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Abstract 
Air liquefaction has been advocated as a concept for reducing the gross mass of 

spaceplanes since the 1950s. However, little has come of this promising technology thus 

far. The purpose of air liquefaction is to use cryogenic propellants to supercool air after it 

enters the inlet of a moving vehicle. The resulting liquefied air can be used immediately 

or stored for use in later stages of flight. Although the concept has been revisited multiple 

times since its inception, various problems have surfaced to keep it from being a viable 

technology for incorporation into an access-to-space vehicle. Among the many design 

challenges, one of these problems is the formation of solid ice due to the freezing of 

water in the humid air. This ice fouls heat exchanger surfaces and results in decreased 

efficiency and eventually total shut-down of the engine. Therefore, a system to 

dehumidify the air before it is used as an oxidizer or stored is necessary. 

To combat this problem, an Air Liquefaction System (ALS) is proposed that 

utilizes a system of two water separators, four heat exchangers, and an atomized glycol 

spray inserted into the air stream in order to remove water from the humid incoming air. 

In the scope of this project, a computer tool will be created that models the effectiveness 

of such a system given inlet conditions. Utilizing the temperature, pressure, mass flow 

rate, and relative humidity of the incoming air stream, the required mass flow rate of 

liquid hydrogen needed to cool the air to a liquid state will be calculated for an ALS of 

specified size. The heat exchangers will all be of a counter-flow design. This software is 

of interest to and supported by employees of NASA Langley, SAIC, and Modelogics Inc., 

and is also of interest to the U.S. Air Force. 

The primary system of interest is the ALS system model specified by Larry Hunt. 

This system models the ALS at sea level static (SLS) conditions. Air enters the inlet at 

6000 lbm/min, a temperature of 540 R, a relative humidity of 80%, and a pressure of 14.7 

psia. An appropriate mass flow of liquid hydrogen at 40 R and 800 psia must be added to 

the system so that the air at the exit of the ALS is liquid at a temperature around 130 R, 

and a pressure around 10 psia. Furthermore, most of the water must be removed from the 

flow utilizing the two water separators and the atomized ethylene glycol spray. The ratio 

of mass flow of liquid air produced to the mass flow of the hydrogen added to the system 

should be somewhere between 4 and 5. 
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The ALS model was created so that it could execute within both the Model 

Engineer and ModelCenter design frameworks. To this end, the components of the ALS 

were coded in Visual Basic and C++. These components were validated against existing 

components and actual hardware data. While the performance characteristics of each 

component match known values for that component fairly well, there are sometimes large 

errors in the weights and sizing components. 

The components were assembled into the total system model, and the efficacy of 

the two approaches was compared. Executing the ALS model from ModelCenter proved 

to be the superior approach for optimization. The optimization was conducted for the 

conditions specified above, using Optimizer-Based Decomposition. The objective 

function was to minimize the system weight as a function of heat exchanger effectiveness 

values and liquid hydrogen mass flow. The optimization completed successfully, with a 

run time of about 5.5 minutes. The resulting ALS weighs 2783 lbm and produces 5935 

lbm/min of liquid air at 129 R and 10.8 psia. This ALS requires a mass flow of liquid 

hydrogen of 1419 lb/min, for a total system efficiency of 4.18 lb air/lb LH2. 
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Introduction 
 

Air liquefaction has been advocated as a technology for reducing the gross mass 

of space planes since the 1950s. The purpose of air liquefaction is to use cryogenic 

propellants to supercool the air entering an engine as the aircraft moves through the 

atmosphere. The resulting liquefied air can be immediately used or stored for use in later 

stages of flight. Liquid air (or LAIR) has a couple of advantages over gaseous air. In 

order to use air in a combustion system, it must be pressurized to the high pressure levels 

required for combustion. This requires heavy compressors; in contrast, a liquid oxidizer 

can be pumped to high pressures with basic turbomachinery for a much lower weight 

penalty. Additionally, for combined cycle engines, liquid oxidizer must often be stored 

and carried throughout the early stages of flight where it acts only as dead weight. If 

liquid air can be stored and separated into liquid nitrogen and oxygen, a vehicle can 

collect its oxidizer as it flies through the atmosphere, again making huge system weight 

savings. 

In its most basic form, an Air Liquefaction System (ALS) consists of a precooler 

and a condenser. The precooler is used to bring the incoming air close to its liquefaction 

point, while the condenser does the work of actually changing the air’s state to its liquid 

form. However, there are numerous other ways to structure an ALS, consisting of any 

number of heat exchangers and other components. 

One such component is a water separator. There are a number of design issues 

that have prevented this technology from being realized and utilized in current systems, 

but one of the more prevalent challenges is the fouling of heat exchanger surfaces due to 

the formation of water ice from humid incoming air. This ice fouls heat exchanger 

surfaces and results in decreased efficiency and can eventually result in engine failure. By 

including a water separation capability into an ALS, this problem is neatly averted. 

A number of programs already exist within the private and public sectors for 

analyzing heat exchangers, water separators, and other engine components. In the 1990s, 

Optimal Corporation designed LACEX for NASA Glenn Research Center. Additionally, 

SAIC created the Vehicle Thermal Management Analysis Code (VITMAC) (Ref XX) to 

analyze the operation of an air-liquefaction system. These programs model air-
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liquefaction, but have no capability to simulate removing water from the incoming air, 

nor are they conducive to methods of Multidisciplinary Design Optimization. Such 

methods make the analysis of a design space much easier and more rapid, and can greatly 

aid engineers in choosing a direction for a specific design. 

Therefore the desired approach for modeling the ALS is one that can be executed 

within a modeling environment that allows the user to assemble different components 

into an overall system model. This model can then be analyzed at a number of design 

points, and optimized for different objective functions. Both Georgia Tech’s Space 

Systems Design Lab and NASA have experience using Phoenix Integration’s 

ModelCenter software. It has the capability to “wrap” user codes, and then conduct 

optimization upon system variables. The US Air Force has also had some recent 

experience with the Model Engineer software from Modelogics, Inc. This thermally-

centered software also embraces the concept of “wrapping” user codes and allowing the 

construction of large systems from basic components, although its optimization 

capabilities are not as strong. 

This project utilizes these two codes to create an ALS model. These two models 

can be compared, and the ALS performance studied. The completed models output the 

mass flows, pressures, temperatures, and other system properties to the user. The model 

may also be optimized for system parameters such as gross weight. 

 

1 State of the Art in Air Liquefaction 

 

Because air liquefaction does go back so many years, there has been a lot of work 

done already in the field. Therefore it is helpful to understand where the technology has 

been proposed to be applied, and what kind of progress has been made. Different types of 

engine cycles have been proposed that are capable of using liquid air as a propellant. 

These include the well-known LACE and ACES concepts, as well as more exotic 

configurations like SuperLACE, RamLACE, or ScramLACE. Depending on the type of 

cycle being analyzed, different components will be necessary; however, all cycles will 

require multiple heat exchangers, and there are many types available for this application. 

Because many of these cycles fly at low altitudes, fouling from water freezing upon heat 
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exchanger surfaces out of the humid air becomes a problem. Therefore an approach to 

removing water from the air stream will also be required. 

 

1.1 Liquid Air Engine Cycles 

 

Air liquefaction is of interest today due to the number of combined cycle engine 

vehicle concepts being proposed. Whereas typical space vehicles utilize rockets 

throughout all stages of flight, these combined cycles will use different propulsion 

solutions through different regimes of flight, such that an optimal propulsive device is 

used at most points of a spaceplane’s trajectory. Rocket Based Combined Cycle (RBCC) 

engines generally use a rocket through the early and late stages of a vehicle’s flight. 

During supersonic flight, the vehicle switches to ramjet and scramjet (supersonic 

combustion ramjet) modes so that the oxygen in the atmosphere can be used for 

propulsion rather than carrying heavy oxygen in tanks for the rocket to use. There may be 

slight modifications to this basic design; the term “combined cycle” can apply to vehicles 

with two separate flowpaths, or vehicles with a single flow path. However, the idea 

remains the same. The cycles that employ air liquefaction are the basic LACE, ACES, 

and other exotic variations on the LACE concept. 

 

1.1.1 Basic LACE 

 

A Liquid Air Cycle Engine (LACE), pictured in Figure 1, is one of the simplest 

engine cycles proposed. Air enters an inlet, where it is decelerated and gains static 

pressure. It then enters the air liquefaction heat exchangers. There it is exposed to liquid 

hydrogen which cools the air until it reaches its liquid state and can be pumped to the 

combustion chamber. This hydrogen has already been pumped to the high pressures 

needed for combustion. By exchanging heat with the air, the liquid hydrogen becomes a 

high pressure gas. Once the air is liquefied and pumped, there are now two high pressure 

reactants ready to combust in the thrust chamber. This operation is very similar to a liquid 

rocket except for the use of the inlet, and can be considered an air-augmented rocket in its 

truest form. Because much more hydrogen is needed to cool the incoming air than is 
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required for combusting with that air, the cycle is very fuel rich; however, the specific 

impulse produced is on the order of 1000 sec, and may be pushed as high as 6000 sec 

given the right technological gains. (Ref 2, 164). 

 

 
Figure 1: A Basic LACE Engine (Ref 3). 

 

1.1.2 ACES 

 

The Air Collection and Enrichment System (ACES) cycle shown in Figure 2 still 

utilizes air liquefaction, but instead of immediately using all of the produced liquid air, 

some or all is saved for use later on in flight. During early atmospheric flight, the oxidizer 

tanks can be refilled with liquid oxygen for upper atmospheric flight, where the 

atmosphere is thinner and there is less oxygen to be collected. This cycle does have some 

drawbacks; storing liquid air itself is a wasteful and inefficient process. Because liquid air 

is mostly nitrogen, tanking it means carrying a large amount of inert weight that will not 

aid combustion, raising overall system weight to the point where the advantages of the 

cycle disappear. However, through the use of a cryogenic rotary air separator, the lighter 

liquid nitrogen can be removed from the air and discarded or used to regeneratively cool 

the currently incoming air. This nitrogen can also be expelled through the engine’s nozzle 

as inert mass; while it does not combust, it can still aid in the production of thrust. The 

resulting tanked Liquid Enriched Air (LEA) is about 10% nitrogen. (Ref 2, 169). 
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Figure 2: An ACES  Schematic (Ref  3). 

 

 

1.1.3 SuperLACE 

 

As mentioned previously, the basic LACE is very fuel-rich. There have been 

numerous ways proposed to alleviate this problem and lean out the cycle. The 

SuperLACE concept combines three of these approaches to achieve this leaning out. It 

consists of a precooler and two condensers. The precooler is different in that it uses 

regenerative liquid air cooling in addition to hydrogen cooling. The liquid air enters this 

precooler after being compressed to high pressures in a pump, after the gains from 

converting the air to a liquid have already been made. Secondly, it uses a para/ortho 

hydrogen converter to make the hydrogen more effective as a heat exchanging fluid. This 

process will be described in detail in Section 1.2.1. A turbine expander is inserted 

between the first condenser and the precooler, and extracts energy from the hydrogen 

before returning it to the LH2 tank. This recycling of the hydrogen reduces the extra 

amount that must be carried to cool the air. Finally, the hydrogen itself is stored as its 

slush form. This partly solidified hydrogen provides extra cooling capability, and aids in 

the recycling of liquid hydrogen. The combination of these technologies is what enables 

the LACE cycle to produce Isps of the order of 6000 sec (Ref 2, 170). 
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1.1.4 RamLACE and ScramLACE 

 

Air liquefaction was not the only promising concept to be studied in the 1960s. At 

this time, the ramjet and scramjet (supersonic combustion ramjet) combined cycles were 

also explored as enabling technologies for a spaceplane concept. Because these engines 

cannot provide thrust at low speeds or very high speeds, it was necessary to combine 

them with rocket engines. Many RBCC configurations were proposed, and among them 

were the RamLACE (Figure 3) and ScramLACE (Figure 4) concepts. During the mid-

phase exploration of the various RBCC concepts, these two cycles were studied 

extensively, although the only design to be considered for detailed study was the 

ScramLACE concept. 

 

 
Figure 3: RamLACE Engine Schematic (Ref  3). 
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Figure 4: ScramLACE Engine Concept (Ref 3). 

 

1.2 Enabling Technologies for Air Liquefaction 

 

The development of the engine cycles outlined above also included the 

identification of technologies that would have to be developed in order to realize the 

performance gains assumed. Such technologies include catalyzing a para/ortho 

conversion in the liquid hydrogen as well as approaches for removing water from the air 

stream. These technologies include systems that will be modeled within the ALS, so a 

description of each technology and its benefits and costs is useful. 

 

1.2.1 Para/Ortho Hydrogen Conversion 

 

The hydrogen atom consists of a single proton and electron. While the fact that 

electrons have a spin parameter is well known, the protons of the hydrogen atom also 

spin. Therefore the hydrogen molecule, which consists of two hydrogen atoms, has two 

different configurations; the protons may be spinning in opposite directions (anti-parallel), 

 14



or the same (parallel) direction. The former kind of hydrogen is known as parahydrogen, 

while the latter is orthohydrogen. Because there are basically three ways in which a 

binary molecule like H2 could be structured as orthohydrogen, and only one way for it to 

be in its para form, H2 at equilibrium is approximately 75% ortho and 25% para. 

When liquid hydrogen is produced, this equilibrium is affected. In fact, at 

cryogenic temperatures the para form is favored, and the hydrogen will shift to this form. 

