
A SCALABLE HARDWARE-IN-THE-LOOP SIMULATION FOR
SATELLITE CONSTELLATIONS AND OTHER MULTI-AGENT

NETWORKS

A Thesis
Presented to

The Academic Faculty

By

Christopher F. DeGraw

In Partial Fulfillment
of the Requirements for the Degree

Master of Science in the
School of Aerospace Engineering

Georgia Institute of Technology

May 2018

Copyright c© Christopher F. DeGraw 2018

A SCALABLE HARDWARE-IN-THE-LOOP SIMULATION FOR
SATELLITE CONSTELLATIONS AND OTHER MULTI-AGENT

NETWORKS

Approved by:

Dr. Marcus J. Holzinger, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Brian Gunter
School of Aerospace Enginering
Georgia Institute of Technology

Dr. Jason Searcy
Navigation, Guidance, and Con-
trol
Sandia National Laboratories

Date Approved: April, 2018

To Mary Louise,

The best partner I could have asked for this and everything else in our lives.

To my daughter (yet to be named)

I can’t wait to meet you in just a few weeks!

ACKNOWLEDGEMENTS

I would like to thank Dr. Marcus Holzinger for inviting me to join his group

and giving me the opportunity to develop this project at the intersection of his and

my interests. I would also like to thank Sandia National Laboratories for funding

my time here at Georgia Tech through the Critical Skills Master’s Program. Most

importantly, I would like to thank my wife, Mary Louise Gucik-DeGraw, who was

supportive of me undertaking this degree even though it meant living apart for nearly

two years and the sheer madness of the last three weeks.

Also, a special thank you to Dr. Andris Jaunzemis for providing me with an

emergency Python 3 orbit propagator at the 11th hour.

iv

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xiii

List of Figures . xiv

Chapter 1:Introduction . 1

1.1 Motivation . 1

1.1.1 Motivation 1: Development of Mega-Constellations and Swarms 2

1.1.2 Motivation 2: Increasing Number of Resident Space Objects in
Low Earth Orbit . 2

1.1.3 Motivation 3: Ground Station Proliferation and Workload . . 3

1.2 Near-Term Challenges . 3

1.2.1 Need to Increase Technology Readiness Levels Quickly and Af-
fordably . 3

1.2.2 Need to Explore Constellation Operation Procedures 4

1.2.3 Need to Mitigate High Operational Tempo and Operator Over-
load . 4

1.2.4 Need to Develop Autonomous Satellite and Constellation Systems 5

1.2.5 Need to Evaluate Constellation Interactions in the Crowded
LEO Environment . 6

1.2.6 Need to Develop Space Traffic Control 6

v

1.3 Proposed Contributions . 6

1.3.1 Contribution 1: Development of a Scalable Satellite Constella-
tion Simulator . 7

1.3.2 Contribution 2: Hardware Integration with COSMoS 8

1.4 Summary of Planned Contributions and Relevant Literature 9

Chapter 2:Design Philosophy and System Planning 12

2.1 Conceptual Design . 12

2.2 System Hardware Configuration . 13

2.2.1 Current Hardware . 14

2.3 Real-Time Operation . 15

2.4 Message Passing Interface . 16

2.5 Scalability of HWIL Simulators . 17

2.5.1 Asynchronous Data Communication 18

2.5.2 Synchronous Data Communication 20

2.5.3 Network Communication Limitation 22

2.5.4 Scalabilty Limits of Current Configuration 23

Chapter 3:Development of MADNS . 26

3.1 A Scalable Simulation Framework . 26

3.1.1 MADNS Data Flow . 26

3.2 Functional Design Schematics . 28

3.2.1 System Hardware . 28

3.2.2 Message Passing Interface . 29

vi

3.2.3 Host and Agent Executable 30

3.2.4 Host to Agent Communication 30

3.2.5 State of Health Monitoring . 30

3.2.6 Simulation Thread Generation 30

3.2.7 Data Logging . 31

3.2.8 Simulation Time Management 31

3.2.9 External Data Management 31

3.3 System Development Summary . 32

3.4 MADNS Real-Time Operations . 32

Chapter 4:Development of COSMoS . 34

4.1 Functional Design Schematics . 34

4.1.1 COSMoS . 35

4.2 COSMoS Simulation Data Flow . 35

4.3 COSMoS Simulation Truth Propagation 36

4.4 Contribution Summary . 38

Chapter 5:Contribution 3: Hardware-in-the-Loop Integration 39

5.1 Sense Hat Capabilities . 40

5.2 HWIL Libraries and Drivers . 41

5.3 MADNS HWIL Interface . 41

5.4 Benchmark Summary . 42

Chapter 6:MADNS and COSMoS Results and Validation 43

vii

6.1 Real-Time Operation Benchmarking 43

6.1.1 3-Minute Test . 44

6.1.2 6-Minute Test . 45

6.1.3 1-Hour Test . 45

6.1.4 8-Hour Test . 46

6.2 COSMoS Satellite Simulations . 48

6.2.1 Simulation with primitive guidance algorithm integration . . . 52

Chapter 7:Hardware-in-the-Loop Results and Validation 57

7.1 Hardware Interface Tests . 57

7.2 COSMoS Satellite Simulation HWIL Results 59

7.2.1 Guidance integration HWIL measurements 61

Chapter 8:Summary and Future Work 65

8.1 Summary of Completed Work . 65

8.2 Unexpected Limitations . 65

8.2.1 Python Multiprocessing Limitations 66

8.2.2 Propagator Integration . 67

8.2.3 HWIL Processing Delays . 67

8.3 Near-Term Additional Implementations 68

8.3.1 Agent-to-Agent Communication 68

8.3.2 Communication with an Operations Center and Ground Station 69

8.4 Conclusions . 69

viii

Appendix A:MADNS and COSMoS Code Documetation 72

A.1 MADNS Code Base Details . 72

A.1.1 Bash Scripts . 72

A.1.2 Python Scripts . 74

A.1.3 Real-Time Execution Rate Limiter 76

A.1.4 System Status Agent . 81

A.1.5 Minor Utilities . 82

A.2 MADNS Files and function calls . 82

A.2.1 hostMainExecutable.py . 82

A.2.2 agentMainExecutable . 84

A.2.3 loggingUtilities.py . 86

A.2.4 networkCommLibrary.py . 86

A.2.5 rateLimiterLib.py . 87

A.2.6 runManagementLib.py . 89

A.2.7 systemStatusAgent.py . 89

A.3 COSMoS Code Base Details . 92

A.3.1 hwilUtilites.py and dummyHWIL.py 92

A.3.2 COSMOSmainFile.py - MADNS Core Functions 92

A.3.3 COSMOSmainFunction.py - Simulation Specific Functions . . 94

A.3.4 COSMoS Satellite Functions 96

A.3.5 COSMoS State Propagator . 96

A.4 COSMoS Files and function calls . 96

A.4.1 COSMOSmainFunction.py . 96

ix

A.4.2 hwilUtilities.py and dummyHWIL.py 100

A.4.3 gtSortAlgo.py . 101

A.4.4 satelliteFunctions.py . 101

A.4.5 pythonVersionSwitch.py . 103

Appendix B:General Lessons Learned 105

B.1 Python Multiprocessing Limitations 105

B.2 Propagator Integration . 107

B.3 HWIL Processing Delays . 108

B.4 Additional General Guides . 109

B.5 Communication with an Operations Center and Ground Station . . . 109

B.6 Agent-to-Agent Communication . 109

B.7 MADNS . 110

B.7.1 System Hardware and Message Passing Interface: 110

B.7.2 Agent to Agent Communication: 110

B.7.3 State of Health Monitoring: 110

B.7.4 Simulation Thread Generation: 110

B.7.5 Data Logging: . 111

B.7.6 Simulation Time Management: 111

B.7.7 Internal Data Management: 111

B.8 COSMoS . 111

B.8.1 Physics Simulation: . 111

B.8.2 Communication Network Algorithm: 112

x

B.8.3 Distributed Control Algorithm: 112

Appendix C:System Benchmark Test Results 113

C.1 Counter function results . 113

C.2 State of Health Results . 119

C.2.1 Temperature . 119

C.2.2 CPU Usage by agent . 119

C.3 HWIL Data . 127

Appendix D:COSMoS Simulation Results 128

D.1 Base Simulation Results . 128

D.1.1 Orbital results . 128

D.1.2 Temperature results . 159

D.1.3 CPU Usage by agent . 162

D.1.4 HWIL Data . 163

D.1.5 Guidance Algorithm Results 164

D.1.6 HWIL Data . 165

References . 177

xi

LIST OF TABLES

2.1 Real-Time Data Management Elements 17

2.2 Current System Scalability Values . 24

2.3 COSMoS Network Communications 25

A.1 MADNS Configuration Variables . 75

A.2 MADNS State Machine . 77

xii

LIST OF FIGURES

1.1 Motivations, near-term problems, and contributions. 10

1.2 Contributions and related literature. 11

2.1 Current COSMoS System. 12

2.2 Control scheme with strict noumenonological and phenomenonological
separation. 14

2.3 Tower CAD model. 15

2.4 Tower prototype photograph. 15

2.5 Hardware layout for the system. 15

2.6 Asynchronous host to agent to software state data diagram before sim-
ulation start. 19

2.7 Asynchronous host to agent to software state data diagram after first
transmission. 19

2.8 Agent plans a maneuver. 21

2.9 Host receives maneuver plan and re-propagates states. 21

2.10 Agent receives new states and host resumes asynchronous propagation. 22

3.1 MADNS Benchmark Test Data Flow 27

3.2 Current functional elements of the MADNS system. 29

3.3 Planned functions of MADNS. 29

xiii

3.4 8-hour test mean packet round-trip time 33

3.5 8-hour test packet-round trip time standard deviation 33

4.1 Conceptual design of the COSMoS system. 34

4.2 COSMoS Simulation Data Flow . 35

5.1 Sense HAT[34] . 39

5.2 Sense HAT installed on MADNS. 39

6.1 Mean packet round-trip time . 44

6.2 Packet-round trip time standard deviation 44

6.3 6-minute test mean packet round-trip time 45

6.4 6-minute test packet-round trip time standard deviation 46

6.5 1-hour test mean packet round-trip time 46

6.6 1-hour test packet-round trip time standard deviation 47

6.7 8-hour test mean packet round-trip time 47

6.8 8-hour test packet-round trip time standard deviation 48

6.9 8-hour test maximum temperature by agent 48

6.10 8-hour test mean temperature by agent 49

6.11 IRIDUM-8 4-hour orbit plot . 50

6.12 IRIDIUM-8 4-hour angular momentum 51

6.13 COSMoS 4-hour simulation all orbits 51

6.14 IRIDUM-8 1-hour orbit plot with guidance command 53

6.15 IRIDIUM-8 1-hour angular momentum with guidance command . . . 53

xiv

6.16 IRIDUM-16 1-hour orbit plot without guidance command 54

6.17 IRIDIUM-16 1-hour angular momentum without guidance command . 54

6.18 1-hour COSMoS test maximum temperature by agent 55

6.19 1-hour COSMoS test mean temperature by agent 55

6.20 COSMoS 1-hour simulation all orbits 56

7.1 3-minute gyro, accel, and magnetometer measurements 58

7.2 3-minute temp, pressure, and δt measurements 58

7.3 6-minute gyro, accel, and magnetometer measurements 59

7.4 6-minute temp, pressure, and δt measurements 59

7.5 1-hour gyro, accel, and magnetometer measurements 60

7.6 1-hour temp, pressure, and δt measurements 60

7.7 8-hour gyro, accel, and magnetometer measurements 61

7.8 8-hour temp, pressure, and δt measurements 61

7.9 1-hour gyro, accel, and magnetometer measurements 62

7.10 1-hour temp, pressure, and δt measurements 62

7.11 1-hour gyro, accel, and magnetometer measurements 63

7.12 1-hour temp, pressure, and δt measurements 63

7.13 1-hour COSMoS test maximum temperature by agent 64

7.14 1-hour COSMoS test mean temperature by agent 64

B.1 Long delays found while using Multiprocessing.Process 106

B.2 Speedup caused by serial processing 107

B.3 OS.Pipe error caused by execnet . 108

xv

C.1 8-hour packet round-trip time for agents 1-5 113

C.2 8-hour test packet round-trip time for agents 6-10 114

C.3 8-hour test packet round-trip time agents 11-15 114

C.4 8-hour test packet round-trip time agents 16-20 115

C.5 8-hour test packet round-trip time agents 21-22 115

C.6 8-hour test packet maximum round trip time 116

C.7 8-hour test packet minimum round trip time 116

C.8 8-hour test packet round trip time range 117

C.9 8-hour test packet average round trip time 117

C.10 8-hour test packet round trip time standard deviation 118

C.11 8-hour test lost packets . 118

C.12 8-hour measured temperature agents 1-5 119

C.13 8-hour measured temperature agents 6-10 120

C.14 8-hour measured temperature agents 11-15 120

C.15 8-hour measured temperature agents 16-20 121

C.16 8-hour measured temperature agents 21-22 121

C.17 8-hour maximum temperature by agent 122

C.18 8-hour minimum temperature by agent 122

C.19 8-hour average temperature by agent 123

C.20 8-hour temperature standard deviation by agent 123

C.21 8-hour measured CPU usage agents 1-5 124

C.22 8-hour measured CPU usage agents 6-10 124

C.23 8-hour measured CPU usage agents 11-15 125

xvi

C.24 8-hour measured CPU usage agents 16-20 125

C.25 8-hour measured CPU usage agents 21-22 126

C.26 8-hour recorded HWIL gyro, accelerometer, and magnetometer 127

C.27 8-hour recorded temperature, pressure, and calculated packet ∆t . . 127

D.1 Orbit plot from agent 10 . 129

D.2 Classical orbital elements from agent 10 130

D.3 Angular momentum agent 10 . 130

D.4 Inertial position and velocity from agent 10 131

D.5 Orbit plot from agent 11 . 132

D.6 Classical orbital elements from agent 11 133

D.7 Angular momentum agent 11 . 133

D.8 Inertial position and velocity from agent 11 134

D.9 Orbit plot from agent 12 . 135

D.10 Classical orbital elements from agent 12 136

D.11 Angular momentum agent 12 . 136

D.12 Inertial position and velocity from agent 12 137

D.13 Orbit plot from agent 13 . 138

D.14 Classical orbital elements from agent 13 139

D.15 Angular momentum agent 13 . 139

D.16 Inertial position and velocity from agent 13 140

D.17 Orbit plot from agent 14 . 141

D.18 Classical orbital elements from agent 14 142

xvii

D.19 Angular momentum agent 14 . 142

D.20 Inertial position and velocity from agent 14 143

D.21 Orbit plot from agent 15 . 144

D.22 Classical orbital elements from agent 15 145

D.23 Angular momentum agent 15 . 145

D.24 Inertial position and velocity from agent 15 146

D.25 Orbit plot from agent 17 . 147

D.26 Classical orbital elements from agent 17 148

D.27 Angular momentum agent 17 . 148

D.28 Inertial position and velocity from agent 17 149

D.29 Orbit plot from agent 18 . 150

D.30 Classical orbital elements from agent 18 151

D.31 Angular momentum agent 18 . 151

D.32 Inertial position and velocity from agent 18 152

D.33 Orbit plot from agent 20 . 153

D.34 Classical orbital elements from agent 20 154

D.35 Angular momentum agent 20 . 154

D.36 Inertial position and velocity from agent 20 155

D.37 Orbit plot from agent 33 . 156

D.38 Classical orbital elements from agent 33 157

D.39 Angular momentum agent 33 . 157

D.40 Inertial position and velocity from agent 33 158

D.41 1-hour measured temperature agents 1-5 159

xviii

D.42 1-hour measured temperature agents 6-10 159

D.43 1-hour maximum temperature by agent 160

D.44 1-hour minimum temperature by agent 160

D.45 1-hour average temperature by agent 161

D.46 1-hour temperature standard deviation by agent 161

D.47 1-hour measured CPU usage agents 1-5 162

D.48 1-hour measured CPU usage agents 6-10 162

D.49 1-hour recorded HWIL gyro, accelerometer, and magnetometer 163

D.50 1-hour recorded temperature, pressure, and calculated packet ∆t . . 163

D.51 Orbit plot from agent 10 . 164

D.52 Classical orbital elements from agent 10 165

D.53 Angular momentum agent 10 . 165

D.54 Inertial position and velocity from agent 10 166

D.55 Orbit plot from agent 33 . 167

D.56 Classical orbital elements from agent 33 168

D.57 Angular momentum agent 33 . 168

D.58 Inertial position and velocity from agent 33 169

D.59 1-hour measured temperature agents 1-5 169

D.60 1-hour measured CPU usage agents 1-5 170

D.61 1-hour maximum temperature by agent 170

D.62 1-hour minimum temperature by agent 171

D.63 1-hour average temperature by agent 171

D.64 1-hour temperature standard deviation by agent 172

xix

D.65 1-hour recorded HWIL gyro, accelerometer, and magnetometer 172

D.66 1-hour recorded temperature, pressure, and calculated packet ∆t . . 173

xx

CHAPTER 1

INTRODUCTION

1.1 Motivation

The recent miniaturization and standardization of satellite components has made

smallsat development an economically viable route for commercial space development

on a massive scale[1, 2]. Entrepreneurs have capitalized on this cost reduction to find

more uses for such constellations and are now able to find financial backing to imple-

ment them. Additionally, public sector entities continue to operate and design large

constellations for a variety of purposes both civilian and military. Current examples

include large constellations of large satellites such as the GPS system, large constel-

lations of small satellites like the Planet’s Earth observation constellation, and small

constellations of large satellites including NASA’s A-Train[3, 4, 5]. Other paradigms

include the Sirius XM constellation, which uses a mixture of cheap smallsats in LEO

coordinating with large, expensive assets in GEO[6]. Companies, including SpaceX

and OneWeb, are planning “mega-constellations” containing thousands of satellites,

pushing the field an order of magnitude beyond current operating paradigms[7, 8].

Low Earth orbit (LEO) is already a crowded environment, and the number of

proposed constellations increases the chances that orbital debris and malfunctioning

or dead satellites will pose a risk to operational systems[9, 10]. Additionally, satellite

ground control is already an intense endeavor and the effort required to manage

conjunctions with other satellites and debris will only increase[11]. The US Air Force’s

planned Space Fence will increase the size of the LEO resident space object (RSO)

catalog and therefore increase the number of conjunctions which must be managed[12].

The confluence of these plans has created four general motivations for the project

1

proposed in this thesis.

1.1.1 Motivation 1: Development of Mega-Constellations and Swarms

Some of the planned mega-constellations are being designed using a “swarm”

paradigm. There appears to be no globally agreed upon definition separating a

“swarm” from a constellation, but a useful definition used by Verhoeven et. al.

specifies that the individual elements of a swarm be functionally identical[13].

The swarm paradigm provides reliability and performance through the quantity of

swarm members, and it explicitly does not require the survival or availability of any

particular member of the swarm. Swarms also rely on emergent behaviors generated

by interactions between swarm members[13, 14, 15]. This reliance on emergent

behaviors and distributed control systems can make analytical evaluation of swarm

behavior difficult, thus requiring a robust simulation environment to evaluate swarm

behavior prior to operational testing. For simplicity, this paper will include swarms

as part of the more general definition of a “constellation”.

It is important to note that swarm concepts expect the failure of individual swarm

members. In a swarm of locusts, predators can consume thousands of individual

grasshoppers, but the risk to any particular grasshopper remains nearly zero, and so

the swarm survives. In the case of satellites, a failed member becomes dangerous

hypervelocity space debris and poses a much greater risk to the LEO environment

than a dead swarm member would in a terrestrial project [10].

1.1.2 Motivation 2: Increasing Number of Resident Space Objects in Low Earth

Orbit

NASA and DARPA have presented models showing that, assuming no further satellite

launches, the amount of space debris will nearly double over the next 50 years[16].

However, SpaceWorks Enterprises reports that there are 803 nano- and micro-satellite

2

launches planned for the 2017-2019 period. They also project that there will be 320

to 460 similar launches yearly by 2023[17]. These satellites include a large number of

university missions, which are a great opportunity for students but present a problem

given the lack of experience and resources for such missions.

