Prioritization of Advanced Space Transportation Technologies Utilizing the Abbreviated Technology, Identification, Evaluation, and Selection (ATIES) Methodology for a Reusable Launch Vehicle (RLV)

> Submitted in Requirement for a Masters Degree in Aerospace Engineering School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA U.S.A.

> > Advisor Dr. John R. Olds Director Space Systems Design Lab (SSDL) School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA U.S.A.

> > > Author

A.C. Charania School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA U.S.A.

July 28, 2000

ACKNOWLEDGEMENTS

This author would like to thank the many professional and academic staff that contributed in guiding him through this study. The cooperation, patience, and guidance of the parties listed below greatly assisted this lone individual in understanding the various facets of this study. Acknowledgments are extended to parties in the following organizations:

- SpaceWorks Engineering, Inc.
- School of Aerospace Engineering, Georgia Institute of Technology
- Space Systems Design Laboratory (SSDL), Georgia Institute of Technology
- Aerospace Systems Design Laboratory (ASDL), Georgia Institute of Technology

TABLE OF CONTENTS

I.	LIST OF FIGURES	4
II.	LIST OF TABLES	5
III.	LIST OF ACRONYMS AND ABBREVIATIONS	6
1.0	EXECUTIVE SUMMARY	_8
2.0	INTRODUCTION AND STUDY MOTIVATION	9
	2.1 INTRODUCTION	9
	2.2 MOTIVATION	
3.0	TIES METHODOLOGY	12
	3.1 METHOD OVERVIEW	12
	3.2 ABBREVIATED TIES (ATIES) IMPLEMENTATION	
4.0	CASE STUDY: ATIES IMPLEMENTATION ON A 3 RD GENERATION RLV	20
	4.1 STEP A: BASELINE CONCEPT DETERMINATION	
	4.1.1 BASELINE CONCEPT: HYPERION SSTO RBCC RLV	20
	4.2 STEP B: TECHNOLOGY IDENTIFICATION	
	4.3 STEP C: TECHNOLOGY COMPATIBILITY	
	4.4 STEP D: TECHNOLOGY IMPACT	26
	4.5 STEP E: TECHNOLOGY EVALUATION	
	4.5.1 RDS MODEL DESIGN	
	4.5.2 INTEGRATION OF RDS MODEL AND ATIES METHOD	
	4.6 STEP F: TECHNOLOGY SELECTION	
	4.6.1 DETERMINISTIC TECHNOLOGY SELECTION	
	4.6.2 PROBABILISTIC TECHNOLOGY SELECTION	
5.0	CONCLUDING REMARKS	47
6.0	APPENDIX A: RDS MODEL SHEET OVERVIEW	48
7.0	APPENDIX B: RESPONSE SURFACE GENERATION OF AATE MODEL	56
8.0	APPENDIX C: VBA SCRIPTS FOR RDS MODEL	59
	8.1 LEARNING CURVE ROUTINE	
	8.2 IO SOLVER ROUTINE	61
	8.3 DETERMINISTIC DOE ROUTINE	
9.0	APPENDIX D: LISTING OF COMPUTATIONAL CODES	68
10.0	APPENDIX E: DETERMINISTIC RDS MODEL OUTPUTS	69
11.0	APPENDIX F: PROBABILISTIC RDS MODEL OUTPUTS	75
12.0	REFERENCES	86

LIST OF FIGURES

FIGURE 3.1.	TECHNOLOGY IDENTIFICATION, EVALUATION, AND SELECTION (TIES) METHOD	12
FIGURE 3.2.	HSCT TECHNOLOGY COMPATIBILITY MATRIX (TCM)	16
FIGURE 3.3.	HSCT TECHNOLOGY IMPACT MATRIX (TIM)	17
FIGURE 3.4.	ABBREVIATED TECHNOLOGY IDENTIFICATION, EVALUATION, AND SELECTION (ATIES) METHOD	19
FIGURE 4.1.	HYPERION VISUAL FLIGHT MODES	20
FIGURE 4.2.	HYPERION CAD/PACKAGING MODEL	21
FIGURE 4.3.	HYPERION CONCEPT SUMMARY	21
FIGURE 4.4.	TYPICAL HYPERION CONCEPT WEIGHT BREAKDOWN	22
FIGURE 4.5.	TYPICAL HYPERION CONCEPT TOTAL LIFE CYCLE COST (LCC)	23
FIGURE 4.6.	TYPICAL HYPERION CONCEPT NON-RECURRING AND RECURRING COST	23
FIGURE 4.7.	RDS MODEL TECHNOLOGY COMPATIBILITY MATRIX (TCM)	26
FIGURE 4.8.	INTERIOR DSM (DISCIPLINARY CAS) FOR SPREADSHEET BASED RDS MODEL	32
FIGURE 4.9.	EXTERIOR DSM (DISCIPLINARY CAS) FOR SPREADSHEET BASED RDS MODEL	34
FIGURE 4.10.	COMPLETE ATIES MODEL ARCHITECTURE	36
FIGURE 4.11.	TECHNICAL AND NON-TECHNICAL VEHICLE INFLUENCE FACTORS (VIFS)	37
FIGURE 4.12.	TOPSIS OEC RANKING OF TOP 10 TECHNOLOGY COMBINATIONS FOR WS 10 (BASELINE)	41
FIGURE 4.13.	GRAPHICAL SENSITIVITY OF EACH TECHNOLOGY ON OEC INPUT METRICS	45
FIGURE 6.1.	SAMPLE SHEET FROM RDS MODEL: TCM	48
FIGURE 6.2.	SAMPLE SHEET FROM RDS MODEL: NON TECHNICAL FACTOR MANIPULATION	48
FIGURE 6.3.	SAMPLE SHEET FROM RDS MODEL: TIM WITH PROBABILISTIC K FACTOR DISTRIBUTIONS	49
FIGURE 6.4.	SAMPLE SHEET FROM RDS MODEL: TECHNOLOGY SELECTION (USED FOR EVALUATION IN MODEL)	49
FIGURE 6.5.	SAMPLE SHEET FROM RDS MODEL: RDS I/O	50
FIGURE 6.6.	SAMPLE SHEET FROM RDS MODEL: TRAJECTORY	50
FIGURE 6.7.	SAMPLE SHEET FROM RDS MODEL: WEIGHTS (1)	51
FIGURE 6.8.	SAMPLE SHEET FROM RDS MODEL: WEIGHTS (2)	51
FIGURE 6.9.	SAMPLE SHEET FROM RDS MODEL: OPERATIONS	52
FIGURE 6.10.	SAMPLE SHEET FROM RDS MODEL: COST	53
FIGURE 6.11.	SAMPLE SHEET FROM RDS MODEL: ECONOMICS (1)	54
FIGURE 6.12.	SAMPLE SHEET FROM RDS MODEL: ECONOMICS (2)	55
FIGURE 6.13.	SAMPLE SHEET FROM RDS MODEL: SAFETY	55
FIGURE 10.1.	TOPSIS OEC RANKING OF TOP 10 TECHNOLOGY COMBINATIONS FOR WS 1	70
FIGURE 10.2.	TOPSIS OEC RANKING OF TOP 10 TECHNOLOGY COMBINATIONS FOR WS 2	70
FIGURE 10.3.	TOPSIS OEC RANKING OF TOP 10 TECHNOLOGY COMBINATIONS FOR WS 2	71
FIGURE 10.4.	TOPSIS OEC RANKING OF TOP 10 TECHNOLOGY COMBINATIONS FOR WS 4	71
FIGURE 10.5.	TOPSIS OEC RANKING OF TOP 10 TECHNOLOGY COMBINATIONS FOR WS 5	72
FIGURE 10.6.	TOPSIS OEC RANKING OF TOP 10 TECHNOLOGY COMBINATIONS FOR WS 6	72
FIGURE 10.7.	TOPSIS OEC RANKING OF TOP 10 TECHNOLOGY COMBINATIONS FOR WS 7	73
FIGURE 10.7.	TOPSIS OEC RANKING OF TOP 10 TECHNOLOGY COMBINATIONS FOR WS 8	73
FIGURE 10.9.	TOPSIS OEC RANKING OF TOP 10 TECHNOLOGY COMBINATIONS FOR WS 9	74
FIGURE 10.10.	TOPSIS OEC RANKING OF TOP 10 TECHNOLOGY COMBINATIONS FOR WS 1	74
FIGURE 11.1.	DRY WEIGHT FREQUENCY AND CUMULATIVE DISTRIBUTIONS	76
FIGURE 11.2.	GROSS WEIGHT FREQUENCY AND CUMULATIVE DISTRIBUTIONS	76
FIGURE 113.	FUSELAGE LENGTH FREQUENCY AND CUMULATIVE DISTRIBUTIONS	76
FIGURE 11.4.	DDT&E COST FREQUENCY AND CUMULATIVE DISTRIBUTIONS	77
FIGURE 11.5.	RECURRING COST PER FLIGHT FREQUENCY AND CUMULATIVE DISTRIBUTIONS	77
FIGURE 11.6.	VEHICLE TAT FREQUENCY AND CUMULATIVE DISTRIBUTIONS	77
FIGURE 11.7.	GOVERNMENT PRICE PER LB FREQUENCY AND CUMULATIVE DISTRIBUTIONS	77
FIGURE 11.8.	LIFE CYCLE COST (LCC) FREQUENCY AND CUMULATIVE DISTRIBUTIONS	78
FIGURE 11.9.	SAFETY METRIC FREQUENCY AND CUMULATIVE DISTRIBUTIONS	78
FIGURE 11.10.	SENSITIVITY OF TECHNOLOGY A ON OEC INPUT METRICS	80
FIGURE 11.10.	SENSITIVITY OF TECHNOLOGY B ON OEC INPUT METRICS	00 80
FIGURE 11.12.	SENSITIVITY OF TECHNOLOGY C ON OEC INPUT METRICS	81
FIGURE 11.12.	SENSITIVITY OF TECHNOLOGY D ON OEC INPUT METRICS	81
FIGURE 11.14.	SENSITIVITY OF TECHNOLOGY E ON OEC INPUT METRICS	82
FIGURE 11.14.	SENSITIVITY OF TECHNOLOGY F ON OEC INPUT METRICS	82
FIGURE 11.15.	SENSITIVITY OF TECHNOLOGY G ON OEC INPUT METRICS	83
FIGURE 11.10.	SENSITIVITY OF TECHNOLOGY I ON OEC INPUT METRICS	83
FIGURE 11.17.	SENSITIVITY OF TECHNOLOGY I ON OEC INPUT METRICS	83 84
FIGURE 11.18.	SENSITIVITY OF TECHNOLOGY J ON OEC INPUT METRICS	04 84
1 IOUKE 11.17.	SEASITIVITT OF TECHNOLOOT K ON OEC INFOT METRICS	

LIST OF TABLES

TABLE 3.1.	EXAMPLE MORPHOLOGICAL MATRIX FOR A TITAN LANDER INTERPLANETARY SPACECRAFT	_13
TABLE 3.2.	EXAMPLE PUGH EVALUATION MATRIX (PEM)	_18
TABLE 4.1.	TYPICAL HYPERION CONCEPT WEIGHT BREAKDOWN	_22
TABLE 4.2.	SELECTED SPACELINER 100 TECHNOLOGIES	_24
TABLE 4.3.	DOWN-SELECTED SPACELINER 100 TECHNOLOGIES USED IN STUDY	_25
TABLE 4.4.	DETERMINISTIC / PROBABILISTIC IMPACTS OF TECHNOLOGIES ON VEHICLE INFLUENCE FACTORS (1)_	27
TABLE 4.5.	DETERMINISTIC / PROBABILISTIC IMPACTS OF TECHNOLOGIES ON VEHICLE INFLUENCE FACTORS (2)_	28
TABLE 4.6.	DETERMINISTIC / PROBABILISTIC IMPACTS OF TECHNOLOGIES ON VEHICLE INFLUENCE FACTORS (3)_	28
TABLE 4.7.	DETERMINISTIC / PROBABILISTIC IMPACTS OF TECHNOLOGIES ON VEHICLE INFLUENCE FACTORS (4)_	29
TABLE 4.8.	DETERMINISTIC / PROBABILISTIC IMPACTS OF TECHNOLOGIES ON VEHICLE INFLUENCE FACTORS (5)_	29
TABLE 4.9.	MAXIMUM VIF EFFECTS DUE TO COMPOUNDED TECHNOLOGY EFFECTS: PERFORMANCE, WEIGHT, CO	ST,
	OPERATIONS, AND RELIABILITY	_30
TABLE 4.10.	NON-TECHNICAL VIF RANGES: GOVERNMENT FINANCIAL INCENTIVE PROGRAMS	_30
TABLE 4.11.	NON-TECHNICAL VIF RANGES: ECONOMICS	_30
TABLE 4.12.	TECHNICAL VIF RANGES: PERFORMANCE, WEIGHT, COST, OPERATIONS, AND RELIABILITY	_31
table 4.13.	SSDL COMPUTATIONAL CODES USED FOR CONCEPTUAL RLV DESIGN	_32
TABLE 4.14.	DETAILED BREAKDOWN OF RDS MODEL CONTRIBUTING ANALYSES (CAS)	_33
TABLE 4.15.	SAMPLE RDS I/O MODEL OUTPUTS	_34
TABLE 4.16.	SAMPLE DESIGN CONVERGENCE CRITERIA FOR MS EXCEL SOLVER	_35
TABLE 4.17.	GOVERNMENT FINANCIAL INCENTIVE PROGRAM INFLUENCE ASSUMPTIONS	_37
TABLE 4.18.	OVERALL ECONOMIC INFLUENCE ASSUMPTIONS	_37
TABLE 4.19.	WEIGHTING SCENARIOS (WS) FOR OECS BASED UPON VARIOUS OUTPUT FACTORS	<u>39</u>
TABLE 4.20.	TOPSIS DETERMINISTIC CASES FOR VARIOUS OEC WEIGHTING SCENARIOS (WS)	_42
TABLE 4.21.	TECHNOLOGY COMBINATIONS IN TOP 25 FOR ALL 11 WEIGHTING SCENARIOS	43
TABLE 4.22.	ACTUAL TECHNOLOGIES FOR THE 21 "HIGH APPEARANCE" COMBINATIONS	_43
TABLE 4.23.	ABSOLUTE SENSITIVITY OF ALL TECHNOLOGIES ON OEC INPUT METRICS	44
TABLE 4.24.	ABSOLUTE IMPACT OF TECHNOLOGIES FOR VARIOUS OEC WEIGHTING SCENARIOS	_46
TABLE 7.1.	AATE RSE PARAMETERS FOR SELECTED VARIABLES (1)	58
TABLE 7.2.	AATE RSE PARAMETERS FOR SELECTED VARIABLES (2)	_58
TABLE 10.1.	AATE RSE PARAMETERS FOR SELECTED VARIABLES (2) TECHNOLOGY COMBINATIONS FOR TOPSIS TOP 25 DETERMINISTIC RANKINGS	<u>69</u>
TABLE 11.1.	PROBABILISTIC FORECAST STATISTICS (1)	_75
TABLE 11.2.	PROBABILISTIC FORECAST STATISTICS (2)	75
table 11.3.	PROBABILISTIC FORECAST STATISTICS (3)	75
TABLE 11.4.	PERCENTILES	76
table 11.5.	ABSOLUTE SENSITIVITY DATA	_79

