCont inue , ShowProgressWindow = f a l s e } ;

Vary ’ Vary BurnLOI ’ DC1( BurnLOI = AdjtLOI , {P e r t u r b a t i o n = 0 . 0 0 0 1 , Lower = 0 , Upper = t l i m i t , MaxStep = 2 ,

A d d i t i v e S c a l e F a c t o r = 0 . 0 , M u l t i p l i c a t i v e S c a l e F a c t o r = 1 . 0} ) ;

B e g i n F i n i t e B u r n ’ Begin F i n i t e LOI ’ F i n i t e L O I ( Ar t emis ) ;

P r o p a g a t e ’ Prop BurnLOI ’ NearMoonProp ( Ar t emis ) {Ar temis . E l a p s e d S e c s = BurnLOI , O r b i t C o l o r = [233 29 254]} ;

E n d F i n i t e B u r n ’ End F i n i t e LOI ’ F i n i t e L O I ( Ar t emis ) ;

Achieve ’ Achieve ECC’ DC1( Ar t emis . Luna . ECC = 0 , {T o l e r a n c e = 0 .0 5} ) ;

EndTarge t ; % For t a r g e t e r DC1
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GMAT ’ Find LOIEmptyTankMass ’ LOIEmptyTankMass = Ar temis . Hydraz ineTank . FuelMass + Ar temis . MONTank . FuelMass ;

GMAT ’ Find LOIPropConsMass ’ LOIPropConsMass = TLIEmptyTankMass LOIEmptyTankMass ;

P r o p a g a t e ’ Prop t o Z = 0 ’ NearMoonProp ( Ar t emis ) {Ar temis . LunaFixed . Z = 0} ;

I f ’ I f INC + / ’ Ar t emis . L u n a I n e r t i a l . INC > abs INCTarge t

GMAT ’ S e t N Thus t D i r e c t i o n 1 ’ Ar t emis . LEROSThusterIAB . T h r u s t D i r e c t i o n 2 = 1 ;

EndI f ;

T a r g e t ’ F i n i t e IAB ’ DC1 {SolveMode = Solve , ExitMode = DiscardAndCont inue , ShowProgressWindow = f a l s e } ;

Vary ’ Vary BurnIAB ’ DC1( BurnIAB = 0 , {P e r t u r b a t i o n = 0 . 0 0 0 1 , Lower = 0 . 0 , Upper = 1 e300 , MaxStep = 1 ,

A d d i t i v e S c a l e F a c t o r = 0 . 0 , M u l t i p l i c a t i v e S c a l e F a c t o r = 1 . 0} ) ;

B e g i n F i n i t e B u r n ’ Begin F i n i t e IAB ’ F i n i t e I A B ( Ar temis ) ;

P r o p a g a t e ’ Prop BurnIAB ’ NearMoonProp ( Ar t emis ) {Ar temis . E l a p s e d S e c s = BurnIAB , O r b i t C o l o r = [253 183 30 ]} ;

E n d F i n i t e B u r n ’ End F i n i t e IAB ’ F i n i t e I A B ( Ar t emis ) ;

Achieve ’ Achieve INC ’ DC1( Ar t emis . LunaFixed . INC = absINCTarge t , {T o l e r a n c e = 1}) ;

EndTarge t ; % For t a r g e t e r DC1

GMAT ’ Find IABEmptyTankMass ’ IABEmptyTankMass = Ar temis . Hydraz ineTank . FuelMass + Ar temis . MONTank . FuelMass ;

GMAT ’ Find IABPropConsMass ’ IABPropConsMass = LOIEmptyTankMass IABEmptyTankMass ;

GMAT ’ Find Tota lPropConsMass ’ Tota lPropConsMass = TLIPropConsMass + LOIPropConsMass + IABPropConsMass ;

GMAT ’ Find MissionMass ’ Miss ionMass = mdry + Tota lPropConsMass ;

GMAT ’ S e t P e r i l u n e E p o c h ’ P e r i l u n e E p o c h = Ar temis . UTCModJulian ;

GMAT ’ Find Trans luna rT ime ’ TransLunarTime = P e r i l u n e E p o c h Depar tEpoch ;

GMAT ’ Find BurnTota l ’ B u r n T o t a l = Burn + BurnLOI + BurnIAB ;

For ’ For I ’ I = 1 : 1 : 1 2 ;

% I f ’ I f RAANTarget < RAAN’ RAANTargetArray ( I ) < Ar temis . LunaFixed .RAAN

% GMAT ’ Find Coas t Time ’ C o a s t A r r a y ( I ) = ( Ar t emis . LunaFixed .RAAN RAANTargetArray ( I ) ) /360∗ L u n a r S i d e r e a l

/ 2 4 ;

% E l s e

% GMAT ’ Find Coas t Time ’ C o a s t A r r a y ( I ) = (360 RAANTargetArray ( I ) + Ar temis . LunaFixed .RAAN) /360∗