This is a very slow process normally. However, the process is exothermic, releasing heat 

and raising the temperature of the hydrogen liquid. Hydrogen producers have to provide 

extra refrigeration in order to combat this process, or the liquid hydrogen would boil off 

in a number of hours. Because all liquid hydrogen will essentially be supplied as 100% 

parahydrogen, it is possible to take advantage of the reverse reaction (para to ortho). This 

process is endothermic, and hydrogen converting to its ortho form will readily absorb 

heat from its surroundings. The applicability to air liquefaction is obvious; allowing 

hydrogen to shift from para to ortho form greatly enhances the ability of hydrogen to cool 

incoming air (Ref 6). 

It seems as if this process should occur naturally without any need for 

technological development, and it does; however, the actual conversion of hydrogen is a 

very slow process normally, on a time scale that is unsuitable for air liquefaction 

purposes. Therefore a catalyst must be used to drive the para/ortho conversion at a 

suitable rate. These catalysts have been studied extensively in the air liquefaction 

industry. However, the facilities used by this industry are all ground based, and thus 

unconcerned with the weight issues of flight. Para/ortho catalyzers have been proven up 

to efficiencies of 75%. Such a shift in hydrogen properties can provide a “refrigerative 

enhancement effect” of about 1.3 (Ref 3, 6-4). This translates to a leaning out of the cycle, 

lowering the equivalence ratio by a factor of 0.8. System weight reductions are obviously 

made by this catalysis, but the catalyst itself adds to the system weight. The most 

promising of the possible catalysts is ruthenium (SiO2,Al2O3), but previous efforts at 

creating a catalyzer capable of converting 1 lb/sec of parahydrogen to 75% ortho per 

pound of catalyzer failed (Ref 3, 6-6). 
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1.2.2 Compact Cryogenic Heat Exchangers 

 

Although heat exchangers are very common and a number of different types exist, 

applying them for use in an aircraft system severely limits the choices available. Heat 

exchangers as flight hardware must be small, light, and reliable, all while delivering the 

high amount of performance needed for air liquefaction. As mentioned previously, the air 

liquefaction process can most simply be described in two phases: precooling and 

condensing. Systems can be more complex than this, of course. 

Figure 5 displays a common temperature profile of the hot and cold fluids in a 

heat exchanging environment. The point on the graph circled, or more accurately the 

temperature difference between the two lines at that point, is known as the pinch 

temperature. This is the point in the heat exchanging system where the temperatures of 

the two fluids are most near to one another. This pinch temperature has important 

consequences on heat exchanger properties. Having a low pinch point (i.e. a small 

distance between the two lines) means that the system is very effective. This results in a 

reduction of the hydrogen necessary to cool the air to a liquid state, leaning out the cycle 

and helping alleviate a troublesome aspect of air liquefaction. However, it is also at this 

point that the heaviest heat exchangers are produced. A balance must be struck between 

the system weight and the hydrogen weight. Reasonably sized heat exchangers often have 

pinch temperatures around 10 to 30 R (Ref 3, 4-1). 
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Figure 5: Standard Heat Exchange Setup (Ref 3, 4-2). 

 

Heat exchangers for cryogenic applications are most often constructed of 

aluminum or stainless steel alloys. These metals have a reasonable coefficient of thermal 

conduction to enable heat transfer, can function within the range of temperatures 

necessary, and have a favorable density. Heat exchange may be carried out between the 

fluids in a variety of ways. The three primary schemes are parallel flow, cross flow, and 

counter flow. In parallel flow, the two fluids travel in the same direction, exchanging 

energy until they both reach some equilibrium temperature between their initial 

temperatures. Cross flow heat exchangers run the two fluid flows perpendicular to one 

another, offering a slightly more advantageous method of heat transfer. Finally, counter 

flow systems run the fluids in opposite directions, allowing heat exchange along the 

entire length; if the mass flows are in proper balance and the exchanger is long enough, 

the two fluids may swap temperatures almost completely by the time they have left the 

heat exchanger. 

Because the two fluids must not mix during heat exchange, it is common to run 

the fluid with lower mass flow through tubes while the other fluid passes over the tubes. 
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These tubes may have fins which increase the heat exchange surface area but also 

increase the volume and subsequently the mass of the tubes. This increase in heat 

exchange effectiveness is offset by higher pressure losses and the increased ability for 

fouling agents to form. For precooling heat exchangers, both types of tubes are favored, 

while condensers mostly utilize bare tubes. Alternatively, a plate-fin system may be used 

instead of tubes. Plates are sandwiched on top of each other, and the fluids are run 

through channels in alternating layers. Plate-fin heat exchangers suffer the same 

drawbacks as tube-fin systems, however, although they are easier to manufacture. 

 

1.2.3 Water Ice Fouling Alleviation 

 

Because atmospheric air does not solely consist of oxygen and nitrogen, there is 

the opportunity for the fouling of heat exchanger surfaces as other substances liquefy and 

freeze before the air can even become a liquid. These fouling agents include carbon 

dioxide and argon, but by far the most prevalent danger is that posed by water in humid 

incoming air, especially during low atmospheric flight. Accumulation of water ice on 

heat exchanging surfaces causes two problems; firstly, it alters the conductive properties 

of the surface, and secondly it can block the mass flow of the air and degrade 

performance. The amount of liquid air produced will drop, and engine performance may 

suffer so badly that the engine can fail completely. Even when the water is removed from 

the air stream, there may still be parasitic weight issues unless the water is ejected from 

the aircraft completely (Ref 3, 5-7). 

There have been many approaches to solving the fouling problem, many of them 

unsuccessful. The successful approaches include cyclic de-icing, snow formation, glycol 

injection, and liquid condensation. Cyclic de-icing involves turning off the air 

liquefaction system for short periods of time while the tubes are heated. While it 

performs as needed, the additional heat exchanging capacity, valving, and ducting adds 

significant weight to the system. In snow formation, the water in the bulk air stream is 

induced to freeze before entering the primary heat exchangers. This method still requires 

extra hardware to actually remove the “snow”, and more space between the heat 

exchanger tubes in order to prevent the system from seizing up. One of the more 

 18



promising approaches is to inject ethylene glycol as either a spray or in droplet form to 

prevent the water from freezing as readily on heat exchanger surfaces. This method has 

been experimentally tested and has provided good results. Finally, the air may be cooled 

to high humidity levels so that the water can be removed as a liquid from the air stream. 

Experimental work with this method is not as developed, but initial analysis is 

encouraging. 

Liquid condensation and glycol injection may be combined to produce an even 

more effective method for fouling alleviation. Researchers from Marquardt studied this 

problem back in the 1960s when the air liquefaction problem was first explored. They 

tested an experimental system and successfully removed enough water to prevent the 

system from shutting down (Ref 3, 5-13). 
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2 Design Problem and Methodology 
 

Air liquefaction has once again become of interest to NASA and the U.S. Air 

Force. Building on the knowledge obtained back in the 1960s when the problem was 

originally formulated, a new approach for modeling the system is desired. This approach 

will take advantage of the development of system integration software developed in the 

1990s. Using the practices of Multidisciplinary Design Optimization (MDO), these 

software tools can combine a number of different contributing analyses that have 

historically been “owned” by one group or another within an organization. By allowing 

various codes to be “wrapped” and connected to each other, one can rapidly explore a 

design space and find the best design to meet a particular goal or set of requirements. 

The goal here is to model an Air Liquefaction System (ALS) consisting of four 

heat exchangers and two water separators. The technical points of contact for the 

development of this system are Larry Hunt of SAIC, and Jeff Robinson and John Martin 

of NASA LaRC. An outline of the system can be seen in Figure 6. Air enters the ALS 

after traveling through the vehicle inlet. Conditions are prescribed to the ALS model after 

this inlet, and the air travels through the system being progressively cooled by the heat 

exchangers. These heat exchangers are of the counter-flow design, and are arranged in a 

tube bank architecture such as that seen in Figure 7. In the initial stages, the air is only 

cooled to the point where water can be removed from the air stream utilizing the water 

separators. After the first water separator, an atomized ethylene glycol spray is injected 

into the air flow. This glycol travels through the second precooler and is removed along 

with the water in the second water separator. Its purpose is to prevent the water from 

freezing and modifying the saturation properties of the humid air, thus making the 

removal of the water much easier. 
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Figure 6: The Air Liquefaction System. 

 
Figure 7: A Typical Tube Bank Heat Exchanger (Ref 3). 
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Properties specified after the inlet include the mass flow, temperature, pressure, 

velocity, and relative humidity of the incoming air. These properties are fed forward 

through the system, with the output from each successive component becoming the input 

for the next section. The outputs will depend on the inputs from the “cold” side, or the 

liquid hydrogen properties as it enters the heat exchangers. The liquid hydrogen only 

travels through the heat exchangers, and its mass flow may be modified at each point by 

removing some mass and either returning it to the tanks or feeding it to the combustion 

chamber. The properties of the liquid hydrogen are specified at the inlet to the condenser 

stage. These properties include the temperature and pressure of the liquid hydrogen.  

The goal of the system is to obtain liquid air by the end of the cycle, at a 

temperature of about 130 R (-330 °F) and a pressure of 10 psia. The mass flow rate of 

liquid air should be 4 to 5 times that of the liquid hydrogen required to cool the air to its 

liquid state. These goals must be met while keeping system weight (and thus costs) down. 

MDO practices will be used to reach this goal. The components will each be 

designed separately so that they can be used alone or in tandem to model the ALS itself. 

The components will then be assembled within a modeling environment so as to simulate 

the entire ALS at once. This will be accomplished on two separate software 

environments: Phoenix Integration’s ModelCenter and Modelogics, Inc. Model Engineer. 

Both pieces of software are designed to allow a user to “wrap” user codes, whether 

legacy or newly devised, and combine them to make a larger system. ModelCenter is 

widely used within Georgia Tech’s Space Systems Design Lab and also within NASA 

and industry. Recently Model Engineer has become involved in a number of Air Force 

and other government contracts. It boasts a large library of predesigned components and 

is especially well-suited to tackling a thermal systems problem. However, its 

optimization capabilities are not as developed as ModelCenter’s. Additionally, each 

platform uses a different method of “wrapping”, thus requiring that the components be 

coded in two different languages. 
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2.1 Model Engineer 

 

Model Engineer relies on Microsoft’s COM framework for computers. This 

makes it possible to use Model Engineer’s components on any computer using the 

Windows operating system, just as one can open an Excel file on any computer with 

Office installed. This is achieved using the highly flexible Visual Basic language. New 

codes may be created directly using Visual Basic and the utility Object Engineer, or 

legacy codes may be wrapped using DLLs. FORTRAN codes, Excel spreadsheets, any 

many other types of codes can be directly wrapped in Model Engineer and incorporated 

into a model. The toolkit comes supplied with several libraries created by Modelogics, 

Inc. The most useful libraries are the Thermal Systems, Data Viewing, and Data Flow 

libraries. These features will be described in detail (Ref 4). 

 

2.1.1 Object Engineer 

 

Object Engineer is a utility included with the Model Engineer toolkit. It simplifies 

the component creation process with a series of input pages. The Control page is where 

the name and type of the component is defined, and is where embedded components are 

added. If there is a legacy code that needs to be wrapped, it is possible to create a DLL in 

a program like Visual Fortran or Visual C++. This DLL is then referenced in the Control 

window and is fully available to the component. There are also a number of references 

already provided in the Model Engineer toolkit that may be embedded in the component. 

The Property window is the heart of the component creation process. It is here 

that each variable of interest is defined, typed, and bounded. There are two basic types of 

variables, not considering types such as integer, double, etc. Data flow variables consist 

of an input and output variable, and thus exist to pass information in and out of the 

component. When building models, links can be created between components using these 

flow variables. For example, the mass flow through a heat exchanger would be modeled 

by a data flow variable. In addition, there are static variables; these consist of simple 

functions that compute a single property. Variables can be grouped, and placed on 

different pages in the eventual windowed model created by Model Engineer. Object 
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Engineer will automatically use the variable definitions to create property pages in Visual 

Basic, eliminating most of the grunt work of coding the components. 

The final window is the Function window. Any variable that requires calculations 

will be defined as a function within the Visual Basic pages created by Object Engineer. 

Using the Function window, the variables necessary to make those calculations will be 

automatically provided to the function. It is simply a matter of selecting the variables 

defined in the Property window and checking boxes next to the variables required to 

make calculations. 

It is not necessary to define the component in Object Engineer, although the 

utility is required to actually build it. The three windows previously discussed are used to 

create an MS Excel file that lists all of the variables and their properties. A user 

sufficiently familiar with the component he is creating and Model Engineer itself can 

define a component entirely in Excel, and often much faster than within Object Engineer 

itself. This Excel file, a comma separated value file, can be imported into OE and used to 

create the Visual Basic files that will be used to complete the component creation. 