LIST OF ACRONYMS AND ABBREVIATIONS

Δv	DELTA V
AATE	ARCHITECTURE ASSESSMENT TOOL
AHP	ANALYTIC HIERARCHIC PROCESS
AIMS	ADVANCED INTEGRATED MODEL SYSTEM
ASDL	AEROSPACE SYSTEMS DESIGN LAB
ASTP	ADVANCED SPACE TRANSPORTATION PROGRAM
ATIES	ABBREVIATED TECHNOLOGY IDENTIFICATION, EVALUATION, AND SELECTION
ATIMS	ASTP TECHNOLOGY INVESTMENT MANAGEMENT SYSTEM
CABAM	COST AND BUSINESS ASSESSMENT MODULE
CASA	CENTER FOR AEROSPACE SYSTEMS ANALYSIS
CASA	CONTRIBUTING ANALYSIS
CDF	CUMULATIVE DISTRIBUTION FUNCTION
	COST ESTIMATING RELATIONSHIP
CER	
CSTS	COMMERCIAL SPACE TRANSPORTATION STUDY
DOE	DESIGN OF EXPERIMENTS
DDT&E	DESIGN, DEVELOPMENT, TESTING, AND EVALUATION
DSM	DESIGN STRUCTURE MATRIX
EC	ENGINEERING CHARACTERISTICS
EMD	ENGINEERING, MANUFACTURING, AND DEVELOPMENT
ERJ	EJECTOR RAMJET
ESJ	EJECTOR SCRAMJET
ETO	EARTH TO ORBIT
FPI	FAST PROBABILITY INTEGRATION
GA	GENETIC ALGORITHM
gen 3	3 RD GENERATION
GLOW	GROSS LIFT-OFF WEIGHT
HSCT	HIGH SPEED CIVIL TRANSPORT
IOC	INITIAL OPERATING CAPABILITY
IPT	INTEGRATED PRODUCT TEAM
IRR	INTERNAL RATE OF RETURN
ISP	SPECIFIC IMPULSE
ISP_BAR	AVERAGE PROPULSIVE ISP WITHOUT LOSSES
ISS	INTERNATIONAL SPACE STATION
IVHM	INTEGRATED VEHICLE HEALTH MONITORING
LCC	LIFE CYCLE COST
LEO	LOW EARTH ORBIT
LRU	LINE REPLACEMENT UNIT
MADAM	MULTIPLE ATTRIBUTE DECISION MAKING
MDO	MULTI-DISCIPLINARY DESIGN OPTIMIZATION
MECO	MAIN ENGINE CUT OFF
MER	MASS ESTIMATING RELATIONSHIP
MM	MORPHOLOGICAL MATRIX
MSFC	MARSHALL SPACE FLIGHT CENTER
MTBF	MEAN TIME BETWEEN FAILURE
MTBR	MEN TIME BETWEEN REPAIR
NAFCOM	NASA-AIR FORCE COST MODEL
NPV	NET-PRESENT-VALUE
NPSS	NUMERICAL PROPULSION SYSTEM SIMULATIONS
OEC	OVERALL EVALUATION CRITERIA
OMS	ORBITAL MANEUVERING SYSTEM
OEC	OVERALL EVALUATION CRITERION
PDF	PROBABILITY DENSITY FUNCTION
PEM	PUGH EVALUATION MATRIX
POST	PROGRAM TO OPTIMIZE SIMULATED TRAJECTORIES

QFD	QUALITY FUNCTION DEPLOYMENT
R&D	RESEARCH AND DEVELOPMENT
RBCC	ROCKET-BASED COMBINED CYCLE
RCS	REACTION CONTROL SYSTEM
RDS	ROBUST DESIGN SIMULATION
RLV	REUSABLE LAUNCH VEHICLE
ROM	ROUGH ORDER OF MAGNITUDE
RSE	RESPONSE SURFACE EQUATION
RSM	RESPONSE SURFACE METHODOLOGY
SSDL	SPACE SYSTEMS DESIGN LAB
SSTO	SINGLE STAGE TO ORBIT
STS	SPACE TRANSPORTATION SYSTEM
T/W	THRUST TO WEIGHT RATIO
TAT	TURN AROUND TIME
TBCC	TURBINE BASED COMBINED CYCLE
TFU	THEORETICAL FIRST UNIT
TCM	TECHNOLOGY COMPATIBILITY MATRIX
TIF	TECHNOLOGY INFLUENCE FACTOR
TIES	TECHNOLOGY IDENTIFICATION, EVALUATION, AND SELECTION
TIM	TECHNOLOGY IMPACT MATRIX
TOPSIS	TECHNIQUE FOR ORDER PREFERENCE BY SIMILARITY TO IDEAL SOLUTION
TPS	THERMAL PROTECTION SYSTEM
TRL	TECHNOLOGY READINESS LEVEL
TSTO	TWO STAGE TO ORBIT
TVC	THRUST VECTOR CONTROL
VIF	VEHICLE INFLUENCE FACTOR
VSLCDE	VIRTUAL STOCHASTIC LIFE CYCLE DESIGN ENVIRONMENT
w&s	WEIGHTS AND SIZING
WS	WEIGHTING SCENARIO

1.0 EXECUTIVE SUMMARY

Any envisioned future with ubiquitous space transportation systems as defined by NASA's Advanced Space Transportation Program (ASTP) will rely on revolutionary improvements in the development and integration of technologies. Given the limitation of financial resources by both the government and industry, strategic decision makers need a method to assist them in the prioritization of advanced space transportation technological investment.

The Technology Identification, Evaluation, and Selection (TIES) methodology is used to leap this gulf of evaluation through a systematic aggregation of decision-making techniques (i.e. Morphological Matrices, Pugh Evaluation Matrices, Multi-Attribute Decision Making, etc.) and sundry probabilistic methods (Response Surface Methodology, Monte Carlo Simulation, Fast Probability Integration, etc.). This study applies an abbreviated version of the original TIES method, referred to ATIES (abbreviated TIES), to a reusable launch vehicle (RLV). The specific system being examined is a single-stage-to-orbit (SSTO) RLV called Hyperion developed by the Space Systems Design Lab (SSDL) in the School of Aerospace Engineering at the Georgia Institute of Technology (Atlanta, GA USA).

For this study a spreadsheet-based model known as the Robust Design Simulation (RDS) model was developed from sophisticated analytical tools used in the conceptual RLV design process and linked to a Monte Carlo model. This RDS model was developed to evaluate the implications of various technology combinations on vehicle output metrics that are eventually aggregated into an Overall Evaluation Criterion (OEC). For the ATIES method, the RDS model was implemented in two fashions: a deterministic, full factorial examination of all feasible technologies combinations and a selected probabilistic examination with all technologies available for use on the vehicle. Three identified technologies out of a potential of ten ranked near the top (in terms of maximizing and affecting the OEC) for both of the above examinations: technologies C (Hot and cooled airframe and integrated primary structures), E (Propulsion IVHM), and H (Improved T/W RBCC engine) with all technologies present in the basket of best concepts. These results are dependent upon the initial, subjective interpretations of technology impact on various vehicle influence factors (VIFs).

The ATIES method is a technique that breaks the bonds of traditional design and analysis and their reliance on the linchpins of historical databases: from past realities towards hypothetical futures, from modeling evolutionary towards modeling revolutionary change.

2.0 INTRODUCTION AND STUDY MOTIVATION

2.1 INTRODUCTION

The National Aeronautics and Space Administration (NASA) is currently funding the Advanced Space Transportation Program (ASTP) to support long-range, basic research to develop advanced space transportation technologies to achieves NASA's goal of significantly reduced launch costs. Included are programs to develop airframe, propulsion, and long-term space transportation. As NASA defines it, the mission of ASTP is as follows¹:

ASTP provides the technological building blocks for earth-to-orbit (ETO) and in-space systems by reducing weight, complexity, and cost while boosting performance over conventional systems. Technologies pursued by ASTP are applicable to systems for the next ten to forty years. ASTP has four initiatives:

- 1. Development of new, low-cost technologies;
- 2. Development of advanced, reusable technologies;
- 3. Development of space transfer and upper-stage technologies; and
- 4. Space transportation research.

Some example technologies in this research program include rocket based combined cycle (RBCC) engines, solar thermal propulsion, magnetic levitating sleds, and laser beam propulsion.

Areas of concern for ASTP are technologies for what is termed a 3rd generation (Gen 3) reusable launch vehicle (RLV). These generations define various staggered levels of development for RLVs. The current NASA Shuttle (Space Transportation System or STS) is a first generation RLV. Beyond the second generation RLV of 2010 will be a third generation RLV around 2025 whose stated goal is to reach that plateau where space flight will be as routine as modern air travel. In particular, the specified goals include:

- 1. Improve the expected safety of launch so that the probability of losing a crew is no worse than 1 in 1,000,000 missions, about the same as today's airliners;
- 2. Reduce the cost of delivering a pound of payload to low Earth orbit from today's \$10,000 down to hundreds of dollars; and
- 3. Third generation RLV's will require a ground crew of only a couple of people to accomplish a launch, will need only a day to prepare for re-flight, and will fly 2,000 or more times a year.

Development and demonstration of RLV technologies are performed under the NASA Spaceliner 100 program with validation, as required, performed by flight experiments in the NASA Future-X Program. Under management from NASA's Marshall Space Flight Center (MSFC), the Spaceliner 100 program is

examining technologies in five main project areas: Propulsion, Airframe, Launch (avionics, power, crew systems, etc.), Integrated Vehicle Health Management (IVHM), and Operations and Range. Specific technologies include magnetic levitation for ground based launch assist, advanced cryotanks, high temperature integrated structures, advanced fuels, advanced thermal protection systems (TPS), and advanced modular avionics.

A particular initiative being pursued by NASA is the ASTP Technology Investment Management System (ATIMS) whose purpose is to take long-term system goals and defined mission requirements and develop system technology blueprints. In this environment selected vehicle concepts are coupled with promising technologies in a system-engineering environment to assess technology funding and risk through system, safety, and economic models. The modeling aspects of this initiative are part of ASTP's Advanced Integrated Model System (AIMS).

2.2 MOTIVATION

Any envisioned future with ubiquitous space transportation systems as defined by NASA's ASTP will rely on revolutionary improvements in the development and integration of technologies. Given the limitation of financial resources by both the government and industry, strategic decision makers need a method to assist them in the prioritization of advanced space transportation technological investment.

There is a modern emphasis on concurrent engineering with shortened times between research and development (R&D) and the engineering, manufacturing, and development (EMD) phase. With this imperative, new methods have to be developed that are proactive in forecasting the impact of new technologies, even before the maturation of those technologies. Techniques are needed that break the bonds of traditional design and analysis and their reliance on the linchpins of historical databases: from past realities towards hypothetical futures, from modeling evolutionary towards modeling revolutionary change. These evaluation techniques must be quantitative, robust, and applicable to the conceptual design process.

The metrics used to evaluate the impact of these technologies on a system can be composed from various disciplines (i.e. performance, safety, operations, cost, and economics, etc.) representing both a system's technical feasibility and economic viability. These metrics can be included into an Overall Evaluation Criterion (OEC) that serves as proxy for the needs of the customer. The OEC can be decomposed into both qualitative and quantitative measures of fitness. These measures include, but are not limited to, standard system level metrics.

These future conceptual systems can currently be modeled through the full legacy code, multi-modal process utilizing such techniques as Multi-disciplinary Design Optimization (MDO). Lower fidelity representations of this design process (i.e. meta-models) can be coupled with rough order of magnitude (ROM) technological impact scenarios gathered from expert knowledge holders to answer the following question:

What is the optimal mix of technologies that will maximize the Overall Evaluation Criterion (i.e. feasibility and viability) of a future system?

One can use various technologies, alone and in combination, to implement a conceptual system. Uncertainty, an ever-present character in the design process, can be also be embraced through a probabilistic design environment. The objective is to probabilistically quantify the impact of these technologies on the output metrics of interest from the design process.

The Technology Identification, Evaluation, and Selection (TIES) methodology is used to leap this gulf of evaluation through a systematic aggregation of decision-making techniques (i.e. Morphological Matrices, Pugh Evaluation Matrices, Multi-Attribute Decision Making, etc.) and sundry probabilistic methods (Response Surface Methodology, Monte Carlo Simulation, Fast Probability Integration, etc.). The Aerospace Systems Design Lab (ASDL), in the School of Aerospace Engineering at the Georgia Institute of Technology, pioneered the TIES method². Previous incarnations of the TIES method have been applied by the ASDL to commercial transport aircraft, rotorcraft, and uninhabited combat aerial vehicles^{3, 4, 5, 6, 7}.

This study applies an abbreviated version of the original TIES method, referred to ATIES (abbreviated TIES), to an alternative transportation system than those mentioned above, namely to reusable launch vehicles (RLVs). The specific system being examined is a single-stage-to-orbit (SSTO) RLV called Hyperion developed by the Space Systems Design Lab (SSDL) in the School of Aerospace Engineering at the Georgia Institute of Technology⁸. Hyperion is a 3rd Generation RLV that uses advanced technologies in such areas as propulsion, structures, and thermal protection systems to achieve breakthroughs in terms of performance, cost, economics, safety, and operational ability for earth-to-orbit (ETO) delivery applications.

3.0 TIES METHODOLOGY

3.1 METHOD OVERVIEW

As defined by the originators of the Technology Identification, Evaluation, and Selection (TIES) methodology²:

The nine step process known as TIES provides the decision maker / designer with the ability to easily assess and balance the impact of various technologies in the absence of sophisticated, time-consuming mathematical formulations.

Both formalized techniques of decision-making such as Morphological Matrices (MMs), Pugh Evaluation Matrices (PEMs), and Multi-Attribute Decision Making (MADM) are coupled with various probabilistic methods such as Response Surface Methodology (RSM) and Monte Carlo simulations for use in the TIES process (see Figure 3.1). The ultimate purpose of using the TIES method is to maximize a customer's Overall Evaluation Criterion (OEC) through temporally implementable evaluation processes.

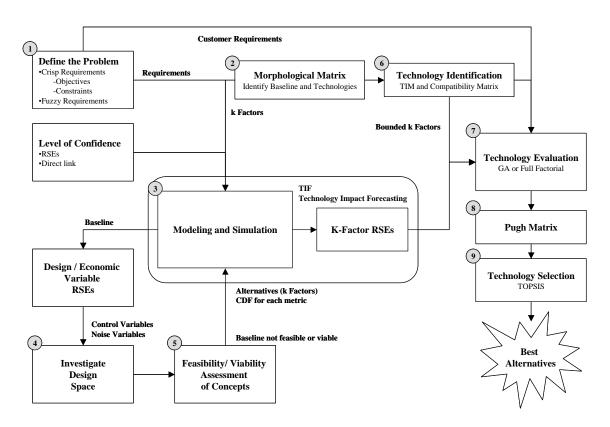


Figure 3.1. Technology Identification, Evaluation, and Selection (TIES) Method

The TIES method encompasses nine steps, namely:

1. Problem definition

The TIES method begins with an initial problem definition stage. The definition of the problem entails determining the societal wants of a customer. The desires of a customer must be refined and developed into detailed objectives, constraints, and evaluation criteria in terms of both product and process. A management and planning tool such as Qualify Function Deployment (QFD) can be used to quantitatively determine an Overall Evaluation Criterion (OEC) decomposed into economic, engineering, or other quantifiable requirements. Quality Function Deployment (QFD) is a management approach developed by the Japanese and utilized by American industry to use a customer's desires and opinions in the design process to target specific features. QFD can be utilized for rudimentary data mining, establishing a voice of the customer, or to discover strategic opportunities. QFD operates by linking Systems Level Engineering Characteristics (ECs) with Customer Attributes through a relative weighting process achieved through consensus. Arranging various system level concepts and determining the attributes necessary for the optimal system can help in the quantitative assessment of the concepts as to which are best, relative to other concepts.