1.1.3 Motivation 3: Ground Station Proliferation and Workload

Most current paradigms require ground stations and operators to monitor each satel-

lite’s health, instrumentation, and handle conjunctions manually. Planet has already

discovered a need to increase the automation of its ground operations with only a

few hundred satellites on orbit[18]. Mega-constellations will require an exponential

increase in the capability and reliability of automated control systems. They will also

require the development of guidelines for how humans interact with constellations and

how automated mega-constellations interact with other space environment residents,

especially other automated mega-constellations.

1.2 Near-Term Challenges

We have derived a set of six expected challenges, or “blind spots” in the Johari

Window framework, from these three motivations[19]. These challenges often overlap

the three motivations and have led us to the work being proposed for this thesis.

1.2.1 Need to Increase Technology Readiness Levels Quickly and Affordably

Legacy developers such as Lockheed, Boeing, NASA, and the ESA have large reser-

voirs of operational experience and tribal knowledge to draw from. Newer entrants

to the field, such as start-up companies and universities, need to develop that knowl-

edge base through trial and error or by poaching experienced operators. In the case of

university-class missions, this is further complicated by a 2-5 year turnover period for

all their “employees”. Many of these programs develop their testing and simulation

3

capacity in-house, as there does not appear to be a general-use framework for evalu-

ating new satellite concepts. The development of such a framework could lower the

barriers to entry for university-class and entrepreneurial satellite development while

increasing the safety and reliability of such projects.

1.2.2 Need to Explore Constellation Operation Procedures

The only two private entities with large constellation operation experience are Planet

and Iridium with 196 and 66 satellites respectively. Below that are the government

and military-run navigation constellations with only 30-40 satellites each. This means

that the procedures for operating mega-constellations of 500-2000, or more, satellites

likely do not exist and certainly have not been tested on operational systems. The

companies planning mega-constellations are most likely developing procedures and

ways to test them, but there is no transparent and publicly evaluable framework for

determining if these procedures are safe, effective, or optimal.

1.2.3 Need to Mitigate High Operational Tempo and Operator Overload

Planet operates the largest satellite constellation on orbit and its satellites also most

closely match a swarm paradigm. However, until very recently, each satellite was

controlled individually, although some guidance decisions were made based on the

constellation state[20]. Furthermore, the number of potential conjunctions involving

Planet satellites is growing rapidly[11]. Manging these conjunction events required

substantial effort on the part of Planet’s ground controllers. Because of that, they

are developing automated operations systems to handle this load, but their satellite

constellation is still an order of magnitude smaller than the proposed next generation

systems[18]. The activation of the USAF’s Space Fence will also increase the number

conjunction events that must be managed by a constellation operator even before the

injection of mega-constellations into LEO[12].

4

The GPS constellation is four times smaller than the Planet constellation, but its

much greater complexity has several instructive lessons for constellation management.

Currently, the GPS Control Segment manages each satellite individually, requiring

at least once-per-day contacts with each vehicle. For only 31 satellites, GPS com-

munication and control requires 24-7 staffing with up-links occurring at least once

every 45 minutes[21]. Fortunately for the operators, the GPS constellation exists in

an isolated orbit with few, if any, conjunction events. This already punishing oper-

ation tempo could become unmanageable if combined with the need for conjunction

awareness and avoidance in LEO.

1.2.4 Need to Develop Autonomous Satellite and Constellation Systems

Planet is already developing automation procedures to reduce the workload associ-

ated with conjunctions for their relatively modest 196 satellite constellation[11, 18].

Their differential drag control scheme was implemented through ground systems with

commands transmitted to the satellites during ground communication windows[20].

While extremely effective in deploying the Flock-2b, it still involved ground-in-the-

loop decision making and human-in-the-loop evaluation of the developed solution.

A 1000-member mega-constellation would expect a dramatically increased catalog of

guidance, navigation, and control (GNC) decisions.

Planet’s automated control systems are showing promise in managing their con-

stellation. However, we can see from the development of self-driving automobiles

that larger scale automation solutions in more complex environments are not eas-

ily implemented or tested. An independent framework capable of providing verified

and validation simulation assessment could reduce the risk associated with deploying

autonomous satellite constellations.

5

1.2.5 Need to Evaluate Constellation Interactions in the Crowded LEO Environment

The previous challenge considers the needs of a single automated mega-constellation.

However, current plans include the simultaneous deployment of multiple mega-

constellations, each most likely requiring some level of automation. The interactions

of multiple mega-constellations will likely create emergent behaviors between

constellations as they may not be designed to cooperate with each other’s needs in

mind. An independent simulation framework becomes more necessary as we consider

multiple autonomous mega-constellations being deployed by strategic competitors

into the LEO environment.

1.2.6 Need to Develop Space Traffic Control

A 2005 article co-authored by Secretary of Defense William J. Perry, Air Force Gen-

eral Brent Scowcroft, and others discussed the need to develop a system for “Space

Traffic Control” (STC)[22]. Since then, many other voices have added to the literature

surrounding STC, but very little policy has been implemented. Satellite operators

and mega-constellation entrepreneurs are pushing for voluntary, bottom-up frame-

works as opposed to governmental or international body regulations[23]. Whether

STC is implemented by a governing body or as a collaboration between industry

players, it will need highly developed control and visualization tools to understand

the increasingly crowded and complicated space environment.

1.3 Proposed Contributions

Addressing all of these problems is an enormous task. However, it should be possible

to create a framework from which to approach many of these challenges. We believe

that the development of a robust, modular, scalable, and high-fidelity hardware-in-

the-loop (HWIL) simulator for massive-scale constellations will address many of the

6

listed challenges. The particular work for this thesis is divided into two primary

contributions.

1.3.1 Contribution 1: Development of a Scalable Satellite Constellation Simulator

The first goal of this research is the creation of a system capable of providing high-

fidelity and transparent HWIL simulation capability for satellite constellations and

swarms. There appears to be no general purpose mutli-satellite simulator in the

current literature, although one proposed system suggested using cloud computing to

scale single satellite simulations up to a constellation simulation[24]. Unfortunately,

the latency associated with cloud computing does not permit the integration of flight

hardware into a real-time simulation.

This project is called Constellation Simulation on a Massive Scale, or COSMoS.

The initial operational goal of COSMoS is to test different control algorithms on a

cohesive 93-satellite constellation and determine the efficacy and efficiency of those

methods.

As a fortunate side effect, the system on which COSMoS runs will not be appli-

cation specific. The system is separately called the Multi-Agent Distributed Network

Simulator, or MADNS. MADNS will be capable of simulating swarm systems other

than satellite constellations and should provide value outside the spaceflight commu-

nity. For the sake of brevity most references to COSMoS in this paper will implicitly

include MADNS as it is only current application.

The specific development targets for this contribution are:

1. Demonstrate COSMoS’s ability to operate at 100 Hz or faster with more than

24 agents.

2. Create visualizations of COSMoS data in post-processing. A stretch goal would

be data display in real-time.

7

3. Test at least one algorithm for controlling a large satellite constellation.

1.3.2 Contribution 2: Hardware Integration with COSMoS

Hardware-in-the-loop (HWIL) simulation is a common industry practice for retiring

risk in experimental and production technologies. Marko Bacic quantifies the qual-

ity of an HWIL simulation in terms of “transparency” and robustness of prediction.

Transparency is a measure of how closely a simulation mimics the expected inter-

actions between hardware and its operating environment. Robustness of prediction

is the measure of how well simulation results match experimental and operational

data[25].

The testing of flight and flight-like hardware in experimentally validated simula-

tions is a key part of developing the technology readiness level (TRL) of untested

technologies. A goal of this simulator is be to increase a component or system’s TRL

to 4 or 5, which are defined as “Component and/or breadboard validation in a lab-

oratory environment” and “Component and or breadboard validation in a relevant

environment” respectively. If COSMoS can be validated against flight missions, it

may be possible to increase TRL to level 6: “System/subsystem model or prototype

demonstration in a relevant environment”[26, 27, 28].

The specific development targets for this contribution are:

1. Modularity: Demonstrate the ability of COSMoS to interface with indepen-

dently developed code modules to develop a simulation.

2. HWIL: Evaluate COSMoS’s transparency by comparing simulations where

agents are provided with truth data to simulations using modeled actuator and

sensor data.

3. HWIL: Demonstrate COSMoS’s ability to communicate with external hardware

devices.

8

1.4 Summary of Planned Contributions and Relevant Literature

Figure 1.1 shows how the proposed contributions match the problems and motiva-

tions describe above. Figure 1.2 shows how the relevant existing literature backs the

proposed contributions. Additionally, this project will provide the following specific

benefits to the SSDL group:

• It will provide a software-in-the-loop (SWIL) and HWIL simulation capability

for SSDL flight missions.

• It will create a platform capable of training SSDL mission controllers.

9

Figure 1.1: Motivations, near-term problems, and contributions.

10

Figure 1.2: Contributions and related literature.

11

CHAPTER 2

DESIGN PHILOSOPHY AND SYSTEM PLANNING

A substantial amount of planning and design has gone into the development of COS-

MoS. It is necessary to carefully separate simulation truth and agent “reality” in the

system. Additionally, the system has many of same problems found in supercom-

puting such as I/O and network bottlenecks, data access rates, node communication,

thermal management, and power management. The solutions to these problems de-

veloped in this thesis are described below.

2.1 Conceptual Design

Figure 2.1: Current COSMoS System.

HWIL simulation quality is the guiding design principle behind COSMoS. There-

fore, there is an emphasis on simulation fidelity, modularity, and the strict separation

of noumenological and phenomenological processes. The terms noumenological and

phenomenological are borrowed from Kantian philosophy where a noumenon is a

“thing as it is in itself”, or in this case simulation truth. Phenomenons are “things

as they appear to be”, which are instrument measurements such as magnetometer

and star tracker outputs[29]. The system architecture will be designed to use plug-in

12

modules developed by subject-matter experts to improve simulation fidelity, although

there will be locally developed modules to fill gaps where these are unavailable.

The heart of COSMoS will be a message passing interface (MPI) designed to pro-

vide maximum transparency between externally developed simulation environment

and the hardware and/or software being tested. A common application program-

ming interface (API) will make the integration of external simulation code as simple

and modular as possible. The fidelity of physical models developed by subject mat-

ter experts and transparency of the MPI should translate into a high robustness of

prediction.

Modularity is accomplished through both hardware and software design. The

current design includes the host computer, one managed gigabit network switch, and

24 single-board computers (SBCs). In this case, each SBC is be a Raspberry Pi 3B

micro-computer. Each SBC will host a single simulated satellite and will referred to

as an “agent”. The COSMoS environment will include a wrapper designed to provide

maximum transparency for the flight software (FSW) running on the agents, while the

host computer runs the simulated environment and handles all data communication

across the network.

The strict separation between noumenological and phenomenological processes is

maintained by logically isolating agents from the simulation processes on the host. A

design diagram showing a dual-loop FSW routine operating under this regime can be

seen in Figure 2.2. The result is a closed-loop control system which presents flight

hardware and software with an environment that is as realistic, from the perspective

of the flight system, as possible.

2.2 System Hardware Configuration

The system hardware design also follows the principles of modularity, simulation fi-

delity and noumenon/phenomenon separation. The SBC micro-computers are divided

13

Figure 2.2: Control scheme with strict noumenonological and phenomenonological
separation.

into towers, each holding 23 or 24 SBCs encased in an acrylic enclosure. Currently,

one tower has been constructed and is operational with 24 SBCs. Each tower is a

separate unit with access ports for power, Ethernet, and other mission-specific com-

munication pathways, and can therefore be added or removed from the system at

need. One 48-port managed network switch provides connectivity between the host

computer and the SBCs. Figure 2.3 is a CAD model of an individual tower and the

first tower prototype can be seen in Figure 2.4.

A hardware connection diagram for the entire system is shown in Figure 2.5

2.2.1 Current Hardware

The current system supporting the MADNS simulator and COSMoS simulation con-

sists of the following elements:

14

Figure 2.3: Tower CAD model.
Figure 2.4: Tower prototype pho-
tograph.

Figure 2.5: Hardware layout for the system.

Element Description
Host Computer 8-Core Intel Xenon CPU E5520 @ 2.27 GHz

SBC 24 Raspberry Pi 3-B micro-computers
Network backbone NETGEAR 48-Port Gigabit Managed Switch

2.3 Real-Time Operation

We are assuming that flight software and hardware operate at 1 Hz for general oper-

ations and 10 Hz for maneuvers. The goal is to have the simulator operate at 100 Hz,

or better, so that the dynamics appear to be continuous to the flight computer. A rate

of 200 Hz would be preferable to provide a minimum 20:1 ratio of simulated dynamics

15

to control loop rate, but benchmarking tests need to be completed to determine if

this is achievable.

Neither the host computer nor the SBCs run real-time operating systems (RTOS).

This creates the potential for time management issues and the equivalent of real-time

overflows during simulation operation. Currently, the SBCs have not suffered from

processor overflow during intentionally stressful benchmark tests. Because the SBCs

are more powerful than current generation flight computers, there should not be issues

during COSMoS simulations. However, it is possible to apply a real-time operating

system on the SBCs to enforce task prioritization and protect FSW routines from

deprioritization.

2.4 Message Passing Interface

MADNS and COSMoS use a custom designed message passing interface (MPI) for

their host to agent communications. There several high-quality and well tested

message passing interfaces in common usage on clusters and supercomputers such

MPICH[30] and Open MPI[31]. However, none of these options are specifically ap-

plicable to the MADNS real-time HWIL (RT-HWIL) framework.

The underlying architectures of MPICH and Open MPI assume that most process-

ing units are interchangeable, as would be expected in a supercomputer with many

identical nodes. These MPI systems allow for the separation the system into “ranks”

using a rankfile to assign certain processes to specific nodes or processors, but gen-

erally seeks to limit this behavior to the lowest number of ranks needed for optimal

execution. By contrast, the MADNS system assumes that each agent, or node in

the MPI sense, is a unique system and therefore cannot be treated as interchange-

able by the MPI. Implementing Open MPI or MPICH would require providing each

agent with a unique rank, potentially resulting in hundreds or thousands of ranks in a

massive-scale simulation. Most implementations of standard MPIs seek to minimize

16

the number of ranks within the system to avoid overhead and optimize load distri-

bution. Therefore, the MADNS system is fundamentally different in its approach to

processing nodes than standard MPI libraries and MADNS requires an MPI designed

for its structure.

2.5 Scalability of HWIL Simulators

In general, hardware-in-the-loop simulators run on fully real-time systems, i.e. the

simulation runs in real time as do the hardware interfaces. In the case of a distributed

network simulator, this requirement can be relaxed as only the distributed agents

running active element software need to run in true real-time. The simulation itself

can run asynchronously so long as there is no interruption in the availability of real-

time state information at the agent level. To that end, the following framework can

be used to determine the available trade-off space for the development of a simulator

in the model of MADNS and COSMOS.

The scalability of such a system is governed by the ability to pass data round-trip

between the host and agents. Much of this data transfer can be asynchronous, but

sometimes data transfer will need to be near or truly synchronous and that will be the

most restrictive limitation on the system. In both cases, the system can be divided

into four elements placed on three hardware elements and each with a unique limiting

factor: The two processes on the agent represent a quasi-noumenonological process

Table 2.1: Real-Time Data Management Elements
Process Location Limiting Factor

Data generation Host Parallel processing capacity
Data transfer Network Transmission bandwidth
Data buffering Agent Storage capability

Data consumption Agent Agent processing speed

run in proximity to the phenomenon, but it still maintains the distinction between

data provided to an agent executable, such as flight software, and data available to

17

the MADNS or COSMoS framework.

The host is responsible for generating all agent state data and must be able to

provide this data to the agents as they need to consume it. As hardware analogs,

agents operate at a set clock rate and only take updates on their clock ticks. Therefore,

if an agent’s main process is running at 10 Hz, it only needs to have the next state

data packet available at its next time step, e.g. the agent ticks at t = 0.0 and will not

check again until t = 0.1 seconds. If the host were attempting to provide single state

updates to every agent on every tick, it is unlikely that the system could scale to an

arbitrary number of real-time agents. However, if it is possible to buffer the data on

the agents, this restriction becomes substantially more relaxed. This situation will

be discussed in the contexts of synchronous and asynchronous communication.

2.5.1 Asynchronous Data Communication

The most general case for such a real-time HWIL simulator is a situation in which the

agents and system dynamics respond relatively slowly to state changes and maneuvers

can be planned for in advance. In this situation, it is possible for the host computer

to propagate large stretches of state data based on expected system behavior and

store those states in buffers. The agents can then draw on these buffers as needed

to provide appropriate real-time state. An example of this process is shown in Figs.

2.5.1 and 2.5.1.

In this case there is actually no need for the host or the agent buffer to operate

in real time. Instead, the governing limitation is that the host be able to replenish

the agent buffer before it runs out of data. So long as the agent buffer remains

populated, the simulation software (such as satellite FSW), will operate as if its

receiving measurements and will act as though it were operating in a true hardware

environment.

The restriction can be defined in terms of the following variables:

18

Figure 2.6: Asynchronous host to agent to software state data diagram before simu-
lation start.

Figure 2.7: Asynchronous host to agent to software state data diagram after first
transmission.

• Na - Number of agents.

• Np - Number of processing units available on the host.

• Ra - Operational rate of the agent software.

• Sa - Storage size of the agent buffer.

• Sb - Size of a data batch.

• Ssync - Size of a smaller synchronous data batch.

• Tbi - Time duration of the buffer on agent i which is a function of Sa and Ra.

• Td - Time required to generate a batch of state updates, which is a function of

Sb.

19

• Tn - Time required for the batch to pass through the network.

So long as the host is able to provide all agents with new batches of state data on

time, the real-time nature of the simulation will be preserved. This gives the following

governing inequality for the timing of asynchronous RT-HWIL communication:

Tp(Sb)
Na

Np

+ Tn ≤ Tbi(Sa, Ra) (2.1)

Where the time required to create a data batch Td is necessarily a function of the

number of states in a batch Sb. Similarly, the amount of state data that can be stored

in an agent buffer Sa and the rate at which the software consumes those states Ra

determine the amount of time an agent can provide real-time data to its simulation

without requiring an update from the host. In practice, this restriction has proven

easy to accommodate for the relatively slow dynamics of a satellite constellation.

2.5.2 Synchronous Data Communication

The more restrictive scenario for an RT-HWIL simulator if the agents are maneuvering

rapidly. Because the host is not “aware” of the agents’ phenomenological decision

making processes, it cannot necessarily anticipate their maneuvers and the effects

those actions will have on the state propagation. In the event of a vehicle maneuver,

some data must pass from the agent to the host, which must propagate a new state

based on that data, and pass the data back to the agent. An example of this process

can be seen in Fig. 2.5.2 which occurs after the example in Fig. 2.5.1.

This situation introduces the following new variables:

• Ts - Current simulation time.

• Tm - Time at which a maneuver will be executed.

In this case, the agent plans a maneuver at a future time Tm, but which can be the

20

Figure 2.8: Agent plans a maneuver.

Figure 2.9: Host receives maneuver plan and re-propagates states.

next agent time step in the most restrictive case where:

Tm = Ts + 1
Ra

(2.2)

Once the maneuver is planned, the agent transmits the maneuver plan to the host

which must discard its pre-planned state buffer and immediately re-propagate the

states based on the planned maneuver as shown in Fig. 2.5.2. Finally, the host most

transmit this new set of states to the agent buffer as seen in Fig. 2.5.2

Synchronous communication is therefore governed by the following inequalities:

Tp(Ssync) + 2Tn ≤ Tm − Ts (2.3)

21

Figure 2.10: Agent receives new states and host resumes asynchronous propagation.

Tm − Ts ≥
1
Ra

(2.4)

As mentioned before, the most restrictive case is the one where the simulated software

expects the maneuver to begin on the next time step and the inequality in Eqn. 2.4

becomes an equality. In this case, the restriction becomes:

Tp(Ssync) + 2Tn ≤
1
Ra

(2.5)

The example here visually shows a case where the synchronous data buffer Ssync is the

same size as an asynchronous buffer Sb. However, this restriction can be eased by re-

ducing the size of Ssync and therefore the also reducing the value of Tp for synchronous

communication. This can ease the restriction and allow the system to continue op-

erating in real-time as the host and agents resume asynchronous communication.

Again, the most strenuous environment for this system is one in which all vehicles are

maneuvering rapidly, but that is not often the situation for satellite constellations.