The files created include class and control forms, as well as the forms that a 

component user will see when he uses a component. These files are manipulated using 

Visual Basic. Most of the work needed to create a component has been done by Object 

Engineer; essentially all that is required is to define the functions that will calculate the 

variables of interest. One drawback to this approach is that every time a variable is added 

to the program, it is necessary to rebuild the component in Object Engineer and then 

rewrite all of the functions over again. Often this is just a matter of cutting and pasting, 

but this can be a time consuming and frustrating process. Presumably, a strong 

knowledge of Visual Basic would prevent the need for rebuilding components every time 

it is updated, but for the casual user it is much easier to rebuild. It is a testament to the 

flexibility of Model Engineer that a novice user of Visual Basic can easily create 

components. 
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2.1.2 Thermal Systems Library 

 

Although the user is in no way limited to the components and libraries already 

created by Modelogics, a number of these components are available. The thermal systems 

library was created as part of a Modelogics contract with the Air Force, but is available to 

all Model Engineer users. It includes common thermal components such as cross flow, 

counter flow, and cooled panel heat exchangers. It also consists of turbines, compressors, 

condensers, feed lines, among others. These components are clearly useful in designing 

the Air Liquefaction System, but as will be seen later there are advantages to creating 

custom components to fulfill the ALS requirements. These components are added to a 

Visual Basic form that is created by starting a new Standard EXE file in Visual Basic. By 

simply including a library and dragging components into the active window, a model can 

be created. 

Upon first glance, the cross flow heat exchanger is perfect for purposes of 

designing the ALS model. Its data flow variables include mass flow, temperature, 

pressure, and enthalpy. It is designed to model a number of different working fluids, 

using Model Engineer’s Map Tool. This tool is used to conduct table lookups of various 

fluid properties. The input values for the hot and cold sides of the heat exchanger are 

specified, as well as a desired heat exchanger efficiency. 

 For the final system model, however, it was decided that new heat exchanger 

components would be created. This was done for several reasons, one being that it was 

desired to gain an understanding of heat exchangers rather than utilizing a pre-existing 

“black box”. Additionally, the provided heat exchanger component consists of functions 

and inputs that are not used in the ALS model as specified in the problem statement. A 

much more streamlined heat exchanger could be built that would execute faster and could 

be modified as needed. Finally, the fluid databases native to Model Engineer are not best 

equipped to handle liquid air or cryogenic hydrogen. This user-created component would 

also expand the capability of Model Engineer in some ways, as it is provided to 

Modelogics as part of the agreement that allowed Georgia Tech to obtain the software. 

 

 

 25



2.1.3 Data Viewing Library 

 

The Data Viewing library helps make sense of the possibly large amount of data 

that is produced by a model. Using the Schematic Viewer (or S-Viewer), a pictorial 

representation of the model can be displayed while it executes. This picture is created in 

Microsoft PowerPoint and saved as a Windows metafile (*.wmf). By editing the S-

Viewer’s properties, any variable from any component can be linked to the picture, and 

the current value of that variable will be displayed on the picture at every point in time. 

The units may also be displayed. This functionality can be very useful during model 

execution, allowing a user to visually understand the direction a model is taking and 

identify points in the model of interest. 

Model Engineer also provides the capability to interact with Microsoft Excel and 

PowerPoint using the Data Viewing library. The ReadXcells, WriteXcells, and 

PasteViewtoPPT components all open the appropriate MS Office application and can 

paste or copy whatever data is needed. In this way, the input variables may be defined in 

an Excel worksheet and read by the component. Output variables can be similarly written 

to an Excel sheet where they can be further manipulated. The pictorial representation of 

the model in the S-Viewer can be pasted into a Power Point slide making it easy to create 

visuals for a presentation or paper. Overall, it is a much more visual application than 

using a standalone code or some other modeling approach. 

 

2.1.4 Data Flow Library 

 

The Data Flow library makes it possible to build models out of individual 

components. Its primary components include the Connector Arrows which pass data 

between components’ data flow variables. When the arrow is dragged from one 

component to another, a connection definition window will open; if the components are 

designed for modularity well, Model Engineer will automatically connect the outputs of 

one component to the appropriate inputs of the other component. Dragging an arrow from 

one heat exchanger to another, for example, will neatly match up the mass flow, 

temperature, pressure, and enthalpy data flow variables. By defining groups of variables, 
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it is possible to automatically match variables like hot side (air) properties to other hot 

side properties, and similarly cold side (hydrogen) properties. This can all be controlled 

from the arrows’ properties window summoned by right clicking on the arrow itself on 

the Visual Basic form. 

The Data Generator is one of the most important components of this library. It 

drives the model forward and defines the execution order for each component. It can also 

specify points in the model where iteration should occur. When the model executable is 

created, this component is the button that begins the execution. It can be configured to 

run in series or step mode; in step mode, the model will execute only once. In series 

mode, a specific input variable can be changed by some increment for a specified number 

of iterations. 

Although Model Engineer’s optimization capability is somewhat limited, it does 

have a limited functionality. The Data Flow library has components that can iterate on 

specific variables to optimize another variable. These components include the 

RFcontroller and Interval Halving. The RFcontroller uses the Reguli-Falsi method of 

finding an optimum for a single variable and response (Ref 4). The Interval Halving 

method examines the response for the range of a single input variable and halves that 

range until it finds the optimum point. It will only function on a monotonically increasing 

or decreasing response. For advanced optimization, it is better to use a program like 

ModelCenter. 

 

2.2 ModelCenter 

 

ModelCenter is a product of Phoenix Integration and is a package designed to 

allow the integration of various contributing analyses and then conduct analysis on them. 

User codes can be accessed in ModelCenter through the use of various “wrappers”, 

depending on the type of input and output the program uses. This includes any file based 

program no matter the language used, and MS Excel files. More complex wrapping can 

be accomplished through the use of scripting; many scripting languages are supported 

including Java and Visual Basic or VBA. New codes can easily be written within 
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ModelCenter itself, although it is generally as easy to write a file-based input/output code 

in the programming language of preference. 

 

2.2.1 FileWrappers 

 

By far the most common kind of wrapper is the fileWrapper, which instructs 

ModelCenter where to look in a file for input and output information. A basic 

fileWrapper consists of three sections; input, execution, and output. The input section 

contains all the information needed for ModelCenter to write the code’s input file. Using 

a template file, ModelCenter can be instructed where in the file certain variables are to be 

stored. Using ModelCenter’s interface, a user can enter data of any supported type (such 

as integer, double, or string) within bounds set by the wrapper’s author. When the 

wrapper is executed, the template file is opened and the wrapper uses indices to tell 

where the data should be placed. Different template files can even be specified if a 

program’s input file changes considerably for different analyses. 

The wrapper then executes the code of interest. Generally the executable, as well 

as any input, template, output, and other necessary files must be stored in an Analysis 

Server directory. Analysis Server is the portion of ModelCenter that manages 

fileWrappers and serves wrappers and executables to any user who can connect to the 

server. In this way distributed computing becomes very simple; anyone who can connect 

to an Analysis Server may run the analyses therein. 

Once the file has been executed, the wrapper can open any resulting output files 

and read the data inside. By means of the same indexing as used to specify input variable 

locations, ModelCenter will read the output and display it within the user interface. 

Multiple output files can be handled by adding multiple output sections in the wrapper. 

The data obtained from the output can be graphed, studied parametrically, or even 

optimized upon using the tools available in ModelCenter. 
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2.2.2 Optimization 

 

Optimization is a relatively simple matter in ModelCenter. By creating a model, 

either out of single components or multiple ones working as a system, any variable can be 

used as an objective function, constraint, or design variable within an optimization 

problem. If the objective of interest can be calculated from data available from the 

components, it is a simple thing to create a script to calculate an overall evaluation 

criterion. The optimization window has three areas of interest. The objective function is 

defined in the first box in Figure 8. Values from the model can simply be dragged into the 

box to define the optimization criteria. Additional variables can be dragged in to add 

them to the current function. For example, if one wanted to minimize the system weight 

of multiple heat exchangers, the individual weights from each heat exchanger component 

could be dragged into the window and ModelCenter would automatically add them 

together. 

 

 
Figure 8: ModelCenter Optimization Window. 
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The next box in the window describes the constraints on the problem. Constraints may be 

defined in the window by dragging any variable into it, and setting upper and lower 

bounds that variable must meet. In the options window, constraint criteria may be altered. 

The conditions upon which a constraint is violated or met can be changed. If different 

constraints have highly different values, it may be beneficial to have ModelCenter 

normalize them. Alternatively, such alterations may be made within a script. 

Variables can be squared and normalized within a script, making them easy to 

define. For instance, if the output temperature of a component was desired to remain at a 

certain point, that desired temperature could be fed as an input variable to a script. The 

actual temperature would also be fed as an input variable. By subtracting and squaring 

the difference between the two, adding that output to the optimizer, and putting an upper 

bound of 0 on the constraint, the optimizer will strive to make sure the actual and desired 

temperatures match. This allows an equality constraint to be modeled as an inequality 

constraint which can be much more easily handled by many optimizers. 

The final portion of the main optimizer window is the design variable window. 

Again, by simply dragging model variables into the window, it is possible to define all 

the variables that can be changed during optimization. A starting value for each variable 

can be chosen, or if left blank the optimization simply begins at the current point in the 

model. This can be useful if a design space is finicky and needs a good starting point, or 

if an optimization stops before being fully completed. The values that the optimizer is 

allowed to set each variable at can also be specified. Therefore the optimizer can be 

stopped from causing a problem if certain values make no sense or would cause a 

program crash. 

The results of the optimization are stored in a table that can be exported as a 

comma separated value file, or viewed from within ModelCenter. In fact, ModelCenter 

will plot any combination of variables automatically by choosing the independent 

variable, and adding as many dependent variables as desired. This greatly simplifies the 

understanding and visualizing of the process of optimization. Plots can easily be created 

for any purpose. 
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2.2.3 Link Editor 

 

The link editor is what enables a user to build a model from disparate components. 

When an output from one component must be passed to another, this is done by dragging 

the output variable on top of the input variable in the link editor screen. A connection is 

created, represented by a black line between the two variables. Breaking the link is 

possible by selecting a variable and clicking the break link button. Links that feed 

forward in a system are preferred from a Multidisciplinary Design Optimization (MDO) 

perspective, but it is possible to create feedback links. When the model is executed, it will 

iterate until all links are updated and agree, although this feature can be turned off. 

 

 

 

2.3 The ALS Model 

 

The ALS model created here utilizes several of the concepts explained in the 

introductory section to air liquefaction. As stated, it consists of four heat exchanging 

sections and two water separators. These components were designed so that they could be 

executed within Model Engineer and ModelCenter, as well as exist as standalone 

components. The ModelCenter components are written in C++ and utilize basic text file 

input and output. These components can therefore be compiled as executables and run 

outside of any modeling environment, or wrapped and executed from ModelCenter’s 

Analysis Server. Both C++ and Visual Basic serve well as programming languages; C++ 

serves especially well due to its heavily object-oriented approach. The Model Engineer 

components use the same basic functions and calculations, but are coded in Visual Basic 

using the Object Engineer utility. The use of these components is explored explicitly in 

the User’s Guide of Appendix A, but the general function of each is outlined below. 
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2.3.1 Heat Exchanger Components 

 

Whether executed in C++ or Visual Basic, the heat exchanger components 

conduct the same analyses based on the same equations. The heat exchangers used in the 

ALS are of the counter flow design, with a tube bank architecture. Air enters the heat 

exchanger and is exposed to pipes filled with flowing liquid hydrogen. The input 

properties of both the fluid streams (referred to as the hot and cold sides) are specified by 

the user, and the component returns the output properties of both streams, in addition to 

heat exchanger properties such as size, weight, and relative cost. The inputs are defined 

in the file hx.inp, written to the output file hx.out, and the program is executed using 

HX.exe. 

Heat exchange within the component is governed by the basic equations of heat 

transfer. Due to the law of energy conservation, any heat lost by one fluid will be gained 

by the other (discounting losses to the surroundings). This is expressed in Equation 1: 
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This equation assumes that neither fluid is changing state; if this is the case, then the heat 

lost or gained by one fluid is equal to  

vHmQ ∆=
..

     (2) 

 

where Hv is equal to the heat of vaporization of the fluid. It is assumed that no other state 

changes will be made other than the liquid/gas transition. The specific heat Cp is normally 

a function of temperature for a gas; for a liquid, it can be assumed constant. When the 

heat exchanger evaluates Cp of a gas for calculation purposes, it does so using JANNAF 

curve fits. This Cp is evaluated at some average temperature. 

 The output temperature of the air is defined by inputting a desired effectiveness 

into the component. This takes into account the difference in initial temperatures of the 

two fluids, and modifies the air temperature by some percentage of that difference. This 

is expressed in Equation 3. 
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Based on this required temperature change, the heat needed to be extracted from the air 

stream can be calculated using the relations above. This heat is then added to the 

hydrogen stream and its output temperature can be calculated. This temperature can also 

be related as a cold side effectiveness based on the initial temperatures of each flow. 

An effectiveness of 1 for either side would technically require an infinitely long 

heat exchanger. In reality, it is possible to get very close with a very long heat exchanger, 

so there is no error returned by the program if the effectiveness is input as 1. However, it 

may be impossible in any case to achieve any desired effectiveness due to insufficient 

mass flow of liquid hydrogen. If this is the case, the program will find the cold side 

effectiveness to be over 1. This is impossible, as it indicates that the temperature of the 

hydrogen has exceeded that of the air. Once the hydrogen reaches the same temperature 

as the air, it will no longer result in any heat transfer. Therefore, the program calculates 

the amount of possible heat that can be absorbed by the hydrogen stream. This heat is 

extracted from the air, and then the actual hot side temperature and effectiveness are 

calculated and written to the output file. Additionally, this condition triggers an error flag 

that is reported in the output file. 