2. Baseline and alternatives concepts identification

Once the parameters of the OEC are established there is the challenge of determining the various candidate systems to be examined. These systems have to be decomposed into the various characteristics they possess. A Morphological Matrix can be used as an ordered method that arranges the various attributed of a system. Table 3.1 depicts an example Morphological Matrix (MM) for a hypothetical Titan lander interplanetary spacecraft with the circled characteristics the determinants of a particular, single concept. This concept requires a certain set of technologies. Any other combination of alternatives would subsequently require another set of new, infused technologies.

Table 3.1. Example Mor	phological Matrix for a '	Titan Lander Inter	planetary Spacecraft
	F		

			Alternatives	
stics		1	2	3
eris	Main Cruise Stage Propulsion	Solar Electric	Chemical rocket	Solar Thermal
ract	Main Communications	X band	Orbiter link	S band
Cha	Main Power	Solar	Nuclear	Chemical Batteries
Ũ	Main Landing System	Airbags	Rocket thrusters	Glider

3. Modeling and simulation

Modeling helps to determine the properties of a technically feasible design. In the conceptual design stage, modeling can include use of monolithic synthesis / sizing codes or integrated disciplines in a multi-disciplinary environment. These models are representations of the real world based on processes in terms of physics, human operations, financials, etc.

4. Design space exploration

Once the ability is developed to model these systems, a baseline concept can be identified as the initial starting point for design space investigation. This baseline can be developed from high fidelity analytical tools. The initial characteristics of this concept will be coupled with constraints associated with the design process. Examples of these constraints include ranges for the technical and non-technical parameters in the design process (i.e. ISP, component weights, costs, etc.). Meta-models, or representations of these detailed models, can be employed for situations where computation and monetary expense are to be minimized^{9, 10, 11}. Three main probabilistic methods can be used to identify feasible and viable alternatives. These include:

a. Linkage of an actual simulation code with a Monte Carlo simulation.

This method is the most accurate but is the most computationally intense, requiring ten thousand simulations for reasonable approximations.

b. Creation of a meta-model and linkage to a Monte Carlo model

This method approximates the actual, detailed analytical tools with a lower fidelity models or a Response Surface Equation (RSE).

c. Fast Probability Integration (FPI)

This method uses the full analytical tool set but using fewer code executions than the first method.

The resultant outputs from these methods are cumulative probability distributions or frequency probability distributions rather than deterministic values for each output metric.

5. Determination of system feasibility/viability; probability of success

Probabilistic evaluation of systems can be used to determine various confidence levels associated with the output metrics of interest. If manipulation of feasible input variables, optimization, constraint relaxation, and maximum of the impact from baseline technologies have not enabled high probabilities of success, than the alternative is to infuse new technologies². The impact of these new technologies can be assessed through qualitative impact factors known as "k" factors. These k factors change specific disciplinary metrics

known as Vehicle Influence Factors (VIFs). These VIFs include component weights, costs, and reliabilities that are used in analysis tools or meta-models to determine both technical and non-technical output metrics. These k factors mimic the discontinuities in benefits and/or penalties associated with the infusion of new technologies². The values of these k factors can originate from consultation with experts in the field, physics-based modeling, or literature reviews. These impact values of these k factors can be probabilistic in nature.

6. Technology identification

The infusion of new technologies first requires the identification of those technologies, their compatibility with each other, their quantitative impact, and the Technology Readiness Level (TRL) of each technology. The Morphological Matrix can be used to determine possible technology candidates. The subsequent stages encompass the following:

a. Technology Compatibility Matrix (TCM)

This method is used to determine the physical compatibility between various combinations of technologies and subsequently the number of alternative scenarios to examine (the combinatorial problem). Figure 3.2 shows the compatibility matrix for a High Speed Civil Transport (HSCT) as developed by the ASDL at the Georgia Institute of Technology². The indicator "1" in the symmetric matrix designates a compatible combination whereas a "0" designates an incompatible combination.

										Airci	raft Morj	phing
	Compatibility Matrix (1: compatible, 0: incompatible)	Composite Wing	Composite Fuselage	Circulation Control	HLFC	Environmental Engines	Flight Deck Systems	Propulsion Materials	Integrally, Stiffened Aluminum Airframe Structures (wing)	Smart Wing Structures (Active Aeroelastic Control)	Active Flow Control	Acoustic Control
	Composite Wing	T1 1	T2 1	T3	T4 0	T5 1	T6 1	T7 1	T8 0	T9 0	T10 0	T11 0
	Composite wing	1	1	1	0	1	1	1	0	0	0	0
	Composite Fuselage	\sim	1	1	1	1	1	1	1	1	1	1
	Circulation Control			1	1	1	1	1	1	1	1	1
	HLFC			\searrow	1	1	1	1	0	0	0	1
	Environmental Engines					1	1	1	1	1	1	0
	Flight Deck Systems					\nearrow	1	1	1	0	1	1
	Propulsion Materials		Svn	metric N	Iatrix			1	0	1	1	1
	Integrally, Stiffened Aluminum Airframe Structures (wing)							\nearrow	1	0	1	1
phing	Smart Wing Structures (Active Aeroelastic Control)									1	1	1
Aircraft Morphing	Active Flow Control									\swarrow	1	1
Aircra	Acoustic Control											1

Figure 3.2. HSCT Technology Compatibility Matrix (TCM)²

b. Technology Impact Matrix (TIM)

Impact estimates of potential, infused technologies are quantitatively developed in the TIM. These impacts, the k factors, can be probabilistic since each possesses uncertainty. In the TIM, the impact of each technology is associated with technical and non-technical k factors creating a matrix of impact for each technology. The HSCT TIM, as developed by the ASDL, (shown in Figure 3.3) displays the "vectorization" of impact of both benefits and penalties².

									1		
									Airci	aft Mor	phing
	Composite Wing	Composite Fuselage	Circulation Control	HLFC	Environmental Engines	Flight Deck Systems	Propulsion Materials	Integrally, Stiffened Aluminum Airframe Structures (wing)	Smart Wing Structures (Active Aeroelastic Control)	Active Flow Control	Acoustic Control
Technical K_Factor Vector	T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10	T11
Wing Weight	-20%			+5%				-10%	-5%	+2%	
Fuselage Weight		-25%				-15%					
Engine Weight				+1%	+40%		-10%				+5%
Electrical Weight			+5%	+1%		+2%	+5%		+5%	+2%	+2%
Avionics Weight				+5%		+2%	+5%		+2%	+5%	+2%
Surface Controls Weight			-5%						+5%	+5%	
Hydraulics Weight			-5%						+5%		
Noise Suppression					-10%		-1%				-10%
Subsonic Drag	-2%	-2%		-10%						-5%	
Supersonic Drag	-2%	-2%		-15%						-5%	
Subsonic Fuel Flow			+1%	+1%	-2%		-4%				+1%
Supersonic Fuel Flow				+1%	-2%		-4%				
Maximum Lift Coefficient			+15%								
O&S	+2%	+2%	+2%	+2%	+2%		+2%	-2%	+2%	+2%	+1%
RDT&E	+4%	+4%	+2%	+2%	+4%	+2%	+4%		+5%	+5%	+5%
Production costs	+8%	+8%	+3%	+5%	+2%	+1%	+3%	-3%	-3%	-3%	-3%

Figure 3.3. HSCT Technology Impact Matrix (TIM)²

7. Technology evaluation

The feasible combinations of technological impacts on system design parameters (as determined from the TCM and TIM) can be evaluated using the modeling capability developed earlier to maximize the OEC. However, given the combinatorial nature of the problem (i.e. up to 2^n combinations where n is the number of technologies, with all technologies being compatible with each other) and the need to generate cumulative or frequency distributions for each combination, the computational expense can become mammoth in proportion. Alternatives, such as Genetic Algorithm (GA) searches or fractional factorial Design of Experiments (DOE) arrays can be useful in determining relatively satisfying, if not optimum, solutions.

8. Population of Pugh Evaluation Matrix (PEM)

The PEM (see Table 3.2) is a method where various concept alternatives can be evaluated with row vectors for each alternative specifying the population of output metrics (deterministic or probabilistic).

	Metric 1	Metric 2		Metric X
Alternative 1	#	#		#
Alternative 2	#	#		#
Alternative 3	#	#		#
•	•		•	
-	•		•	
				•
Alternative 2 ⁿ	#	#		#

Table 3.2. Example Pugh Evaluation Matrix (PEM)

9. Technology selection

A formulation of Multi-Attribute Decision Making (MADM) known as Technique For Order Preference By Similarity To Ideal Solution (TOPSIS) can be used to order the alternatives in the PEM in terms of those that maximize the OEC. The OEC consists of a combination of each type of output metric from the PEM. Various relative weighting scenarios can be used, resulting in slightly different OECs and possible differing optimum technological solutions for each type of OEC. The TOPSIS method includes the following sequence of activities:

- a. Formation of a decision matrix from the PEM.
- b. Non-dimensionalization by the Euclidean norm of the metric vector (metric columns of PEM).
- c. Establishment of positive (maximum metric value of benefit and minimum value of cost) and negative ideal solutions (compliment of positive).
- d. Determination of distance of each alternative from positive and negative ideal.
- e. Final ranking of alternatives ranked from best to worst with optional evaluation of the robustness of the best alternatives.

3.2 ABBREVIATED TIES (ATIES) IMPLEMENTATION

For this examination the TIES methodology described in the previous section was applied to the evaluation of Hyperion, a 3rd Generation (Gen 3) RLV. A modified implementation of the above TIES method, labeled as Abbreviated Technology Identification, Evaluation, and Selection (ATIES) was applied for this study. Several modifications are inherent in the ATIES method over the original ASDL-inspired TIES method. As the name suggests, the main feature of ATIES is the much simpler nature of the process. In ATIES, more focus is given towards evaluation and selection rather than identification.

ATIES is more application focused and subsequently less concern is placed on some of the initial TIES steps including problem definition, usage of Morphological Matrices (MM), Ishikawa diagrams, and initial

system feasibility/ viability determination. An overarching assumption for Gen 3 RLVs is that without these new technologies (i.e. RBCC propulsion) the system is basically incapable of being created as envisioned. Thus the actual determination of the feasibility/ viability for a Gen 3 RLV like Hyperion without technology infusion would be extravagant and not value additive. In addition, systems like Hyperion are already defined in terms of technologies needed for their creation. This study focuses in the impact of those technology alternatives, deterministic and probabilistic; to find the optimal mix of technologies that maximize the OEC. The ATIES method consists of six major parts, most of them similar to the main TIES method discussed earlier (see Figure 3.4). The parts include:

- A. Baseline concept determination
- B. Technology identification
- C. Technology compatibility
- D. Technology impact
- E. Technology evaluation
- F. Technology selection

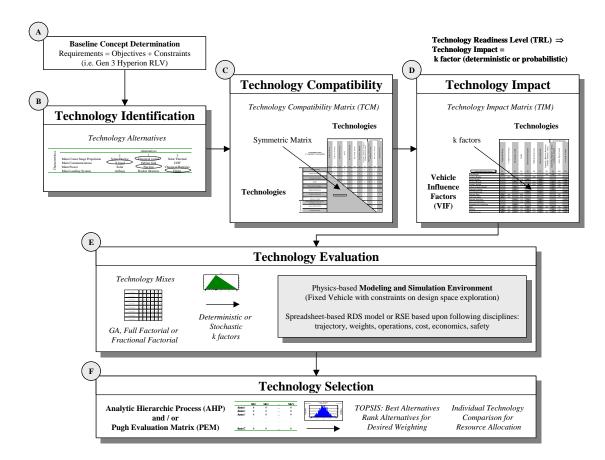
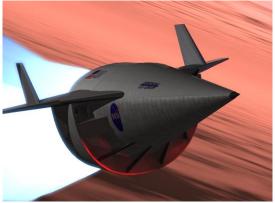
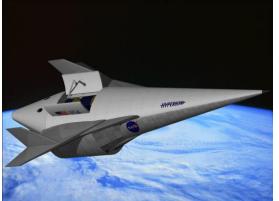


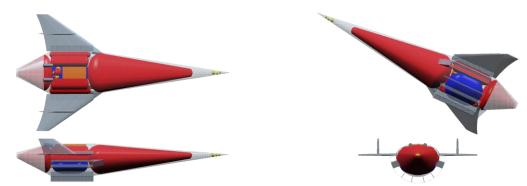
Figure 3.4. Abbreviated Technology Identification, Evaluation, and Selection (ATIES) Method

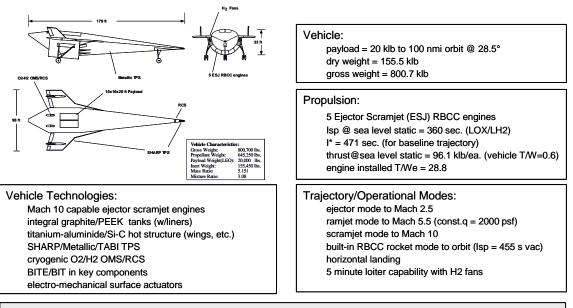
4.0 CASE STUDY: ATIES IMPLEMENTATION ON A 3rd GENERATION RLV


4.1 STEP A: BASELINE CONCEPT DETERMINATION

4.1.1 BASELINE CONCEPT: HYPERION SSTO RBCC RLV`


The future concept being examined in the study is the Gen 3 reusable launch vehicle (RLV) named Hyperion as developed by the Space Systems Design Lab (SSDL) at the Georgia Institute of Technology (see Figures 4.1, 4.2, and 4.3).


a. Ramjet Ascent


b. Scramjet Ascent

c. On-Orbit Operations d. Flyback Figure 4.1. Hyperion Visual Flight Modes

Notes and Issues:

- fully autonomous (no pilots), up to 6 passengers can ride in module in cargo bay
- metallic TPS on windward fuselage, simplifies installation & maintenance
- · ESJ RBCC engine builds on historical development; eliminates fan hardware and storage problems

Figure 4.3. Hyperion Concept Summary⁸

Highlights of a typical Hyperion vehicle concept include:

- Initial operational capability (IOC) in 2010, full by year 2012, program termination in 2027
- Market Includes modified CSTS Cargo & Passengers only
- Target Orbit: 100 nmi circular x 28.5 deg
- MECO at 50 X 100 nmi, OMS burn to 100 nmi circular

- Payload: 20,000 lbs LEO (~11,000 lbs ISS from KSC)
- Maximum airbreathing Mach number: 10
- 9.0° Conical forebody angle
- Maximum Dynamic Pressure: 2000 psf
- Dry Weight Margin: 15%
- Vehicle takeoff T/W: 0.6, installed RBCC T/W (SLS): 28.8
- Rocket Mode ISP: 455 sec.

Sample weight and cost data for a typical Hyperion concept are presented in Tables 4.1 and Figures 4.4, 4.5, and 4.6.

Name	Weight (lbs)
Wing and Tail Group	19,200
Body Group (including tanks)	28,150
Thermal Protection	7,600
Main Propulsion	20,750
OMS/RCS Propulsion	2,500
Subsystems and Other Dry Weights	28,950
Dry Weight Margin (15%)	16,100
Dry Weight	123,250
Payload	20,000
Other Inert Weights (residuals, etc.)	12,200
Insertion Weight	155,450
Ascent Propellants	645,250
Gross Lift-off Weight (GLOW)	800,700

Table 4.1. Typical Hyperion Concept Weight Breakdown⁸

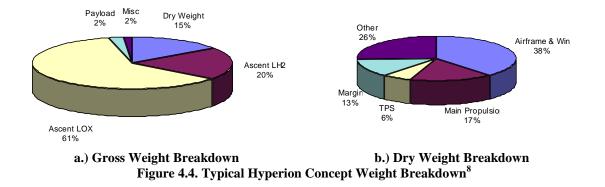
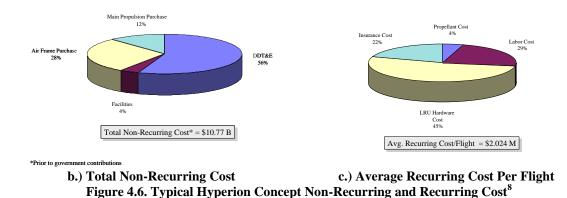



Figure 4.5. Typical Hyperion Concept Total Life Cycle Cost (LCC)⁸

4.2 STEP B: TECHNOLOGY IDENTIFICATION

This author did not develop any detailed technology identification process but utilized a technology alternative list developed by NASA for the Spaceliner 100 and ATIMS programs. Proposed technology areas (based on NASA groupings) for the recent Spaceliner 100 initiative included: Airframe, Integrated Vehicle Health Monitoring (IVHM), Range, Propulsion, Operations, and TPS (see Table 4.2).