2.5.3 Network Communication Limitation

A fixed resource in this sort of system is the available network communication band-

width. This sort of system can generate an immense amount of data and the price of

network switches scales non-linearly with their speed. Therefore, for such a system,

22

the amount of data passed along the network needs to be considered carefully. The

following additional nomenclature is necessary for this discussion:

• Bn - The network bandwidth measured in bytes/s (or Gb/s)

• Nsync - The maximum anticipated number of synchronous communications.

• RDi - The rate at which a particular data packet Di is transmitted, including

asynchronous state updates.

• SDi - The size of the a particular data packet Di, which includes asynchronous

state updates.

And so the governing inequality for the network segment of the RT-HWIL simulator

can be given as:

Na max
∀ T +∆T

[∑
i

SDiRDi +NsyncSsync

]
≤ Bn(T + ∆T) (2.6)

Which simply states the requirement that the maximum expected data transfer of

planned, fixed rate communications (SDiRDi) and unexpected synchronous commu-

nications (NsyncSsync) over any particular time interval T + ∆T be less than the net-

work’s transmission capability over that time interval (Bn(T + ∆T)). As the planned

communications will generally be fixed, this becomes a balancing act between the

synchronous communication requirements and the network capability, which is lim-

ited by cost, and again where the value of Ssync can be tuned based on the system’s

ability to resume asynchronous communication.

2.5.4 Scalabilty Limits of Current Configuration

In summary, there are four inequalities which govern the scalability of a real-time

HWIL simulator:

Tp(Sb)
Na

Np

+ Tn ≤ Tbi(Sa, Ra) (2.7)

23

Tp(Ssync) + 2Tn ≤ Tm − Ts (2.8)

Tm − Ts ≥
1
Ra

(2.9)

Na max
∀ T +∆T

[∑
i

SDiRDi +NsyncSsync

]
≤ Bn(T + ∆T) (2.10)

Eqn. 2.7 governs asynchronous communication, Eqns. 2.8 and 2.9 govern synchronous

communication, and Eqn. 2.10 governs the network communications.

The current MADNS and COSMoS configuration has the following properties

relative to these equations: Looking at the asynchronous communication inequality

Table 2.2: Current System Scalability Values
Equation Variable Value

Sb 100× 6× 64 bits
Ssync Sb

Tp ≤ 0.04 sec
Na* 10 agents
Np** 1 processor
Tn ≈ 0.001 sec
Tbi 10 sec
Sa > 100 kB
Ra 10 Hz
Tm Ts + 3 sec

*The system was unable to handle more than 10 agents due to issues
discussed in Chapter 8
**The system was unable to parallelize due to issues discussed in Chapter 8

gives:

0.401 sec ≤ 10 sec (2.11)

The synchronous communication inequalities give:

0.042 sec ≤ 0.1 sec (2.12)

24

3 sec ≥ 0.1 sec (2.13)

All of which fall safely within the RT-HWIL requirements listed in this document.

Looking at bandwidth inequality requires examining all expected data packets on

the network in a COSMoS simulation: Assuming a worst case scenario where over 1

Table 2.3: COSMoS Network Communications
Communication Data Approximate size Rate

State updates 38400 bytes 0.2 Hz
System Status packets 4000 bytes ≈ 0.07 Hz

Agent time updates 200 bytes 10 Hz
Hardware interface packets 740 bytes 10 Hz

second, all 10 agents require state updates, send system status updates, and require

maneuver packets gives the following result:

8.1× 105 bits ≤ 1× 109 bits (2.14)

These results suggest that, given the current system constraints and without mod-

ification, the synchronous communication inequality would potentially fail with 71

agents, the asynchronous communication would fail with 240 agents, and the network

bandwidth requirement would fail with 12200 agents. As noted previously, it is pos-

sible to modify the synchronous communication inequality by reducing the size of a

synchronous communication packet below that of a standard asynchronous packet, or

by relaxing the maneuver time. For satellites, a 3-second lead time on a maneuver is

extremely short, and so the synchronous communication is likely more forgiving than

suggested here for even autonomous constellations. Therefore, it seems possible that

the current architecture could support up to 1000 agents with a maneuver time margin

of at least 45 seconds and 5 parallel cores processing asynchronous communication.

25

CHAPTER 3

DEVELOPMENT OF MADNS

3.1 A Scalable Simulation Framework

Early in the development for this project, it became clear that it could be used for

more than just satellite constellation simulations. Satellite constellations represent

only one kind of multi-agent network under autonomous or distributed control. There-

fore, the decision was made to separate the distributed network functions from the

specific simulation as seen in Fig. 3.1. The system is generally divided into startup,

simulation, and closeout segments. The startup segment is responsible for ensuring

that the host and all SBCs are operational and ready to begin simulation operations.

Additionally, any initial data is generated and distributed to the agents during this

phase before the real-time restrictions of the simulation phase take effect, thus re-

ducing the initial load on the real-time restrictions. The simulation phase is the only

segment required to run in real-time and is generally independent of the MADNS

functions beyond requiring an adherence to the general MADNS API. The closeout

functions confirm that all agents have completed their work, and then collects and

logs all system data not logged during the setup and simulation phases. This division

of labor allows for substantial flexibility in the development of multi-agent distributed

network simulations beyond satellite constellations.

3.1.1 MADNS Data Flow

The MADNS data flow is highly versatile and can be modified based on a simulation’s

requirements. A data flow schematic for the MADNS benchmark tests is shown in

Fig. 3.1. This test is described in greater detail in Section 6.1. As seen in Fig. 3.1,

26

Figure 3.1: MADNS Benchmark Test Data Flow

the simulation data flow is segregated from the framework data flow. All MADNS

data flows are represented by solid lines, which represent synchronous communication.

Asynchronous communication paths are represented by dashed lines, the only asyn-

chronous data items in the benchmark test are the system status packets generated

by the SSA. Because the host simulation doesn’t wait for or expect these packets,

they can be sent at any time and are passed to the logging utility after clearing the

simulation loop.

27

The segregation of the simulation segment, within the rounded box, gives simula-

tion designers a wide latitude in structuring their data flows.

In this case, the “simulation” is the counting benchmark test discussed in Section

6.1. State packet communication for the benchmark tests is purely synchronous, which

would usually cause scalability issues as discussed in Section 2.5. However, the “state

propagation” algorithm in this case is val += 1, and therefore the “propagation

time” Tp from Eqn. 2.3 is effectively 0. The only asynchronous data flows in the

benchmark tests are the system status update packets sent from the agents at regular

intervals. Finally, once every agent has completed its simulation task it sends a

“SIMULATION COMPLETE” packet to the host and the agent then waits for the

host to close the system. After the host receives a “SIMULATION COMPLETE”

packet from every agent, the simulation segment is complete and the system returns

to the MADNS framework to close out its operations.

3.2 Functional Design Schematics

Two functional design drawings are shown below representing the current state of

the MADNS simulator and functions which were planned for the system but not

yet implemented. Currently operational functions are presented inside boxes with a

solid border and with a green fill, functions in development are represented by square

boxes with a dashed border, and functions that are planned but not currently under

development are represented by oval boxes with a dashed border. Only the first

two categories will be discussed in this chapter while the planned functions will be

discussed in Chapter 8

3.2.1 System Hardware

Currently, 24 SBCs have been integrated into the simulator in a single tower. These

boards are all operational and accessible via the host computer. They are configured

28

Figure 3.2: Current functional elements of
the MADNS system. Figure 3.3: Planned functions of MADNS.

with fixed IP addresses on the MADNS internal network have had their Wi-Fi and

Bluetooth capabilities disabled to increase performance and provide better system

security.

3.2.2 Message Passing Interface

The custom message passing interface (MPI) is operational and provides the commu-

nications backbone for the simulator as described in Chapter 2. Existing MPI tech-

nologies, such the MPI and MPICH familiar to high-performance computing users,

are not designed for applications where each agent is unique as discussed in Section

2.4. The MADNS MPI allows for the treatment of each agent as an unique individual.

The MPI has proven reasonably robust in benchmark testing and actual operation as

shown in Sections 6.1 and 6.2.

29

3.2.3 Host and Agent Executable

The host and agent executables were refactored between November 2017 and January

2018 to make the system as modular as possible. The primary functions are host-

MainExecutable.py and agentMainExecutable.py, which are discussed in more detail

in Appendix A.1.

3.2.4 Host to Agent Communication

The system has demonstrated its ability to pass messages across the network within

real-time bounds. The MPI uses UDP sockets to send and receive messages, but the

system will occasionally wait for confirmation of a packet being received in a hybrid

TCP style. The current configuration has shown that it can operate with a packet

round-trip time of < 50 and zero packet loss during benchmark testing as seen in

Section 6.1 and previous work[32]. Additionally, the host-to-agent communication

protocol can be used to connect to other systems through the Georgia Tech intranet.

The current system uses the Python Pickle library due to its ease of use and despite

its known security flaws [33].

3.2.5 State of Health Monitoring

Agents transmit state of health (SoH) packets to the host computer at regular inter-

vals. These packets include statistics such as CPU usage, RAM usage, disk activity,

temperature, network activity, and other relevant details. They are used to determine

simulator performance and can help in the determination of simulation validity.

3.2.6 Simulation Thread Generation

The host and agent executables spawn threads using the Python Multiprocessing

library. These threads communicate using Python Multiprocessing.Queue data struc-

tures for thread safety. However, this system has numerous drawbacks and needs to

30

be reconsidered as discussed later in Section 8.2.1.

3.2.7 Data Logging

Currently, the system logs its data in plain text and CSV files. The amount of data

created during operation is substantially less than in debug mode, but the MADNS

system can creates more than 1 GB of data per hour with only 10 agents.

3.2.8 Simulation Time Management

Because the clocks between the host and agents are not synchronized, they system

designates a simT0 value which is used to reference all future times within the simu-

lation. Because of network latency, there is no true way to set these T0 values simul-

taneously, but the MADNS system sets the host T0 before broadcasting command

to the agents to set their T0 values. This leaves the host slightly ahead of the agents

in simulation time, which is helpful in managing state propagation. Additionally, the

simulation API developed through the creation of the benchmark test and COSMoS

requires that agents send updates to the host with their current simulation time dis-

cretized to their operating rates. This keeps the host computer “aware” of where the

agents are in simulation time and allows for better simulation synchronization with

the eventual goal of allowing agent-to-agent communication.

3.2.9 External Data Management

Log files are gathered, organized, and packaged using a set of bash scripts at the end

of a simulation. These files are processed using a suite of MATLAB scripts developed

independently from the simulation code. Examples of current benchmark test output

can be seen in a previously published work and in Section 6.1[32].

31

3.3 System Development Summary

The current development of MADNS has shown that the API can be used for two

different simulations: the benchmark test and COSMoS. The MPI works well within

its design specifications and has a simple interface where any arbitrary Python data

object can be sent across the network using the Pickle protocol. The data logging

system is currently able to store more that 1 GB/hour of data without any data

loss and uses a similar interface to the MPI which allows for the storage of any

data element through Python’s format function. An exhaustive description of the

functional elements and the data transfers can be found in Appendix A.

3.4 MADNS Real-Time Operations

MADNS is designed as a fundamentally real-time simulation framework. As such, its

operational rate can be set by simulation designers as described in Appendix A.1.3.

While these results will be discussed later in Chapters 6 and 7, benchmark testing has

shown that the real-time operations are within expected parameters. Fig. 3.4 shows

data gathered from a MADNS benchmark test which measured the round-trip time

of a synchronous communications packet from the perspective of the host and the

agents separately. This test was run at a fixed 20 Hz simulation rate. The round-

trip time of 50 ms is exactly what would be expected from the 20 Hz simulation rate.

Additionally, the 1-2 ms standard deviation seen in Fig. 3.5 is the expected σ value

of Python’s time.sleep() command, which is what enforces the real-time operations

as described in Section A.1.3. This behavior is one of the most unqualified successes

of the early MADNS system. The much larger σ value for agent 22 seen in Fig. 3.5

is the result of that agent being equipped with a hardware interface agent, and is

discussed in later sections.

32

Figure 3.4: 8-hour test mean packet round-trip time

Figure 3.5: 8-hour test packet-round trip time standard deviation

33

CHAPTER 4

DEVELOPMENT OF COSMOS

4.1 Functional Design Schematics

A functional design drawing is shown below representing the development of both

the COSMoS simulation. Currently operational functions are presented inside boxes

with a solid border and green fill, functions with preliminary development complete

are represented by square boxes with a dashed border and yellow fill, and functions

that are planned but not currently under development are represented by oval boxes

with a dashed border. Only the first two categories will be discussed in this chapter

while the planned functions will be discussed in Chapter 8

Figure 4.1: Conceptual design of the COSMoS system.

34

4.1.1 COSMoS

Physics Simulation: The COSMoS simulator is organized to incorporate external

physics simulations. Currently, COSMoS uses the 2-body Keplerian orbit propagator

created for the GT-SORT program. A more comprehensive 6-DoF simulation could

easily be implemented by the incorporation of the Basilisk toolkit developed by the

University of Colorado AVS lab. Unfortunately, there were substantial problems

involved in the implementation of this toolkit as described in Section 8.2.2. However,

the potential to incorporate different physics simulators is proven even though they

may not be sustainable at an operational rate of 10 Hz as discussed in Section 8.2.

Satellite Simulation: The current satellite simulation is extremely basic, but it

proves the viability of the system. The instrument simulation uses a Raspberry Pi

Sense-Hat to simulate a hardware interface[34] on a single agent. This interface is

discussed further in Chapter 5.

4.2 COSMoS Simulation Data Flow

As described in Section 3.1.1, the simulation data flow is largely segregated from

the MADNS framework. The data flow for the COSMoS simulation is substantially

different from the benchmark test as can be in Fig. 4.2. This figure only shows

the simulation segment of Fig. 3.1 as the MADNS framework is identical to the

benchmark test. Here, the simulation data flow is largely asynchronous with the host

Figure 4.2: COSMoS Simulation Data Flow

35

sending periodic state updates (propData) to the agents and the agents reporting

current simulation time (agentTimeUpdate) to the host. The only synchronous data

process occurs when an agent sends a maneuver command to the host as discussed

in Section 2.5. For the current version of COSMoS, those actuator commands are

∆v values contained in a maneuverPacket. When this occurs, the host immediately

re-propagates the state information based on the commanded ∆v and transmits the

newly propagated data back to the agent. Once this process is complete, the host

resumes propagating on its asynchronous schedule and the agents continue sending

simulation time updates at their simulation rates.

4.3 COSMoS Simulation Truth Propagation

COSMoS is designed to run at 10 Hz, giving an update rate of 0.1 seconds. How-

ever, early attempts to integrate Basilisk into COSMoS found that Basilisk would not

propagate data in individual units of 0.1 seconds. To accommodate this behavior,

the HostSatelliteObject and AgentSatelliteObject classes were developed in the sat-

tliteFunctions.py file. These objects are described in greater detail in Section A.3.4,

but their data management is of interest here. The orbit propagator is tasked with

propagating 10 seconds of orbit in 0.1 second increments. A HostSatelliteObject stores

those 10 seconds of data and marks a mid-point time at 5.0 seconds for later use. This

initially propagated data is distributed to the agents in the “SIMULATION SETUP”

packets as shown in Fig. 3.1. This allows the system to begin its asynchronous prop-

agation at the real-time simulation start to avoid major synchronous communication

loads as discussed in Section 2.5.

When the real-time simulation commences, the host computer continually checks

each satellite object to see if the simulation time has passed the midpoint time. As

the agents report their simulation time, the host computer discards old states to limit

the amount of data stored in its propagation buffers. Once an agent simulation time

36

passes its midpoint, the host computer propagates another 10 seconds of data and

appends it to the existing state data. Because the host has been discarding old state

data, the propagated data now runs from approximately t = 5.0 to t = 20.0, and

so the midpoint is now at approximately t = 12.5 seconds. This process repeats

uninterrupted unless the agent transmits a maneuver command to the host.

The times described above are approximate by design and assist in managing the

system scalability issues. The propagator currently in use on COSMoS takes between

0.01 and 0.03 seconds to propagate 10 seconds worth of data. Therefore, after at most

5 propagations, the host computer has already violated a 10 Hz real-time operating

rate. However, that violation leads to the satellite object midpoint times for re-

propagation drifting with respect to each other. On the first propagation cycle, every

agent re-propagates at t = 5.0 seconds and then asynchronously sends the updates to

the agents. However, on the second cycle the fist agent will re-propagate at t = 12.5

seconds, but the sixth agent will re-propagate on the next 10 Hz cycle at t = 12.6

seconds, and so on. Within the first minute of simulation, the agent re-propagation

times will distribute themselves to reduce the number of real-time violations on the

host computer. So long as the host’s real-time violations do not create violates of the

agent’s real-time requirements they do not compromise the real-time operation of the

system.

Additionally, in the current implementation the host computer does not log its

state data. While this will need to be corrected in the future when actuator models are

applied and the agents no longer receive noumenonological “truth” data, it currently

reduces the amount of data generated by the system to a more manageable level. All

data used to develop the COSMoS plots shown in Chapters 6 and 7 was recorded by

the agents and collected at the end of each simulation. It should also be noted that

a “manageable” level is still in excess of 1 gigabyte per hour

37

4.4 Contribution Summary

The following measurable benchmarks were originally proposed for Contribution 2:

1. Demonstrate the ability to run a multi-hour, 3-DoF, real-time simulation using

each available SBC as a single satellite.

2. Demonstrate the ability to test a guidance algorithm, independent of other flight

code elements, running an agent.

3. Demonstrate the ability to run an analysis framework simulation data in post-

processing.

Of these, the first was a partial success limited by the selection of programming

language as described in Section 8.2.2. The second is also a partial success as the

ability to have agents respond to individual guidance controls has been demonstrated,

but there were no tests of full GNC algorithms or large scale simulations. The results

of these tests can be seen in Section 6.2.1. The third is a full success as demonstrated

by the results seen in Chapter 6.

38

CHAPTER 5

CONTRIBUTION 3: HARDWARE-IN-THE-LOOP INTEGRATION

The core function of MADNS is to serve as a platform for real-time hardware-in-

the-loop (RT-HWIL) simulation on a large scale. Most other similar systems rely on

standard distributed computing models, which are highly developed and more efficient

that the model implemented on MADNS. However, these models are not designed for

real-time operations and are certainly not designed for a real-time hardware interface.

The real-time operations are handled by the rate limiter library described in Sec-

tion A.1.3. The HWIL aspect is currently demonstrated through the use of a Rasp-

berry Pi Sense-HAT add-on board[34]. The Sense-HAT is equipped with a 3-axis

gyroscope, 3-axis accelerometer, and 3-axis magnetometer, as would be expected on

a spacecraft IMU, as well as temperature and pressure sensors. While the Sense-HAT

is not as fast or powerful as one might expect true spacecraft sensors to be, it does

provide proof of concept for integrating hardware devices into the MADNS framework

and COSMoS simulation.

Figure 5.1: Sense HAT[34] Figure 5.2: Sense HAT installed on
MADNS.

39

5.1 Sense Hat Capabilities

The Sense HAT comes equipped with the following sensors[35]: For the purposes

Sensor Range Accuracy
3-axis linear accelerometer ±2/±4/±8/±16 g ±90 mg

3-axis magnetometer ±4/±8/±12/±16 gauss ±1 gauss
3-axis rate gyroscope ±245/±500/±2000 deg/s ±30 dps

Pressure sensor 260-1260 hPa ±1 hPa
Temperature 0 - 80oC ±1oC

Humidity 0 - 100 %rH ±4.5 % rH

of testing MADNS and COSMoS, the accelerometer, magnetometer, gyroscope, pres-

sure, and temperature sensors were queried to create a hardware interface data packet

for the simulation. These queries took more computing time than expected and in-

troduced the system delays mentioned in Section 3.4. These delays are discussed in

more detail in Section 8.2.1.

It is important to note that the Sense-HAT is not a true hardware-in-the-loop

element as it is not “in-the-loop”. If the Sense-HAT were being used in a true HWIL

sense, it would need to be attached to an external device, such as a Helmholtz cage

or centrifuge. The external device would then receive state data from the host and

would create a simulated environment (such as a magnetic field) to give the Sense-

HAT’s sensors the expected operational environment signals. Alternately, a device

such as a GPS Simulator could be used in place of the Sense-HAT which would create

a signal fed either directly to the SBC or to an intermediate device such as a GPS

receiver, and that data would then be passed to the FSW running on the SBC. The

Sense-HAT in this test is purely open loop, but it demonstrates MADNS’s ability

to take in high rate hardware data, process it, and transmit it to the host without

impeding other operations.