These hot and cold side properties help define the size and weight of the heat 

exchanger. Based on the velocity of the incoming air stream, its density, and the mass 

flow, a certain cross-sectional area will be required. The velocity and mass flow are 

inputs; the density is calculated using perfect gas relations or constant liquid densities 

depending on state. To help size the heat exchanger in the length direction, the diameter 

of the hydrogen tubes is specified, as well as a material. Currently, aluminum and 

stainless steel are the only options, and serve well as heat exchanging material. Based on 

the conductive properties of the material, a certain amount of surface area will be 

necessary to accommodate the heat transfer between air and hydrogen. This surface area 

is divided by the number of tubes present to find the surface area of a single tube. Since 

the diameter is specified, the length of a tube can be calculated from this required surface 

area. Figure 9 shows a common spacing; there is 2.0-2.5 times the diameter of a tube 
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between each tube. Although normal heat exchangers may have much more tightly 

packed matrices, this spacing helps design against any water freezing that may not be 

removed by the separators. 

 

 
Figure 9: Heat Exchanger Tube Spacing (Ref 3). 

 

Given the material and volume of the heat exchanger, a core weight can be 

calculated. This core weight represents the mass of a volume that is filled solid with the 

material. Given this core weight, the total weight of the heat exchanger can be found (Ref 

9, 244). This guide is an industry standard even 20 years after its initial publication. 

Using the same source, relationships for cost, reliability, and development risk are found. 

These relationships unfortunately do not include units, but optimizing upon them can be 

beneficial. As they are generally functions of weight, however, it is probably just as 

useful to optimize upon weight. 

An ALS heat exchanger can also utilize a para/ortho conversion catalyst to 

improve heat transfer efficiency at the cost of the extra catalyst weight. This functionality 

is accessed by using a switch variable for the para/ortho catalyst. When the switch is on 

(has a value of 1) the initial heat transfer is conducted through the conversion process 

rather than raising the temperature. The incoming hydrogen must be liquid for the 

para/ortho shift catalyst to be used. 

 34



 

2.3.2 Water Separator Components 

 

The two water separators in the ALS model are essentially the same; however, the 

second separator must take into account some mass of ethylene glycol in the stream. The 

basic idea behind the water separator is that the air enters the separator at a very high 

relative humidity. This is achieved by cooling the air in the earlier heat exchanging 

sections. The water droplets moving in the stream, not yet cold enough to freeze, hit 

vanes within the separator. While the air hitting these vanes continues through the system 

uninterrupted, the water is stopped and is removed from the system due to gravity. There 

are several issues that must be dealt with in order to model a water separator. 

The first is that the humidity of the system is defined at the inlet to the ALS itself, 

not at the separator entrance. As the air goes through the precoolers, its temperature and 

pressure drop, altering the relative humidity of the air. However, the absolute humidity in 

pounds of water per pounds of air remains constant. The separator therefore takes in the 

reference temperature, pressure, and relative humidity, as well as the current temperature 

and pressure. The reference absolute humidity is calculated from the other reference 

properties, and this absolute humidity is converted to a relative humidity for the air 

entering the separator. The equations governing this process are outlined in Equations 4 

through 6 (Ref 1, Ref 8). 
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HR stands for absolute humidity, while RH stands for relative humidity. The pressures 

given are measured in psia, while the temperatures are in degrees Rankine. 

For the separator to remove any water, the relative humidity must be 100%. For 

any air stream considered “humid”, this will generally be the case by the time the air 
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reaches the separator. The separator will not remove all water from the air, of course. One 

of the system inputs is the efficiency of the water separator.  This value is by default 85%, 

a standard value for a typical water separator and well within obtainable limits. This 

default should not be changed under normal circumstances. 

The bigger problem with separating water occurs at the second water separator. 

At this point the air has been cooled twice, and may be at the point where the condensed 

water will freeze. There are separators mentioned in Section 1.2.3 that remove frozen 

water from a system; however, that solution is not desired here. The first separator is 

designed to remove liquid water from the air, and from a robustness and reliability 

standpoint it is better to have two separators that are essentially the same design. 

Therefore, the solution of adding ethylene glycol (C2H6O2) to the air is modeled. This 

ethylene glycol is added to the flow as an atomized spray before the air enters the second 

precooler. There, it has very little effect on the heat exchanging properties of the mixture 

except to add to the mass flow. 

However, it has multiple effects on the operation of the water separator. Ethylene 

glycol is entirely miscible in water. The model therefore assumes that the atomized spray 

will mix perfectly with the water droplets that manage to escape the first water separator. 

This will lower the freezing point of the water as outlined in Table 1. The heat exchanger 

is protected from having ice water fouling, and the water separator can remove the water 

from the air. The ethylene glycol is removed as well, as it has mixed perfectly with the 

water droplets. Of course, because of separator efficiency, some water and glycol will 

remain in the stream, but it should not contribute significantly to fouling. 

 

Table 1: Effect of Ethylene Glycol on the Freezing Point of Water (Ref  7). 

% Ethlyene Glycol Freezing Point of Water ( R )
0 491.67
10 484.67
20 479.67
30 464.67
40 449.67
50 429.67
60 404.67
70 399.67
80 409.67
90 439.67
100 469.67  
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The ethylene glycol has a smaller, secondary role in that a water/glycol mixture 

has different vapor pressure properties than plain water. According to Raoult’s Law (Ref 

5), the vapor pressure of a mixture is defined by Equation 7, where χi and pvi represent the 

molar fraction and vapor pressure of the compounds comprising the mixture. 

∑= viiv pp χ      (7) 

Ethylene glycol has a vapor pressure of 0.00135 psia at room temperature; therefore, 

adding it to the water droplets causes the vapor pressure of the mixture to be lower than 

that of water by itself. This has the effect of raising the boiling point of the mixture. The 

air will reach its saturation point at a higher temperature and water will condense out of 

the stream much easier. This is generally not an issue since the water should have 

condensed already in the first separator, but it is an added benefit to consider. 

 The water separator also has weight, sizing, and cost relationships. These 

relationships come from the same source as the heat exchangers (Ref 9, 288). These 

relationships are based on smaller scale rotary water separators, so they may not be quite 

as accurate as desired. 

 

2.3.3 Model Engineer ALS 

 

The components were created in both Visual Basic and C++; it is the Visual Basic 

components that go into the Model Engineer ALS. The model is created by compiling the 

components into OCX files, then starting a new EXE Project in VB. The components are 

simply dragged onto the form, and then connected using the Model Engineer Data Flow 

library. There are two approaches to making these connections; both the hot and cold side 

inputs and outputs can be linked, forcing the model to execute until every side is matched 

properly. This requires some method of working around the connecting restrictions, as 

there can only be one directional link from one component to another. By adding the 

Splice component, the cold side data is passed through the component and then to the 

next heat exchanger. This set up can be seen in Figure 10. 
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Figure 10: Feedback Version of Model Engineer ALS. 

This “brute force” method of executing the ALS runs in a reasonable timeframe, 

coming to a possible solution in less than a minute given reasonable inputs. However, this 

solution is not guaranteed to be optimal, and may in fact be far from optimal. 

Furthermore it is possible, given poor inputs, for the system to become increasingly more 

divergent from a converged solution. 

A better alternative from an MDO perspective is to not create these cold side 

feedback links. Model Engineer is not natively suited to MDO practices, but it is possible 

to set up a Fixed Point Iteration scheme by utilizing Excel files and the ReadXcells and 

WriteXcells components. Initial values for all of the hot and cold side inputs are set 

within the Excel input file. Model Engineer reads these inputs and executes the model 

once, returning the outputs of each component to the Excel file. The Excel sheet is able to 

take those outputs and return them as new inputs to a new execution. Using the Data 

Generator, the model is told to repeatedly run through this process some set number of 

times. The current state of the model and how well the inputs match the outputs is tracked 

through the Excel file. Unfortunately, it is not possible to tell the model to stop when 

convergence is obtained. An appropriate number of model executions must be determined 

from trial and error. Luckily, even when unnecessary executions are made, they do not 
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take very long; the components execute very quickly. The model for this setup can be 

seen in Figure 11. 

 

 
Figure 11: FPI Version of Model Engineer ALS. 

 

Comparing the two approaches, it is found that the feedback method tends to 

work slightly faster due to the inevitable system slowdown caused by reading from and 

writing to the Excel file. The answers gained from the FPI approach tend to be more 

reliable, however, except in those cases where the solution is unstable. Using relaxation 

may help improve the FPI results. Further information on creating executing both of these 

models can be found in the User’s Guide in Appendix A. 

 

2.3.4 ModelCenter ALS 

 

The ModelCenter ALS was created with the same philosophy as the Model 

Engineer ALS; the largest difference is that all control of input and output can take place 

from within ModelCenter rather than an external Excel file. Instead of creating a Fixed 

Point Iteration model, Optimizer-Based Decomposition could be used instead to enforce 

constraints between the hydrogen inputs and outputs between heat exchangers. Figures12 

and 13 show the feedback loop and OBD approach, respectively. The primary 

optimization problem is as follows: 
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Minimize:   Wsys=Wp1+Wp2+Wcond+Wchill+Ws1+Ws2
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Figure 12: Feedback Version of ModelCenter ALS. 

 
Figure 13: OBD Version of ModelCenter ALS. 
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The greatest benefit of the ModelCenter ALS is the ability to add an optimizer 

and scripts to help control execution of the model. For the basic OBD version of the 

model, the optimizer is designed to alter the cold side mass flows, temperatures, and 

pressures of each heat exchanger, as well as the hot side effectiveness, in order to achieve 

a minimum overall system weight. The hot side temperatures and pressures are fed 

forward through links. A script calculates constraints for the model. These constraints 

include matching the temperatures and pressures between each heat exchanger’s cold 

sides. This script also enforces the constraint that the air exiting the ALS is at the desired 

temperature and pressure. These desired values are input by accessing the 

LH2_constraints script from the Model window.  

This is a large and unwieldy optimization for ModelCenter to perform. When 

executed, it is easy for the optimizer to become bogged down in a certain part of the 

design space and either stop at an answer that is not a true minimum or cause a crash due 

to attempts to set variables at inappropriate points. In order to avoid this, some 

preconditioning can be done to start the model at a reasonable point in the design space. 

By doing this, the optimizer will be able to find a true minimum rather than exploring 

undesirable regions of the design space. Through multiple executions, it was found that 

the Method of Feasible Directions provided the best optimization behavior and results. 

 A better way of accomplishing this optimization is to take control of some of the 

design variables away from the optimizer. This also reduces the number of compatibility 

constraints needed in the OBD. This makes the optimizer much more efficient overall, 

but makes it even more dependent on the user input. 

 

2.4 ModelCenter vs. Model Engineer 

 

Although the two ALS models rely on the same relationships and equations, the 

operating environments under which they function significantly affect the relative 

advantages and disadvantages of each approach. As already explored, ModelCenter’s 

capacity for optimizing and converging the ALS model exceeds that of Model Engineer. 

The utilities that provide that capability could probably be achieved in Model Engineer, 
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but it would require coding that capability from the ground up. It is much more 

advantageous to use the already formulated optimizers and parametric study tools within 

ModelCenter. 

However, there are advantages to Model Engineer execution. Creating 

components is extremely simple in Model Engineer. Whereas for the C++ programs 

significant thought had to be put into defining algorithms, variable and function 

declarations, and debugging/compiling, the Object Engineer utility allowed for the 

“grunt” work of programming to be removed almost entirely. The only coding necessary 

was defining the variables within the Excel file and then filling in the functions within the 

Visual Basic class file. 

However, the C++ approach had its own merits. The initial setup was more 

difficult than the Visual Basic approach, certainly. Even so, once the initial programs 

were written it was very easy to make changes, especially because C++ is such an object 

oriented language. Any time a variable or function needed to be added to the Model 

Engineer components, the project file had to be rebuilt and all of the functions redefined. 

This generally involved a lot of cutting and pasting, which while not difficult is very time 

consuming and can be frustrating. Additionally, there were some problems between 

different versions of Model Engineer that caused compiler issues. 

The key advantage of the Model Engineer approach is that it promotes the 

building of libraries of components, from many different authors. While there is nothing 

stopping ModelCenter from taking a similar approach, Modelogics is dedicated to 

spreading components created with Object Engineer to all its users. Although it was 

desired to create the components of the ALS model fresh, preexisting components were 

available. The ALS could even be incorporated into a larger system model by adding 

additional engine or aircraft components. For a system that requires little optimization 

complexity, Model Engineer is an ideal approach to solving the problem of model 

construction; otherwise ModelCenter remains the superior approach. 
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3 Validation 
 

Before analysis on the models could begin, it was necessary to validate both the 

individual components and their ability to model a total system. Data on preexisting 

systems is in very short supply, simply because these systems barely exist outside of 

studies done in the 1960s. However, those studies can shed some light on the validity of 

the ALS model. Model Engineer itself can help verify the models as it had its own heat 

exchanger and water separator components. Additionally, there has been some recent 

work on an air liquefaction cycle engine; the Japanese have been working on the LACE 

ATREX engine for some time and results from that project can be used to validate the 

heat exchangers. 

 

3.1 Heat Exchanger Validation 

 

Because it was decided to create the ALS model components completely new and 

not use the already available Model Engineer components, these preexisting components 

make excellent bases for comparison of heat exchanger model performance. Although the 

Model Engineer heat exchangers require slightly different inputs for some variables, the 

ALS is close enough that an easy comparison could be made. For the purposes of 

validation, the CounterFlowHX component in Model Engineer’s Thermal Systems library 

was used. 