Technology Subgroup	Specific Technologies
Airframe	Safe structures design technologies
	Advanced materials, fabrication, manufacturing, and assembly
	Aerodynamic / aerothermic tools for rapid design
	Integrated airframe design environment
	RLV crew interface technology
	Nonlinear airframe dynamic for flight control
	Advanced cryotank structures
	Structurally integrated sensors and avionics
	Hot and cooled airframe and integrated primary structures
	Aerodynamic performance and control through drag modification
	Advanced aerodynamic airframe design and databasing
IVHM	Advanced avionics IVHM
	Power IVHM with autonomous controls
	Advanced ground IVHM
	IVHM systems engineering and integration testbeds
	Advanced structure IVHM
	Propulsion IVHM
Range	Advanced checkout and control systems
Range	Intelligent instrumentation and inspection systems
	On-site, on-demand production and transfer of cryogenics
	Advanced umbilical
	Advanced payload system technology
Propulsion	1 5 5 65
FIOPUISION	Maglev development Hydrocarbon TSTO RBCC
	Numerical propulsion systems simulations (NPSS) for space transportation propulsion
	SSTO hydrogen RBCC
	Long, life high T/W hydrocarbon rocket
	Long life, light weight propulsion materials and structures
	Information rich test instrumentation
	Pulsed detonation engine rocket
	TSTO hydrocarbon TBCC
	Airbreathing pulsed detonation engine combined cycle
	SSTO TBCC aiurbreather
	High performance hydrocarbon fuels
	Long life, high T/W hydrogen rocket
	Propulsion life prediction
	High (better than densified) hydrogen
	Green operable RCS
	Integrated propulsion management system
Operations	Advanced range decision models
	Advanced weather instrumentation and systems
	Space based range
	Single, integrated spaceport range system
TPS	Sharp body TPS
	Adaptive, intelligent TPS IVHM
	Quickly change-out TPS
	Highly reusable TPS
	Advanced TPS inspection
	TPS life cycle design tools

Table 4.2. Selected Spaceliner 100 Technologies

In the interest of project time and scope, the above basket of technologies was significantly abbreviated for use in the present proof-of-concept ATIES process. These technologies were chosen irrespective of the specific RLV concept to be examined (i.e. TSTO or SSTO). Technologies from these subsets were selected through consultation with Dr. John R. Olds, Director and Assistant Professor, Space Systems Design Lab (SSDL), School of Aerospace Engineering, Georgia Institute of Technology and head of SpaceWorks Engineering, Inc. (see Table 4.3).

No.	Technology Code	Technology Item
1	А	Aerodynamic/aero-thermodynamic tools for rapid design
2	В	Advanced cryotank structures
3	С	Hot and cooled airframe and integrated primary structures
4	D	Advanced ground IVHM
5	Е	Propulsion IVHM
6	F	On-site, on-demand production and transfer of cryogenics
7	G	Maglev development
8	Н	Improved T/W RBCC engine
9*	Ι	Long life, high T/W hydrogen rocket
10	J	Sharp body TPS
11	K	Highly reusable TPS

Table 4.3. Down-Selected Spaceliner 100 Technologies Used in Study

Note: * Technology not applicable to Hyperion RLV concept given presence of technology 8

4.3 STEP C: TECHNOLOGY COMPATIBILITY

Once an adequate basket of technologies was established, the compatibilities between them had to be determined. Once again, through consultation with Dr. John R. Olds, compatibilities were determined between the 11 down-selected technologies (See Figure 4.7). Subsequent to the decision to down select to 11 technologies, it was realized that of the technologies selected all but one are compatible with each other. The technologies of "Improved T/W RBCC engine" (technology code H) and "Long life, high T/W hydrogen rocket" were not applicable at the same time and thus for the Hyperion (RBCC engine based) RDS model technology I was not used in this analysis.

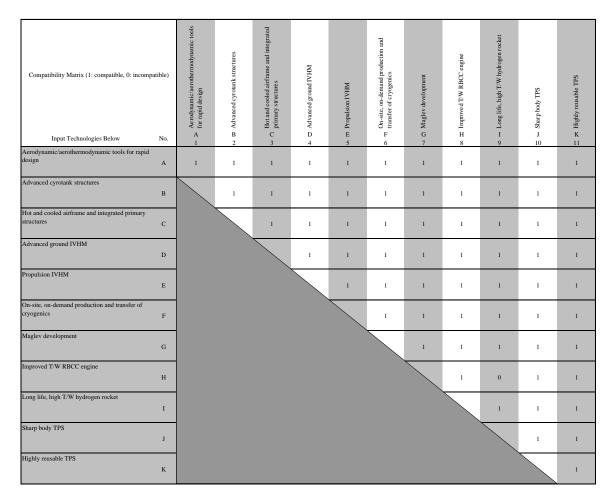


Figure 4.7. RDS Model Technology Compatibility Matrix (TCM)

4.4 STEP D: TECHNOLOGY IMPACT

The impact of each technology is determined by the value of the k factor. The k factor is generally a nondimensional numerical value representing the impact of a technology on a value such as cost or weight. These k factors can be either deterministic of probabilistic. The impact of these k factors are translated in the modeling process to certain Vehicle Influence Factors (VIFs). A VIF can be either technical (i.e. engine T/W) or non-technical (i.e. debt loan rate). There is a compounded effect of multiple k factors when they affect the same VIF. In other words, the addition of each technology through k factors can affect multiple VIFs and similarly each VIF can be influenced by multiple k factors. For the 10 feasible technologies (A-H, J, K) of the Hyperion RLV, both deterministic and probabilistic k factor impacts of each technology were determined through consultation with Dr. John R. Olds.

Tables 4.4 through 4.8 display the impact of all the selected technologies on the VIFs. The k factors shown as "Base@100%" are the base k factor values that are used for a deterministic study. The k factors can be

above or below this base value in a probabilistic analysis. Probabilistic k factor values are used as triangular distributions with a minimum, most likely (the Base@100% value), and maximum value. The tables also show the Vehicle Influence Factors (VIFs) and their associated nomenclature (i.e. P.1 for ISP_bar). None of the technologies selected for this cases study impacted all the VIFs. Table 4.9 shows the effects on the VIFs due to compounded technology effects. The values in the table represent the possible range of the VIFs for any and all technology combinations. The various technologies examined in this study only influenced what are termed "technical" VIFs. The "non-technical" VIFs, which consist of governmental financial incentives and economic influences and are discussed in Section 4.5.2 remain fixed.

The impact of all these technologies was constrained by ranges on the k factors. Tables 4.10 through 4.12 display the range of impacts the k factors were allowed to have on various VIFs. Any technology or combination of technologies was not allowed to have an impact greater than that listed in these tables. The purpose of this constraint mechanism is to disallow the subjective technology impact assessments (TCMs, TIMs) to override basic physical principles inherent in the RDS model. Constraints are placed on the extent of the design solutions created in the RDS model, avoiding infeasible design solutions. A "toggle" option is available in the ATIES model to allow or disallow this constraint mechanism.

			Technology A			Technology B		
No.	Vehicle Influence Factor (VIF)	Aerodynamic/aerothermodynamic tools for rapid design			Advanced cyrotank structures			
INO.	venicle influence Pactor (VIP)	ŀ	c factor Value	es	k	factor Valu	es	
		Min.	Most Likely	Max.	Min.	Most Likely	Max.	
P.1	ISP_bar (average propulsive ISP w/o losses)	0%	0%	0%	0%	0%	0%	
P.2	Drag Losses During Ascent	0%	0%	0%	0%	0%	0%	
P.3	TVC Losses During Ascent	0%	0%	0%	0%	0%	0%	
P.4	Launch Assist ΔV	0%	0%	0%	0%	0%	0%	
W.1	Wing and Tail Weight	0%	0%	0%	0%	0%	0%	
W.2	Fuselage Weight	0%	0%	0%	0%	0%	0%	
W.3	Propellant Tank Weight	0%	0%	0%	-30%	-10%	-5%	
W.4	TPS Weight	0%	0%	0%	0%	0%	0%	
W.5	Engine T/W	0%	0%	0%	0%	0%	0%	
W.6	Subsystem Weight	0%	0%	0%	0%	0%	0%	
W.7	Undercarriage Weight	0%	0%	0%	0%	0%	0%	
W.8	Oxidizer Density	0%	0%	0%	0%	0%	0%	
W.9	Fuel Density	0%	0%	0%	0%	0%	0%	
W.10	Payload Weight	0%	0%	0%	0%	0%	0%	
C.1	Facilities Cost	0%	0%	0%	0%	0%	0%	
C.2	Airframe DDT&E Cost	-10%	-2%	0%	0%	3%	5%	
C.3	Engine DDT&E Cost	0%	0%	0%	0%	0%	0%	
C.4	Airframe Procurement Cost (Manufacturing)	0%	0%	0%	0%	3%	5%	
C.5	Engine Procurement Cost (Manufacturing)	0%	0%	0%	0%	0%	0%	
C.6	Vehicle Recurring Cost / Flight	0%	0%	0%	0%	0%	0%	
M.1	Ground Turnaround Time	0%	0%	0%	0%	0%	0%	
M.2	Airframe Life (MTBR)	0%	0%	0%	0%	0%	0%	
M.3	Engine life (MTBR)	0%	0%	0%	0%	0%	0%	
R.1	Overall Vehicle Reliability (MTBF)	0%	0%	0%	0%	0%	0%	

Table 4.4. Deterministic / Probabilistic Impacts of Technologies on Vehicle Influence Factors (1)

			Technology C			Technology D		
No.	Vehicle Influence Factor (VIF)	Hot and cooled airframe and integrated primary structures			Advanced ground IVHM			
INO.	vehicle influence ractor (vir)	1	c factor Value	es	k	factor Valu	es	
		Min.	Most Likely	Max.	Min.	Most Likely	Max.	
P.1	ISP_bar (average propulsive ISP w/o losses)	0%	0%	0%	0%	0%	0%	
P.2	Drag Losses During Ascent	0%	0%	0%	0%	0%	0%	
P.3	TVC Losses During Ascent	0%	0%	0%	0%	0%	0%	
P.4	Launch Assist ΔV	0%	0%	0%	0%	0%	0%	
W.1	Wing and Tail Weight	-15%	-10%	-5%	0%	0%	0%	
W.2	Fuselage Weight	-15%	-10%	-5%	0%	0%	0%	
W.3	Propellant Tank Weight	-5%	-2%	0%	0%	0%	0%	
W.4	TPS Weight	-20%	-10%	-5%	0%	0%	0%	
W.5	Engine T/W	0%	0%	0%	0%	0%	0%	
W.6	Subsystem Weight	0%	0%	0%	0%	0%	0%	
W.7	Undercarriage Weight	0%	0%	0%	0%	0%	0%	
W.8	Oxidizer Density	0%	0%	0%	0%	0%	0%	
W.9	Fuel Density	0%	0%	0%	0%	0%	0%	
W.10	Payload Weight	0%	0%	0%	0%	0%	0%	
C.1	Facilities Cost	0%	0%	0%	2%	4%	6%	
C.2	Airframe DDT&E Cost	0%	2%	5%	0%	0%	0%	
C.3	Engine DDT&E Cost	0%	0%	0%	0%	0%	0%	
C.4	Airframe Procurement Cost (Manufacturing)	0%	2%	5%	0%	0%	0%	
C.5	Engine Procurement Cost (Manufacturing)	0%	0%	0%	0%	0%	0%	
C.6	Vehicle Recurring Cost / Flight	0%	0%	0%	-15%	-10%	-5%	
M.1	Ground Turnaround Time	0%	0%	0%	-25%	-15%	-10%	
M.2	Airframe Life (MTBR)	0%	0%	0%	0%	0%	0%	
M.3	Engine life (MTBR)	0%	0%	0%	0%	0%	0%	
R.1	Overall Vehicle Reliability (MTBF)	0%	0%	0%	1%	3%	10%	

Table 4.5. Deterministic / Probabilistic Impacts of Technologies on Vehicle Influence Factors (2)

Table 4.6. Deterministic / Probabilistic Impacts of Technologies on Vehicle Influence Factors (3)

No.	Vehicle Influence Factor (VIF)	Technology E Propulsion IVHM			Technology F On-site, on-demand production and transfer of cryogenics		
		1	c factor Value	es	k	factor Valu	es
		Min.	Most Likely	Max.	Min.	Most Likely	Max.
P.1	ISP_bar (average propulsive ISP w/o losses)	0%	0%	0%	0%	0%	0%
P.2	Drag Losses During Ascent	0%	0%	0%	0%	0%	0%
P.3	TVC Losses During Ascent	0%	0%	0%	0%	0%	0%
P.4	Launch Assist ΔV	0%	0%	0%	0%	0%	0%
W.1	Wing and Tail Weight	0%	0%	0%	0%	0%	0%
W.2	Fuselage Weight	0%	0%	0%	0%	0%	0%
W.3	Propellant Tank Weight	0%	0%	0%	0%	0%	0%
W.4	TPS Weight	0%	0%	0%	0%	0%	0%
W.5	Engine T/W	0%	0%	0%	0%	0%	0%
W.6	Subsystem Weight	0%	0%	0%	0%	0%	0%
W.7	Undercarriage Weight	0%	0%	0%	0%	0%	0%
W.8	Oxidizer Density	0%	0%	0%	0%	0%	0%
W.9	Fuel Density	0%	0%	0%	0%	0%	0%
W.10	Payload Weight	0%	0%	0%	0%	0%	0%
C.1	Facilities Cost	0%	0%	0%	0%	0%	0%
C.2	Airframe DDT&E Cost	0%	0%	0%	0%	0%	0%
C.3	Engine DDT&E Cost	0%	3%	6%	0%	0%	0%
C.4	Airframe Procurement Cost (Manufacturing)	0%	0%	0%	0%	0%	0%
C.5	Engine Procurement Cost (Manufacturing)	0%	3%	6%	0%	0%	0%
C.6	Vehicle Recurring Cost / Flight	-15%	-3%	-2%	-10%	-4%	-2%
M.1	Ground Turnaround Time	-15%	-10%	-5%	0%	0%	0%
M.2	Airframe Life (MTBR)	0%	0%	0%	0%	0%	0%
M.3	Engine life (MTBR)	0%	0%	0%	0%	0%	0%
R.1	Overall Vehicle Reliability (MTBF)	1%	5%	20%	0%	0%	0%