40

5.2 HWIL Libraries and Drivers

A major advantage of using the Sense-HAT was avoiding the need to code hardware

interface drivers. Sense-HATs come with a Python ready sense hat interface module

with an extremely simple API. Even in the absence of such a pre-built driver library,

the selection of Raspberry Pi SBCs is a major advantage in creating hardware in-

terfaces. The Rasperry Pi was designed with a large number of GPIO digital and

analog I/O pins, and so any device should be easily to integrate so long as it can

communicate through 5V input/output channels. Raspberry Pis can also be outfit-

ted with adapters for more advanced communication protocols, such as RS-422, using

commercial off-the-shelf products (COTS).

5.3 MADNS HWIL Interface

The current MADNS HWIL interface is extremely simple and is found in the hwilU-

tilities.py file. The MADNS API requires the following functions in the interface

library:

• setup hwil interface, which creates a hardware interface object callable by the

simulation

• hwil query and send, which queries the hardware interface object and then routs

its return data elsewhere in the simulation

• hwil process, a currently deprecated function originally designed to spawn a

parallel HWIL communication process

Any other functions found in the HWIL library are simulation specific.

In the current version of COSMoS, the functions are extremely simple thanks

to the pre-built Sense-HAT interface. For example, HWIL.setup hwil interface reads

as:

41

def setup_hwil_interface():

sense = SenseHat()

sense.set_rotation(0)

Enable gyro, accel, and mag

sense.set_imu_config(True, True, True)

return sense

In a case where the hardware driver had to be built for the simulation, this would nec-

essarily be much more complicated. The HWIL.hwil process function was designed to

operate similarly to the network communication and logging processes described in

Section A.1, however this was one of the first to fall victim to the Python multipro-

cessing issues described in Section 8.2.1. In most applications, sensors would be run

in parallel with a main process and queried when data was needed, however because

of the limitations found in Python, the Sense-HAT is queried in serial with the agent

process as described in Section A.3.2. This has caused some minor performance is-

sues which are discussed in Chapter 7, but otherwise the demonstration of MADNS’s

ability to perform RT-HWIL operations is a complete success.

5.4 Benchmark Summary

The following measurable benchmarks are proposed for Contribution 2:

1. Demonstrate the ability to interface with an external hardware device.

2. Analyze recorded hardware measurements in post processing.

This task was a full success as shown in Chapter 7.

42

CHAPTER 6

MADNS AND COSMOS RESULTS AND VALIDATION

Several simulations were run on the MADNS system to test its performance and

demonstrate its ability to provide the RT-HWIL simulation capacity that satellite

mega-constellations will require. These tests include benchmark testing using a simple

counting algorithm, hardware interface tests, and satellite simulation tests using the

COSMoS simulation framework. The results of these tests are presented and discussed

below.

6.1 Real-Time Operation Benchmarking

The benchmarking algorithm used on MADNS is a simple counting function.

The host computer creates a set of packets with a stored value of 0 in the

simFunc.setup host simulation step, which distributed to the agents using sim-

Func.send host setup to agents. When an agent reaches the “SIMULATION START”

phase, it begin incrementing the packet value by 1 using simFunc.incerement counter

and transmits the packet back to the host. The host receives these packets and uses

the same simFunc.increment counter function to increment them packet after which

it passes the incremented packet back to the appropriate agent. This test continues

until each agent hits the maximum simulation time specified in localConfig.py.

The following benchmark tests were run for 3 minutes, 6 minutes, 1 hour, and 8

hours. Results shown here include the average round-trip time for the packets and

the standard deviation of the round-trip time. A complete data set for each test can

be found in Appendix C.

43

6.1.1 3-Minute Test

The first test ran for 3-minutes with the simulation rate set at 20 Hz in localConfig.py

and generated the data presented below.

Figure 6.1: Mean packet round-trip time

Figure 6.2: Packet-round trip time standard deviation

The round-trip packet time nearly perfectly matches the desired 20 Hz operation

44

rate with the exception of Agent 22, which was equipped with the Sense-HAT. The

Sense-HAT introduced processing delays on the agent as discussed in Section 8.2.3.

The processing delays seen on Agent 19 are likely random nose as will be demonstrated

in the following tests. This test created 127 MB of data.

6.1.2 6-Minute Test

Another test was performed for 6-minutes with the simulation processing rate still

set at 20 Hz. The results are seen below:

Figure 6.3: 6-minute test mean packet round-trip time

Here it becomes clear that the issues experienced by Agent 19 in the 3-minute test

were simply the result of random noise while the delay on Agent 22 is clearly a part

of the system. This test generated 249 MB of data.

6.1.3 1-Hour Test

A test was performed, again at 20 Hz, for one hour to confirm that the system could

sustain operations. The results are seen below:

This test generated 2.4 GB of data.

45

Figure 6.4: 6-minute test packet-round trip time standard deviation

Figure 6.5: 1-hour test mean packet round-trip time

6.1.4 8-Hour Test

A final test was performed for eight hours to prove the system’s robustness. A full

set of the results can be found in Appendix C with a limited set shown below:

The system demonstrated nearly identical results to the shorter tests. Addition-

ally, core temperature readings were recorded by the system status agent (SSA) and

46

Figure 6.6: 1-hour test packet-round trip time standard deviation

Figure 6.7: 8-hour test mean packet round-trip time

showed the temperature performance of the SBCs to be well within their operating

parameters.

This test generated 19.1 GB of data.

47

Figure 6.8: 8-hour test packet-round trip time standard deviation

Figure 6.9: 8-hour test maximum temperature by agent

6.2 COSMoS Satellite Simulations

The COSMoS simulations were run using only 10 agents due to a deficiency discovered

in the MPI when packet sizes became larger than the 3 floating point values used for

benchmark testing. However, the results show system’s capability including its ability

48

Figure 6.10: 8-hour test mean temperature by agent

to process HWIL interface data while simultaneously propagating orbits. The HWIL

results are discussed further in Chapter 7.

The satellites selected for these simulations are IRIDIUM 8, 7, 6, 5, 4, 914, 12, 10,

13, and 16. Satellite initial states were generated from the Celestrak TLE database

using TLEs from 11/05/2017.

Tests were run using 3 minute, 6 minute, 1 hour, and 4 hour propagation times.

The data from the short runs matches that from the longer ones and will not be

presented here. All orbit data was propagated from the host computer and distributed

to the agents as described in Chapter 4. The data presented here was “processed”’

and recorded on the agents with no data being stored from the host. The agent

”processing” in question involved running the current r and v vectors through a

guidance algorithm which is shown below:

def guidance_algorithm(r, v):

return 0

However, it should be simple enough to replace that function with a more active GNC

49

algorithm.

The state data was then recorded on the agent and collected by the host at the end

of the simulation. While no noise or measurement models were applied to the data

in this case, the implementation of a sensor noise model between the propagator and

agent would be a relatively easy task. All data analytics shown below were performed

in post-processing. A sample of the 5.5 GB of data collected from the 4-hour run is

shown below:

Figure 6.11: IRIDUM-8 4-hour orbit plot

50

Figure 6.12: IRIDIUM-8 4-hour angular momentum

Figure 6.13: COSMoS 4-hour simulation all orbits

51

6.2.1 Simulation with primitive guidance algorithm integration

The guidance algorithm implemented here was extremely basic. The algorithm exe-

cuted at a prescribed maneuver time and injected a satellite into a Hohmann transfer

orbit with a target apogee of 42,164 km. Because the Iridum satellites are in polar

orbits this is not a true Geostationary Transfer Orbit (GTO), but it is a useful stand-

in for the purpose of testing the COSMoS guidance capabilities. Unfortunately, this

algorithm also introduced a bug which caused the system to fail if more than two

agents were run simultaneously. That bug has yet not been resolved, although work

is in progress. The full set of results from this test can be found in Appendix D, but

a subset is shown below:

52

Figure 6.14: IRIDUM-8 1-hour orbit plot with guidance command

Figure 6.15: IRIDIUM-8 1-hour angular momentum with guidance command

53

Figure 6.16: IRIDUM-16 1-hour orbit plot without guidance command

Figure 6.17: IRIDIUM-16 1-hour angular momentum without guidance command

54

Figure 6.18: 1-hour COSMoS test maximum temperature by agent

Figure 6.19: 1-hour COSMoS test mean temperature by agent

55

Figure 6.20: COSMoS 1-hour simulation all orbits

56

CHAPTER 7

HARDWARE-IN-THE-LOOP RESULTS AND VALIDATION

All of the tests described in Chapter 6 were HWIL enabled with the Sense-HAT

connected to the top device in the SBC tower. Every test showed a performance

reduction on that device including multiple real-time operations violations, but this

is due to a known issue described in Section 8.2.3. The data collected from the Sense-

HAT is presented below for the MADNS benchmark tests and COSMoS satellite

simulations.

7.1 Hardware Interface Tests

Data was recorded from the Sense-Hat during each of the MADNS benchmark tests

described in Section 6.1. The original plan was to sensor readings at rate of 10

Hz separate from the main agent process, but the issues described in Section 8.2.3

prevented this, and so the actual sampling rate was lower than the 20 Hz simulation

rate. However, the data was recorded from agent 33 and transmitted to the host

computer where it was logged to demonstrate the robustness of the data transmission

and logging system.

The data recorded includes readings from the 3-axis gyroscope, 3-axis accelerom-

eter, 3-axis magnetometer, temperature, and pressure sensors. The sixth plot shows

the time delay in simulation time between when the first reading was taken on the

agent and when the host computer logged the transmitted packet. The long delay

seen on the first packet in each case is the result of how the benchmark test was

triggered by the host computer and when the host simT0 was reset.

The slow, gradual temperature increase seen on the 8-hour run is entirely reason-

able because the run was started around 2 AM Atlanta time and completed around

57

Figure 7.1: 3-minute gyro, accel, and magnetometer measurements

Figure 7.2: 3-minute temp, pressure, and δt measurements

10 AM. As the run was initiated from Albuquerque, there is no easy confirmation

of the ambient room temperature in ESM-101 during that period, but the behavior

seems reasonable.

58

Figure 7.3: 6-minute gyro, accel, and magnetometer measurements

Figure 7.4: 6-minute temp, pressure, and δt measurements

7.2 COSMoS Satellite Simulation HWIL Results

Unfortunately, the HWIL interface was disabled by a bug for the 3-minute, 6-minute,

and 4-hour tests, but it was collected during the 1-hour test. As noted in Chapter

6, IRIDIUM-16 is the second agent instead of IRIDUM-8 as it was simulated on the

59

Figure 7.5: 1-hour gyro, accel, and magnetometer measurements

Figure 7.6: 1-hour temp, pressure, and δt measurements

HWIL enabled agent 33.

60

Figure 7.7: 8-hour gyro, accel, and magnetometer measurements

Figure 7.8: 8-hour temp, pressure, and δt measurements

7.2.1 Guidance integration HWIL measurements

The HWIL interface was also enabled during the guidance test described in Section

6.2.1. The SSA results have been included here for easy comparison with the Sense-

HAT temperature measurements.

61

Figure 7.9: 1-hour gyro, accel, and magnetometer measurements

Figure 7.10: 1-hour temp, pressure, and δt measurements

62

Figure 7.11: 1-hour gyro, accel, and magnetometer measurements

Figure 7.12: 1-hour temp, pressure, and δt measurements

63

Figure 7.13: 1-hour COSMoS test maximum temperature by agent

Figure 7.14: 1-hour COSMoS test mean temperature by agent

64

CHAPTER 8

SUMMARY AND FUTURE WORK

8.1 Summary of Completed Work

Based on the results given in Chapter 6 and the scalability analysis provided in Sec-

tion 2.5, the MADNS framework and COSMoS simulation point the way towards

massive-scale RT-HWIL simulation for multi-agent distributed networks using only

commercial-off-the-shelf (COTS) hardware. In particular, the MADNS framework

shows how it is possible to build a system which can simulate multiple agents, hosted

on SBCs, in an RT-HWIL environment, and without requiring that the framework

be tailored to a particular simulation application. The theoretical limits of the cur-

rent MADNS/COSMoS system, as discussed in Section 2.5.4, could manage up to

1000 agents with minimal modifications. That said, there are a number of technical

challenges which have restricted the system’s performance to below what is theoreti-

cally possible. These challenges will be briefly discussed here, but are listed in much

greater detail in Appendix B. Additionally, there are number of functions shown in

the MADNS and COSMoS functional diagrams (Figs. 3.2, and 4.1) which are very

close to implementation with the current architecture.

8.2 Unexpected Limitations

The creation of MADNS and COSMOS was always an ambitious project, but the dif-

ficulty involved was unclear in two major points. The largest problem that arose is the

relative weakness of Python’s multiprocessing libraries. Secondly, the incorporation

of different propagators into the framework was more difficult than expected because

the Basilisk being written in Python 2.7 while the MADNS framework is in Python

65

3. A third, minor, issue is due to processing delays introduced by the Sense-Hat, but

it is more an outgrowth of the multiprocessing issue than a separate problem. Each

of these is discussed in the following subsections.

8.2.1 Python Multiprocessing Limitations

What follows is a brief discussion of some of the issues associated with creating

MADNS in Python. A more thorough discussion can be found in Appendix sec-

tion B.1. Python multiprocessing has several well-characterized limitations, which

the Multiprocessing library is designed to avoid this problem. However, while Mul-

tiprocessing makes processes more parallel than Threading, it does not make them

multi-core parallel[36]. Another issue is that Multiprocessing.Process processes do

not always exit cleanly. In many cases, these persistent and un-killable processes

caused the MADNS system to hang and be unable to log all its data. Furthermore,

the Python Multiprocessing.Queue.qsize() and Multiprocessing.Queue.empty() func-

tions are not precise. This is a known issue in Python as the official documentation

states that the qsize() method will only return an approximation of the number of

data items in the queue. In multiple early attempts to run MADNS, at the conclusion

of a run the system would simultaneously report loggingQueue.empty() = True and

loggingQueue.qsize() = 19342. There is a high probability that this discrepancy is

what caused the Multiprocessing.Process processes to fail to exit.

Finally, the Multiprocessing.Queue structures do not fail gracefully. Early bench-

mark tests found that when the system was set to run at 20 Hz each message had

a round-trip time of 1.1 seconds. The problem was tracked to the host computer,

where the Multiprocessing.Queue objects were failing without throwing exceptions.

In low-usage cases, this problem can be rectified by setting a lower timeout on the

Queue.get() commands, but that caused serious problems with heavy usage. In two

cases, during particularly heavy usage, the host computer hung completely and re-

66

quired manual rebooting by disconnecting the power. Switching from parallel pro-

cessing to serial reduced the time delay to 50ms on each round trip as would be

expected with the 20 Hz processing rate. This is what forced the number of proces-

sors (Np in the scalability discussion) to always be 1, and what placed a limit on the

asynchronous communication inequality (Eqn. 2.1) for the current implementation.

8.2.2 Propagator Integration

As mentioned in Section 4.1.1, the original plan was to use CU Boulder’s Basilisk

astrodynamics toolkit. Basilisk is a powerful toolkit capable of propagating satellites

with a speed-up of at least 365-to-1 (year-in-a-day). It also includes modules for

atmospheric drag, solar radiation pressure, actuator models, non-rigid bodies, and the

integration of guidance and control algorithms. However, Basilisk is written in Python

2 and MADNS is in Python 3. An attempt was made to use the execnet library to

bridge this gap, but execnet was not capable of sustaining astrodynamic propagation

at a rate of 10 Hz. Instead a simple 2-body Keplerian propagator developed by the

GT-SORT group was inserted in place of Basilisk. While this did not provide a robust

physics simulation for COSMoS, it did provide an opportunity to test the combined

MADNS and COSMoS system.

8.2.3 HWIL Processing Delays

As noted in Chapters 6 and 7, the Sense-Hat imposed significant processing delays

on agent 22 in the benchmark tests. A Sense-HAT query can take anywhere from

0.005 to 0.5 seconds before it returns its measurements. If not for the multiprocessing

issues discussed in Section 8.2.1, this would not have been a problem. Unfortunately,

it resulted in a 10 ms delay with a wide standard deviation on the HWIL-enabled

agent as seen in Chapters 6 and 7. Should MADNS be rewritten in a language with

more robust multiprocessing capabilities, this issue should be easy to correct.

67

8.3 Near-Term Additional Implementations

There are two major elements of MADNS and COSMoS which are not implemented in

the current system, but which should require minimal effort to implement without any

changes to the system. These items are both critical to the execution of a full-scale

satellite constellation simulation and multi-agent network simulations in general.

8.3.1 Agent-to-Agent Communication

A critical concept discussed in Chapters 1 and 2 is the ability to simulate satellite-

to-satellite (S2S) communications. While this was not implemented in the current

version of MADNS and COSMoS, the path forward is clear and should be achiev-

able with minimal work. The MPI design allows for the easy segregation of any

packets labeled “agentComms” or something similar. Once selected out by sim-

Func.host simulation function, a time-of-flight algorithm can be implemented to de-

termine at what point the message should arrive at its target based on the time it

originated at its sender. This packet could then be routed to an agent with a specified

delivery time.

Once at the agent, this packet would be routed to and stored in the AgentSatelli-

teObject instantiated on the agent. From there, a method such as AgentSatelliteOb-

ject.deliver message can compare the agent’s current simTime to the delivery time in

the communication data and deliver it to the appropriate process at the appropriate

simTime. This relatively simple implementation would allow for the simulation of

satellite-to-satellite and satellite-to-ground communications without substantial re-

works of either the MADNS or COSMoS frameworks.

68

8.3.2 Communication with an Operations Center and Ground Station

While this seems like a substantial challenge, the current construction of MADNS

and COSMoS makes the task relatively trivial. The Georgia Tech Operations

Center currently uses Python’s JSON library to encode its packets for trans-

mission across the Internet and GT network. Although MADNS currently uses

Pickle, the transition to JSON should be relatively painless. As the COSMoS

simFunc.host simulation function already cycles through every HostSatelliteOjbect

on every iteration, it would be trivial to pick out the current propagated states,

bundle them, and transmit the consolidated packet to the Ops Center. This was

not implemented in the current version due to the long list of more pressing issues,

but is an important next step in the development of MADNS and COSMoS. While

this is posed as providing communications with a satellite operations center, it

can be generalized to provide communications with any external system which can

be adjudicated by the host computer to provide real-time communications as in

agent-to-agent communications.

8.4 Conclusions

While MADNS and COSMoS cannot currently serve as a large- or massive-scale

satellite constellation simulator, is has proven out several key technologies for the

development of such a system. The system, as it stands, has shown the ability to

handle real-time HWIL communications between multiple agents and a simulation

host while simultaneously showing that the inequalities presented in Section 2.5 are

reasonable to first order. Additionally, the structure of this system has shown that

asynchronous host state propagation can provide a viable method for maintaining

real-time operations on agents without requiring that the simulation truth be gener-

ated in real-time. This makes the creation of a massive-scale RT-HWIL system more

69

feasible through the management of update times, synchronization rates, agent data

buffers, and by carefully calibrating the size and duration of necessary synchronous

state updates.

Now that companies are receiving official approval to deploy massive satellite con-

stellations[37], and other companies are doing it without asking permission[38], it

is even more important that there be an independently verifiable system for test-

ing autonomous constellation operations. Companies will always find ways to pass

regulatory test regardless of whether or not their products actually meet specifica-

tions[39]. However, an independent, open-source testing model with easy integration

of independent flight codes and separately created simulation environments provides

both constellation managers and regulators with a framework that can test hardware

and software in a verifiable and transparent simulation environment. This project

is an initial step towards creating a generalized framework for massive scale satellite

constellations and other multi-agent distributed networks, such as self-driving cars

and drone swarms, as these systems make their way into general use.

70

Appendices

71

APPENDIX A

MADNS AND COSMOS CODE DOCUMETATION

A.1 MADNS Code Base Details

The MADNS code base is written in Python 3 and is contained in four main files
designed to modularly incorporate a variety of simulations. An associated set of bash
scripts allows for the easy execution of the system, consolidation of log files after a
simulation, and assist in a variety of debugging tasks.

All of these scripts are described in general below.