The CounterFlowHX component can be configured to force a particular heat 

exchanger effectiveness just as the ALSHEX component does. Therefore, the hot side 

output temperatures will always match up and there is no real validation possible (or 

needed) for this number. However, the cold side properties can be matched. For a cold 

side input temperature of 200 R, and a range of hot side inputs from 250 to 500 R, the 

cold side output temperature was found at two heat exchanger effectiveness values. This 

analysis is summarized in Figure 14. The results are very close, especially when the two 

input temperatures are close in value. As the difference between hot and cold side inputs 

increase, however, the ALSHEX component begins to deviate more from the Model 

Engineer heat exchanger. This difference does not exceed 2% within the maximum range 
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studied; temperature differences of more than 300 R will probably not occur in any single 

component. The reason for this deviation is probably due to the necessity of estimating 

specific heat at an average temperature with curve fits. Model Engineer components rely 

on table lookups from Cp data, and thus probably have slightly more accurate calculations. 

Nevertheless, the temperature predicting capability of the ALSHEX component would 

seem more than adequate.  
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Figure 14: Comparison of Predicted Cold Side Output Temperatures for ME and ALS. 

 

In the case of pressure drop calculations, it would appear that CounterFlowHX 

relies on the same relationships as those in the ALSHEX component (Ref 9, 122). The 

pressure drop across the heat exchangers always matched up for any input value.   

The weight and sizing results Model Engineer provided did not prove to match as 

well, unfortunately. The graph in Figure 15 shows the percent discrepancy between the 

ALS heat exchanger and Model Engineer’s CounterFlowHX. The discrepancies for the 

volume are decent, although they do reach a maximum of nearly 5%. More concerning is 

the high difference between the weight estimates, up to 25% for the highest temperature 

difference. Again, the percent error rises as the difference between hot and cold side 

temperatures rises, pointing to a possible issue with specific heats. The volume error does 

not increase in precisely this manner; although it appears to be fluctuating, the errors 
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displayed in the graph are absolute errors. They increase from almost -5% at the smallest 

temperature difference to almost 5% at the largest. This behavior cannot simply be 

attributed to the Cp calculation, although it remains to be discovered why this is so. 
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Figure 15: Absolute Percent Discrepancy for Weights and Sizing. 

 

Additional performance validation could be achieved by comparing results of the 

ALS heat exchanger component with the ATREX engine under development in Japan. 

They conducted an experiment testing some precooler designs running air and hydrogen. 

Data available for two of these engines, the ATREX8-3 and the ATREX8-5, are available 

in Table 2, along with the predicted performance by the ALS model given the same 

inputs (Ref 10). The model predicted the performance of the ATREX8-3 precooler very 

well. The greatest error occurred in the pressure of the outgoing hydrogen, 2.25%. The 

outgoing hydrogen temperature had an error of 1.5%. These errors are somewhat 

significant, but overall are acceptable from a conceptual design standpoint. The 

ATREX8-5 predictions, however, were somewhat more troubling. The pressure 

predictions were very good, both within 1% error. However, the prediction for the 

outgoing hydrogen temperature was off by almost 10%. This is a significant error, 
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although it is difficult to speculate why it exists as there is almost no other information 

about the precooler setup available. There may be factors unaccounted for in the model, 

or there may be something about the precooler itself that makes the model inappropriate. 

Overall, the ability of the heat exchanger components to correctly model a real system 

seems fairly good. 

 

Table 2: ATREX Precooler Data and ALS Predicted Performance. 

Fluid Property Actual ALS Percent Error Actual ALS Percent Error
Engine --
Mass Flow In (lb/min) --
Temperature In (deg R) --
Temperature Out (deg R) 394.20 400.10 -1.50% 365.40 397.43 -8.77%
Pressure In (psia) -- 532.30
Pressure Out (psia) 342.29 349.98 -2.25% 506.19 505.68 0.10%
Mass Flow In (lb/min) --
Temperature In (deg R) --
Temperature Out (deg R) 338.40 338.37 0.01% 320.40 320.24 0.05%
Pressure In (psia) --
Pressure Out (psia) 13.98 14.03 -0.32% 13.79 13.90 -0.80%
Effectiveness --0.37

ATREX8-3
38.50
55.80

992.25
504.00

14.63

0.41

ATREX8-5

368.40

959.18
502.20

14.77

32.94
55.80

Hydrogen

Air

 
 

 

3.2 Water Separator Validation 

 

The water separator component can be validated from two different sources. 

Subscale hardware was built and tested by Marquardt and Garrett AiResearch in the 

1960s, and data was obtained about how much water was removed from an operating 

water separator as a plane flew through the atmosphere. In Figure 16, the water removed 

per mass flow rate of air entering the separator can be seen for an initial relative humidity 

of 70%. This test had a duration of 80 seconds. To compare this data to the ALS 

separator component, the water removed from the system per minute was multiplied by 

this flight time and divided by the mass flow of air. As seen in the figure, the results 

matched very closely with that of the test system. This system had no ethylene glycol 

added, nor is any data available which would suggest the performance of an ethylene 

glycol water separator. 
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Figure 16: Water Removed vs Inlet Temperature. 

 

Model Engineer’s separator component can also be used to validate some of the 

data, although it also has no capability to add ethylene glycol to the mixture so it is 

impossible to fully validate the water separator data. The two models were executed for a 

reference relative humidity of 70% at a range of reference temperatures from 510 to 580 

R, and an actual air temperature of 500 R. The two models show almost perfect 

agreement, especially when the reference temperature is close to the actual temperature. 

At the far end of the graph in Figure 17, the percent difference has risen to 5%, which 

while not optimal is still reasonable for a conceptual design tool. 
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Figure 17: Comparison of ME and ALS Water Removal. 

 

Given that data concerning the addition of ethylene glycol to a fast moving air 

stream is unavailable, it was impossible to verify the model’s performance for that 

variable. However, if the assumption that the ethylene glycol is completely and evenly 

absorbed by the water is a good one, then the component should be very accurate as it is 

known that Raoult’s law is very accurate for non-electrolytic solutions. 

 

 49



4 ALS Model Analysis 
 

With the model validated and running correctly, the original goal of the project 

could be reached. The model was mandated to run at sea level static (SLS) conditions, 

but an additional analysis was conducted to test the model at other points in the design 

space, and to gain an understanding of what drives the model. The program SCCREAM 

was used to simulate the flight of an aircraft through the atmosphere at high speeds and 

altitudes. The inlet conditions were then extracted from SCCREAM’s output deck, and 

fed to the ALS model to determine system efficiency at those conditions. 

 

4.1 Sea Level Static 

 

The conditions prescribed by Larry Hunt of SAIC for SLS conditions are listed in 

Table 3. These conditions represent an aircraft taking off, most likely under power of a 

rocket engine as the ALS model is designed primarily to act as the front end to a LACE 

RBCC engine. There are no specific requirements for water removal, but if the 

component works properly 97.75% of the water should be removed from the air stream if 

both separators work given a separator efficiency of 85%. Additionally, the system 

efficiency of pounds of liquid air produced per pound of hydrogen necessary to produce it 

should be around 4 to 5. 

 

Table 3: SLS Air Liquefaction System Parameters. 

Fluid Property Input Variables Output Requirements
Air Mass Flow 6000 lbm/min ~6000 lbm/min

Temperature 540 deg R ~130 R
Pressure 14.7 psia ~10 psia
Velocity 100 ft/sec
Relative Humidity 80%

LH2 Temperature 40 R
Pressure 800 psia  

 

Using the complete Optimizer Based Decomposition approach where all 

compatibility constraints are handled by the optimizer, it took 5.5 minutes to converge to 

a solution. The large number of constraints tended to bog the optimizer down and initially 
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sent it in directions that were far off minimum to meet constraints, as can be seen in 

Figure 18. The most important results from the optimized ALS are summarized in Table 

4. The limiting components seem to be the water separators and the condenser. In the 

case of the condenser, this makes sense as it has to do much of the work of creating the 

liquid air. However, due to the fact that the water separator weight functions were not 

able to be validated, those numbers may be off. 
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Figure 18: Optimization History of ALS Model for SLS Conditions. 

 

In any event, the system has met the design goals. The mass flow of liquid air 

produced is 5935 lb/min at a temperature of 130 R and a pressure of 10.81, which 

roughly match the goals set in Table 3. Furthermore, the water separators worked 

correctly and removed most of the water from the air stream which should guarantee that 

the engine will continue to run. The highest mass flow of hydrogen necessary to run the 

system is 1419 lb/min, which results in a system efficiency of 4.18 lb liquid air per lb 

liquid hydrogen, within the stated requirements. 
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Table 4: Results of Optimizer Based Decomposition on SLS ALS. 

In Out In Out In Out In Out In Out In Out
T ( R) 540.00 513.99 513.99 513.99 513.99 489.53 489.53 489.53 489.53 382.84 382.84 129.67
P (psia) 14.70 13.97 13.97 13.27 13.27 12.60 12.60 11.97 11.97 11.37 11.37 10.81
Mdot (lbm/min) 6000.00 6000.00 6000.00 5957.73 5967.88 5967.88 5935.21 5935.21 5935.21 5935.21
e
T ( R) 279.92 294.87 269.36 279.92 229.01 267.72 40.00 231.04
P (psia) 686.91 652.57 721.98 685.88 759.22 721.26 800.00 760.00
Mdot (lbm/min)
Weight (lbm)
Volume (ft3)

1419.481173.36750.01 992.03

Separator2 Chiller Condenser

Air

0.41 0.74

Precooler1 Separator1 Precooler2
Fluid

H2

0.10 0.10

Property

31.003.20
187.53

26.97
558.59 1388.98

0.62
43.81

0.60
42.95

25.10
561.60

 
 

 

4.2 Additional Cases 

 

Finally, it was desired to attempt to use the model at different conditions other 

than SLS. Using the program SCCREAM most of the data for the air entering the inlet at 

speeds above Mach 2.5 and altitudes above 30000 ft could be obtained. However, the 

humidity at these altitudes is unknown, so the water separator components were removed 

for this analysis. The optimization problem had to change somewhat. The optimization 

problem for this high speed case is the same as for the SLS system, but the design 

variable for the mass of ethylene glycol added to the system (mEG) was removed as the 

water separators are not being used. 

The results of one optimization, which finished in roughly 6 minutes, are shown 

in Table 5 and Figure 19 below. The input conditions are for the entrance to a Scramjet 

inlet at Mach 2.5 at an altitude of 40000 ft. The exact model used for the SLS case had 

trouble converging and used zero gradients. It became clear that the system is very 

sensitive to the mass flow of hydrogen supplied to the condenser. Enough mass flow of 

hydrogen must be specified, or the optimizer will not be able to find a feasible and viable 

solution. However, a solution was found; the resulting system has a system efficiency of 

5.24. Clearly the SLS system is easier to operate at the desired efficiency, but this result 

is very close to the desired goal. A total of 15765 lb air/min in liquid form at a pressure of 

47.63 psia is the result of this system. 

It is interesting to note that in both the SLS and high speed cases, the condenser is 

a large component. This is due primarily to the fact that it experiences the largest mass 

flow rates; the other components can use lower hydrogen mass flow rates, but hydrogen 
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flow can never be increased once it has been reduced. Another behavior of the ALS 

system that becomes more obvious for the high speed case is the optimizer dependence 

on initial values for mass flow rates. The optimizer explores a large range of heat 

exchanger effectiveness values, but rarely strays far from the initial guesses for mass flow 

rate. Therefore, it is vitally important to make good guesses for these flow rates if a 

solution near the system’s true minimum is to be found. 

 

Table 5: Results of Optimizer Based Decomposition on High Speed and Altitude ALS. 

In Out In Out In Out In Out In Out In Out
T ( R) 882.00 840.42 840.42 650.95 650.95 422.62 422.62 129.67
P (psia) 58.48 55.56 55.56 52.78 52.78 50.14 50.14 47.63
Mdot (lbm/min) 15765.00 15765.00 15765.00 15765.00 15765.00 15765.00 15765.00 15765.00
e
T ( R) 466.15 881.99 386.74 464.11 295.78 385.07 40.00 295.57
P (psia) 685.90 651.61 722.00 685.90 760.00 722.00 800.00 760.00
Mdot (lbm/min)
Weight (lbm)
Volume (ft3)

2999.83
3884.94

99.481.78 19.0310.75
111.76 903.12545.82

0.64

H2
2700.00 2898.382798.82

Air

0.10 0.42 0.77

Precooler2 Separator1 Chiller CondenserFluid Property Precooler1 Separator1
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Figure 19: Run History for High Speed Case (Mach = 2.5). 
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4.3 Trade Studies 

Finally, some trade studies using the model were conducted. The use of the 

para/ortho catalyst was investigated for a single heat exchanger, as it can only be used 

when the hydrogen is in liquid form; this condition will only occur in the condenser. 

Although the results of the original study (Ref 3-3) showed that the desired catalyst 

performance was unattainable, the actual catalyst weight needed to convert hydrogen to 

its ortho form is sufficient to increase performance without gaining weight. The data 

suggests that at higher mass flows of hydrogen, this will no longer be the case; however, 

by the time this occurs more hydrogen would be used than liquid air produced. The 

previous system weight optimization showed that such high system efficiencies are not 

necessary. Figure 20 demonstrates this behavior. 
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Figure 20: Effect of Para/Ortho Conversion Catalyst on Heat Exchanger Weight. 