		Technology G			Technology H		
		Ma	glev develop	ment	Improved T/W RBCC engine		
No.	Vehicle Influence Factor (VIF)	k factor Values			k	factor Valu	es
		Min.	Most Likely	Max.	Min.	Most Likely	Max.
P.1	ISP_bar (average propulsive ISP w/o losses)	0%	0%	0%	5%	8%	15%
P.2	Drag Losses During Ascent	0%	0%	0%	0%	0%	0%
P.3	TVC Losses During Ascent	0%	0%	0%	0%	0%	0%
P.4	Launch Assist ΔV	*	*	*	0%	0%	0%
W.1	Wing and Tail Weight	-15%	-10%	-5%	0%	0%	0%
W.2	Fuselage Weight	0%	0%	0%	0%	0%	0%
W.3	Propellant Tank Weight	0%	0%	0%	0%	0%	0%
W.4	TPS Weight	0%	0%	0%	0%	0%	0%
W.5	Engine T/W	0%	0%	0%	10%	15%	35%
W.6	Subsystem Weight	0%	0%	0%	0%	0%	0%
W.7	Undercarriage Weight	-60%	-50%	-40%	0%	0%	0%
W.8	Oxidizer Density	0%	0%	0%	0%	0%	0%
W.9	Fuel Density	0%	0%	0%	0%	0%	0%
W.10	Payload Weight	0%	0%	0%	0%	0%	0%
C.1	Facilities Cost	100%	200%	500%	0%	0%	0%
C.2	Airframe DDT&E Cost	0%	0%	0%	0%	0%	0%
C.3	Engine DDT&E Cost	0%	0%	0%	2%	3%	5%
C.4	Airframe Procurement Cost (Manufacturing)	0%	0%	0%	0%	0%	0%
C.5	Engine Procurement Cost (Manufacturing)	0%	0%	0%	0%	2%	4%
C.6	Vehicle Recurring Cost / Flight	2%	4%	10%	0%	0%	0%
M.1	Ground Turnaround Time	0%	4%	10%	0%	0%	0%
M.2	Airframe Life (MTBR)	0%	0%	0%	0%	0%	0%
M.3	Engine life (MTBR)	0%	0%	0%	25%	50%	100%
R.1	Overall Vehicle Reliability (MTBF)	-10%	-5%	-2%	3%	5%	8%

Table 4.7. Deterministic / Probabilistic Impacts of Technologies on Vehicle Influence Factors (4)

Note: * If technology used then translates to Min. (400 m/s), Most (800m/s), Max. (1200 m/s) ΔV

		Technology J Sharp body TPS			Technology K Highly reusable TPS		
No.	Vehicle Influence Factor (VIF)	1	c factor Value	es	k	factor Valu	es
		Min.	Most Likely	Max.	Min.	Most Likely	Max.
P.1	ISP_bar (average propulsive ISP w/o losses)	0%	0%	0%	0%	0%	0%
P.2	Drag Losses During Ascent	-10%	-3%	0%	0%	0%	0%
P.3	TVC Losses During Ascent	0%	0%	0%	0%	0%	0%
P.4	Launch Assist ΔV	0%	0%	0%	0%	0%	0%
W.1	Wing and Tail Weight	0%	0%	0%	0%	0%	0%
W.2	Fuselage Weight	0%	0%	0%	0%	0%	0%
W.3	Propellant Tank Weight	0%	0%	0%	0%	0%	0%
W.4	TPS Weight	0%	2%	6%	-5%	-2%	0%
W.5	Engine T/W	0%	0%	0%	0%	0%	0%
W.6	Subsystem Weight	0%	0%	0%	0%	0%	0%
W.7	Undercarriage Weight	0%	0%	0%	0%	0%	0%
W.8	Oxidizer Density	0%	0%	0%	0%	0%	0%
W.9	Fuel Density	0%	0%	0%	0%	0%	0%
W.10	Payload Weight	0%	0%	0%	0%	0%	0%
C.1	Facilities Cost	0%	0%	0%	0%	0%	0%
C.2	Airframe DDT&E Cost	0%	1%	5%	0%	1%	3%
C.3	Engine DDT&E Cost	0%	0%	0%	0%	0%	0%
C.4	Airframe Procurement Cost (Manufacturing)	0%	1%	3%	0%	1%	3%
C.5	Engine Procurement Cost (Manufacturing)	0%	0%	0%	0%	0%	0%
C.6	Vehicle Recurring Cost / Flight	0%	0%	0%	-8%	-5%	-2%
M.1	Ground Turnaround Time	0%	0%	0%	-15%	-10%	-5%
M.2	Airframe Life (MTBR)	0%	0%	0%	10%	20%	30%
M.3	Engine life (MTBR)	0%	0%	0%	0%	0%	0%
R.1	Overall Vehicle Reliability (MTBF)	0%	0%	0%	0%	0%	0%

Table 4.9. Maximum VIF Effects Due to Compounded Technology Effects:

	No.	Vehicle Influence Factor (VIF)	Minimum	Most Likely	Maximum
1	P.1	ISP_bar (average propulsive ISP w/o losses)	5%	8%	15%
2	P.2	Drag Losses During Ascent	-10%	-3%	0%
3	P.3	TVC Losses During Ascent	0%	0%	0%
4	P.4	Launch Assist ΔV^*	40000%	80000%	120000%
5	W.1	Wing and Tail Weight	-30%	-20%	-10%
6	W.2	Fuselage Weight	-15%	-10%	-5%
7	W.3	Propellant Tank Weight	-35%	-12%	-5%
8	W.4	TPS Weight	-25%	-10%	1%
9	W.5	Engine T/W	30%	40%	85%
10	W.6	Subsystem Weight	0%	0%	0%
11	W.7	Undercarriage Weight	-60%	-50%	-40%
12	W.8	Oxidizer Density	0%	0%	0%
13	W.9	Fuel Density	0%	0%	0%
14	W.10	Payload Weight	0%	0%	0%
15	C.1	Facilities Cost	102%	204%	506%
16	C.2	Airframe DDT&E Cost	-10%	5%	18%
17	C.3	Engine DDT&E Cost	4%	9%	16%
18	C.4	Airframe Procurement Cost (Manufacturing)	0%	7%	16%
19	C.5	Engine Procurement Cost (Manufacturing)	0%	7%	14%
20	C.6	Vehicle Recurring Cost / Flight	-46%	-18%	-1%
21	M.1	Ground Turnaround Time	-55%	-31%	-10%
22	M.2	Airframe Life (MTBR)	10%	20%	30%
23	M.3	Engine life (MTBR)	50%	100%	200%
24	R.1	Overall Vehicle Reliability (MTBF)	-4%	10%	40%

Performance, Weight, Cost, Operations, and Reliability

Note: * if technology used, then % translates to m/s, i.e. 40000% = 400 m/s ΔV

Table 4.10. Non-Technical VIF Ranges: Government Financial Incentive Programs

No.	Vehicle Influence Factor (VIF)	Worst	Base@100%	Best
G.1	Facilities Offset Percentage	0%	100%	100%
G.2	DDT&E Offset Percentage	0%	25%	100%
G.3	Debt Loan Rate	5.0%	7.5%	15.0%
G.4	Tax Holiday Program Duration [years]	0	0	5
G.5	Government Cargo Flights per Year [flights / year]	10	50	300

Table 4.11. Non-Technical VIF Ranges: Economics

No.	Vehicle Influence Factor (VIF)	Worst	Base@100%	Best
E.1	Required Commercial Internal Rate of Return (IRR)	10%	25%	30%
E.2	Commercial Market Growth Factor	0%	30%	100%

	No.	Vehicle Influence Factor (VIF)	Worst	Base@100%	Best
1	P.1	ISP_bar (average propulsive ISP w/o losses)	95%	100%	105%
2	P.2	Drag Losses During Ascent	115%	100%	90%
3	P.3	TVC Losses During Ascent	115.0%	100.0%	90.0%
4	P.4	Launch Assist $\Delta V [m/s]$	0.0	0.0	1,500.0
5	W.1	Wing and Tail Weight	125%	100%	80%
6	W.2	Fuselage Weight	125%	100%	80%
7	W.3	Propellant Tank Weight	125%	100%	80%
8	W.4	TPS Weight	125%	100%	80%
9	W.5	Engine T/W	80%	100%	125%
10	W.6	Subsystem Weight	125%	100%	80%
11	W.7	Undercarriage Weight	125%	100%	80%
12	W.8	Oxidizer Density	150%	100%	75%
13	W.9	Fuel Density	150%	100%	75%
14	W.10	Payload Weight [lbs]	15,000	20,000	40,000
15	C.1	Facilities Cost	200%	100%	0%
16	C.2	Airframe DDT&E Cost	200%	100%	0%
17	C.3	Engine DDT&E Cost	200%	100%	0%
18	C.4	Airframe Procurement Cost (Manufacturing)	200%	100%	0%
19	C.5	Engine Procurement Cost (Manufacturing)	200%	100%	0%
20	C.6	Vehicle Recurring Cost / Flight	200%	100%	50%
21	M.1	Ground Turnaround Time	10%	100%	200%
22	M.2	Airframe Life (MTBR) [no. of flights]	100	1,000	10,000
23	M.3	Engine life (MTBR) [no. of flights]	100	500	10,000
24	R.1	Overall Vehicle Reliability (MTBF) [no. of flights]	500	10,000	10,000,000

Table 4.12. Technical VIF Ranges: Performance, Weight, Cost, Operations, and Reliability

4.5 STEP E: TECHNOLOGY EVALUATION

For this study a spreadsheet-based RDS model for the baseline concept, the Hyperion RLV, was developed from sophisticated analytical tools. This meta-model was developed so as to evaluate the implications of various technology combinations on vehicle output metrics and eventually the Overall Evaluation Criterion (OEC). This meta-model simulated the typical RLV design process used by the SSDL and the ATIES methodology through the inclusion of a TCM, TIM, and PEM. This model is referred to as a Robust Design Simulation (RDS) model due to the probabilistic nature of this conceptual-level model to determine feasible system concepts given design objectives and constraints.

4.5.1 RDS MODEL DESIGN

As shown in Figure 4.8, a methodology employed to derive the various functional relationships within the RDS model was a Design Structure Matrix (DSM). In this methodology a structured relationship is derived of inputs and outputs operating over functional blocks or Contributing Analysis (CAs) of an engineering system (i.e. trajectory, weights, cost, etc.). A DSM is a tool that can be used for visualization of the functional relationships between sub-systems. DSMs also employ feedback links to these CAs.

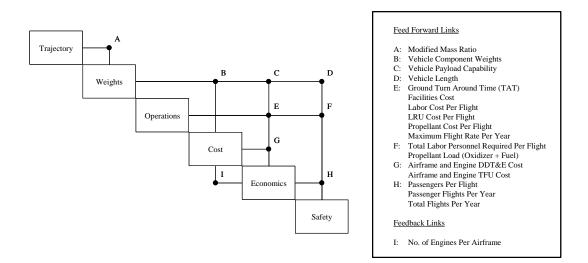


Figure 4.8. Interior DSM (Disciplinary CAs) for Spreadsheet Based RDS Model

For the RDS model, a DSM was developed with system functional blocks and links to represent relationships between various expert systems / tools. Using these blocks and links; a process was developed to determine various engineering parameters. The upper segment of inputs are feed forwards, whereas the lower segments are feedback loops. It is apparent that there is a set of highly correlated functional feed forward relationships that exist in the center of the DSM. Each CA is representative of a different sheet in the RDS model. This particular DSM is the interior DSM of the RDS model, exclusive of the optimizers used to converge a particular design for an input set of technologies.

This DSM was modeled upon a type of RLV design process used by the Space Systems Design Lab (SSDL) based upon an Integrated Product Team (IPT) approach. Each CA is representative of a higher fidelity tool being employed by the SSDL in their design process (see Appendix A for sample detailed views of each spreadsheet based CA). Table 4.13 lists the computational codes by the SSDL for a typical Hyperion RLV design process while Table 4.14 lists the mapping of the RDS model CA with its counterpart higher fidelity design tool.

Table 4.13. SSDL	Computational	Codes Used for	Conceptual RLV	Design

Discipline	Computational Code
Performance	POST
Aerodynamics	APAS
Propulsion	SCCREAM, SCORES
Vehicle Weights	MERS in MS Excel Spreadsheet
Engine Weights	WATES
Solid Modeling	IDEAS
Operations	AATe
Cost and Economics	CABAM

RDS CA	Higher Fidelity Design Tool	RDS Substitution / Usage for Tool		
Trajectory	POST	Calibrated POST trajectory data for Hyperion SSTO		
	(Program to Optimize Simulated Trajectories)	RLV with multipliers for ΔV losses to obtain a new		
	ETO trajectory optimization developed by NASA LaRC	mass ratio		
Weights	WATES, W&S Sizer	Use of SSDL W&S spreadsheet with no propulsion		
	RBCC engine weight, vehicle mass sizer and scaling models developed by SSDL	discipline; scaling of vehicle length of obtain mass ratio compatible with one obtained from the trajectory CA		
Operations	AATe (Architecture Assessment Tool)	Response Surface Equation (RSE) of AATe model based upon four input parameters: Airframe Life (MTBR), Dri Weicht, Vehicle Learth and Owerell		
	Ground operations model developed by NASA KSC	(MTBR), Dry Weight, Vehicle Length, and Overall Vehicle Reliability (MTBF), see Appendix B for more details		
Cost	NAFCOM (NASA-Air Force Cost Model)	Inclusion of Level 1 Cost Estimating Relationships (CERs) from NAFCOM		
	Parametric cost model developed by NASA Marshall			
Economics	CABAM	Use of basic financial sheets, with a regression curve		
	(Cost and Business Analysis Module)	fit of CSTS commercial payload delivery market.		
	RLV economics model developed by SSDL	Routine for learning curve determination, see Appendix C for details.		
Safety	Georgia Tech Safety Model-GT Safety developed by SSDL (Dr. John R. Olds)	Inclusion of complete spreadsheet model using order of magnitude comparisons with Shuttle		

Table 4.14. Detailed Breakdown of RDS Model Contributing Analyses (CAs)

For implementation in ATIES each RDS model has to be correlated for a specific concept. Thus another formulation of the RDS model must be created in order to examine a two-stage-to-orbit (TSTO) RLV. This would entail changes in the disciplinary sheets in the RDS model such as trajectory, weights, operations, and cost based on higher-level fidelity tools used in the expanded conceptual design process for an RLV. The RDS model created for this study was specific to the Hyperion SSTO RLV. Still, there exists the possibility of comparing different concepts such as TSTO versus SSTO or all-rocket versus RBCC propulsion using the ATIES method. These alternative concepts may require different disciplinary tools to be included in the RDS model.

4.5.2 INTEGRATION OF RDS MODEL AND ATIES METHOD

The RDS model consists of the set of sheets representing disciplinary models coupled with an input / output (I/O) control sheet. This RDS I/O construct provides an interface between the base, interior RDS DSM with the rest of the RDS model that contains the technologies and the technical and non-technical k factors (see Section 4.4 for more detail on the k factors and RDS inputs / outputs). Figure 4.9 shows the relationship between the interior DSM and the RDS I/O that acts as a global optimizer in the exterior DSM, while Table 4.15 shows the output metrics that result from this exterior DSM.