A.1.1 Bash Scripts

The Bash scripts are generally quite simple but are extremely useful in the use of the
MADNS system.

piTargets.sh

This script is simply a listing of which SBCs will be used during a particular sim-
ulation. It should match the variable agentList found in the localConfig.py script
discussed in Section A.1.2. Every other script that interfaces with the SBCs relies on
piTargets.sh, so it is important to be sure the variable is set correctly here.

runMainExecutable.sh

This program executes several commands in preparation for running a simulation on
MADNS. The order of operations is:

1. The script reboots all SBCs to clear any potential network issues and waits 25
seconds for them to come on-line. It then pings all of them to be sure they are
alive.

2. The system executes systemSetup.py to generate a unique run number for the
simulation.

3. The system executes pushCodeToPis.sh which syncs all SBCs with a current
copy of the MADNS and simulation codebases.

4. The script executes the hostMainExecutable.py script on the host and in parallel
opens an ssh connection to each SBC and executes agentMainExecutable.py

5. When all MADNS scripts have exited, the system copies all log files from the
agents to the host computer and zips them for transfer to other systems.

72

consolidateLogs.sh

This script is the last step executed by runMainExecutable.sh and is responsible for
collecting all log files and zipping them for easy transfer.

killCluster.sh

This script kills all Python instances operating on the host computer and reboots
the SBCs. The system still does not exit gracefully from all error conditions and this
script is useful in quickly ending runs which have gone awry.

manualRun.sh

This script is a variation on runMainExecutable.sh which performs the first three
steps, but then only executes hostMainExecutable.py on the host computer. The
assumed intent is for the user to manually execute agentMainExecutable.py on one or
more agents to assist in debugging. Attempting to use this script with more than a
handful of agents is extremely impractical.

rebootCluster.sh

A simple script that connects to each SBC via ssh and executes sudo reboot.

pushCodeToPis.sh

This script uses a forked rsync process to copy all MADNS and simulation code to
the SBCs. It is always executed by runMainExecutable.sh and manualRun.sh before
executing a simulation.

pingPis.sh

A simple script that pings all SBCs listed in piTargets.sh to confirm that they are
active.

wipeLogFiles.sh

This script erases all log files on each SBC to avoid filling up the 32 GB SD card
storage devices.

installPiSoftware.sh

This script allows for the automated installation of software on every SBC listed in
piTargets.sh using the apt-get command.

73

uninstallPiSoftware.sh

This script performs the inverse function of installPiSoftware.sh.

piUpdate.sh

Similar to installPiSoftware.sh, this script runs sudo apt-get update on every SBC
in parallel.

python2PackageInstall.sh and python3PackageInstall.sh

These scripts allow for the automated installation of Python packages using pip2 and
pip3 respectively.

A.1.2 Python Scripts

The core of MADNS is a set of five main Python files supported by several data
storage files and a few minor scripts. The five core functions are described below
along with the more important subsidiary files. A full description can be found in
Appendix A.

localConfig.py

This script is similar to the piTargets.sh file associated with the bash scripts described
above. The script tunable parameters essential to the operation of MADNS and
also variables related to the simulation being run on MADNS. The most important
variables are described in Table A.1.2. Many of these variables are contained inside a
Python dictionary called simConfigData. All such variables are listed inside quotation
marks in the table (e.g. ‘numAgents’)

There are many more settings described in the file itself, but these are a represen-
tative sample of the tunable parameters in MADNS.

74

Table A.1: MADNS Configuration Variables
Variable Name Description
VERBOSITY This variable takes a value from 0-5 and sets

how verbose the system will be during exe-
cution.

simRunTime This variable is used in several other places
in this file and sets how many seconds the
simulation will run for in simulation time.

numWorkers This variable was used to set the number of
parallel pool workers, but is currently depre-
cated.

’numAgents’ This variable sets the number of SBCs to be
used during a run. It appears redundant but
can be useful in checking for system configu-
ration errors.

‘agentList’ This list explicitly sets the ID numbers for
the SBCs being used in a simulation. An
arbitrary configuration of the available SBCs
can be used as desired.

simulationPath This variable sets the home directory for the
simulation files (such as COSMOS)

hostSimulationFile The system allows for separate host and
agent simulation files, although COSMOS
currently only uses one.

‘HWILagents’ This variable allows the designation of which
agents have HWIL interfaces to avoid ex-
ecuting unnecessary code on agents not so
equipped.

75

A.1.3 Real-Time Execution Rate Limiter

The most critical library in the MADNS system is rateLimiterLib.py (RL). This
library is very simple as its primary function is:

def limit_rate(rate, start):

sleepTime = 1./ rate - (time.time() - start)

if sleepTime > 0:

time.sleep(sleepTime)

return sleepTime

This function allows any process in MADNS to be limited to an execution rate
specified in localConfig.py. This is critical to real-time operations, but also protects
the system from polling by the multiprocessing network communication functions.
Early tests had the SBCs all running at their maximum operating temperature and
with one core operating at 100% usage at all times. The culprit was the listening
server described below. Without any time.sleep() commands, the while loops in
the servers repeated at the processor rate and caused substantial overheating on
the SBCs. While this could be resolved with a simple time.sleep(0.001) command,
the rateLimiterLib aloows the enforcing of processing rates for real-time operations.
Python’s time.sleep() command usually accurate to better than 10ms, which has been
sufficient for the current applications but may not be for future use cases. This issue
is discussed further in Chapter 8.

Other functions found in the RL library are used to document real-time execution
violations using the logging utilities described below.

Main Executables

The core MADNS functions are hostMainExecutable.py and agentMainExecutable.py.
The fundamental function of these files is to run a distributed state machine which
passes through a series and runs the simulation as shown in Table A.2.

The bulk of the simulation work is done during the SIMULATION START and
RUN SIMULATION phases on the host and agents respectively. The general outlines
of these functions are discussed below.

hostMainExecutable.py

The hostMainExecutable relies on the networkCommLibrary, systemStatusAgent, and

loggingUtilities functions. It also allows for the import of an arbitrary simulation

function using the syntax:

76

Table A.2: MADNS State Machine
Host State Agent State

HOST STARTUP AGENT READY
SIMULATION SETUP SIMULATION SETUP

HOST SIMULATION READY STARTUP
SIMULATION START RUN SIMULATION

SIMULATION COMPLETE
SIMULATION COMPLETE

BEGIN SHUTDOWN AGENT SHUTDOWN
CLEANUP FUNCTIONS END AGENT

END HOST WAITING SERVER STOP
WAITING SERVER STOP

exit exit

sys.path.insert(0, localConfig.simulationPath)

simFunc = importlib.import_module(localConfig.hostSimulationFile)

This allows the host simulation file to be set in the localConfig.py settings. The
simulation file needs to follow an interface described later and in Section 4.1.1, but
beyond that any code can be placed within the simulation framework.

Before the state machine begins, the host main executable spawns a listening
server, a transmit server, and a logging process. The listening server remains open
until after the agents have all reported complete and communicates through the Mul-
tiprocessing.Queue object instantiated as incomingQueue. It remains running until
the host places data in a the serverStopQueue Queue object. These three processes
all run at rates specified in localConfig.py to avoid consuming excessive resources on
the host computer.

If the host fails to establish these three processes, the state machine enters with the
state “EMERGENCY SHUTDOWN” which immediately closes the host and broad-
casts “EMERGENCY SHUTDOWN” to the agents so they also close. There are
several other points in the state machine where “EMERGENCY SHUTDOWN” can
be set, including by the agents. If an agent enters an “EMERGENCY SHUTDOWN”
state, it broadcasts that to the host which rebroadcasts to all agents and begins its
own shutdown process.

If the three processes have been established, the host enters its state machine
with the state “HOST STARTUP”. During the startup phase, the host uses the
networkCommLibrary.py (hereafter referred to as NCL) query and wait function
which allows the host to broadcast a message to all agents and wait for a reply.
In this case, the host broadcasts “SYSTEM START” and waits for every agent
to reply with “AGENT READY”, after which the host changes its state to
“SIMULATION SETUP”.

During “SIMULATION SETUP”, the host executes the simulation function

77

simFunc.setup host simulation, which is one of the simulation functions required
by the API. Regardless of how it operates, setup host simulation must return the
next desired host state, a list of classes associated with the simulation (simClasses),
a list of all Queue objects required by the simulation, lists of all log files and
data files required by the simulation, and a list containing the initial state data
required by the simulation. If the function runs correctly it returns the state value
“HOST SIMULATION READY” and the host progresses.

During “HOST SIMULATION READY” the host system executes sim-
Func.send host setup to agents, another required simulation function. This function
transmits the initial simulation data to the agents and waits for the agents to
report “AGENT SIMULATION READY”. This behavior is a required element
in the MADNS API. If all agents report ready, the function returns “SIMULA-
TION START” or it returns “EMERGENCY SHUTDOWN” if something has gone
wrong such as an agent not reporting.

During “SIMULATION START” the host executes simFunc.run host simulation
which is where the true business of MADNS occurs. This function call is wrapped
in try/except with special provisions made for a KeyboardInterrupt exception. This
allows the system to exit relatively cleanly if the operator needs to end the pro-
cess for any reason. This function blocks the execution of the main executable
until either the simulation is either complete or interrupted and returns the next
hostState and any processing pool functions created by the simulation. Currently,
the statePool variable does nothing due to the issues discussed in Section 8.2.1, but
should that be resolved it allows the main executable to ensure that the whole pro-
cess exits cleanly once the simulation is complete. A required API element is that
run host simulation return “SIMULATION COMPLETE” once all agents have re-
ported “SIMULATION COMPLETE”.

Currently, the “SIMULATION COMPLETE” phase executes a second
query and wait to be sure that all the agents have reached the “AGENT STOP”
phase discussed later. The host then moves on to the “CLEANUP FUNCTIONS”
phase, during which the host attempts to empty all its Multiprocessing.Queue
objects and log any orphaned packets for later analysis. There is space here for
analytic functions to determine how the simulation performed, but none have
been implemented so far. Next, the host enters “END HOST” where the host
closes its listening server, transmit server, and closes the logging process once
the loggingQueue Queue object is empty. This was the source of considerable
trouble during development as the Python Multiprocessing.Queue objects have some
substantial deficiencies described in Section 8.2.1.

Finally, the host enters “HOST CLOSEOUT” where it kills any persistent pro-
cesses using the Multiprocessing.Process.terminate() function to send SIGTERM to
any function which did not exit normally. Again, this is an outgrowth of the issues de-
scribed in Section 8.2.1. Once all processes have terminated, the host executable ends
and runMainExecutable.sh continues to collect data from all the agents, concluding
host operations for the simulation.

78

agentMainExecutable.py

The agent executable functions similarly to the host executable. When started, it
attempts to spawn the same listening, transmit, and logging processes found on the
host. Once those processes are alive, it enters its state machine with similar steps to
the host. Only the important distinctions will be addressed here.

The first notable difference from the host executable is the establishment of agent
specific variables in the simConfigData dictionary such as “localAgentNum”, which
are used to identify the agent during communications with the host. The next is the
establishment of a system status agent (SSA) using the systemStatusAgent.py library
discussed later. While such an agent could be established on the host, it has so far
only been required on the agents.

The agent then enters “AGENT READY” where it waits for the host to trans-
mit “SYSTEM START” and returns “AGENT READY” to the host. After receiving
“SYSTEM START”, the agent moves into the “SYSTEM START” state and waits for
a “SIMULATION SETUP” packet generated by simFunc.send host setup to agents
on the host. Upon receiving the setup packet, the agent passes the data to sim-
Func.setup agent simulation. When the simulation is prepared, the agent triggers
its system status agent and moves to “AGENT SIMULATION READY”, which it
transmits to the host.

The agent then waits for the host to broadcast “SIMULATION START”
and moves into “RUN SIMULATION” where, like the host, it executes sim-
Func.run agent simulation which blocks until the agent has completed its
simulation. Upon exit from run agent simulation, the agent transmits “SIMU-
LATION COMPLETE”, which the host is waiting for from all agents before it
moves into “END SIMULATION”. The agents then wait for the host to broadcast
“SYSTEM STOP” before entering “AGENT SHUTDOWN” where the agent
performs its cleanup functions. These functions currently include recording any
orphaned packets and killing the logging and server processes as on the host. Once
completed, the agent transmits “AGENT CLOSED” to the host without using the
now dead outgoingServer process, and the agent process is complete.

Network Communication Library

All network communication tools are stored in networkCommLibray.py, referred to
as NCL. The NCL contains the following functions:

• format outgoing message

• query and wait

• outgoing server

• udp listen

• broadcast

79

• udp send

Most of these functions are as self explanatory as they appear, but several require
some comment.

NCL.query and wait

This function allows the host to request information from all agents at once and
wait for their responses. The function takes in the arguments broadcastMessage,
returnMessage, and nextState. NCL.query and wait will use NCL.broadcast to broad-
cast the broadcastMessage to all agents, and then wait for a packet carrying the
returnMessage to arrive from every agent. If any agents fail to respond within
1 second, the function will rebroadcast the broadcastMessage to any agents which
have failed to report several more times. If all the agents report, the function re-
turns nextState to progress the host’s state machine. Otherwise, the function returns
“EMERGENCY SHUTDOWN” to prompt exit behavior due to a missing agent.

NCL.outgoing server and NCL.udp send

These two functions provide the service one might expect, but they do so within the
MADNS framework. Both are limited by the ‘serverRate’ set in localConfig.py to
avoid excessive resource consumption and both communicate with the host through
Multiprocessing.Queue objects. The outgoing server runs at its specified rate and
continually checks the outgoingQueue object for any messages which need to be sent.
This helps guarantee that messages will be sent in a timely manner regardless of
whatever else the host or agent is occupied with. The udp litsen function is also
designed as a separate process and, when it receives a message, inserts it into the
incomingQueue object for processing by a main executable or a simulation function.
As these are both spawned processes using Python’s Multiprocessing.Process protocol,
they need to receive orders to stop from the main executable. This is handled using
a Multiprocessing.Queue object called serverStopQueue. Both UDP are wrapped in a
while serverStopQueue.empty() loop and complete their operations and exit only
when the main executable has placed something into the serverStopQueue. This
has led to some issues noted in Section 8.2.1, but in general the functions behave
well or are terminated using a SIGTERM during host and agent cleanup phases.
Both functions execute serverStopQueue.get() to log their reason for stopping, so it
is important that the main executable place two objects in the queue to stop both
processes.

All MADNS packets are Pickleed Python lists and have the same form:

[Packet type, Target IP address, [Data packet]]

Because of the use of Pickle, the data packet can be any arbitrary Python data
structure, but there are some limitations. There is code in this function to attempt
the collection of large packets, but it has never worked. Instead, the socket receive

80

buffer has been increased to 217 bytes. This is a sub-optimal solution, but it was
necessary to make COSMoS work in the short run.

Every packet must contain the target IP due to the use of the UDP protocol.
Early tests showed that every agent received a copy of every UDP packet during
transmission and acted on them. NCL.udp listen filters packets by comparing the
target IP to the agent’s (or host’s) IP address stored in simConfigData and passed
to the outgoing server process when it is spawned.

Logging Utilities

The utilities stored in loggingUtilities.py, referred to as LU, are responsible for storing
all data generated during the simulation. Early tests showed large delays in the ability
of agents to handle the benchmark test, and this problem was traced to disk I/O on
the SBC’s SD cards. By creating a separate logging utility using the loggingQueue
Queue object, this load was moved away from the main process and the result was
that the benchmark test began to operate at its expected rate as described in Chapter
6.

LU.logging process

Most functions in the LU library simply create log files and log directories,
but LU.logging process is the heart of the system. Like NCL.udp listen and
NCL.outgoing server, this function is designed to operate as a separate process
spawned using Multiprocessing.Process. The process starts when instructed, loops at
a rate specified in localConfig and acts when it finds data in the loggingQueue Queue
object. The process ends only when loggingQueue.empty() reports true and the main
executable has placed something into the loggingStopQueue.

LU.log print

This is the primary debugging tool for MADNS. The LU.log print function is what
implements the VERBOSITY value set in localConfig. While many of the log print
calls are currently in case they damaged performance, in general any message being
sent to the loggingQueue is also passed to log print. This function compares the
verbosity level attached to a particular log packet with the VERBOSITY level set
at startup. If the verbosity of the packet is less than the global VERBOSITY, the
message is printed to the screen as well as being written to disk. Because MADNS
creates a lot of data at very high rates, this setting must be used with great care.

A.1.4 System Status Agent

The library systemStatusAgent.py was one of the first scripts created for MADNS,
and the code shows its age in many ways. The primary function of the agent (SSA)
is to gather data about a computer’s operation and log it for future reference during

81

a simulation. In general, the utility collects data on core temperature, CPU usage,
memory usage, disk usage, and network I/O.The utility is capable of collecting net-
work traffic information, but this was never implemented.

An important note is that this utility only works on the agents because it re-
quires the Python psutil library. Unfortunately, psutil requires elevated permissions
to install because it interacts directly with the operating system, and Georgia Tech
IT department did not want to install it on the host computer. However, as cluster
operators have root access to the SBCs, it was trivial to install there.

A.1.5 Minor Utilities

The runManagementLib.py file has a much more grandiose name than its function
deserves. This script simply creates and reads the currentRun.py and runList.txt
files, which designate a unique run number for every simulation. These run numbers
are used by the main executables and runMainExecutable.sh to organize the log files
generated during a simulation.

There are a number of other utilities found in the MADNS Git repository which are
not document here, such as localMathLib.py, because they were never implemented.

A.2 MADNS Files and function calls

The following documents all MADNS function calls and their return values, organized
by file with commentary where appropriate.

A.2.1 hostMainExecutable.py

The following code occurs during the imports:

Hack? to use all cores

os.system("taskset -p 0xff %d" % os.getpid())

Import simulation module based on local config setting

sys.path.insert(0, localConfig.simulationPath)

simFunc = importlib.import_module(localConfig.hostSimulationFile)

The first command sets the processor affinity for all spawned processes to any
available processor so the OS assigns them freely. The second inserts the simulation
file directory and loads the host simulation file as textitsimFunc. Both of these
settings are managed in localConfig.py.