 

Additionally, a study was performed to determine how the required system 

efficiency affects system weight. The ALS goal was to obtain system efficiencies of 4 to 

5; in other words, 4 to 5 times the amount of liquid air is created for every unit of liquid 

hydrogen required. Obtaining higher system efficiencies may be possible, but lower 
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system efficiencies will result in lower weight systems. Figure 21 shows the behavior of 

the system weight as the system efficiency is raised. The behavior is fairly linear for low 

efficiency values, but rapidly begins to become exponential after an efficiency of 3. A 

system efficiency of 6 was not even possible to obtain (or at least could not be found by 

the optimizer). A system efficiency of 5 seems to be roughly the best that could be 

achieved. 
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Figure 21: System Weight vs. Required System Efficiency. 
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Conclusions 
 

Air liquefaction has not become prevalent as a technology for enabling 

spaceplanes. This is in large part due to the design challenges and uncertainty in creating 

an engine cycle that can incorporate the heavy heat exchangers necessary to cool the air 

to its liquid state. Additionally, ice water fouling can ruin the effectiveness of such 

schemes to the point where the engine fails. In order to better understand the process of 

air liquefaction and to assess its suitability for incorporation into spaceplanes, the ALS 

tool has been created to model any air liquefaction scheme. 

The ALS tool is comprised of two components: heat exchangers and water 

separators. These components have been validated against components already created 

for Modelogics’ Model Engineer software. Additionally, the heat exchanger performance 

was validated against the ATREX engine currently in development. Overall, the 

components performed as expected, except in the category of weights and sizing. The 

heat exchanger components match fairly well with the Model Engineer components, 

although errors get worse as the temperature difference between the two working fluids 

rises. The water separator component was not validated for weights and sizing due to a 

dearth of data. 

These components can be connected in virtually any configuration to demonstrate 

air liquefaction potential. In the scope of this project, a particular ALS design as specified 

by Larry Hunt of SAIC was explored. This ALS contains four heat exchangers and two 

water separators, with the capability to add an ethylene glycol spray to the air flow to 

prevent water fouling and improve water separation performance. 

The resulting model can be executed in two design frameworks: Modelogics’ 

Model Engineer and Phoenix Integration’s ModelCenter. While both of these frameworks 

offer advantages to a user, it is within ModelCenter that the ALS really reaches its 

potential. The inability of Model Engineer to conduct complex optimizations leaves it 

suitable only for examining the performance of point designs. Within ModelCenter, the 

ALS model can be optimized upon until a minimum system weight is achieved and all 

performance requirements are met. 
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This optimization was conducted for a specific set of conditions. SAIC provided 

the author with sea level static conditions after the engine inlet. These conditions and 

design requirements were listed in Table 3. This optimization completed successfully, 

and in only 5.5 minutes. The resulting ALS weighs 2783 lbm and produces 5935 lbm/min 

of liquid air at 129 R and 10.8 psia. This ALS requires a mass flow of liquid hydrogen of 

1419 lb/min, for a total system efficiency of 4.18. 

The ALS model was also executed for conditions at Mach 2.5 and 40000 ft. The 

results here were not as conclusive due to the lack of data of humidity levels at high 

altitudes; the high speed ALS does not include water separators. The limited optimization 

completed, however, resulting in a system producing 15675 lb/min of liquid air given 

almost 3000 lb/min of liquid hydrogen. This ALS weighs 5350 lbm and has an overall 

system efficiency of 5.225. This does not quite reach the goals set forth for the SLS 

system, but is nevertheless an encouraging result. 

Despite some discrepancies in the validation of the weights and sizing parts of the 

ALS components, the performance aspects of all ALS components work admirably at 

low atmospheric conditions. Despite the issue of weight error, the weights and sizing 

variables do behave in a logical manner (rising and falling when they should), which 

allows the system to be optimized, and for that optimization to make sense. Furthermore, 

despite the complex nature of the design problem (15 design variables and 13 constraints) 

an optimum was reached in a fairly quick amount of time. 

The ALS model is therefore a useful tool for evaluating the performance of an air 

liquefaction engine cycle at low atmospheric conditions. Its applicability to high speed 

flight at higher altitudes is yet undetermined due to lack of concrete data. Given the 

inputs behind the inlet of an engine, it will determine the mass flow of hydrogen, 

component weights, and water fouling measures necessary to produce liquid air for use in 

the combustion chamber. Given its modularity, it could easily be incorporated to a more 

complex system model within Model Engineer or ModelCenter to model an entire engine 

or even the whole spacecraft of which that engine is a part. 
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Appendix A--ALS Model User Guide 
 
 The Air Liquefaction System model is designed to allow the user to simulate the 
operation of the front end of an air liquefaction engine cycle. It consists of two types of 
components; heat exchangers and water separators. Although the model by default 
simulates a system with four heat exchangers and two water separators, the components 
can be used in any combination to model different air liquefaction schemes, or even 
simpler air/hydrogen heat exchange systems. 
 The model is available for execution in two operating environments; Modelogics 
Inc.’s Model Engineer, and Phoenix Integration’s ModelCenter. Additionally, the 
components that comprise the model may be executed as stand alone C++ compiled 
executables. 
 The purpose of this guide is to educate new users in the use of this model and its 
components. It discusses in detail the input and output for both types of execution (Visual 
Basic and C++), and the process of combining components into a system. Therefore this 
guide is separated into three primary sections: Heat Exchanger Component, Water 
Separator Component, and ALS Model. 
 
Heat Exchanger Components in C++ 
 
 The simplest way to use the heat exchanger component is to run its executable. 
The component HX.exe was written in C++ and relies on simple file based input and 
output, and can be executed on any Windows operating system. Source code is available 
for compiling for different operating systems; it has been successfully compiled with 
Borland’s BCC55 for Windows execution and the Unix compiler g++.  
 Shown below is the notional input file for the ALSHEX component. The first five 
lines are merely a header; these headers can be changed as desired as long as the number 
of lines before the actual data begins remains constant. Both the executable and the 
ModelCenter fileWrapper depend on knowing where the data are. The input file is fairly 
self-explanatory, but the entries in it will be delineated here. 
 
Notional Input File 
 
Header1 
 
----------------------------------------------------- 
Header2 
----------------------------------------------------- 
TH 
PH 
MH 
HH 
STATEH 
EH 
VH 
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TC 
PC 
MC 
HC 
STATEC 
 
EG 
TUBED 
MAT 
 
 
 Table A1 lists all of the variables along with their properties. The first seven input 
variables describe the hot side (air) inputs. While the lower bounds of most of these 
variables is 0, entering a value of zero for any of these variables will likely cause a 
system crash; having a temperature of absolute zero, putting no mass flow through the 
system, or specifying a 0 effectiveness can cause difficulty. The three integer variables 
(STATEH, STATEC, and MAT) reflect user choices, not literal numbers. For the state 
variables, 0 represents that the fluid is a gas, and 1 represents a liquid. For material 
choices, there are currently only two choices, aluminum (1) and stainless steel (2). A 
sample input file can be found at the end of this section. 
 

Table A1: ALSHEX System Inputs 
Variable 

Name Group Description Units Type
Lower 
Bound

Upper 
Bound

TH Hot Side Temperature in deg R Double 0 --
PH Hot Side Pressure in psia Double 0 --
MH Hot Side Mass Flow in lb/min Double 0 --
HH Hot Side Enthalpy in Btu/lb Double -- --
STATEH Hot Side State in Gas, Liquid Integer 0 1
EH Hot Side Heat Exchanger Effectiveness -- Double 0 1
VH Hot Side Flow Velocity In ft/sec Double 0 --
TC Cold Side Temperature in deg R Double 0 --
PC Cold Side Pressure in psia Double 0 --
MC Cold Side Mass Flow in lb/min Double 0 --
HC Cold Side Enthalpy in Btu/lb Double -- --
STATEC Cold Side State in Gas, Liquid Integer 0 1
EG Sizing Mass Flow of Ethylene Glycol lb/min Double 0 --
TUBED Sizing Tube Diameter ft Double 0 --
MAT Sizing Material Choice Aluminum, Stainless Steel Integer 1 2  
 
 The executable is run using the command HX.exe (or ALSHEX if it has been 
compiled using the g++ command line g++ hx.cpp –o ALSHEX). This will produce the 
output file. If using the ModelCenter version of the ALSHEX component, the program 
will be executed automatically by running the component. The output file has the 
notional format below: 
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Notional Output File 
 
Heat Exchanger Output File 
 
----------------------------------------------------- 
Property  Hot Side Cold Side 
----------------------------------------------------- 

THOUT TCOUT     
PHOUT PCOUT         
MHOUT MCOUT 
HHOUT HCOUT 
CPH  CPC 
RHOH  RHOC 
STATEH STATEC 

 
 

EHOUT ECOUT 
V 
A 
L 
TUBES 
CU 
RI 
WTCORE 
WTHEX 
ERRFLAG 

 
 
 Again, the properties of these variables are listed below in Table A2. Many of the 
output variables are similar to the input variables, but there are some differences. The 
specific heat and density of the fluids at the exits are output just to provide more 
information on the outgoing flow. Additionally, the actual effectiveness of the heat 
exchanger is output; these numbers may not be the same as what was indicated in the 
input file if hydrogen mass flow is insufficient to achieve that effectiveness. The 
variables CU and RI represent cost units and reliability index respectively, but the 
relationships providing these values did not provide units; therefore, they should only be 
used to gauge relative prices and reliabilities of different heat exchanger designs. 
ERRFLAG indicates if the mass flow was insufficient to gain the specified performance 
out of the heat exchanger. A value of 0 indicates no error, while a value of 1 indicates a 
flow deficiency. A sample output file is shown at the end of the section. 
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Table A2:ALSHEX System Outputs 

Variable 
Name Group Description Units Type

THOUT Hot Side Temperature out deg R Double
PHOUT Hot Side Pressure out psia Double
MHOUT Hot Side Mass flow out lbm/min Double
HHOUT Hot Side Enthalpy out Btu/lbm Double
CPH Hot Side Specific Heat out Btu/lbm/R Double
RHOH Hot Side Density out lbm/ft3 Double
STATEH Hot Side State out Gas, Liquid Integer
EHOUT Hot Side Effectiveness out -- Double
TCOUT Cold Side Temperature out deg R Double
PCOUT Cold Side Pressure out psia Double
MCOUT Cold Side Mass flow out lbm/min Double
HCOUT Cold Side Enthalpy out Btu/lbm Double
CPC Cold Side Specific Heat out Btu/lbm/R Double
RHOC Cold Side Density out lbm/ft3 Double
STATEC Cold Side State out Gas, Liquid Integer
ECOUT Cold Side Effectiveness out -- Double
V Sizing Heat Exchanger Volume ft3 Double
A Sizing Cross-sectional Area ft2 Double
L Sizing Length ft Double
TUBES Sizing Number of heat exchanigng tubes -- Integer
CU Sizing Cost Units ? Double
RI Sizing Reliability Index ? Double
WTCORE Sizing Core Weight lbm Double
WTHEX Sizing Overall Heat Exchanger Weight lbm Double
ERRFLAG Sizing Error Flag No error, insufficient mass flow Integer  
 
 
Heat Exchanger Operation in ModelCenter 
 
 To operate the ALSHEX component in ModelCenter, a fileWrapper was created. 
Filewrappers are stored on an Analysis Server and tell ModelCenter where to find input 
and output variables. The fileWrapper at the end of this section details the input, 
execution, and output of the heat exchanger component. The variables are indexed by 
row and field number in the input and output files. For more information on the operation 
of fileWrappers, please consult the ModelCenter documentation. 
 To load the HX component, simply connect to an Analysis Server that hosts the 
HX fileWrapper, executables, and input/output files. Drag the component into the project 
window, and the component will automatically load. Input variables are displayed by 
icons with green arrows heading into a box, while output variables are displayed by icons 
with blue arrows heading out of the box. The input and output variables are grouped by 
the fileWrapper to help organize them. Input groups include the following variables: 
 HotSideIN: Contains all input applying to hot (air) side inputs 
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 ColdSideIN: Contains all input applying to cold (hydrogen) side inputs 
 SizingIN: Contains all input applying to sizing inputs 
Output groups include the following variables: 
 HotSideOUT: Contains all outputs pertaining to the hot (air) stream 
 ColdSideOUT: Contains all outputs pertaining to the cold (hydrogen) stream 
 SizingOUT: Contains all weight, sizing, cost, reliability, and error outputs 
 
To execute the model, either right click on the component and select Run, or click on the 
arrow in the upper left hand corner of the component in the Project Window. 
 
Heat Exchanger Operation in Model Engineer 
 
 To operate the ALSHX component in Model Engineer, you must have Visual 
Basic, the Model Engineer libraries, and the ALSHX component installed and registered 
on your system. Open Visual Basic, and start a new project (Standard EXE). A form will 
be created. Hit Alt-P or click on “Project” in the Visual Basic Toolbar and hit Ctrl-T or 
select “Components…” to open the Components window. Scroll through the available 
components until you find ALSHXProj. Check the box next to the component (see Figure 
A1) and press OK. A new component will appear on the toolbar to the left. By clicking 
and dragging this icon to the form, the ALSHX component can be added to the form. 
 