L u n a r S i d e r e a l / 2 4 ;

% EndI f ;

% GMAT ’ Find F l i g h t Time ’ F l i g h t T i m e A r r a y ( I ) = TransLunarTime + C o a s t A r r a y ( I ) ;

% GMAT ’ Find A r r i v e Epoch ’ Ar r iveEpochAr ray ( I ) = Depar tEpoch + F l i g h t T i m e A r r a y ( I ) ;

EndFor ;

Re po r t F l y b y R e p o r t BurnLOI ;

Re po r t F l y b y R e p o r t LOIEmptyTankMass LOIPropConsMass ;

Re po r t F l y b y R e p o r t BurnIAB ;

Re po r t F l y b y R e p o r t IABEmptyTankMass IABPropConsMass ;

Re po r t F l y b y R e p o r t B u r n T o t a l ;

Re po r t F l y b y R e p o r t Ar t emis . LunaFixed . INC ;

Re po r t F l y b y R e p o r t Ar t emis . LunaFixed .RAAN;

Re po r t F l y b y R e p o r t Ar t emis . Luna .SMA;

Re po r t F l y b y R e p o r t Ar t emis . Luna . ECC;

Re po r t F l y b y R e p o r t Ar t emis . LunaFixed .AOP;

Re po r t F l y b y R e p o r t Tota lPropConsMass Miss ionMass ;

Re po r t F l y b y R e p o r t P e r i l u n e E p o c h TransLunarTime ;

%Re po r t O r b i t R e p o r t C o a s t A r r a y ;

%Re po r t O r b i t R e p o r t F l i g h t T i m e A r r a y ;

%Re po r t O r b i t R e p o r t Ar r iveEpochAr ray ;

%Re po r t O r b i t S t r i n g Depar tEpoch mpayload I n c l i n a t i o n INCTarget TLI . Element1 TLI . Element2 TLI . Element3 LOI .

Element1 LOI . Element2 LOI . Element3 IAB . Element1 IAB . Element2 IAB . Element3 MissiondV mdry m r a t i o mwet

mprop Ful lTankMass Burn TLIEmptyTankMass TLIPropConsMass BurnLOI LOIEmptyTankMass LOIPropConsMass

BurnIAB IABEmptyTankMass IABPropConsMass B u r n T o t a l Ar t emis . LunaFixed . INC Ar temis . LunaFixed .RAAN Ar temis .

Luna .SMA Ar temis . Luna . ECC Ar temis . LunaFixed .AOP Tota lPropConsMass Miss ionMass P e r i l u n e E p o c h

TransLunarTime C o a s t A r r a y ( 1 , 1 ) C o a s t A r r a y ( 1 , 2 ) C o a s t A r r a y ( 1 , 3 ) C o a s t A r r a y ( 1 , 4 ) C o a s t A r r a y ( 1 , 5 )

C o a s t A r r a y ( 1 , 6 ) C o a s t A r r a y ( 1 , 7 ) C o a s t A r r a y ( 1 , 8 ) C o a s t A r r a y ( 1 , 9 ) C o a s t A r r a y ( 1 , 1 0 ) C o a s t A r r a y ( 1 , 1 1 )
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C o a s t A r r a y ( 1 , 1 2 ) F l i g h t T i m e A r r a y ( 1 , 1 ) F l i g h t T i m e A r r a y ( 1 , 2 ) F l i g h t T i m e A r r a y ( 1 , 3 ) F l i g h t T i m e A r r a y ( 1 , 4 )

F l i g h t T i m e A r r a y ( 1 , 5 ) F l i g h t T i m e A r r a y ( 1 , 6 ) F l i g h t T i m e A r r a y ( 1 , 7 ) F l i g h t T i m e A r r a y ( 1 , 8 ) F l i g h t T i m e A r r a y ( 1 , 9 )

F l i g h t T i m e A r r a y ( 1 , 1 0 ) F l i g h t T i m e A r r a y ( 1 , 1 1 ) F l i g h t T i m e A r r a y ( 1 , 1 2 ) Ar r iveEpochAr ray ( 1 , 1 )

Ar r iveEpochAr ray ( 1 , 2 ) Ar r iveEpochAr ray ( 1 , 3 ) Ar r iveEpochAr ray ( 1 , 4 ) Ar r iveEpochAr ray ( 1 , 5 ) Ar r iveEpochAr ray

( 1 , 6 ) Ar r iveEpochAr ray ( 1 , 7 ) Ar r iveEpochAr ray ( 1 , 8 ) Ar r iveEpochAr ray ( 1 , 9 ) Ar r iveEpochAr ray ( 1 , 1 0 )

Ar r iveEpochAr ray ( 1 , 1 1 ) Ar r iveEpochAr ray ( 1 , 1 2 ) ;
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