82

def spawn_listening_server(incomingQueue, hostIP, listenPort, serverLogFile

↪→ , serverStopQueue, loggingQueue, serverRate, rateLogFile,

↪→ rateDataFile):

return mp.Process(target=NCL.udp_listen, args=(incomingQueue, hostIP,

↪→ listenPort, serverLogFile, serverStopQueue, loggingQueue,

↪→ serverRate, rateLogFile, rateDataFile))

def spawn_transmit_server(outgoingQueue, ipPrefix, targetPort,

↪→ serverLogFile, serverStopQueue, loggingQueue, serverRate,

↪→ rateLogFile, rateDataFile):

return mp.Process(target=NCL.outgoing_server, args=(outgoingQueue,

↪→ ipPrefix, targetPort, serverLogFile, serverStopQueue,

↪→ loggingQueue, serverRate, rateLogFile, rateDataFile))

def spawn_logging_process(loggingQueue, loggingStopQueue, loggingRate,

↪→ systemLogFile, HOST_START_T0):

return mp.Process(target=LU.logging_process, args=(loggingQueue,

↪→ loggingStopQueue, loggingRate, systemLogFile, HOST_START_T0))

def check_for_stupid(simConfigData):

if simConfigData[’hostPoolWorkers’] == 0:

LU.log_print(’hostMainExecutable: check_for_stupid: ERROR:

↪→ hostPoolWorkers == 0’, 0)

if not simConfigData[’numAgents’] == len(simConfigData[’agentList’]):

LU.log_print(’hostMainExecutable: check_for_stupid: ERROR: numAgents

↪→ != len(agentList)’, 0)

else:

return 0

83

def main():

return 0

A.2.2 agentMainExecutable

def spawn_listening_server(incomingQueue, hostIP, listenPort, serverLogFile

↪→ , serverStopQueue, loggingQueue, serverRate, rateLogFile,

↪→ rateDataFile):

return mp.Process(target=NCL.udp_listen, args=(incomingQueue, hostIP,

↪→ listenPort, serverLogFile, serverStopQueue, loggingQueue,

↪→ serverRate, rateLogFile, rateDataFile))

def spawn_transmit_server(outgoingQueue, ipPrefix, targetPort,

↪→ serverLogFile, serverStopQueue, loggingQueue, serverRate,

↪→ rateLogFile, rateDataFile):

return mp.Process(target=NCL.outgoing_server, args=(outgoingQueue,

↪→ ipPrefix, targetPort, serverLogFile, serverStopQueue,

↪→ loggingQueue, serverRate, rateLogFile, rateDataFile))

def spawn_logging_process(loggingQueue, loggingStopQueue, loggingRate,

↪→ systemLogFile, HOST_START_T0):

return mp.Process(target=LU.logging_process, args=(loggingQueue,

↪→ loggingStopQueue, loggingRate, systemLogFile, HOST_START_T0))

def spawn_ssa_process(simConfigData, hostIP, outgoingQueue, loggingQueue,

↪→ SSAstopQueue, systemStatusLogFile, rateLogFile, rateDataFile,

↪→ agentFlag):

return mp.Process(target=SSA.main, args=(simConfigData, hostIP,

↪→ outgoingQueue, loggingQueue, SSAstopQueue, systemStatusLogFile,

84

↪→ rateLogFile, rateDataFile, agentFlag))

def check_for_stupid(simConfigData):

if simConfigData[’hostPoolWorkers’] == 0:

LU.log_print(’hostMainExecutable: check_for_stupid: ERROR:

↪→ hostPoolWorkers == 0’, 0)

if not simConfigData[’numAgents’] == len(simConfigData[’agentList’]):

LU.log_print(’hostMainExecutable: check_for_stupid: ERROR: numAgents

↪→ != len(agentList)’, 0)

else:

return 0

def main():

if agentState == "AGENT_SHUTDOWN":

return 0

else:

logMsg = "agentMainExecutable: Reached end of executable

↪→ without agentState == ’WAITING_SERVER_STOP’"

print(logMsg, file=sys.stderr)

LU.write_log(systemLogFile, logMsg, AGENT_START_T0)

logMsg = "agentMainExecutable: Exiting agent executable

↪→ abnormally"

print(logMsg, sys.stderr)

LU.write_log(systemLogFile, logMsg, AGENT_START_T0)

return 1

85

A.2.3 loggingUtilities.py

def log_print(message, level):

if level <= localConfig.VERBOSITY:

print(message)

def get_current_utc():

return datetime.datetime.utcnow().strftime("%Y_%m_%d_%H_%M_%S")

def write_log(fhandle, message, TIME_0=0):

return 0

def make_log_folder(logPath):

def setup_log(logPrefix, logPath, runNumStr):

return logFile

def data_log_output(fhandle, dataPacket):

return 0

def logging_process(loggingQueue, loggingStopQueue, loggingRate, logFile,

↪→ TIME_0):

while not loggingQueue.empty() or loggingStopQueue.empty():

<...>

return 0

A.2.4 networkCommLibrary.py

def format_outgoing_message(messageList, targetIP):

return msg

86

def query_and_wait(agentList, systemLogFile, transmitLogFile, loggingQueue,

↪→ ipPrefix, targetPort, broadcastMessage, returnMessage, nextState,

↪→ incomingQueue, FUNC_T0):

return nextState

def outgoing_server(outgoingQueue, ipPrefix, targetPort, logFile,

↪→ serverStopQueue, loggingQueue, serverRate, rateLogFile, rateDataFile

↪→):

return 0

def udp_listen(incomingQueue, localIP, listenPort, logFile, serverStopQueue

↪→ , loggingQueue, serverRate, rateLogFile, rateDataFile):

return 0

def broadcast(targetList, ipPrefix, targetPort, messageList, logFile,

↪→ loggingQueue, TIME_0=0):

return 0

def udp_send(sock, targetDevice, ipPrefix, targetPort, message, logFile,

↪→ loggingQueue, TIME_0):

return bytesVal

A.2.5 rateLimiterLib.py

def limit_rate(rate, start):

sleepTime = 1. / rate - (time.time() - start)

LU.log_print(’RLL: limit_rate: sleepTime: {}’.format(sleepTime), 5)

if sleepTime > 0:

87

time.sleep(sleepTime)

return sleepTime

def rate_limit_log(rlTest, processName, loopName, rateLogFile, rateDataFile

↪→ , TIME_0):

if rlTest <= 0:

if rlTest <= -0.005:

logMsg = ’RLL: ERROR: {}: Rate overflow: {} loop: {}’.format(

↪→ processName, loopName, rlTest)

LU.log_print(logMsg, 0)

LU.write_log(rateLogFile, logMsg, TIME_0)

LU.write_log(rateDataFile, [processName, loopName, rlTest])

return 1

else:

logMsg = ’RLL: Warning: {}: Rate overflow: {} loop: {}’.format(

↪→ processName, loopName, rlTest)

LU.log_print(logMsg, 6)

LU.write_log(rateLogFile, logMsg, TIME_0)

LU.write_log(rateDataFile, [processName, loopName, rlTest])

return 0

else:

logMsg = ’{}: Rate report: {} loop: {}’.format(processName,

↪→ loopName, rlTest)

LU.log_print(logMsg, 3)

LU.write_log(rateLogFile, logMsg)

return 0

def report_rate_overflows(rateOverflow, processName, loopName, rateLogFile,

↪→ TIME_0):

88

logMsg = ’Total rate overflows from {}: {}: {}’.format(processName,

↪→ loopName, rateOverflow)

LU.write_log(rateLogFile, logMsg, TIME_0)

LU.log_print(logMsg, 0)

return 0

A.2.6 runManagementLib.py

def increment_run_number(runListHandle, runDateTime):

return runNum, runStr

def new_run_file(runListHandle, runDateTime):

return runNum

def read_run_num(runListHandle):

return runNum, runStr

A.2.7 systemStatusAgent.py

class StateOfHealth:

def __init__(self, temp, ram, diskSpace, diskIO, networkIO, networkConn

↪→ , cpuUsage):

self.temp = temp

self.ram = ram

self.diskSpace = diskSpace

self.diskIO = diskIO

self.networkIO = networkIO

self.networkConn = networkConn

self.cpuUsage = cpuUsage

89

class TimeDataPacket:

def __init__(self, time0, currTime, prevTime, deltaTime, tick, trigger)

↪→ :

self.time0 = time0

self.currTime = currTime

self.prevTime = prevTime

self.deltaTime = deltaTime

self.tick = tick

self.trigger = trigger

def get_ip_address(ifname):

return addr

def time_update(timeData, SYSTEM_STATUS_T0):

return TimeDataPacket(timeData.time0, currTime, prevTime, timeData.

↪→ deltaTime, timeData.tick, timeData.trigger)

def get_cpu_temp():

return float(strOut[strOut.index(’=’) + 1:strOut.rindex("’")])

def get_ram_info():

return [ram_total, ram_used, ram_free, ram_percent_used]

def get_disk_space():

return ([disk.total, disk.used, disk.free, disk.percent])

def get_disk_io():

90

return [diskIO.read_count, diskIO.write_count, diskIO.read_bytes,

↪→ diskIO.write_bytes, diskIO.read_time, diskIO.write_time, diskIO.

↪→ busy_time, diskIO.read_merged_count, diskIO.write_merged_count]

def get_network_io():

return ([net.bytes_sent, net.bytes_recv, net.packets_sent, net.

↪→ packets_recv, net.errin, net.errout, net.dropin, net.dropout])

def get_network_conn():

return (’NetConnInfoHereEventually’)

def get_cpu_usage():

return cpuPct

def get_general_info():

return bootTime

def build_msg_list(timeData, soh, localIP):

return msgList

def run_benchmark(iterCount, numThreads):

return totTime

def main(simConfigData, localIP, outgoingQueue, loggingQueue, SSAstopQueue,

↪→ logFile, rateLogFile, rateDataFile, runningOnAgent):

return 0

Notes: In this function, the spawned process is actually SSA.main. The runBench-
mark function is not directly related to the overall MADNS benchmark counting test.
Instead, it allows the system to stress itself by running a prime number factorization
algorithm parallel to whatever else MADNS is doing. In theory, this allows the system

91

to be tested under high agent load although the results of these tests have not been
representative of how COSMoS behaves.

A.3 COSMoS Code Base Details

This section describes the COSMoS code base and the MADNS simulation API in
general. COSMoS is a particular application for MADNS, and so care will be taken
to state where functions are purely a part of COSMoS and where they are a required
part of MADNS.

A.3.1 hwilUtilites.py and dummyHWIL.py

The HWIL utilities will be discussed in greater detail in Chapter 5, however it should
be noted that the HWIL utilites are part of the MADNS interface. The HWIL utilities
are required to have the following functions:

• setup hwil interface, which returns the HWIL interface driver used by the sim-
ulation

• hwil query and send, which uses the HWIL interface driver to query the hard-
ware interface and then passes the data to other agent functions via a Queue
object or simply transmits it to the host as in the current COSMoS use case.

• hwil process, which was designed as a multiprocess function, but has suffered
the same fate as may of its cousins.

The dummyHWIL.py script exists to be loaded by any agent without a hardware
interface. It contains the same functions as hwilInterface.py, but they are all of the
following form:

def setup_hwil_interface():

return 0

A.3.2 COSMOSmainFile.py - MADNS Core Functions

The MADNS framework allows for separate host and agent simulation files, but COS-
MoS currently only uses one file for both. As noted in the main executable discussion,
this function is loaded as simFunc by the host and agent executables. Using a sin-
gle file is not the most efficient path as it requires either installing every toolbox
required by the host (such as matplotlib, numpy, and SciPy) on every agent or pro-
viding dummy functions as described in Section A.3.1. In this case, that was done
for SciPy, but most of the other libraries are used by both the host and agents.

The following functions are required parts of the MADNS API. In a template
MADNS simulation file, they are found below a divider which separates simulation

92

specific functions from MADNS required functions. The hope is that users will not
have to modify the MADNS required functions, but will be able to do all their work
above the divider.

simFunc.setup agent simulation

As described earlier, this function accepts the initial simulation data provided by the
host and prepares it for use on the agent simulation. It is also responsible for creating
classes, queues, log files, and data files used by the particular simulation. When
complete, the function must report “AGENT SIMULATION READY” to advance
the agent’s state machine. For COSMoS, the primary function is the instantiation of
an AgentSatelliteObject from satelliteFunctions.py discussed below.

simFunc.setup host simulation

This function creates classes, queues, log files, and data files like its counterpart on
the agents, but it has several additional functions. The host setup function reads
in data files and parses them to create instances of host class objects and package
a data packet to be sent to the agents. For COSMoS, this involves the creation of
HostSatelliteObjects from the satelliteFunctions.py library.

simFunc.send host setup to agents

This function is a close relative of NCL.query and wait. It does everything that
query and wait does, but it keeps track of which data elements have been sent as well
as which agents have reported that they received the data and are ready. Because the
initial state data lists are more complicated than a simple NCL.broadcast message, it
was not possible to use NCL.query and wait, but it is a good guide for understanding
this function.

simFunc.run host simulation

This function is the interface between MADNS and the simulation code being run on
the host computer. First it runs the simulation specific simFunc.start host simulation
to mark the host’s simT0 variable for tracking simulation time however the specific
simulation wishes to do that. It performs an NCL.query and wait to be sure that all
agents are running the simulation, and then enters a rate limited (using RL.limit rate)
while loop until every agent has completed its simulation. The loop executes a simula-
tion specific simFunc.host simulation function() using a common MADNS interface,
which will return any packets not specifically used by the simulation. These packets
include, but are not limited to, SSA updates, “EMERGENCY STOP” requests, and
the most important “SIMULATION COMPLETE” packets. Because it is expected
that host simulation function will access the incomingQueue, the function must re-
port any packets it finds which were not meant for the simulation, or None if the

93

incomingQueue was empty or contained a simulation packet. When an agent reports
“SIMULATION COMPLETE”, the function removes that agent’s number from the
agentProcessesRunningSimulation list. Once that list is empty, the simulation while
loop ends, and the host state machine progresses to “SIMULATION COMPLETE”.

It should be noted that this function is also responsible for spawning the host
state pool. This was the source of most problems discussed in Section 8.2.1, and has
therefore been commented out. However, should it be reactivate at any point it is
important to know why it is here and not in setup host simulation. When the pool
functions are spawned using the, currently, deprecated state pool generator function,
they are provided with time.time() as their POOL T0 value. It is important that
this value be as close as possible to the actual start of the simulation so that all pool
workers and the main simulation share, approximately, the same simT0 value for
later data analysis.

simFunc.run agent simulation

This function is almost identical to simFunc.run host simulation except that its while
loop terminates when the current simulation time (time.time() - simT0) meets or ex-
ceeds the simulation run time set in localConfig. It is also responsible for invoking calls
to the HWIL libraries if the agent it is running on has HWIL devices. When its while
loop exits, the function is also responsible for sending “SIMULATION COMPLETE”
to the host.

A.3.3 COSMOSmainFunction.py - Simulation Specific Functions

These functions are all found above the divider in a MADNS main simulation file.
While some of these functions are required by the MADNS framework, their contents
are extremely simulation specific and it is expected that their internal workings will
be heavily modified. It is hoped that their inputs and outputs can remain a constant
interface as much as possible.

simFunc.parse simulation data file

This function is responsible for parsing the data files used by setup host simulation.
So long as the function accepts a file name and returns a valid Python data structure,
the parser itself can be modified to match any data format.

simFunc.generate state packet data

This function accepts a target agent ID and the data being sent to that agent. It sim-
ply formats the data into a MADNS compliant packet (as described in the NCL sec-
tion), and then returns that packet for eventual passing to send host setup to agents.

94

simFunc.parse state data

Should initial state data, or simulation state data, require any processing on the host
or agent side, this function can be used to provide that. For COSMoS, it reads:

def parse_state_data(packet):

return packet

simFunc.host class setup

This function takes the initial state data and creates instances of simulation classes
on the host. The assumed needs of these classes, based on the experience of creating
COSMoS are the general simulation configuration data, the initial state data, and all
three multiprocessing queues. The function must return a list of classes which is later
used to map incoming data to a particular agent’s class on the host.

simFunc.host simulation function

This is the central function in any MADNS simulation. As mentioned before, this
function is called by simFunc.run host simulation in a rate limited loop. Any activ-
ities which the simulation needs to perform to generate noumenons are placed here
as are any actuator models which convert those noumenons to phenomenons for use
by the agents. In many cases, all those functions will be handled by an instanti-
ated simulation class, but those class activities are triggered here. Additionally, if
the simulation accesses the incomingQueue it must return any unused packets to
run host simulation or return None if the packet was used by the simulation and not
needed by the MADNS framework.

For COSMoS, this function loops through all the satellite objects stored in sim-
Classess, and triggers their propagation methods, but avoids excessive propagation
as described in the discussion of satelliteFunctions.py below.

simFunc.agent simulation function

Similar to host simulation function, this is responsible for running the simulation on
the agent. For COSMoS, its current purpose is to add incoming host propagation data
to the agent’s data buffer through the AgentSatelliteObject methods, run the GNC
algorithm attached to the satellite object, transmit the agent’s current simulation
time back to the host to coordinate the simulation, and store the agent’s current
state for future data processing.

95

simFunc.start host simulation and simFunc.start agent simulation

These two functions simply mark the host’s and agent’s simT0 at an appropriate
time just before beginning simulation operations.

simFunc.simulation pool function - deprecated

Should the multiprocessing issues ever be resolved, this is where the simulation specific
processing pool will be configured.

A.3.4 COSMoS Satellite Functions

The satelliteFunctions.py file contains the two classes used by COSMoS, HostSatel-
liteObject and AgentSatelliteObject. The HostSatelliteObjects are responsible for in-
terfacing current state data with the propagator and applying impulsive ∆v values
sent from an AgentSatelliteObject for the simulation. Object methods of note include
clear old prop data which empties old values from the host’s stored propagation data
based on the agent’s reported simulation time, update mid time which updates the
trigger time for further propagation, and apply maneuver which re-propagates the
state data based on a commanded ∆v sent from an agent. The AgentSatelliteOb-
jects are somewhat simpler, but they do contain the rudimentary GNC algorithm
currently used by COSMoS in the run guidance and calculate dv methods. While
currently rudimentary, these can eventually be replaced with more interesting GNC
algorithms for a true simulation.

A.3.5 COSMoS State Propagator

The current propagator in use for COSMoS is a simple 2-body Keplerian propagator
developed for GT-SORT. The code is stored in the file gtSortAlgo.py and is mostly
the same as that used on GT-SORT except for the propagate and convert prop data
functions which have been modified to fit the data into the format used by COSMoS
as opposed to that used by GT-SORT.

A.4 COSMoS Files and function calls

A.4.1 COSMOSmainFunction.py

The code presented here is actually found in simpCOSMOSmainFunction.py. The
original COSMOSmainFunction.py file still contains the code needed to call Basilisk
through execnet and is, therefore, completely useless for running simulations. That
said, it does contain information about how to implement Basilisk inside the MADNS
framework.

96

def parse_simulation_data_file(fileName):

return satTLEs

def generate_state_packet_data(targetDevice, dataFileElement):

return initialStatePacket

def parse_state_data(packet):

stateData = packet

return stateData

While the current parse state data function is extremely simple, it can be modified
as needed to work with various simulation classes.

def agent_class_setup(simConfigData, incomingQueue, outgoingQueue,

↪→ loggingQueue):

return simClasses

def host_class_setup(simConfigData, initialStateData, incomingQueue,

↪→ outgoingQueue, loggingQueue):

return simClasses

def host_simulation_function(simClasses, simConfigData, loggingQueue,

↪→ incomingQueue, outgoingQueue, logFile, dataFile, TIME_0=0):

<...>

if not incomingQueue.empty():

msg = incomingQueue.get()

if msg[0] == ’agentTimeUpdate’:

LU.log_print(’simFunc: host_simulation_function: received

↪→ agentTimeUpdate: {}’.format(msg), 3)

simClasses[agentSatelliteMapping[msg[1]]].

97

↪→ clear_old_prop_data(msg[2])

simClasses[agentSatelliteMapping[msg[2][0]]].