 
Figure A1: Visual Basic Component Window 

 
 There are two ways to edit the inputs and view the outputs of the ALSHX 
component. First, you may use the Properties window and select the ALSHX component 
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from the drop down menu. The variables of the component will be listed below, and may 
be edited by clicking in the appropriate box and typing in a new number. Secondly, you 
can right click on the component itself and select “Edit”. Then right click again and select 
“Properties” to open the component. There are four property pages; the first simply 
contains information for Model Engineer. The next three pages contain hot side, cold side, 
and sizing properties respectively. Any variable boxes colored blue are read only, but any 
other variable boxes may be edited. To see the results of an input change, simply press 
the Apply button and the output values will update automatically. 
 
Sample Heat Exchanger Input/Output/FileWrapper Files: 
 

Sample Input File (hx.in) 
 
Heat Exchanger Input File 
 
----------------------------------------------------- 
Hot Side/ColdSide 
----------------------------------------------------- 
492.893   Hot Side Temperature 
11.9699   Hot Side Pressure 
5924.34   Hot Side Mass Flow 
-24.0676   Hot Side Enthalpy 
0    Hot Side State 
0.8    Hot Side Effectiveness 
100.0    Hot Side Velocity 
 
180.879   Cold Side Temperature 
798.0    Cold Side Pressure 
1500.0   Cold Side Mass Flow 
459.33   Cold Side Enthalpy 
0    Cold Side State 
 
0.0    EG Mass flow in Air 
0.08    Tube Diameter 
1    Material 
 

Sample Output File (hx.out) 
 

Heat Exchanger Output File 
 
----------------------------------------------------- 
Property                      Hot Side    Cold Side 
----------------------------------------------------- 
Temperature (R)               243.282     251.565     
Pressure (psia)               11.3714     796         
Mass Flow (lb/min)            5924.34     1500        
Enthalpy (R)                  -84.1652    694.435     
Specific Heat (Btu/lb/R)      0.240765    3.32604     
Density (lb/ft3)              0.0655553   0.822179    
State (0=gas,1=liquid)        0           0           
 
 
Effectiveness                 0.8         0.0331857   
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Volume (ft3)                  124.599     
Area (ft2)                    15.0619     
Length (ft)                   8.27245     
Number of tubes               470         
Cost Units                    81888.6     
Reliability Index             0.00328     
Core weight (lbs)             21530.7     
HEX Weight (lbs)              39369.5     
Error flag                    0           
 

HX.fileWrapper 
# @author: John Crowley 
# @version: 3 
# @description: ALS HEX wrapper 
 
RunCommands 
{ 
    generate HXin 
    run "HX.exe" 
    parse HXout 
} 
 
 
RowFieldInputFile HXin 
{ 
    templateFile: hx.inp.template 
    fileToGenerate: hx.inp 
 
    setGroup HotSideIN 
    variable: T double  6   1   description="Incoming air temperature" 

lowerBound=0.00 units="deg R" 
variable: P double  7   1   description="Incoming air pressure" units="psia" 

lowerBound=0.00 
variable: Mdot double  8   1   description="Incoming air Mass flow" 

lowerBound=0.00 units="lb/min" 
variable: H double  9   1   description="Incoming air Enthalpy" 

units="Btu/lb/R" 
variable: State integer 10  1   description="Incoming air state" enumValues="0,1" 

enumAliases="Gas,Liquid" 
variable: e double  11  1   description="Air side effectiveness" 

lowerBound=0.00 upperBound=1.00 
variable: v double  12  1   description="Incoming air velocity" units="ft/s" 

lowerBound=0.0 
variable: EGmdot double 20  1   description="Mass flow of ethylene glycol" 

units="lb/min" lowerBound=0 
    setGroup ColdSideIN 
    variable: T double  14  1   description="Incoming LH2 temperature" 

lowerBound=0.00 units="deg R" 
variable: P double  15  1   description="Incoming LH2 pressure" units="psia" 

lowerBound=0.00 
variable: Mdot double  16  1   description="Incoming LH2 Mass flow" 

lowerBound=0.00 units="lb/min" 
variable: H double  17  1   description="Incoming LH2 Enthalpy" 

units="Btu/lb/R" 
variable: State integer 18  1   description="Incoming LH2 State" enumValues="0,1" 

enumAliases="Gas,Liquid" 
    setGroup SizingIN 
    variable: tube_diameter double  21  1   description="HEX Tube Diameter" units="ft" 

lowerBound=0.00 
variable: Material int 22  1   description="Material" enumValues="1,2" 

enumAliases="Aluminum,Stainless Steel" 
} 
  
  
RowFieldOutputFile HXout 
{ 
    fileToParse: hx.out 
    setDelimiters 
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    setGroup HotSideOUT 
    variable: T double 6   3 description="Outgoing air temperature" units="deg R" 
    variable: P double 7   3 description="Outgoing air pressure" units="psia" 
    variable: mdot double  8   4   description="Outgoing air mass flow" units="lb/min" 
    variable: H double  9   3   description="Outgoing air enthalpy" 

units="Btu/lb/R" 
    variable: Cp double  10  4   description="Air specific heat" units="Btu/lb" 
    variable: rho double  11  3   description="Air density" units="lb/ft3" 
    variable: State integer 12  3   description="Outgoing air state" enumValues="0,1" 

enumAliases="Gas,Liquid" 
    variable: e double  15  2   description="Actual hot Side effectiveness" 
    setGroup ColdSideOUT 
    variable: T double 6   4 description="Outgoing LH2 temperature" units="deg R" 
    variable: P double 7   4 description="Outgoing LH2 pressure" units="psia" 
    variable: mdot double  8   5   description="Outgoing LH2 mass flow" units="lb/min" 
    variable: H double  9   4   description="Outgoing LH2 enthalpy" 

units="Btu/lb/R" 
    variable: Cp double  10  5   description="LH2 specific heat" units="Btu/lb" 
    variable: rho double  11  4   description="LH2 density" units="lb/ft3" 
    variable: e double  15  3   description="Cold side effectiveness" 
    variable: State integer 12  4   description="Outgoing LH2 state" enumValues="0,1" 

enumAliases="Gas,Liquid" 
    setGroup SizingOUT 
    variable: V double  16  3   description="HEX Volume" units="ft3" 
    variable: A double  17  3   description="Cross-sectional area" units="ft2" 
    variable: Length double 18  3   description="HEX length" units="ft" 
    variable: Tubes int     19  4   description="Number of tubes" 
    variable: CU double  20  3   description="Cost units" units="?" 
    variable: RI double  21  3   description="Reliability Index" units="?" 
    variable: wt_core double  22  4   description="Core weight" units="lbs" 
    variable: wt_hex double  23  4   description="Overall HEX weight" units="lbs" 
    variable: error_flag int 24  3   description="Error flag" enumValues="0,1" 

enumAliases="No error,Insufficient Mass Flow" 
 
} 
 

Water Separator Component in C++ 
 
 As with the heat exchangers, the simplest way to use the water separator 
component is to run its executable. The component WS.exe was written in C++ and relies 
on simple file based input and output, and can be executed on any Windows operating 
system. Source code is available for compiling for different operating systems; it has 
been successfully compiled with Borland’s BCC55 for Windows execution and the Unix 
compiler g++.  
 Shown below is the notional input file for the ALSWS component. The first five 
lines are merely a header; these headers can be changed as desired as long as the number 
of lines before the actual data begins remains constant. Both the executable and the 
ModelCenter fileWrapper depend on knowing where the data are. The input file is fairly 
self-explanatory, but the entries in it will be delineated here. 
 

Notional Input File 
 
Header1 
 
----------------------------------------- 
Header2 
----------------------------------------- 
TI 
T 
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PI 
P 
MDOT 
EGMDOT 
H 
RHI 
ETA 
STATE 
 
 Table A3 lists all of the variables along with their properties. The three variables 
ending with “I” are reference variables; TI, PI, and RHI describe air properties at which 
the relative humidity of the air stream is known. This applies to the air entering the inlet 
in most cases. STATE is an integer variable that describes the state of the air entering the 
separator. It is mostly used as a flow variable to be passed to heat exchanger components, 
but will return an error if the air is a liquid (STATE=1). A sample input file can be found 
at the end of this section. 
 

Table A3: ALSWS System Inputs 

Variable 
Name Description Units Type

Lower 
Bound

Upper 
Bound

TI Reference Temperature of Air deg R Double 0 --
T Incoming Air Temperature deg R Double 0 --
PI Reference Pressure of Air psia Double 0 --
P Incoming Air Pressure psia Double 0 --
MDOT Mass Flow of Incoming Air lbm/min Double 0 --
EGMDOT Mass Flow of Ethylene Glycol Added to Air lbm/min Double 0 --
H Incoming Air Enthalpy Btu/lbm Double -- --
RHI Reference Relative Humidity of Air -- Double 0 1
ETA Water Separator Efficiency -- Double 0 1
STATE Incoming Air State Liquid, Gas Integer 0 1  
 
 The executable is run using the command WS.exe (or WS if it has been compiled 
using the g++ command line g++ ws.cpp –o WS). This will produce the output file. If 
using the ModelCenter version of the WS component, the program will be executed 
automatically by running the component. The output file has the notional format below: 
 
Notional Output File 
 
 
Water Separator Output File 
 
----------------------------------------------------- 
Property    Value 
----------------------------------------------------- 
TOUT     
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TDEW     
POUT    
MOUT    
HOUT  
PVDEW     
PVDRY    
HRIN  
HROUT  
RHOUT          
DELTAHR 
HRSAT 
WDRAIN     
CU    
DR          
RI     
V      
WT     
WTERROR    
WTI    
STATE          
ERRFLAG 
 
 
 Again, the properties of these variables are listed below in Table A4. A number of 
the output variables are the outflow of input variables. However, it also outputs several 
variables describing the humidity of the air stream before and after separation. PVDEW 
and PVDRY are the vapor pressures at the dew point and the incoming air temperature. 
HRIN and HROUT are absolute humidities in lbm water/lbm air. If they are the same, no 
water is removed and DELTAHR and WDRAIN will be zero. HRSAT is the saturation 
humidity of the air stream at its specified temperature. The variables CU and RI represent 
cost units and reliability index respectively, but the relationships providing these values 
did not provide units; therefore, they should only be used to gauge relative prices of 
different water separator designs. ERRFLAG indicates if there was an error in the 
component; a value of 0 indicates no errors, a value of 1 indicates that the air was already 
liquid when it entered the separator, and a value of 2 indicates that the water has frozen. 
A sample output file is shown at the end of the section. 
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Table A4: ALSWS System Outputs 

Variable 
Name Group Description Units Type

TOUT    Performance Outgoing Air Temperature deg R Double
TDEW    Performance Dew Point of Incoming Air deg R Double
POUT   Performance Outgoing Air Pressure psia Double
MOUT   Performance Outgoing Mass Flow lbm/min Double
HOUT Performance Outgoing Enthalpy Btu/lbm Double
PVDEW    Performance Vapor Pressure at Dew Point psia Double
PVDRY   Performance Vapor Pressure at Incoming Air Temperature psia Double
HRIN Performance Absolute Humidity of Incoming Air Stream lbm water/lbm air Double
HROUT Performance Absolute Humidity of Outgoing Air Stream lbm water/lbm air Double
RHOUT       Performance Outgoing Relative Humidity -- Double
DELTAHR Performance Change in Absolute Humidity lbm water/lbm air Double
HRSAT Performance Absolute Humidity of Saturated Air lbm water/lbm air Double
WDRAIN    Performance Water Removed From Air Stream lbm/min Double
CU   Sizing Cost Units ? Double
DR         Sizing Development Risk ? Double
RI    Sizing Reliability Index ? Double
V     Sizing Volume ft3 Double
WT    Sizing Weight lbm Double
WTERROR Sizing Weight Error lbm Double
WTI   Sizing Installed Weight Factor lbm Double
STATE         Sizing State Liquid,Gas Integer

ERRFLAG Sizing Error flag
No error,Air 

Liquefied,Water 
Frozen

Integer

 
 
 
Water Separator Operation in ModelCenter 
 

To operate the ALSWS component in ModelCenter, a fileWrapper was created. 
Filewrappers are stored on an Analysis Server and tell ModelCenter where to find input 
and output variables. The fileWrapper, seen at the end of this section, details the input, 
execution, and output of the heat exchanger component. The variables are indexed by 
row and field number in the input and output files. For more information on the operation 
of fileWrappers, please consult the ModelCenter documentation. 

To load the ALSWS component, simply connect to an Analysis Server that hosts 
the ALSWS fileWrapper, executables, and input/output files. Drag the component into 
the project window, and the component will automatically load. Input variables are 
displayed by icons with green arrows heading into a box, while output variables are 
displayed by icons with blue arrows heading out of the box. The output variables are 
grouped by the fileWrapper to help organize them. Output groups include the following 
variables: 
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Performance:  Contains all outputs applying to air properties such as temperature, 
pressure, and humidity properties 

Sizing:  All weights, dimensions, and the error flag are found in this group 
 
To execute the model, either right click on the component and select Run, or click on the 
arrow in the upper left hand corner of the component in the Project Window. 
 
Water Separator Operation in Model Engineer 
 
 To operate the ALSWS component in Model Engineer, Visual Basic, the Model 
Engineer libraries, and the ALSWS component must be installed and registered on your 
system. Open Visual Basic, and start a new project (Standard EXE). A form will be 
created. Hit Alt-P or click on “Project” in the Visual Basic Toolbar and hit Ctrl-T or 
select “Components…” to open the Components window. Scroll through the available 
components until you find ALSWS. See the Model Engineer Heat Exchanger section for 
figures displaying these steps. By clicking and dragging this icon to the form, the 
ALSWS component can be added to the form. 
 As before, there are two ways to edit the inputs and view the outputs of the 
ALSWS component. First, you may use the Properties window and select the ALSWS 
component from the drop down menu. The variables of the component will be listed 
below, and may be edited by clicking in the appropriate box and typing in a new number. 
Secondly, you can right click on the component itself and select “Edit”. Then right click 
again and select “Properties” to open the component. There are three property pages; the 
first simply contains information for Model Engineer. The next two pages contain 
performance and sizing properties respectively. Any variable boxes colored blue are read 
only, but any other variable boxes may be edited. To see the results of an input change, 
simply press the Apply button and the output values will update automatically. 
 