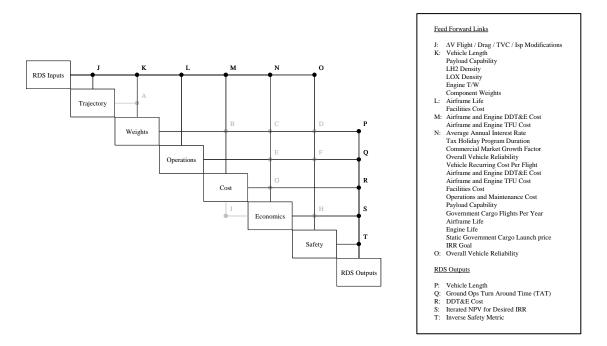


Figure 4.9. Exterior DSM (Disciplinary CAs) for Spreadsheet Based RDS Model

No.	Output Factor Name	Sample Values	Units
0.1	Gross Weight	554,041	lb
O.2	Dry Weight	85,070	lb
0.3	Fuselage Length	154.0	ft
O.4	DDT&E cost	4,793	USD (\$M)
0.5	Recurring cost / flight	1.14	USD (\$M) / Flight
0.6	Vehicle Turnaround Time	8.78	days
O.7	Govt. Price / lb (required for IRR)	5,616.6	USD (\$) / lb
O.8	Govt. Price / flight (required for IRR)	112.3	USD (\$M) / Flight
0.9	NPV (for required IRR)	0	USD (\$M)
O.10	NPV (at 25% discount rate)	0	USD (\$M)
0.11	Life cycle cost (LCC)	63,406	USD (\$M)
0.12	Safety Metric	339,960	# flights between loss of life

Table 4.15. Sample RDS I/O Model Outputs

The RDS I/O converges the design using two independent scaling variables: one price and one vehicle length parameter. The price is the government cargo price per lb to charge, based on Commercial Space Transportation Study (CSTS) market elasticity curve fits, and is determined for an input internal rate of return (IRR). In addition, the RDS I/O converges the vehicle through manipulation of the vehicle length for an input level of technical vehicle influence factors (VIFs) from the trajectory and weights CAs such as ISP_bar (average propulsive ISP w/o losses), drag losses during ascent, Thrust Vector Control (TVC) losses during ascent, launch assist ΔV , vehicle component weights, and oxidizer / fuel densities.

The convergence process is run through MS Excel Solver that optimizes both vehicle length and government cargo price for an objective function of a net present value (NPV) of zero for the required IRR (see Table 4.16). In particular, instead of using two objective functions, one for price and one for vehicle length, one objective function (for price) is used along with one constraint (for vehicle length). The scaling variable for price is used in the economics spreadsheet of the RDS model. The scaling variable for vehicle length is used in the weights spreadsheet of the RDS model to size a vehicle for a required mass ratio. This process of convergence, meeting the objective function with associated constraints, takes approximately several seconds and various restarts on the part of MS Excel Solver. To converge a single vehicle in this manner could take as little as a few seconds or up to 30 seconds with various MS Excel Solver restarts.

Table 4.16. Sample Design Convergence Criteria for MS Excel Solver

D.2Mass Ratio errorConstraintWeights0.00D.3Total vehicle length (fuselage length)ManipulateWeights*ft	No.	Name	Purpose	Discipline	Value	Units	Comment
D.3 Total vehicle length (fuselage length) Manipulate Weights * ft	D.1	NPV for Req'd IRR	Target For Zero	Economics	0.00	USD (\$M)	FY\$2018
	D.2	Mass Ratio error	Constraint	Weights	0.00		
D.4 Static Yearly Launch Price – Govt. Cargo Manipulate Economics * \$/lb FY\$2018	D.3	Total vehicle length (fuselage length)	Manipulate	Weights	*	ft	
	D.4	Static Yearly Launch Price - Govt. Cargo	Manipulate	Economics	*	\$/lb	FY\$2018

Note: * indicates value being converged by MS Excel Solver for required k factors

At this point the ATIES implementation requires integration of the RDS model with Technology Compatibility Matrices (TCMs) and Technology Impact Matrices (TIMs). Figure 4.10 details the pieces of the ATIES implementation that comprise the complete technology evaluation process. In the complete ATIES process, technologies are identified, their compatibilities examined, deterministic or probabilistic influences determined, non-technical influences identified, and finally the RDS model is executed using MS Excel Solver. At this point in the process a vehicle concept is generated based upon a standard baseline concept (i.e. a 3rd Generation RLV) perturbed (through the RDS model) to accept a selected set of infused technologies (from the TCM and TIM). After many of these simulations, a list of the best combination of technologies can be developed.

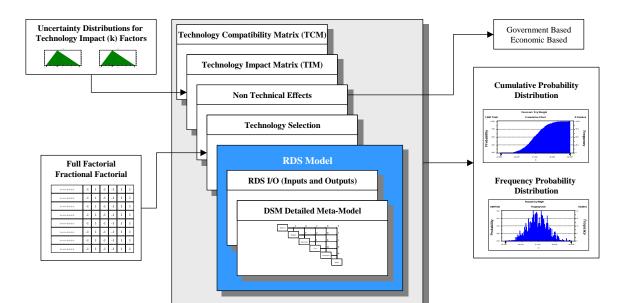


Figure 4.10. Complete ATIES Model Architecture

As described in an earlier section, the design space can be explored in many ways. The method pursued in this study consisted of creation of the RDS model and linkage to a Monte Carlo model (the TIM k factor distributions through the Monte Carlo computer program Crystal Ball). This method approximates the actual, detailed analytical tools that the SSDL uses to design conceptual vehicles with lower fidelity spreadsheets. Many times a Response Surface Equation (RSE) will be used as the meta-model. In this case a "full" spreadsheet-based analogue was used instead of an RSE. This creates problems in that the convergence requirements for the model (between seconds to minutes) made full/fractional factorial deterministic or probabilistic examinations of the design space expensive in terms of time and computational cost. Alternatives not fully implemented in this study include a Response Surface Equation of the entire RDS model. This would reduce the current fidelity of the RDS model (i.e from multiple "full" spreadsheets to RSEs).

For this study non-technical factors were left at pre-selected values. The parameters that influence the RDS model consist of technical and non-technical factors (as seen in Figure 4.11). A detailed examination of sensitivities of the model to non-technical effects, government financial incentives and economic priorities, are a secondary objective of the ATIES method. The ATIES method as detailed in this examination is focused on determining the influence of various technologies on vehicle output metrics rather than an expansive assessment of various programmatic and financial scenarios.

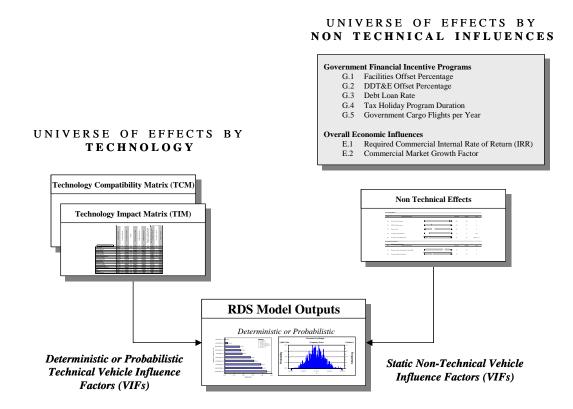


Figure 4.11. Technical and Non-Technical Vehicle Influence Factors (VIFs)

All evaluations in this study maintained constant assumptions as they relate to the non-technical influences, namely the government and economic environment. The static values for these non-technical vehicle influences factors (VIFs) are given in Tables 4.17 and 4.18, divided between government financial incentives and overall economic influences respectively. These influence of these VIFs extend to the cost and economics CAs in the RDS model.

Table 4.17. Government	Financial Incentive	Program I	Influence Assumptions

No.	Influence Factor Name	User Input	Baseline	Units
G.1	Facilities Offset Percentage	100	100	%
G.2	DDT&E Offset Percentage	25	25	%
G.3	Debt Loan Rate	8	7.5	%
G.4	Tax Holiday Program Duration	0	0	Years
G.5	Government Cargo Flights per Year	50	50	Flights / year

Table 4.18.	Overall	Economic	Influence A	Assumptions
-------------	---------	----------	-------------	-------------

No.	Influence Factor Name	User Input	Baseline	Units
E.1	Required Commercial Internal Rate of Return (IRR)	25	25	%
E.2	Commercial Market Growth Factor	30	30	%

For the ATIES method, the RDS model was implemented for two sets of examinations:

1. A deterministic, full factorial examination of all feasible technologies combinations (referred to as the deterministic technology case)

With an "n" number of technologies, this translates to 2^n possible combinations of technologies. This study examined 10 feasible technologies for the Hyperion RLV. This yields 2^{10} or 1024 possible technology combinations. The computational expense for all these evaluations consisted of 8 to 9 hours of processing time on a 550 MHz Pentium III PC computer running MS Excel 2000 on a Windows 98 platform with 128 MB of RAM.

2. A selected probabilistic examination with all technologies available for use (referred to as the nominal or probabilistic technology case)

Monte Carlo simulations were run on the RDS model with the MS Excel add-in package Crystal Ball. Similar to the above case, the computational expense for this simulation consisted of 6 to 7 hours of processing time utilizing 1000 Monte Carlo simulations on a 550 MHz Pentium III PC computer running MS Excel 2000 on a Windows 98 platform with 128 MB of RAM.

4.6 STEP F: TECHNOLOGY SELECTION

In order to evaluate the impact of a particular combination of technologies, an Overall Evaluation Criterion (OEC) was developed. This OEC is based upon an aggregation of several output metrics of interest given a certain governmental and economic environment. The OEC is based upon a mathematical formulation consisting of the summation of the normalized values of each output metric multiplied by a numerical weighting. The weighting for each metric acts a quantitative proxy for the qualitative importance of the output metric relative to all other metrics. This weighting is subjectively based and different scenario types can be established.

The development of the weighting scenarios seen in Table 4.19 was a qualitative process. The method of formulating quantitative weightings was based on the assumption of three main types of criteria for program importance. These types include:

- 1. Technical merits (gross weight, dry weight)
- 2. Cost merits (DDT&E cost, recurring cost / flight, government price / lb, and life cycle cost)
- 3. Operational merits (vehicle turn-around-time and safety metric)

The metrics are designated with their numerical identifier in the RDS model. Some of the metrics are not used in the evaluation and selection process since they are intermediaries for the RDS model. These include the fuselage length, which is less of a metric than an intermediary technical parameter being manipulated

by MS Excel Solver in the convergence process for a vehicle in the RDS model. A similar situation exists for the net-present value (NPV) parameter. For this study the discount rate used in the economic model (25%) was equal to the input IRR required and thus the output metrics O.9 and O.10 are equal to each other, namely both are equal to zero. The RDS model will converge the vehicle in the design process for input non-technical vehicle influence factors (such as required IRR, in this case 25%) and the performance impact of selected combinations of technologies (such as ISP and ΔV losses on trajectory). MS Excel Solver is used in the RDS model to converge the vehicle using the parameters of vehicle length (photographic scaling) and government price / lb required (for a required IRR, determined from overall economic vehicle influence factors). An overall goal is to minimize all metrics of interest except safety.

Table 4.19. Weighting Scenarios (WS) for OECs Based Upon Various Output Factors*

No.	Output Factor Name (goal)				W	eighting	g Scena	urios (W	/S)			
		1	2	3	4	5	6	7	8	9	10	11
0.1	Gross Weight (minimize)	0.1	0.3	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.0
O.2	Dry Weight (minimize)	0.3	0.1	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.2	0.0
O.3	Fuselage Length**	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
O.4	DDT&E cost (minimize)	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.2	0.0
O.5	Recurring cost / flight (minimize)	0.1	0.1	0.1	0.2	0.1	0.3	0.1	0.1	0.1	0.2	0.0
0.6	Vehicle Turnaround Time (minimize)	0.1	0.1	0.1	0.0	0.0	0.1	0.3	0.1	0.1	0.1	0.0
O.7	Govt. Price / lb (required for IRR) (minimize)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.5
O.8	Govt. Price / flight (required for IRR)**	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.9	NPV (for required IRR)**	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
O.10	NPV (at 25% discount rate)**	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
O.11	Life cycle cost (LCC) (minimize)	0.2	0.2	0.2	0.1	0.1	0.2	0.2	0.1	0.3	0.1	0.0
O.12	Safety Metric (maximize)	0.1	0.1	0.1	0.1	0.3	0.1	0.1	0.1	0.1	0.1	0.5
-	Total	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

Note: * WS 10 is the baseline case, ** Not included in OEC because outputs are convergence parameters

The weighting scenarios (WSs) for the Overall Evaluation Criterion (OEC) are distinguished as follows:

- WS 1: The focus of this weighting scenario is to examine the influence of one technical and one non-technical metric: with the technical metric being given the highest importance. In this case, this would be dry weight and life cycle cost (LCC). All other metrics are given equivalent weighting.
- WS 2: The focus of this weighting scenario, similar to Scenario 1, is to examine the influence of one technical and one non-technical metric. In this WS, the technical metric is gross weight. Given the debate between minimum vehicle gross weight and minimum vehicle dry weight advocates, it was determined that an interesting comparison could be developed using the first two WSs.
- WS 3: In this weighting scenario both technical metrics for WS 1 and WS 2, gross weight and dry weight, were given equal weighting along with LCC. All three were ranked slightly higher in importance than the rest of the metrics.

- 5
- WS 4: This weighting scenario focused on considering both the non-recurring and recurring cost portions of the program, with both being given equal weighting with gross and dry weights.
- WS 5: This weighting scenario placed its emphasis on safety as the main priority over all other metrics.
- WS 6: The emphasis for this weighting scenario was on prioritizing recurring cost per flight. This might possibly occur for those programs that where recurring costs supersede non-recurring costs in terms of program importance (i.e. where government contribution is expected only in the DDT&E phase).
- WS 7: In this weighting scenario vehicle turn-around-time (TAT) was the set as the main high-level goal.
- WS 8: In this weighing scenario the government price per flight (for the required IRR) was taken as the primary metric of importance.
- WS 9: This weighting scenario made cost, both DDT&E and overall LCC, as the main metrics of importance.
- WS 10: This weighting scenario was taken as the baseline scenario since it presented all metrics relatively equally with slightly heavier emphasis dry weight, DDT&E cost, and recurring cost per flight. These represented the author's preference as to important metrics.
- WS 11: This weighting scenario was an extreme case in which only two equally weighted metrics were used, namely price and safety.

4.6.1 DETERMINISTIC TECHNOLOGY SELECTION

A full factorial search of the impact of all feasible technology combinations was performed using the ATIES method and RDS model. A Pugh Evaluation Matrix (PEM) was created for each technology set combination. The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was then applied to order the cases according to the various weighting scenarios. The Overall Evaluation Criterion (OEC) is shown below (w_i's are weighting factors):

$$OEC = w_1 \frac{Gross Weight}{Gross Weight_{BL}} + w_2 \frac{Dry Weight}{Dry Weight_{BL}} + w_3 \frac{DDT \& E Cost}{DDT \& E Cost_{BL}} + w_4 \frac{Recurring Cost / Flight}{Recurring Cost / Flight_{BL}} + (1)$$

$$w_5 \frac{Vehicle Turn Around Time}{Vehicle Turn Around Time_{BL}} + w_6 \frac{Govt. Price / lb}{Govt. Price / lb_{BL}} + w_7 \frac{Life Cycle Cost}{Life Cycle Cost_{BL}} + w_8 \frac{Safety Metric}{Safety Metric_{BL}}$$

The baseline values used in the determination of the OEC are values at the "Base@100%" or nominal setting. Thus the baseline gross weight is the vehicle weight with no application of technologies. The top technology combinations that maximize the OEC were determined for particular weighting scenarios (WSs). Figure 4.12 shows the OEC for the top technology combinations for the baseline-weighting scenario (WS 10). Similar charts for all weighting scenarios are given in Appendix E. The letter combinations represent the technology combinations that yielded that particular OEC with the number in parentheses representing the set number out of the 2^{10} (1,024) possible combinations. For weighting scenario 10, the best combination used all technologies but technology B (advanced cryotank structures). The second best combination used all 10 possible technologies. Of the top 10 combinations (as determined by OEC score) shown in Figure 4.12, all contained 8 or more of the 10 possible technologies that could have been used.