↪→ clear_old_prop_data(msg[2][1])

elif msg[0] == ’maneuverPacket’:

simClasses[agentSatelliteMapping[msg[1][1]]].apply_maneuver([

↪→ msg[1][1]])

return None

else:

return msg

The most important thing here is that host simulation function return any mes-
sages needed by the system for logging, exiting, or any other purpose not directly
related to the simulation.

def start_host_simulation(simConfigData, simClasses, simQueues,

↪→ incomingQueue, outgoingQueue, loggingQueue, transmitLogFile,

↪→ simLogFiles, simDataFiles, rateLogFile, rateDataFile, HOST_START_T0)

↪→ :

return 0

def start_agent_simulation(simConfigData, initialStateData, HWILinterface,

↪→ simClasses, simQueues, incomingQueue, outgoingQueue, loggingQueue,

↪→ transmitLogFile, simLogFiles, simDataFiles, rateLogFile,

↪→ rateDataFile, TIME_0):

return 0

def agent_simulation_function(simConfigData, HWILinterface, simClasses,

↪→ simQueues, incomingQueue, outgoingQueue, loggingQueue,

↪→ transmitLogFile, simLogFiles, simDataFiles, rateLogFile,

↪→ rateDataFile, TIME_0):

The agent simulation function doesn’t have a return statement as it is unlikely

98

that the agent will be receiving any packets not meant for simulation once the simu-
lation has started. It might be useful to build an exit hatch in the event of “EMER-
GENCY SHUTDOWN” in the future.

def simulation_pool_function(simConfigData, loggingQueue, statePoolQueue,

↪→ statePoolStopQueue, outgoingQueue, logFile, dataFile, rateLogFile,

↪→ rateDataFile, TIME_0=0):

return statePoolStopQueue.get()

This function is currently deprecated due to the multiprocessing issues.

def setup_agent_simulation(simConfigData, logRunPath, runNumStr,

↪→ systemLogFile, incomingQueue, outgoingQueue, loggingQueue, TIME_0):

return "AGENT_SIMULATION_READY", simClasses, simQueues, dataFiles,

↪→ logFiles, initialStateData, HWILinterface

def setup_host_simulation(simConfigData, logRunPath, runNumStr,

↪→ systemLogFile, incomingQueue, outgoingQueue, loggingQueue, TIME_0):

return "HOST_SIMULATION_READY", simClasses, simQueues, dataFiles,

↪→ logFiles, initialStateData

def send_host_setup_to_agents(simConfigData, incomingQueue, outgoingQueue,

↪→ loggingQueue, initialStateData, simulationLogFile, transmitLogFile,

↪→ HOST_START_T0):

if agentsReady:

return "SIMULATION_START"

else:

return "EMERGENCY_SHUTDOWN"

def run_host_simulation(simConfigData, simClasses, simQueues, incomingQueue

↪→ , outgoingQueue, loggingQueue, transmitLogFile, simLogFiles,

↪→ simDataFiles, rateLogFile, rateDataFile, HOST_START_T0):

99

return "SIMULATION_COMPLETE", None

def run_agent_simulation(simConfigData, initialStateData, HWILinterface,

↪→ simClasses, simQueues, incomingQueue, outgoingQueue, loggingQueue,

↪→ transmitLogFile, simLogFiles, simDataFiles, rateLogFile,

↪→ rateDataFile, TIME_0):

return "SIMULATION_COMPLETE", None

A.4.2 hwilUtilities.py and dummyHWIL.py

The following HWIL utilities are part of the MADNS framework and have th following

interfaces:

def setup_hwil_interface():

return interface

def hwil_query_and_send(hostIdentifier, hwilProcessRate, hwilStopQueue,

↪→ HWILdriver, logFile, dataFile, outgoingQueue, loggingQueue, TIME_0):

def hwil_process(hostIdentifier, hwilProcessRate, hwilStopQueue, HWILdriver

↪→ , logFile, dataFile, outgoingQueue, loggingQueue, TIME_0):

The dummy function exists because the main simulation function contains the
following import statement:

try:

import hwilUtilities as HWIL

except ImportError:

import dummyHWIL as HWIL

The dummy function prevents Python from throwing a syntax error on loading
the simulation file but doesn’t load up memory or any other resources as its code is
empty:

def setup_hwil_interface():

100

return None

def get_sense_hat_data(sense):

return None

def hwil_process(hwilProcessRate, hwilStopQueue, HWILdriver, outgoingQueue,

↪→ TIME_0):

return None

A.4.3 gtSortAlgo.py

def ode_2body(t, x, mu):

return dx

def convert_prop_data(xs, timeArray):

return propData

def propagate(propTime, timeStep, x0):

return propData

A.4.4 satelliteFunctions.py

class HostSatelliteObject:

def __init__(self, agentID, satID, oe, propDuration, propTimeStep,

↪→ incomingQueue, outgoingQueue, loggingQueue):

def set_start_time(self):

101

def update_mid_time(self):

def rv_2_oe(self):

def initial_propagation(self):

return GTS.propagate(self.propDuration, self.propTimeStep, x0)

def orbit_propagation(self, maneuverTime=None):

return GTS.propagate(self.propDuration, self.propTimeStep, x0)

def get_prop_data(self, propStartTime=None):

return self.currentSimTime, self.rN, self.vN

def propagation_check(self):

if (time.time() + self.agentID - self.simT0) > self.propTimeMid:

return True

else:

return False

def continue_propagation(self):

def clear_old_prop_data(self, agentSimTime):

def send_prop_data_to_agent(self):

def apply_maneuver(self, maneuverPacket):

class AgentSatelliteObject:

102

def __init__(self, agentID, satID, incomingQueue, outgoingQueue,

↪→ loggingQueue):

def get_rv(self):

return self.propData[0]

def initialize_prop_data(self, initPropData):

def add_new_prop_data(self, newPropData):

def set_start_time(self):

def send_sim_time_to_host(self):

def calculate_dv(self, maneuver=False):

return dV

def run_guidance(self, maneuver=False):

def apply_delta_v(v0, dv):

return vf

A.4.5 pythonVersionSwitch.py

This function was developed to implement the execnet library’s communication be-
tween Python 3 and Python 2. COSMoS still uses Basilisk’s utility to convert classical
orbital elements into the initial inertial position and velocity vectors, so this library
is still in use.

def call_python_version(Version, Module, Function, ArgumentList):

103

ArgumentList must be a list of strings where each string is an

↪→ argument to the function

i.e. function(a,b) receives ArgumentList = [’a’, ’b’]

gw = execnet.makegateway("popen//python=python{}".format(Version))

channel = gw.remote_exec("""

from {} import {} as the_function

channel.send(the_function(*channel.receive()))

""".format(Module, Function))

channel.send(ArgumentList)

return channel.receive()

104

APPENDIX B

GENERAL LESSONS LEARNED

The creation of MADNS and COSMOS was always an ambitious project, but the dif-
ficulty involved was unclear in two major points. The largest problem that arose is the
relative weakness of Python’s multiprocessing libraries. Secondly, the incorporation
of different propagators into the framework was more difficult than expected because
the Basilisk being written in Python 2.7 while the MADNS framework is in Python
3. A third, minor, issue is due to processing delays introduced by the Sense-Hat, but
it is more an outgrowth of the multiprocessing issue than a separate problem. Each
of these is discussed in the following subsections.

B.1 Python Multiprocessing Limitations

Python multiprocessing has several well-characterized limitations. The most substan-
tial is Python’s Global Interpreter Lock (GIL)[40]. The GIL is the largest bottleneck
in most Python multiprocessing applications because it forces all processes to run
in serial when the Python Threading library is used. The Python Multiprocessing
library is designed to avoid this problem, but it has major problems which have much
less available documentation.

The first is that, without a call to the operating system, Python automatically
assigns all Multiprocess.Process processes to the same core as the parent. Therefore,
while Multiprocessing makes processes more parallel than Threading, it does not make
them multi-core parallel[36]. It is possible to bypass this on Unix-based systems with
a call to:

os.system("taskset -p 0xff \%d" \% os.getpid())

However, when this is used with heavily parallelized processes it dramatically increases
the chances that MADNS will throw os.PIPE errors at random points during the
execution when it interacts with the operating system and other processes running
on the computer.

Another issue is that Multiprocessing.Process processes do not always exit cleanly.
Several tests showed that the server and logging processes described in Section
A.1 would not terminate even when they reached the end of the function. Use of
the LU.log print function proved that the processes successfully processed their
StopQueue elements and reached their respective return 0 statements. However,
when the main executables checked if outgoingServerProcess.is alive(), the response
was always that the process was still running. There are many reasons for this,
including the weakness of the Multiprocessing.Queue objects, but it required that
all processes spawned in the course of a MADNS run be forcibly terminated by

105

using Multiprocessing.Process.terminate(). This function sends an operating system
SIGTERM to the process, but it was not always successful. In many cases, these
persistent and un-killable processes caused the MADNS system to hang and be
unable to log all its data.

Furthermore, the Python Multiprocessing.Queue.qsize() and Multiprocess-
ing.Queue.empty() functions are not precise. This is a known issue in Python
as the official documentation states that the qsize() method will only return an
approximation of the number of data items in the queue. In multiple early attempts
to run MADNS, at the conclusion of a run the system would simultaneously
report loggingQueue.empty() = True and loggingQueue.qsize() = 19342. There is a
high probability that this discrepancy is what caused the Multiprocessing.Process
processes to fail to exit. Python will not exit a process or register it as stopped it
if has open access to a Multiprocessing.Queue object. Even though the processes
were programmed to check that all queues were empty before exiting, Python would
still not allow them to exit because one element of the Queue object believed that it
was still open, full, and being accessed. There were multiple attempts to employ the
Mutliprocessing.JoinableQueue objects as these claim to resolve the above issues, but
they caused even more slowdowns, hangs, and crashes than the base queue objects.
They also suffered from the same mismatch between qsize() and empty() methods.
This leads to the final and most catastrophic issue discovered in the development of
MADNS.

The Multiprocessing.Queue structures do not fail gracefully. During the
November-January rewrite of the MADNS system, multiple tasks were launched
as separate processes. Experiments with the Multiprocessing.Pool and Multipro-
cessing.Process libraries showed that processing functions created using Pool were
significantly slower than those made with Process, so the MADNS code base used
Process. The reason for the slow performance of Pool became apparent during heavy
testing of the MADNS system. Early benchmark tests came back with the terrible
results seen in Fig. B.1.

Figure B.1: Long delays found while using Multiprocessing.Process

106

The system was set to run at 20 Hz on both the host and agents, but each message
had a round-trip time of 1.1 seconds. The problem was tracked to the host computer,
where approximately 1.0 of the 1.1 second delay occurred. This was due to the
system simply freezing when the Multiprocessing.Queue library failed. In low-usage
cases, this problem could be rectified by setting a lower timeout on the Queue.get()
commands, but that caused serious problems with heavy usage. In two cases, during
particularly heavy usage, the host computer hung completely and required manual
rebooting by disconnecting the power. Once the host was set to process all counter
packets in serial, Fig. B.1 shows that the time delay was reduced to 50ms on each
round trip as would be expected with the 20 Hz processing rate. The delay seen

Figure B.2: Speedup caused by serial processing

on agent 22 was due to the implementation of the hardware interface which will be
discussed in Section B.3.

B.2 Propagator Integration

As mentioned in Section 4.1.1, the original plan was to use CU Boulder’s Basilisk
astrodynamics toolkit. Basilisk is a powerful toolkit capable of propagating satellites
with a speed-up of at least 365-to-1 (year-in-a-day). It also includes modules for
atmospheric drag, solar radiation pressure, actuator models, non-rigid bodies, and
the integration of guidance and control algorithms. However, Basilisk is written in
Python 2 and MADNS is in Python 3. Tests showed that much of Basilisk’s speedup
is wasted unless its SpacecraftObject classes can be passed between functions, and
without that COSMoS was unable to run in real-time. Therefore, the Python execnet
library was used to communicate between Python 3 and Python 2 applications to
preserve the integration speed.

Unfortunately, the execnet library was not written with multiprocessing, real-time
execution in mind and certainly not astrodynamic propagation at a rate of 10 Hz.
When tasked with propagating a single satellite, the system would fail in less than ten

107

minutes with an OS.Pipe error as seen in Fig. B.2. When propagating 10 satellites,
the system would fail within 45 seconds.

Figure B.3: OS.Pipe error caused by execnet

It appears that this error is caused by insufficient garbage collection in the execnet
module[41]. Overcoming this error would require elevated permissions on the host
computer, a much greater understanding of OS pipes, or rewriting MADNS in Python
2. Unfortunately, none of these were possible in the course of this thesis.

Fortunately, the propagation code for GT-SORT is written in Python 3. This
propagator is only a simple 2-body Keplerian approximation, but it was able to
provide a functioning orbit propagator, and specifically one developed by an external
group.

It should be noted that COSMoS still a Basilisk function to convert classical or-
bital elements gathered from the TLE file into inertial position and velocity vectors,
so execnet is still used in COSMoS. However, any function using execnet takes ap-
proximately 0.5 seconds, while the same function executed purely in Python 2 takes
approximately 0.05 seconds.

B.3 HWIL Processing Delays

As noted in Chapters 6 and 7, the Sense-Hat imposed significant processing delays
on Agent 22 in the benchmark tests. A Sense-HAT query can take anywhere from
0.005 to 0.5 seconds before it returns its measurements. This would not be a problem
in most cases as the HWIL interface unit could be a separate process running at
its own rate independent of the main FSW algorithm. Unfortunately, the Python
multiprocessing issues discussed in Section 8.2.1 were exacerbated on the SBCs, and

108

the HWIL interface had to be run in serial with the primary agent functions as
described in Section A.1.3. This resulted in an average of a 10 ms delay with a wide
standard deviation on the HWIL-enabled agent as seen in Chapters 6 and 7. Should
MADNS be rewritten in a language with more robust multiprocessing capabilities,
this issue should be easy to correct.

B.4 Additional General Guides

The hardest lesson learned from this project is that Python 3 is not an appropriate
language for this framework. The multiprocessing, speed, and cross-platform interface
requirements are too high for the functionality that Python offers. Specifically, these
requirements suggest that the framework will need to be written in C/C++ with the
assistance of programmers who understand how code interacts with the operating
system for processor affinity, cross-application communication pipes, and network
communication.

Furthermore, real-time operations inside MADNS are handled using the
time.sleep() command. In general, this command has an accuracy of ≈ 10 ms on a
stock operating system[42]. On MADNS, this presented itself as a 1-2 ms standard
deviation in the benchmark test timings as seen in Chapter 6. While this accuracy
is sufficient for the current application, true real-time operation will require more
substantial safeguards. Specifically, Ubuntu is able to implement a real-time kernel
which could provide a much higher level of time accuracy if coupled with a C/C++
codebase[43].

B.5 Communication with an Operations Center and Ground Station

While this seems like a substantial challenge, the current construction of MADNS
and COSMoS makes the task relatively trivial. The Georgia Tech Operations
Center currently uses Python’s JSON library to encode its packets for trans-
mission across the Internet and GT network. Although MADNS currently uses
Pickle, the transition to JSON should be relatively painless. As the COSMoS
simFunc.host simulation function already cycles through every HostSatelliteOjbect
on every iteration, it would be trivial to pick out the current propagated states,
bundle them, and transmit the consolidated packet to the Ops Center. This was not
implemented in the current version due to the long list of more pressing issues, but
is an important next step in the development of MADNS and COSMoS.

B.6 Agent-to-Agent Communication

A critical concept discussed in Chapters 1 and 2 is the ability to simulate satellite-
to-satellite (S2S) communications. While this was not implemented in the current
version of MADNS and COSMoS, the path forward is clear and should be achiev-
able with minimal work. The MPI design allows for the easy segregation of any

109

packets labeled “agentComms” or something similar. Once selected out by sim-
Func.host simulation function, a time-of-flight algorithm can be implemented to de-
termine at what point the message should arrive at its target based on the time it
originated at its sender. This packet could then be routed to an agent with a specified
delivery time.

Once at the agent, this packet would be routed to and stored in the AgentSatelli-
teObject instantiated on the agent. From there, a method such as AgentSatelliteOb-
ject.deliver message can compare the agent’s current simTime to the delivery time in
the communication data and deliver it to the appropriate process at the appropriate
simTime. This relatively simple implementation would allow for the simulation of
satellite-to-satellite and satellite-to-ground communications without substantial re-
works of either the MADNS or COSMoS frameworks.

B.7 MADNS

Referring again to the development guide seen in Fig. 3.2, there are a number of
construction and algorithmic development tasks still in need of addressing.

B.7.1 System Hardware and Message Passing Interface:

Physically expanding the system is simply a matter of acquiring funding for purchas-
ing more SBCs, their peripherals, and building more towers. However, the network
communication algorithm proved unable to handle all 21 currently functioning agents
when the transmission packet sized increased from the benchmark test’s 3 floats to
COSMoS’s 100+ state element packets. This was temporarily addressed by expand-
ing the incoming buffer size in the network communication library, but this fix is not
very clean and was only able to sustain 10 agents during extended operations. Fur-
ther development will require the creation of a more robust network communication
protocol.

B.7.2 Agent to Agent Communication:

This is a critical element in the further development of MADNS and so was treated
more fully in Section 8.3.1.

B.7.3 State of Health Monitoring:

Future versions of the SoH packet should include details about simulation and model
health such as tracking of conserved quantities to limit numerical error.

B.7.4 Simulation Thread Generation:

As discussed above, the Python Multiprocessing library appears to be insufficient
for the needs of the MADNS and COSMoS. Rewriting MADNS and COSMoS into

110

C/C++ (or at least Python 2.7 for Basilisk compatibility) will be a substantial task
and will require the assistance of someone familiar with multiprocessing routines and
OS pipe communication methods.

B.7.5 Data Logging:

Future developments include converting the CSV output to JSON files for data log-
ging.

B.7.6 Simulation Time Management:

The time synchronization is effective, but not optimal. Improvements in the network
communication and multiprocessing libraries will enable improvements in simulation
time synchronization moving forwards.

B.7.7 Internal Data Management:

There are still no internal data management tools, including any real-time data dis-
plays. As this is another heavy multiprocessing load, it will require a substantial
rework of the MADNS system and better multiprocessing capabilities before a real-
time GUI becomes a possibility.

B.8 COSMoS

The current COSMoS simulation is much simpler than was originally hoped, but it has
proved out the concept. Even with all the issues in running Basilisk under a Python
3 framework, Basilisk was able to propagate 10 seconds of high-fidelity in 0.01-0.03
seconds. By contrast, the much simpler GT-SORT propagator takes between 0.02
and 0.04 seconds to propagate 2-body Keplerian dynamics. Once the interface issues
between Basilisk and COSMoS are resolved, it should be possible to run an extremely
high fidelity simulation in real-time.

The following items are again drawn from the revised development guide found in
Fig. 4.1.

B.8.1 Physics Simulation:

Basilisk is a full 6-DoF spacecraft simulator which includes non-rigid body dynamics
and many perturbation models. Once it is integrated into COSMoS, the physics
simulation will be extremely capable. If the multiprocessing and communications
are managed better than is currently possible under Python 3, we should be able to
incorporate any physics simulators beyond Basilisk.

111

B.8.2 Communication Network Algorithm:

The S2S communication simulation is still incomplete, but the revised MPI is fully
capable of transmitting small telemetry messages and should be one of the less difficult
future developments. The network has shown itself more than capable of passing
the large state data packets, HWIL, and maneuver packets without loss or delay.
Therefore, the addition of small, periodic S2S communications should be no major
hurdle for the system.

B.8.3 Distributed Control Algorithm:

While the current GNC algorithm is much simpler than the planned Holzinger-
McMahon algorithm[44, 45], there is no reason why replacing it with a more in-
teresting algorithm should be any more difficult than replacing a function call.

112

APPENDIX C

SYSTEM BENCHMARK TEST RESULTS

The full set of results from the 8-hour system benchmark tests is shown below:

C.1 Counter function results

Figure C.1: 8-hour packet round-trip time for agents 1-5

Fig. C.1 demonstrates that no counter packets were lost during the benchmark
test.

113

Figure C.2: 8-hour test packet round-trip time for agents 6-10

Figure C.3: 8-hour test packet round-trip time agents 11-15

114

Figure C.4: 8-hour test packet round-trip time agents 16-20

Figure C.5: 8-hour test packet round-trip time agents 21-22

115

Figure C.6: 8-hour test packet maximum round trip time

Figure C.7: 8-hour test packet minimum round trip time

116

Figure C.8: 8-hour test packet round trip time range

Figure C.9: 8-hour test packet average round trip time

117

Figure C.10: 8-hour test packet round trip time standard deviation

Figure C.11: 8-hour test lost packets

118

C.2 State of Health Results

C.2.1 Temperature

Figure C.12: 8-hour measured temperature agents 1-5

C.2.2 CPU Usage by agent

119

Figure C.13: 8-hour measured temperature agents 6-10

Figure C.14: 8-hour measured temperature agents 11-15

120

Figure C.15: 8-hour measured temperature agents 16-20

Figure C.16: 8-hour measured temperature agents 21-22

121

Figure C.17: 8-hour maximum temperature by agent

Figure C.18: 8-hour minimum temperature by agent

122

Figure C.19: 8-hour average temperature by agent

Figure C.20: 8-hour temperature standard deviation by agent

123

Figure C.21: 8-hour measured CPU usage agents 1-5

Figure C.22: 8-hour measured CPU usage agents 6-10

124

Figure C.23: 8-hour measured CPU usage agents 11-15

Figure C.24: 8-hour measured CPU usage agents 16-20

125

Figure C.25: 8-hour measured CPU usage agents 21-22

126

C.3 HWIL Data

Figure C.26: 8-hour recorded HWIL gyro, accelerometer, and magnetometer

Figure C.27: 8-hour recorded temperature, pressure, and calculated packet ∆t

127

APPENDIX D

COSMOS SIMULATION RESULTS

D.1 Base Simulation Results

The following results were obtained from a 1-hour COSMoS HWIL simulation without
any guidance commands. Note: There was an error in the algorithm used to calculate
specific orbital energy. The system neglected to include mass-specific gravitational
potential in the orbital energy, which is what caused the oscillatory pattern in the
orbital energy. Therefore, the quantity shown is actually the mass-specific kinetic
energy of the spacecraft, not the total mass-specific orbital energy.