Sample Water Separator Input/Output/FileWrapper Files: 
 

Sample Input File (ws.inp) 
 

Water Separator Input File 
 
----------------------------------------- 
Value 
----------------------------------------- 
498.21  Ti 
449.919  T 
13.2668  Pi 
13.2668  P 
6000.0  Air stream mass flow 
12.0   EG mass flow 
-21.7276  H 
1.0   RHi 
0.85   Efficiency 
0   State (0=gas, 1=liquid) 
 

Sample Output File (ws.out) 
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Water Separator Output File 
 
----------------------------------------------------- 
Property                                  Value 
----------------------------------------------------- 
Temperature (R)                           449.919     
Dew Point Temperature (R)                 449.914     
Pressure (psia)                           12.6035     
Mass Flow (lb/min)                        5974.83     
Enthalpy (Btu/lb)                         -21.7276    
Vapor Pressure Tdew (psia)                0.01375     
Vapor Pressure Tdry (psia)                0.01375     
Humidity IN (lb H2O/lb air)               0.00543516  
Humidity OUT (lb H2O/lb air)              0.00121765  
Relative Humidity OUT                     1           
delta Humidity (lb H2O/lb air)            0.0042175   
Saturated Humidity (lb H2O/lb air)        0.000473388 
Water Removed (lb/min)                    25.1682     
Cost Units (?)                            1186.95     
Development Risk (?)                      1           
Reliability Index                         0.00285     
Volume (ft3)                              980639      
Water Separator Weight (lbs)              561.6       
Weight error (lbs)                        97.1568     
Installed Weight Factor                   115.128     
State                                     0           
Error Flag                                0         
 

WS.fileWrapper 
 

# @author: John Crowley 
# @version: 3 
# @description: ALS Water Separator wrapper 
 
RunCommands 
{ 
    generate WSin 
    run "WS3.exe" 
    parse WSout 
} 
 
 
RowFieldInputFile WSin 
{ 
    templateFile: ws2.inp.template 
    fileToGenerate: ws.inp 
 

variable: Ti double  6   1   description="Reference air temperature" 
lowerBound=0.00 units="deg R" 

variable: T double  7   1   description="Incoming Air temperature" 
lowerBound=0.00 units="deg R" 

variable: Pi double  8   1   description="Reference air pressure" units="psia" 
lowerBound=0.00 

variable: P double  9   1   description="Incoming air pressure" units="psia" 
lowerBound=0.00 

variable: Mdot double  10  1   description="Incoming air Mass flow" 
lowerBound=0.00 units="lb/min" 

variable: EGmdot double  11  1   description="Ethyelene glycol mass flow" 
lowerBound=0.00 units="lb/min" 

variable: H double  12  1   description="Incoming air Enthalpy" 
units="Btu/lb/R" 
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variable: RHi double 13  1   description="Reference Relative Humidity" 
lowerBound=0.00 upperBound=1.00 

variable: e double  14  1   description="Separator Efficiency" lowerBound=0.00 
upperBound=1.00 

variable: State integer 15  1   description="State of fluid" lowerBound=0 
upperBound=1 enumValues="0,1" enumAliases="Gas,Liquid" 

} 
  
  
RowFieldOutputFile WSout 
{ 
    fileToParse: ws.out 
    setGroup Performance 
    variable: T double 6   3 description="Outgoing air temperature" units="deg R" 
    variable: Tdew double 7   5 description="Dew Point Temperature" units="deg R" 
    variable: P double 8   3 description="Outgoing air pressure" units="psia" 
    variable: PvTdew   double  11  5   description="Vapor Pressure at Tdew" units="psia" 
    variable: PvTdry double  12  5   description="Vapor Pressure at Tdry" units="psia" 
    variable: mdot double  9   4   description="Outgoing air mass flow" units="lb/min" 
    variable: Wdrain double  18  4   description="Water removed" units="lb/min" 

variable: H double  10  3   description="Outgoing air enthalpy" 
units="Btu/lb/R" 

variable: HRin double  13  6   description="Absolute incoming Humidity" units="lb 
water/lb air" 

variable: HRout double  14  6   description="Absolute outgoing humidity" units="lb 
water/lb air" 

    variable: RH double  15  4   description="Relative outgoing humidity" 
    variable: deltaHR double  16  6   description="Change in absolute humidity" units="lb 

water/lb air" 
variable: HRsat double  17  6   description="Saturated Humidity" units="lb 

water/lb air" 
 
    setGroup Sizing 
    variable: V double  22  3   description="Separator Volume" units="ft3" 
    variable: CU double  19  4   description="Cost units" units="?" 
    variable: DR double  20  4   description="Development Risk" units="?" 
    variable: RI double  21  3   description="Reliability Index" units="?" 
    variable: wt_ws double  23  5   description="Overall Separator weight" units="lbs" 
    variable: wt_d double  24  4   description="Separator weight error" units="lbs" 
    variable: wt_i double  25  4   description="Installed Weight Factor" 
    variable: State integer 26  2   description="State of outgoing fluid" 

enumValues="0,1" enumAliases="Gas,Liquid" 
variable: errorFlag integer 27  3   description="Error flag" enumValues="0,1,2" 

enumAliases="No errors,air liquefied,waterfrozen" 
}
 
 

Creating System Models in ModelCenter 
 
 Creating models comprised of the heat exchanger and water separator components 
is a simple matter of loading each individual component and then linking them together. 
For each component in a system, a separate component should be added to the Project 
Window. The Link Editor should then be opened in ModelCenter and links created. 
There are two approaches that may be used to create system models: Brute-Force, and 
Optimizer Based Decomposition (OBD). OBD is desirable from a Multidisciplinary 
Design Optimization standpoint, but takes longer to set up and it is suggested that the 
user has a good understanding of the system and components involved when trying to 
create an OBD model. 
 The Brute-Force method involves linking every flow variable possible, which will 
in effect cause feedback loops to occur. As the properties of the fluids running through 
the heat exchangers change, the components will have to be reexecuted to account for 
changes to the air and hydrogen properties. But once the components are executed again, 
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the properties will have changed. This process iterates until there is no longer a 
significant change between executions and the model stops at the solution. 
 To create a system model that employs feedback, all temperature, pressure, 
enthalpy, state, velocities, and mass flow variables should be linked. However, the mass 
flow inputs for the cold (hydrogen) side may be left unlinked if you wish to remove some 
hydrogen mass flow as it moves through the system. It is generally not advisable to do 
this, as the mass of hydrogen entering a component should always be equal to or less than 
the preceding component; removing hydrogen and then adding it back again later will not 
be modeled properly as the two hydrogen streams will have different properties. Links 
are created in ModelCenter’s Link Editor; simply drag an output variable from the left on 
top of the appropriate input variable on the right. Once the links are created, the option to 
manually enter the values for linked input variables will no longer exist. 
 With the links fully defined, it simply remains to enter all the input values. This 
includes tube sizes, heat exchanger effectiveness values, material selections, ethylene 
glycol mass flow, separator efficiencies, and reference humidity values. If reference 
temperatures and pressures in the water separator components are not linked, these must 
also be specified. Once all inputs have been specified, click on the Run Scheduler to 
automatically iterate the model until it has converged. 
 The OBD method will require fewer runs of the components on the whole, 
although the quick execution of the ALS components mitigates this issue somewhat. To 
create an OBD scheme, an optimizer will have to be employed to maintain compatibility 
constraints between the cold side heat exchangers. There are no longer any feedbacks, so 
the only links are those between the hot side inputs and outputs. Links should be created 
between the temperature, pressure, mass flow, enthalpy, and state variables of all hot side 
inputs. 
 Now constraints must be defined. Blank script components are found in 
ModelCenter’s Common/Functions directory. Between every heat exchanger, there must 
be compatibility constraints for temperature and pressure. For a number N heat 
exchangers, there will 2*(N-1) compatibility constraints. To calculate these constraints, 
the output and input cold side temperatures and pressures should be input into the script. 
For a simple two heat exchanger system consisting of a precooler and condenser, for 
example, there would be two compatibility constraints calculated by: 
 
Tconstraint = Precooler.ColdSideIN.Temperature-Condenser.ColdSideOUT.Temperature 
Pconstraint = Precooler.ColdSideIN.Pressure-Condenser.ColdSideOUT.Pressure 
 
It is advisable that these constraints be normalized and then squared; in this manner, the 
compatibility constraint can be reflected as inequality constraints rather than equality 
constraints. When fed to an optimizer, the only way for this constraint to be satisfied is 
for Tin to be equal to Tout. By normalizing the magnitude of one constraint cannot 
dominate over another. 
 Other constraints may be necessary depending on the system being analyzed. If 
there are conditions at the exits of either the hot or cold sides that must be met these 
should be represented as inequality constraints as well. Additionally, if cold side mass 
flows are allowed to be different between heat exchangers, the constraints should be 
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added that mass flow can only decrease as the hydrogen moves through the system, never 
increase. 
 With the constraints defined, the optimizer that will drive the OBD can be added. 
ModelCenter includes a default optimizer in its Common/Drivers directory. Any variable 
or combination of variables can be optimized as long as an appropriate objective function 
is defined. To optimize total system weight, for example, create a script that adds all the 
individual component weights together, and use the output as the objective function. The 
constraints defined in the constraint script should all be dragged in to the constraint 
window. Finally, the design variables must be chosen. 
 All of the input variables that defined the compatibility constraints must be used 
as design variables to allow those constraints to be met. Any other design variables 
should be added as appropriate; generally, the mass flows of hydrogen and the heat 
exchanger effectiveness values should be design variables, as they are major drivers of 
the system. 
 
Creating System Models in Model Engineer 
 
 Creating a system model in Model Engineer can be a more difficult proposition if 
the Fixed Point Iteration approach is to be taken. The Brute-Force method is easily 
achievable, however. To create a Model Engineer ALS model, a new Visual Basic 
Standard EXE project should be started as normal. The components must be added to the 
form as described in the heat exchanger and water separator sections of this document. 
Additionally, the Modelogics Data Flow and Modelogics Data Viewing libraries should 
be added. 
 To connect the components in the model, the Connector Arrow is dragged from 
component to the other. Model Engineer should automatically identify those variables 
which are to be connected, but within the connector window the link direction and 
individual links may be changed. Direct links from one component to another should be 
made only between hot side variables; this includes links to any water separators. To 
create the feedback links for the cold side variables, the Splice component from the Data 
Flow library should be added in between each heat exchanger. The cold side outputs can 
be routed through this component and to the cold side inputs of the next component. 
 To execute the model, a DataGenerator component from the Data Viewing library 
must be added. By right clicking on it and selecting “Properties”, the execution order of 
the component can be set. The system should execute in the order that the hot air goes 
through the system. Make sure to check the box next to each component to ensure that it 
runs. 

If desired, a schematic viewer can be added that allows the user to see the system 
variables changing as the model executes. To create a schematic viewer, the S-Viewer 
component should be added from the Data Viewing Library. Next, a drawing of the 
system can be created in Microsoft Power Point, although this is optional. The Power 
Point drawing should be saved as a Windows Metafile (*.wmf). By right clicking on the 
S-Viewer component and selecting “Properties”, the *.wmf file can be added to the 
component and will be displayed when the S-Viewer is clicked during execution. In the 
S-Viewer property pages, the variables to be displayed on the picture are selected. These 

 74



variables can be arranged on the drawing (or white space if no *.wmf file is uploaded) by 
right clicking on the S-Viewer component and selecting “Show Viewer”. 

To execute this model, it should either be compiled into an executable, or run 
directly from Visual Basic by going to the Run menu and clicking Start (or hitting the 
Start button on the toolbar). The model should iterate continuously until the inputs and 
outputs between the components all match. This process executes very rapidly, but does 
involve a lot of extra computations. 

To use the FPI method of bringing a closed solution, the hot side Connector 
Arrows are still used, but the cold side links are removed. Instead, an Excel file is used 
along with the Model Engineer components ReadXCells and WriteXCells to 
continuously update the cold side properties based on the results of the previous run. 
Essentially, each run takes up a column in the Excel file. Initial conditions for all 
variables are specified in the first column. When the model is executed, it will write the 
cold side outputs between each heat exchanger in the same column in the outputs section. 
These values are written in the next column’s input section via logic in the worksheet 
itself. By employing a Do Loop component, the Data Generator can be told to execute a 
set number of times, indexed by the current column. Each iteration reads from and writes 
to the next column for however many iterations are specified. At the end of the process, 
the closeness of the cold side guesses to the actual values can be verified. If there is 
sufficiently small error between the two, the system has been closed. Otherwise, the 
model should be executed again with the most recent inputs in the first column until it has 
satisfied an appropriate maximum error condition. 

Please note that the Model Engineer models cannot truly be optimized, they can 
only be closed for certain inputs. The optimization capability of Model Engineer is too 
simple to accommodate the complex optimization strategy necessary to tackle an ALS of 
any size. 
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