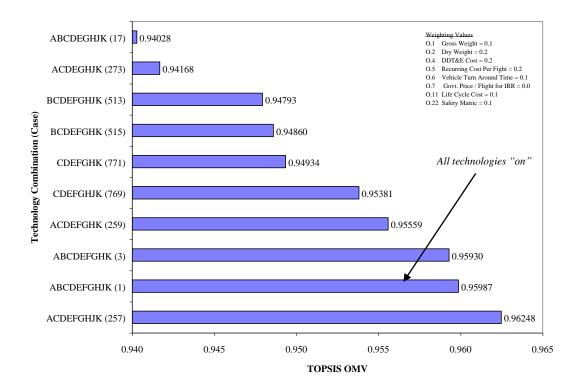


Figure 4.12. TOPSIS OEC Ranking of Top 10 Technology Combinations for WS 10 (Baseline)

The top 25 resulting technology combinations for each weighting scenario are then used to evaluate the best set of technologies. Table 4.20 displays those top 25 combinations using the TOPSIS order preference method. Each numeric value in the table is representative of a particular technology combination from the full factorial search. The specific technology combination subsets of the 1,024 cases that appear at least

once in the top 25 for any of the 11 weighting scenarios are listed in Table 10.1 in Appendix E. That table lists the combinations for all of the cases listed in Table 4.20.

Rank					Weightin	ng Scenario	(WS)				
Best = 1	1	2	3	4	5	6	7	8	9	10	11
1	1	257	257	257	1	257	257	257	257	257	260
2	257	1	1	1	257	1	1	259	259	1	276
3	3	3	3	3	513	259	3	273	273	3	258
4	17	273	273	769	3	3	259	3	3	259	274
5	273	769	769	259	17	769	273	275	275	769	259
6	769	17	17	513	769	771	769	1	1	771	275
7	19	513	19	515	2	515	17	771	19	515	257
8	513	19	513	771	273	513	771	19	771	513	273
9	515	785	259	273	515	273	19	769	769	273	4
10	785	515	515	17	514	17	275	17	17	17	20
11	259	259	785	2	529	275	515	787	787	19	772
12	529	529	771	19	19	19	513	785	785	275	2
13	531	771	529	258	258	785	785	515	515	785	788
14	771	531	275	785	785	787	787	513	513	529	18
15	275	275	531	4	4	529	531	531	531	787	3
16	787	787	787	289	770	531	529	529	529	531	770
17	2	2	2	33	531	385	385	258	258	2	19
18	258	258	258	770	259	129	129	260	260	258	786
19	4	770	4	275	516	289	401	4	4	4	771
20	514	514	770	529	771	387	145	2	2	289	1
21	770	4	514	514	18	33	387	770	274	33	787
22	18	18	18	35	275	131	131	274	289	770	17
23	33	33	33	531	530	35	403	772	770	35	769
24	516	289	516	801	274	291	897	289	772	514	785
25	289	274	289	516	787	801	147	291	291	260	516

Table 4.20. TOPSIS Deterministic Cases for Various OEC Weighting Scenarios (WS)*

Note: * WS 10 is the baseline case

Examination of these top 25 cases for each WS reveals that a certain set of technologies always seem important regardless of the weighting scenario. Table 4.21 shows the number of times technology combinations appear in the top 25 cases for all 11 weighting sceneries; in other words the ranking of all technologies in Table 4.20. Examination of these results indicates that 44 different technology combinations appear in Table 4.20. Of these candidate combinations, 21 combinations appear 8 times or more and 11 combinations appear in all 11 weighting scenarios (see Table 4.21). There then appears to be a large gap between these "high appearance" technology combinations and a group of "low appearance" combinations that appear 6 times or less in the top 25 cases for all OEC weighting scenarios.

Number of Times in Top 25 for All 11 WSs	11	10	9	8	7	6	5	4	3	2	1
Technology Combination Set From Full Factorial Search	1 3 17 19 257 259 273 275 769 771 785	513 515 529 531 787	2 4 258 770	289	4	33 514 – 21 "hig	18 274 516	260 unce" comb	35 291 772	129 131 385 387 801	20 145 147 401 403 530 786 788 897

Table 4.21. Technology Combinations in Top 25 for all 11 Weighting Scenarios

The actual technologies in each of the 21 "high appearance" combinations are displayed in Table 4.22. Technologies C (Hot and cooled airframe and integrated primary structures), D (Advanced ground IVHM), E (Propulsion IVHM), G (Maglev development), H (Improved T/W RBCC engine), and K (Highly reusable TPS) are in almost all of the combinations. In addition, all of the technologies appear at least in half of the top 21 technology cases. Thus regardless of the WS, about 6 technologies consistently show up in the top 25 technology combinations that maximize the OEC. Additionally, all of the technologies are used in more than a majority of the top cases. This would indicate two dimensions of preference, one for these top 6 technologies and another preference to use all of the technologies.

Case			Te	chnologies	s(1 = Inclu	ision, -1 =	Exclusion)				
	А	В	С	D	Е	F	G	Н	I*	J	K
No. of 1	12	10	21	21	20	13	21	21	0	12	17
No. of -1	9	11	0	0	1	8	0	0	21	9	4
1	1	1	1	1	1	1	1	1	-1	1	1
2	1	1	1	1	1	1	1	1	-1	1	-1
3	1	1	1	1	1	1	1	1	-1	-1	1
4	1	1	1	1	1	1	1	1	-1	-1	-1
17	1	1	1	1	1	-1	1	1	-1	1	1
19	1	1	1	1	1	-1	1	1	-1	-1	1
257	1	-1	1	1	1	1	1	1	-1	1	1
258	1	-1	1	1	1	1	1	1	-1	1	-1
259	1	-1	1	1	1	1	1	1	-1	-1	1
273	1	-1	1	1	1	-1	1	1	-1	1	1
275	1	-1	1	1	1	-1	1	1	-1	-1	1
289	1	-1	1	1	-1	1	1	1	-1	1	1
513	-1	1	1	1	1	1	1	1	-1	1	1
515	-1	1	1	1	1	1	1	1	-1	-1	1
529	-1	1	1	1	1	-1	1	1	-1	1	1
531	-1	1	1	1	1	-1	1	1	-1	-1	1
769	-1	-1	1	1	1	1	1	1	-1	1	1
770	-1	-1	1	1	1	1	1	1	-1	1	-1
771	-1	-1	1	1	1	1	1	1	-1	-1	1
785	-1	-1	1	1	1	-1	1	1	-1	1	1
787	-1	-1	1	1	1	-1	1	1	-1	-1	1

Table 4.22. Actual Technologies for the 21 "High Appearance" Combinations

Note: Technology I (Long life, high T/W hydrogen rocket) not used for Hyperion RLV

4.6.2 PROBABILISTIC TECHNOLOGY SELECTION

A probabilistic examination was conducted as to the impact of having all 10 technologies on the Hyperion RLV. Using the Monte Carlo MS Excel add-in Crystal Ball, 1000 simulations were performed with triangular probability distributions on the impact of each technology on various k factors (see Section 4.4). Appendix F contains the forecast statistics, percentiles, frequency, and cumulative distributions for all output metrics that contribute to the OEC for this nominal case of all technologies being applied to the vehicle. Table 4.23 and Figure 4.13 respectively list and chart the sensitivity of all these technologies on metrics that contribute to the OEC. A current artifact of the ATIES modeling process involves the determination of sensitivities from the Monte Carlo simulation. Sensitivities consist of the relationship between the technical k factor of a technology and the output metrics that make up the OEC. The sensitivities listed here and in the proceeding appendices are absolute sensitivities without regard to sign. They are used to show only the magnitude of the sensitivity of each technology on the inputs to the OEC.

Tech.	Dry Weight	Gross Weight	Fuselage Length*	DDT&E cost	Recurring cost / flight	Vehicle Turnaround Time	Govt. Price / lb (required for IRR)	Life cycle cost (LCC)	Safety Metric
А				0.5			0.4	0.4	
В	0.2	0.2	0.2	0.3	0.1		0.4	0.4	0.2
С	0.3			0.6	0.2		0.5	0.6	0.3
D					0.4	0.7		0.1	
Е				0.2	0.6	0.4	0.1	0.2	
F		0.1	0.1	0.1	0.4		0.1	0.1	
G		0.1	0.1	0.3	0.4	0.5	0.4	0.2	
Н	1.0	1.0	1.0	0.7	0.1	0.1	0.8	0.8	1.0
J	0.2	0.2	0.2	0.3	0.1	0.1	0.4	0.3	0.2
Κ		0.1	0.1	0.2	0.4	0.4	0.2	0.2	

Table 4.23. Absolute Sensitivity of All Technologies on OEC Input Metrics

Note: * Not an OEC input metric but included for reference

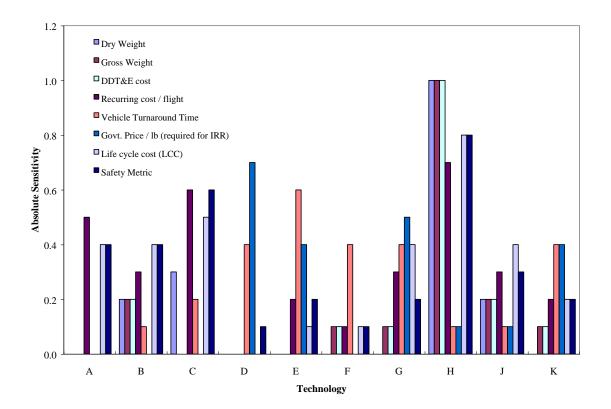


Figure 4.13. Graphical Sensitivity of Each Technology on OEC Input Metrics

Examination of the above data indicates the technology H (Improved T/W RBCC engine) has a very high sensitivity upon the output metrics. The TIM of this technology indicates that the benefits of this technology occur in performance (i.e. ISP), engine life, and safety with the only drawback being increased engine DDT&E cost. All other technologies seem to yield positive sensitivities for all output metrics. Almost all technologies affect prices and costs but only a few affect safety.

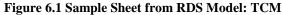
The sensitivities for the probabilistic technology impacts were coupled to the OEC and various weighting scenarios. Table 4.24, shows the most influential technologies and their average impact on the OEC. The top 3 technologies (C, E, and H) were part of the top 6 most influential technologies identified deterministically in the previous section. From the full factorial, deterministic examination of all possible technology combinations, and the probabilistic examination of the one case of all technologies being used, only three identified technologies rank near the top (in terms of maximizing and affecting the OEC) for both methods for the given TCM and TIM, namely technologies C, E, and H. Additionally, all technologies have some impact on the OEC since no technology had an average impact on the OEC of less than 4%. Once again this suggest two levels of impact in terms of the technologies used: one for a top tier of technologies (C, E, and H) and another that includes all technologies.

Tech.				We	eighting Sco	enario (WS)				Avg. Impact	Avg. Impact
No.	1	2	3	4	5	6	7	8	9	10	%	Rank
А	7%	7%	7%	7%	6%	6%	7%	9%	10%	7%	7%	8
В	9%	9%	9%	9%	7%	7%	7%	9%	9%	8%	8%	5
С	12%	13%	13%	13%	11%	11%	10%	14%	14%	12%	12%	3
D	7%	7%	7%	5%	7%	10%	13%	7%	7%	8%	8%	7
Е	12%	12%	12%	12%	18%	15%	14%	11%	11%	13%	13%	2
F	4%	4%	4%	5%	4%	6%	3%	3%	3%	5%	4%	10
G	8%	9%	8%	7%	10%	10%	12%	10%	9%	9%	9%	4
Н	27%	26%	27%	26%	25%	17%	16%	22%	21%	21%	23%	1
J	8%	8%	8%	8%	8%	7%	6%	9%	9%	8%	8%	6
Κ	6%	6%	6%	6%	3%	10%	11%	7%	8%	8%	7%	9

Table 4.24. Absolute Impact of Technologies for Various OEC Weighting Scenarios

5.0 CONCLUDING REMARKS

The Abbreviated Technology, Identification, Evaluation, and Selection (ATIES) methodology can be applied to aid the strategic decision maker in prioritization of advanced space transportation technologies. The original TIES method, as developed by the Aerospace Systems Design Lab (ASDL) in the School of Aerospace Engineering at the Georgia Institute of Technology, was applied both deterministically and probabilistically to in an RDS model that was a proxy for a representative reusable launch vehicles (RLVs)


The results in the study are based upon the qualitative inputs to the Technology Impact Matrix (TIM) and are dependent upon the initial, subjective interpretations of technology impact on various vehicle influence factors (VIFs). Thus any reasonable results from the method stem from reasonable inputs into the TIM. With these caveats in mind, two levels of technology preference were identified. Three technologies were the most influential in terms of maximizing the Overall Evaluation Criterion (OEC), namely Technology C (Hot and cooled airframe and integrated primary structures), Technology E: (Propulsion IVHM), and Technology H (Improved T/W RBCC engine). Additionally, examination of the top technology combinations for various weighting scenarios reveals that all ten technologies should be included in the vehicle to maximize the OEC.

Future work could include a probabilistic examination to determine the sensitivity of the top "impactful" technologies in isolation from each other, in essence a resource allocation investigation evaluating individual technology impacts. The top technologies could be determined through the full factorial deterministic evaluation. Monte Carlo simulations could then be run on the RDS model for each top technology. In addition, a single Response Surface Equation (RSE) could be generated as a proxy for the "full" spreadsheet based RDS model. With an RSE, the current computational cost for probabilistic examination of the design space could be mitigated.

Additional work could examine more probabilistic technology combinations for different concepts such as an all-rocket based RLV (versus the RBCC-based Hyperion RLV examined in this study). The template of the ATIES methods described here can be used to envelope RDS models of different transportation concepts in order to probabilistically examine the impact of various technology combinations on output metrics of interest. With this added capability, the methodology could be expanded to the Internet and allow decisions makers globally to examine the impact of their own technologies on such space transportation systems.