D.1.1 Orbital results

128

Figure D.1: Orbit plot from agent 10

129

Figure D.2: Classical orbital elements from agent 10

Figure D.3: Angular momentum agent 10

130

Figure D.4: Inertial position and velocity from agent 10

131

Figure D.5: Orbit plot from agent 11

132

Figure D.6: Classical orbital elements from agent 11

Figure D.7: Angular momentum agent 11

133

Figure D.8: Inertial position and velocity from agent 11

134

Figure D.9: Orbit plot from agent 12

135

Figure D.10: Classical orbital elements from agent 12

Figure D.11: Angular momentum agent 12

136

Figure D.12: Inertial position and velocity from agent 12

137

Figure D.13: Orbit plot from agent 13

138

Figure D.14: Classical orbital elements from agent 13

Figure D.15: Angular momentum agent 13

139

Figure D.16: Inertial position and velocity from agent 13

140

Figure D.17: Orbit plot from agent 14

141

Figure D.18: Classical orbital elements from agent 14

Figure D.19: Angular momentum agent 14

142

Figure D.20: Inertial position and velocity from agent 14

143

Figure D.21: Orbit plot from agent 15

144

Figure D.22: Classical orbital elements from agent 15

Figure D.23: Angular momentum agent 15

145

Figure D.24: Inertial position and velocity from agent 15

146

Figure D.25: Orbit plot from agent 17

147

Figure D.26: Classical orbital elements from agent 17

Figure D.27: Angular momentum agent 17

148

Figure D.28: Inertial position and velocity from agent 17

149

Figure D.29: Orbit plot from agent 18

150

Figure D.30: Classical orbital elements from agent 18

Figure D.31: Angular momentum agent 18

151

Figure D.32: Inertial position and velocity from agent 18

152

Figure D.33: Orbit plot from agent 20

153

Figure D.34: Classical orbital elements from agent 20

Figure D.35: Angular momentum agent 20

154

Figure D.36: Inertial position and velocity from agent 20

155

Figure D.37: Orbit plot from agent 33

156

Figure D.38: Classical orbital elements from agent 33

Figure D.39: Angular momentum agent 33

157

Figure D.40: Inertial position and velocity from agent 33

158

D.1.2 Temperature results

Figure D.41: 1-hour measured temperature agents 1-5

Figure D.42: 1-hour measured temperature agents 6-10

159

Figure D.43: 1-hour maximum temperature by agent

Figure D.44: 1-hour minimum temperature by agent

160

Figure D.45: 1-hour average temperature by agent

Figure D.46: 1-hour temperature standard deviation by agent

161

D.1.3 CPU Usage by agent

Figure D.47: 1-hour measured CPU usage agents 1-5

Figure D.48: 1-hour measured CPU usage agents 6-10

162

D.1.4 HWIL Data

Figure D.49: 1-hour recorded HWIL gyro, accelerometer, and magnetometer

Figure D.50: 1-hour recorded temperature, pressure, and calculated packet ∆t

163

D.1.5 Guidance Algorithm Results

The full set of results from the 4-hour COSMoS HWIL and guidance test is shown
below:

Orbital results

Figure D.51: Orbit plot from agent 10

164

Figure D.52: Classical orbital elements from agent 10

Figure D.53: Angular momentum agent 10

Temperature and CPU results

D.1.6 HWIL Data

165

Figure D.54: Inertial position and velocity from agent 10

166

Figure D.55: Orbit plot from agent 33

167

Figure D.56: Classical orbital elements from agent 33

Figure D.57: Angular momentum agent 33

168

Figure D.58: Inertial position and velocity from agent 33

Figure D.59: 1-hour measured temperature agents 1-5

169

Figure D.60: 1-hour measured CPU usage agents 1-5

Figure D.61: 1-hour maximum temperature by agent

170

Figure D.62: 1-hour minimum temperature by agent

Figure D.63: 1-hour average temperature by agent

171

Figure D.64: 1-hour temperature standard deviation by agent

Figure D.65: 1-hour recorded HWIL gyro, accelerometer, and magnetometer

172

Figure D.66: 1-hour recorded temperature, pressure, and calculated packet ∆t

173

REFERENCES

[1] C. Dillow, “Here’s why small satellites are so big right now,” Fortune.com [on-
line], Aug. 2015, Retrieved on 10/4/2016.

[2] K. J. Schilling, “Robotics for efficient production fo satellite constellations,”
2017.

[3] M. Safyan, “Overview of the planet labs constellation of earth imaging satel-
lites,” ITU Symposium and Workshop on small satellite regulation and com-
munication systems, Prague, Czech Republic, 2-4 March 2015, 2015.

[4] NASA. (2016). NanoRacks-Planet Labs-Dove. http : / / www . nasa . gov /
mission_pages/station/research/experiments/1326.html, (visited on
10/02/2016).

[5] NASA. (2017). The afternoon constellation. https : / / atrain . nasa . gov/,
(visited on 09/07/2017).

[6] Wikipedia, Sirius Satellite Radio — Wikipedia The Free Encyclopedia, https:
//en.wikipedia.org/w/index.php?title=Sirius_Satellite_Radio&
oldid=737121064, 2016.

[7] C. Kang and C. Davenport, “Spacex founder files with government to provide
internet service from space,” The Washington Post [online], Jul. 2015, https:
//www.washingtonpost.com/business/economy/spacex-founder-files-
with-government-to-provide-internet-service-from-space/2015/06/
09/db8d8d02-0eb7-11e5-a0dc-2b6f404ff5cf_story.html.

[8] J. Foust, “The return of the satellite constellations,” The Space Review [online],
Mar. 2015, http://www.thespacereview.com/article/2716/1.

[9] J. Radtke, E. Stoll, H. Lewis, and B. B. Virgili, “The impact of the increase
in small satellite launch traffic on the long-term evolution of the space debris
environment,” Apr. 2017.

[10] A. Rosengren, D. Amato, J.Daquin, and I. Gkolias, “The dynamical placement
of satellite constellations and designing for demise,” 2017.

[11] A. Hawkins, J. Carrico, S. Motiwala, and C. MacLachlan, “Flight dynamics
operations and collision avoidance for the skysat imaging constellation,” 2017.

174

http://www.nasa.gov/mission_pages/station/research/experiments/1326.html
http://www.nasa.gov/mission_pages/station/research/experiments/1326.html
https://atrain.nasa.gov/
https://en.wikipedia.org/w/index.php?title=Sirius_Satellite_Radio&oldid=737121064
https://en.wikipedia.org/w/index.php?title=Sirius_Satellite_Radio&oldid=737121064
https://en.wikipedia.org/w/index.php?title=Sirius_Satellite_Radio&oldid=737121064
https://www.washingtonpost.com/business/economy/spacex-founder-files-with-government-to-provide-internet-service-from-space/2015/06/09/db8d8d02-0eb7-11e5-a0dc-2b6f404ff5cf_story.html
https://www.washingtonpost.com/business/economy/spacex-founder-files-with-government-to-provide-internet-service-from-space/2015/06/09/db8d8d02-0eb7-11e5-a0dc-2b6f404ff5cf_story.html
https://www.washingtonpost.com/business/economy/spacex-founder-files-with-government-to-provide-internet-service-from-space/2015/06/09/db8d8d02-0eb7-11e5-a0dc-2b6f404ff5cf_story.html
https://www.washingtonpost.com/business/economy/spacex-founder-files-with-government-to-provide-internet-service-from-space/2015/06/09/db8d8d02-0eb7-11e5-a0dc-2b6f404ff5cf_story.html
http://www.thespacereview.com/article/2716/1

[12] J. A. Haimerl and G. P. Fondler, “Space fence system overview,” 2015.

[13] S. Engelen, S. Eberhard, and C. Verhoeven, “Systems engineering challenges
for satellite swarms,” IEEE Aerospace Conference, 2011.

[14] V. Trianni, R. Gross, T. Labella, E. Sahin, and M. Dorigo, “Evolving aggre-
gation behaviors in a swarm of robots,” Advances in Artificial Life. Ecal 2003.
Lecture Notes in Computer Science., vol. 2801, 2003.

[15] T. Schetter, m. Campbell, and D. Surka, “Multiple agent-based autonomy for
satellite constellations,” Artificial Intelligence, vol. 145, pp. 147–180, Apr. 2003.

[16] NASA, “NASA and DARPA sponsor international debris removal conference,”
Orbital Debris Quarterly News, vol. 14, pp. 1–2, 1 Jan. 2010.

[17] SpaceWorks Enterprises Inc. (2017). Spaceworks releases 2017 nano/microsatel-
lite market asessment. http : / / spaceworksforecast . com / 2017 - market -
forecast/, (visited on 09/17/2017).

[18] J. Foust, “Managing a flock of satellites,” Space News, pp. 17–19, Aug. 2017.

[19] J. Luft and H. Ingham, “The Johari Window,” Human relations Training News,
vol. 5, pp. 6–7, 1 1961.

[20] C. Foster, J. Mason, V. Vittaldev, L. Leung, V. Beukelaers, L. Stepan, and R.
Zimmerman, “On hardware-in-the-loop simulation,” 44th IEEE Conference on
Decision and Control and the European Control Conference 2005, Dec. 2005.

[21] P. J. Teunissen and O. Montenbruck, Eds., Springer Handbook of Global Navi-
gation Satellite Systems. Gewerbestrasse 11, 6330 Cham, Switzerland: Springer
International publishing, 2017, isbn: 978-3-319-42926-7.

[22] W. J. Perry, B. Scowcroft, J. Nye, and J. Schear, “Space traffic control the cul-
mination of improved space operations subject and problem statement,” 2005.

[23] D. Werner, “Hazardous intersection,” Space News, pp. 17–20, Sep. 2017.

[24] K. Sobh, K. El-Ayat, F Morcos, and A. El-Kadi, “Scalable cloud-based leo
satellite constellation simulator,” World Academy of Science, Engineering and
Technology International Journal of Computer, Electrical, Automation, Control
and Information Engineering, vol. 9, no. 6, pp. 1467–1478, 2015.

[25] M Bacic, “On hardware-in-the-loop simulation,” 44th IEEE Conference on De-
cision and Control and the European Control Conference 2005, Dec. 2005.

175

http://spaceworksforecast.com/2017-market-forecast/
http://spaceworksforecast.com/2017-market-forecast/

[26] US Department of Defense. (2011). Technology readiness assessment (TRA)
guidance. http://www.acq.osd.mil/chieftechnologist/publications/
docs/TRA2011.pdf, (visited on 09/07/2017).

[27] US Department of Energy. (2011). Technology readiness assessment guide.
https : / / www . directives . doe . gov / directives - documents / 400 -
series/0413.3-EGuide-04-admchg1, (visited on 09/07/2017).

[28] NASA. (2012). Technology readiness level. https : / / www . nasa . gov /
directorates/heo/scan/engineering/technology/txt_accordion1.html,
(visited on 09/07/2017).

[29] I. Kant, The Critique of Pure Reason, trans. by J. Tkeiklejohn. 1781, Retrieved
from Project Gutenberg.

[30] MPICH. (2018). MPICH: High-Perforomance Portable MPI. https://www.
mpich.org/.

[31] Software in the Public Interest. (2018). Open MPI: Open Source High Perfor-
mance Computing. https://www.open-mpi.org/.

[32] C. DeGraw and M. J. Holzinger, “A Massive-Scale Satellite Constellation
Hardware-in-the-Loop Simulatr and Its Applications,” 2017.

[33] N. Elhage. (2011). Made of bugs: Exploiting misuse of python’s ”pickle”. https:
//blog.nelhage.com/2011/03/exploiting-pickle/.

[34] Raspberry Pi Foundation. (2018). Sense HAT. https://www.raspberrypi.
org/blog/astro-pi-tech-specs/.

[35] ——, (2018). Astro Pi: Flight Hardware Tech Specs. https : / / www .
raspberrypi.org/products/sense-hat/.

[36] C.-F. Natali. (2013). Python bugs: Msg180663. https://bugs.python.org/
issue17038#msg180663.

[37] N. Slatt, “FCC approves SpaceX’s ambitious satellite internet plans,” The
Verge, Mar. 2018, https : / / www . theverge . com / 2018 / 3 / 29 / 17178126 /
spacex - satellite - broadband - internet - fcc - approval - license -
starlink-spectrum.

[38] M. Harris, “FCC accuses stealthy startup of launching rogue satellites,” IEE
Spectrum, Mar. 2018, https://spectrum.ieee.org/tech-talk/aerospace/
satellites / fcc - accuses - stealthy - startup - of - launching - rogue -
satellites.

176

http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf
http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf
https://www.directives.doe.gov/directives-documents/400-series/0413.3-EGuide-04-admchg1
https://www.directives.doe.gov/directives-documents/400-series/0413.3-EGuide-04-admchg1
https://www.nasa.gov/directorates/heo/scan/engineering/technology/txt_accordion1.html
https://www.nasa.gov/directorates/heo/scan/engineering/technology/txt_accordion1.html
https://www.mpich.org/
https://www.mpich.org/
https://www.open-mpi.org/
https://blog.nelhage.com/2011/03/exploiting-pickle/
https://blog.nelhage.com/2011/03/exploiting-pickle/
https://www.raspberrypi.org/blog/astro-pi-tech-specs/
https://www.raspberrypi.org/blog/astro-pi-tech-specs/
https://www.raspberrypi.org/products/sense-hat/
https://www.raspberrypi.org/products/sense-hat/
https://bugs.python.org/issue17038#msg180663
https://bugs.python.org/issue17038#msg180663
https://www.theverge.com/2018/3/29/17178126/spacex-satellite-broadband-internet-fcc-approval-license-starlink-spectrum
https://www.theverge.com/2018/3/29/17178126/spacex-satellite-broadband-internet-fcc-approval-license-starlink-spectrum
https://www.theverge.com/2018/3/29/17178126/spacex-satellite-broadband-internet-fcc-approval-license-starlink-spectrum
https://spectrum.ieee.org/tech-talk/aerospace/satellites/fcc-accuses-stealthy-startup-of-launching-rogue-satellites
https://spectrum.ieee.org/tech-talk/aerospace/satellites/fcc-accuses-stealthy-startup-of-launching-rogue-satellites
https://spectrum.ieee.org/tech-talk/aerospace/satellites/fcc-accuses-stealthy-startup-of-launching-rogue-satellites

[39] Staff, “BMW faces u.s. lawsuit claiming emissions cheating,” Reuters, Mar.
2018, https://www.reuters.com/article/us-bmw-emissions-lawsuit/
bmw-faces-u-s-class-action-lawsuit-over-emissions-idUSKBN1H326I.

[40] J. Knupp. (2013). Python’s hardest problem, revisited. https://jeffknupp.
com/blog/2013/06/30/pythons-hardest-problem-revisited/.

[41] Various. (2017). IOError: [Errno 24] Too many open files: https :
/ / stackoverflow . com / questions / 18280612 / ioerror - errno - 24 -
too-many-open-files.

[42] Various. (2010). How accurate is python’s time.sleep()? https : / /
stackoverflow . com / questions / 1133857 / how - accurate - is - pythons -
time-sleep.

[43] Ubuntu. (2015). UbuntuStudio/RealTimeKernel. https://help.ubuntu.com/
community/UbuntuStudio/RealTimeKernel.

[44] E. Douglass, M. J. Holzinger, J. W. McMahon, and A. Jaunzemis, “Formation
control problems for decentralized spacecraft systems,” Aug. 2013.

[45] M. J. Holzinger and J. W. McMahon, “Decentralized mean orbit-element for-
mation guidance, navigation, and control: Part 1,” Aug. 2012.

177

https://www.reuters.com/article/us-bmw-emissions-lawsuit/bmw-faces-u-s-class-action-lawsuit-over-emissions-idUSKBN1H326I
https://www.reuters.com/article/us-bmw-emissions-lawsuit/bmw-faces-u-s-class-action-lawsuit-over-emissions-idUSKBN1H326I
https://jeffknupp.com/blog/2013/06/30/pythons-hardest-problem-revisited/
https://jeffknupp.com/blog/2013/06/30/pythons-hardest-problem-revisited/
https://stackoverflow.com/questions/18280612/ioerror-errno-24-too-many-open-files
https://stackoverflow.com/questions/18280612/ioerror-errno-24-too-many-open-files
https://stackoverflow.com/questions/18280612/ioerror-errno-24-too-many-open-files
https://stackoverflow.com/questions/1133857/how-accurate-is-pythons-time-sleep
https://stackoverflow.com/questions/1133857/how-accurate-is-pythons-time-sleep
https://stackoverflow.com/questions/1133857/how-accurate-is-pythons-time-sleep
https://help.ubuntu.com/community/UbuntuStudio/RealTimeKernel
https://help.ubuntu.com/community/UbuntuStudio/RealTimeKernel

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Motivation 1: Development of Mega-Constellations and Swarms
	Motivation 2: Increasing Number of Resident Space Objects in Low Earth Orbit
	Motivation 3: Ground Station Proliferation and Workload

	Near-Term Challenges
	Need to Increase Technology Readiness Levels Quickly and Affordably
	Need to Explore Constellation Operation Procedures
	Need to Mitigate High Operational Tempo and Operator Overload
	Need to Develop Autonomous Satellite and Constellation Systems
	Need to Evaluate Constellation Interactions in the Crowded LEO Environment
	Need to Develop Space Traffic Control

	Proposed Contributions
	Contribution 1: Development of a Scalable Satellite Constellation Simulator
	Contribution 2: Hardware Integration with COSMoS

	Summary of Planned Contributions and Relevant Literature

	Design Philosophy and System Planning
	Conceptual Design
	System Hardware Configuration
	Current Hardware

	Real-Time Operation
	Message Passing Interface
	Scalability of HWIL Simulators
	Asynchronous Data Communication
	Synchronous Data Communication
	Network Communication Limitation
	Scalabilty Limits of Current Configuration

	Development of MADNS
	A Scalable Simulation Framework
	MADNS Data Flow

	Functional Design Schematics
	System Hardware
	Message Passing Interface
	Host and Agent Executable
	Host to Agent Communication
	State of Health Monitoring
	Simulation Thread Generation
	Data Logging
	Simulation Time Management
	External Data Management

	System Development Summary
	MADNS Real-Time Operations

	Development of COSMoS
	Functional Design Schematics
	COSMoS

	COSMoS Simulation Data Flow
	COSMoS Simulation Truth Propagation
	Contribution Summary

	Contribution 3: Hardware-in-the-Loop Integration
	Sense Hat Capabilities
	HWIL Libraries and Drivers
	MADNS HWIL Interface
	Benchmark Summary

	MADNS and COSMoS Results and Validation
	Real-Time Operation Benchmarking
	3-Minute Test
	6-Minute Test
	1-Hour Test
	8-Hour Test

	COSMoS Satellite Simulations
	Simulation with primitive guidance algorithm integration

	Hardware-in-the-Loop Results and Validation
	Hardware Interface Tests
	COSMoS Satellite Simulation HWIL Results
	Guidance integration HWIL measurements

	Summary and Future Work
	Summary of Completed Work
	Unexpected Limitations
	Python Multiprocessing Limitations
	Propagator Integration
	HWIL Processing Delays

	Near-Term Additional Implementations
	Agent-to-Agent Communication
	Communication with an Operations Center and Ground Station

	Conclusions

	MADNS and COSMoS Code Documetation
	MADNS Code Base Details
	Bash Scripts
	Python Scripts
	Real-Time Execution Rate Limiter
	System Status Agent
	Minor Utilities

	MADNS Files and function calls
	hostMainExecutable.py
	agentMainExecutable
	loggingUtilities.py
	networkCommLibrary.py
	rateLimiterLib.py
	runManagementLib.py
	systemStatusAgent.py

	COSMoS Code Base Details
	hwilUtilites.py and dummyHWIL.py
	COSMOSmainFile.py - MADNS Core Functions
	COSMOSmainFunction.py - Simulation Specific Functions
	COSMoS Satellite Functions
	COSMoS State Propagator

	COSMoS Files and function calls
	COSMOSmainFunction.py
	hwilUtilities.py and dummyHWIL.py
	gtSortAlgo.py
	satelliteFunctions.py
	pythonVersionSwitch.py

	General Lessons Learned
	Python Multiprocessing Limitations
	Propagator Integration
	HWIL Processing Delays
	Additional General Guides
	Communication with an Operations Center and Ground Station
	Agent-to-Agent Communication
	MADNS
	System Hardware and Message Passing Interface:
	Agent to Agent Communication:
	State of Health Monitoring:
	Simulation Thread Generation:
	Data Logging:
	Simulation Time Management:
	Internal Data Management:

	COSMoS
	Physics Simulation:
	Communication Network Algorithm:
	Distributed Control Algorithm:

	System Benchmark Test Results
	Counter function results
	State of Health Results
	Temperature
	CPU Usage by agent

	HWIL Data

	COSMoS Simulation Results
	Base Simulation Results
	Orbital results
	Temperature results
	CPU Usage by agent
	HWIL Data
	Guidance Algorithm Results
	HWIL Data

	References