6.0 APPENDIX A: RDS MODEL SHEET OVERVIEW

TCM: Technology Compatability Matrix * - Used to Determine the Compatability Rules for Various Technologies * - For up to Twenty (20) Different Technologies * - Inputs: 0 (Not Compatible Technologies); 1 (Compatible Technologies) Red User Input Blue Outputs ngine on-demand prodiground IVHM Compatibility Matrix (1: compatible, 0: incompatible) On-site, on-demand pro transfer of cyrogenics H Improved T/W RBCC usable TPS high T/W I A Hot and cooled airfra primary sturctures - > Aerodynamic/aero for rapid design Advanced cyrotanl H Propulsion IVHM Sharp body TPS D Advanced .ong life. O Maglev ≍ Highly T I Input Technolgies Below No. aerothermodynamic tools for rapid А 1 1 1 1 1 1 1 1 1 1 1 Advanced cyrotank strucutures в 1 1 1 1 1 1 1 1 1 1 Hot and cooled airframe and integrated primary arcture с 1 1 1 1 1 1 1 1 1 Advanced ground IVHM D 1 1 1 1 1 1 1 1 ropulsion IVHM Е 1 1 1 1 1 1 1 On-site, on-demand production and transfer of F 1 1 1 1 1 1 G 1 1 1 1 1 mproved T/W RBCC engine н 1 1 1 0 Long life, high T/W hydrogen rocket I 1 1 1 Sharp body TPS J 1 1 Highly reusable TPS к 1

Non-Te	chnical Effects				
* - Econo	nment Financial Incentive Programs mic Influences Ranges On This Sheet Do Not Change if "Inputs & Output	s" Ranges are Changed			
Governm	ental Effects				
G.	Government Financial Incentive Programs				
No.	Influence Factor Name		User Input	Baseline	Units
G.1	Facilities Offset Percentage	٩	100	100	%
G.2	DDT&E Offset Percentage	•	25	25	%
G.3	Debt Loan Rate		▶ 8.0	7.5	%
G.4	Tax Holiday Program Duration		• 0	0	Years
G.5	Government Cargo Flights per Year		50	50	Flights / year
Overall F	conomic Influences				
E.	Overall Economic Influences				
No.	Influence Factor Name		User Input	Baseline	Units
E.1	Required Commerical Internal Rate of Return (IRR)		25	25	%
E.2	Commercial Market Growth Factor		▶ 30	30	%

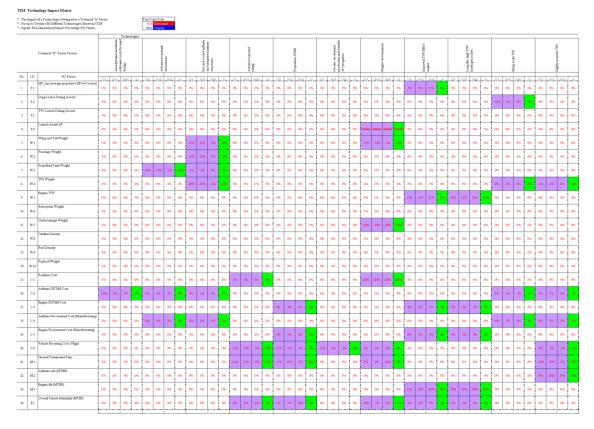


Figure 6.3. Sample Sheet from RDS Model: TIM with Probabilistic k factor Distributions

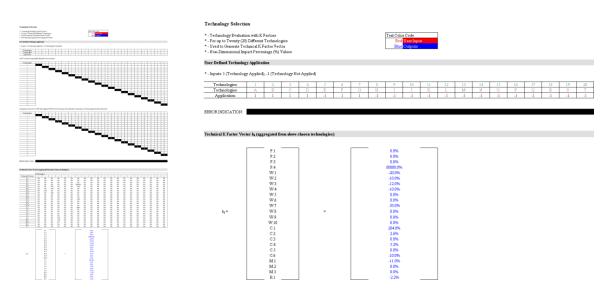
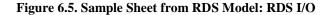



Figure 6.4. Sample Sheet from RDS Model: Technology Selection (Used for Evaluation in Model)

I. ADVA	NCED RLV RDS MODEL INPUTS AND OUTPUT	rs			
Vehicle: Hy	yperion 20k - Rev 8/99		Text Color Code		
* E A	-TIMS Vehicle Influence Factors (VIF) Dictionary			User Inputs Inputs from Technical K Vector of	
	In Information Information Information Information Information			Allowed User Input from Range	
	Use Tech. K factor ranges (blank=ves, x=no)	1	Purple	Solver Convergence Parameters Outputs	
	• Call French Relation funger, Column - Year A-mor	-			
La Inputs					
La.1. Non-	Technical K Factor Elements				
G	Government Financial Incentive Programs				
E.	Overall Economic Influences				
				L	
I.a.2. Tech	nical K Factor Elements				
-				_	
Р	Vehicle Performance Influences				
W.	Vehicle Weight Influences				
C.	Vehicle Cost Influences				
м	Vehicle Operational Influences				
D	Vehicle Reliability Influences				
к	venicie Renability influences				
				_	
Lb Output	-				
1.0 Output			_		
	FY of Outputs	2000	1		
D No	Design Convergence Criteria for MS Excel Solver (Used to Co Name	nverse Vehicle for Required K Purpose	Factors Above) - USE CRTLA Discipline	LTO ACTIVATE SOLVER Value	Units
D.1	Name NPV for Reg'd IRR	Target For Zero	Economics	0.00	USD (\$M)
D.1 D.2	Mass Ratio error	Constraint	Weights	0.00	USD (SM)
D.3	Total vehicle length (fuselage length)	Manipulate	Weights	154.0	ft
D.4	Static Yearly Launch Price - Government Cargo	Manipulate	Economics	9561.9	\$/1b
			-		
O. No	RDS Model Outputs Output Factor Name	<u> </u>	Units	<u> </u>	
0.1	Gross Weight	Current 554,041	lb	Comment	
0.2	Dry Weight	85,070	lb		
0.3	Fuselage Length	154.0	ft		
0.4	DDT&E cost	4,793	USD (\$M)	FY\$2000	
0.5	Recurring cost / flight	1.14	USD (\$M) / Flight	direct cost + insurance	
0.6	Vehicle Turnaround Time	8.78	days	modified AATe result	
0.7	Govt. Price / lb (required for IRR)	5,616.6	USD (\$) / lb	FY\$2000	
0.8	Govt. Price / flight (required for IRR)	112.3	USD (\$M) / Flight	FY\$2000	
0.9	NPV (for required IRR)	0	USD (\$M)	FY\$2000	
O.10	NPV (at 25% discount rate)	0	USD (\$M)	FY\$2000	
0.11 0.12	Life cycle cost (LCC) Safety Metric	63,406 339,960	USD (\$M) # flights between loss of life	after Govt. contribution FY\$2000)
0.12	Sarcty metric	339,900	# ringhts between loss of life		

II. TRAJECTORY

Vehicle: Hyperion 20k - Rev 8/99

* - Calibrated Trajectory Data for Hyperion SSTO RLV

- * Calibrated by Georgia Tech SSDL for Mach 10 transition, 20 klb payload Hyperion Rev 8/99.
- * Orbital destination for calibrated version is 100 nmi x 28.5, due east from KSC

Base Values Modifiers** Resultant Values ? V Flight 24496 ft/s 23696.0 ft/s <-- Reductions Possible with Launch Assist 0.967 8245.0 ft/s <-- Affected by Configuration Drag ? V Drag Losses 8245 ft/s 1.000 193.0 ft/s <-- May be Affected by Gimballing and Control Technologies 1244.0 ft/s <-- May be Reduced with Faster Acceleration/Shorter Ascent Times ? V TVC Losses 193 ft/s 1.000 ? V Gravity Losses 1244 ft/s 1.000 Total Ideal ? V Delivered 34178 ft/s 33378.0 ft/s Calibrated Mass Ratio 4.965 4.782 <-- New Mass Ratio for Subsequent Weights Analysis 662.39 sec 1.000 Calibrated Isp_bar 662.39 sec <-- Affected by Changes in Engine Performance

 $\ast\ast$ - can be changed by values for k-factors or VIF's on I/O sheet

Figure 6.6. Sample Sheet from RDS Model: Trajectory

III. WEIGHTS AND SIZING HYPERION Vehicle Weights and Sizing Directions: Variables that can be changed are marked with bold un Boxed variables are inputs that are products of other an Adjust total vehicle length until actual mass ratio matel HTO launch with ESJ RBCC engine q = 2000 psf, Mtr = 10 Mission = 100 nmi. circ. x 28.5°, 20 klb payload Vehicle Overall Parameters LH2 Main Tank Data RBCC Engine Data kRCC Leng ABRocket trans. Mach # Engine TW (inst, no marg) Engine Eng (sea level) Liftoff mixture (LOXLH2) Engine length diameter Inlet/capture area (total) Ejectors weight diameter Inlet/capture area (total) Ejectors weight Requ' throut (SLS, all) Engine diameter (ca.) Total engine length (ca.) Inlet section length (ca.) Tank structural unit weight Tank insulation unit weight Cryo insulation thickness Tank ullage volume/total vol. LH2 density 0.23 lb/ft3 0.60 Total vehicle length (iterate) Mass Ratio (required) Mass Ratio (actual) Mass Ratio error Payload (round-trip) Operability Dry-Weight Margin Growth Dry-Weight Margin 0.23 lb/ft2 0.26 lb/ft2 0.17 ft 0.0425 4.43 lb/ft3 154.03 ft 10.00 28.00 1.0 sec 5.95 4.782 4.782 0.000 0,000 lb 0.15 LH2 tanks' ref x c.g. location LH2 tanks' ref area LH2 tank ref volume Required Tank volume Tank volume (total) Tank surface area (total) Tank x c.g. location 7.2 108.00 ft 11530.7 ft2 0.25 **0.25 4.70 ft** 4.04 ft 332,425 lb 12.36 ft 89.00 ft 53.40 ft 11530.7 ft2 40212.7 ft3 25620.3 ft3 25620.3 ft3 8537.6 ft2 Reference total volume Reference length 66081 ft3 Ref Lengt Ref. PEF 1 Ref. PEF 2 Ref. PEF 3 179.00 72.50% 92.93 ft 73.00% 200.00 73 60% LOX Main Tank Data scent prop volume/body vol 72.50% ank structural unit weight 0.27 lb/ft3 0.20 lb/ft2 TPS Data LOX/LH2 (by weight) LOX/LH2 (by volume) Total body volume Tank insulation unit weight Cryo insulation thickness Tank ullage volume/total vol. Nosceap SHARP TPS weight SHARP TPS weight/length Metal TPS area/body area Metal TPS area/body area Metallic panel unit weight TABI area/body area TABI unit weight Reference weited fuselage Approx. body passive TPS area Wing (top&btm) wetted area Tai wetted area (both) fuselage wetted area Г 3.08 125.00 lb 2.75 lb/ft 0.35 0.00 1.30 lb/ft2 0.50 0.40 lb/ft2 11427 0.62 9023.7 ft2 0.13 ft 0.0425 71.2 lb/ft3 0.191 0.191 42101.7 ft3 30523.7 ft3 15.16 lb/ft3 36.12 31.08 ft Ascent prop volume Propellant Bulk Density Vehicle ref. max. diameter Vehicle diameter (max.) LOX density .OX tank ref x c. g. location .OX tank ref area 135.00 ft 2093.20 ft2 Gross Weight (actual) Dry Weight (actual) Landing c.g. (P/L in) Landing c.g. (P/L out) Gross Weight c.g. (P/L in) 554,041 lb 85,070 lb 101.07 ft 98.20 ft 109.05 ft 4903.4 ft3 1549.86 ft2 116.16 ft Fank volume (total) Fank surface area (total) Fank x c.g. location 9023.7 ft2 3948.10 ft2 455.48 ft2 8461 ft2 65.62 63.75 70.80 Fuselage Data Body Flap Data elage suw Payload Bay Data 2.21 lb/ft2 30dy flap length 30dy flap unit weight 0.00 ft 2.21 lb/ft2 PL bay doors str. unit weight PL bay volume PL bay doors surface area 3.50 lb/ft2 2000.0 ft3 200.00 ft2 elage ref. area elage ref. x c.g. location 4990 11 140 3ody flap planform area 3ody flap area (top&btm) 0.00 ft2 elage area (excl. PL doors) 3694.80 ft2 0.00 ft2 L bay ref. x c.g. location Г 130.00 ft selage x c.g. location 120.47 ft L bay x c.g. location 111.9 ft3

Figure 6.7. Sample Sheet from RDS Model: Weights (1)

		HYPERION Vehicle Weight	Statement]		
		HTO launch with ESJ RBO	CC engine				
		V launch = 0 fps, q = 2000 ps					
		Mission = 100 nmi circ x 28 5°	20 klb payload		Į		
			Level 3	Level 2	Level 1	local x c.g. c.g.	moment (lb-ft)
1.0 Wing Group					10,202		
2.0 Tail Group					1,381	142 ft	177910
3.0 Body Group					20,340		
4.0 Thermal Protection					5,353		
5.0 Landing/Takeoff	Gear				10,647		0
6.0 Propulsion					16,197		0
7.0 RCS Propulsion					934		
8.0 OMS Propulsion					1,102		
9.0 Primary Power					777		0
10.0 Electrical Conver					2,811		0
11.0 Hydraulic Systen					0	0 ft	0
12.0 Surface Control A	Actuation				522		0
13.0 Avionics					1,600	8 ft	12322
14.0 Environmental C					2,109		
15.0 Personnel Equipr					0		
16.0 Dry Weight Marg	gin				11,096		
Dry Weight					85,070	Dry weight c.g. (excl 98 ft	. margin) 63.37%
17.0 Crew and Gear					0	15 ft	0
18.0 Payload Provisio	ns				0	0 ft	0
19.0 Cargo (up and do					20.000	112 ft	2237247
20.0 Residual Propella					687		
21.0 OMS/RCS Reser					498		
						Landing weight c.g. (
Landed Weight					106,256	101 ft	65.62%
						Landing weight c.g. (98 ft	P/L out) 63.75%
22.0 Entry/Landing Pr	ronellants				458	38 I	05.7576
22.0 Endy/Landing 11	openants				456	Entry weight c.g. (P/	(ni)
Entry Weight					106,714	101 ft	65.45%
Linty (reight					100,714	Entry weight c.g. (P/	
						98 ft	63.56%
23.0 RCS/OMS Prope	llants (on-orbit)				4,787		
24.0 Cargo Discharge					0	0 ft	0
	nd Unusable Propellants				3.286		
26.0 Inflight Losses ar					1,067	77 ft	82183
Insertion Weigh	t				115,854	Insertion weight c.g.	(P/L in)
						103 ft	66.97%
27.0 Ascent Propellan	ts				438,187		
Gross Liftoff We	eight				554,041	Gross weight c.g. (P/ 109 ft	L in) 70.80%
28.0 Startup Losses					1,847		
Maximum Pre-la	aunch Weight				555,888		

Figure 6.8. Sample Sheet from RDS Model: Weights (2)

VI. OPERATIONS Vehicle: Hyperion 20k - Rev 8/99

Response Surface Estimation of AAT&E Operations Cost Model Using Modified Central Composite Design
 Calibrated by Georgia Tech SSDL for Mach 10 transition, 20 klb payload Hyperion - Rev 8/99.
 Orbital destination for calibrated version is 100 nmi x 28.5, due east from KSC

VLa Inputs

No.	Name	Minimum Value	Maximum Value	Value	Units	Comment	
VI.a.1	Airframe Life (MTBR)	100	2,000	1,000	Flights		
VI.a.2	Dry Weight	100,000	2,000,000	85,070	lbs		
VI.a.3	Vehicle Length	150	250	154	ft		
VI.a.4	Overall Vehicle Reliability (MTBF)	1,000	10,000,000	9,780	Flights		
VI.a.5	Overall Vehicle Reliability (MTBF)	0.999	0.9999999	0.9998978	Probability		
VI.a.6	LH2 Propellant Weight			109,729	lbs	From Weights Sheet	
VI.a.7	LOX Propellant Weight			339,761	lbs	From Weights Sheet	
VI.a.8	LH2 Propellant Cost			\$ 0.250	\$/lb	in FY\$1999	
VI.a.9	LOX Propellant Cost			\$ 0.100	\$/lb	in FY\$1999	
VI.b Para	ameter Estimates						
				in FY\$1999		in FY\$1999	
	r	For Ground Turn-Around		For Facilities Cost		For Labor Cost per Flight	
No.	Name	Parameter Est.	Value	Parameter Est.	Value	Parameter Est.	Value
	Intercept	1314.3668	1314.3668		5780.9176		85.16
VI.b.2	AFLIFE	0.0011122	1.1122	-0.010137	-10.137	-0.001004	-
VI.b.3	DRYWT	0.000529	45.00207889	0.0047516	404.2190511	0.0001301	11.0676
VI.b.4	LENGTH	3.2695895	503.6013026	58.665618	9036.021691	0.8077666	124.416
VI.b.5	AFREL	-1300.943	-1300.809983	-5660.375	-5659.796247	-83.63356	-83.6250
VI.b.6	AFLIFE*AFLIFE	0.0000004	0.4	0.0000043	4.3	7.2536E-08	0.07
VI.b.7	DRYWT*AFLIFE	-2.39E-11	-0.002033175	-2.02E-10	-0.017184159	-4.82E-12	-0.00041
VI.b.8	DRYWT*DRYWT	-1.44E-13	-0.001042117	-2.19E-12	-0.015848856	2.713E-15	1.96338
VI.b.9	LENGTH*AFLIFE	-1.824E-07	-0.028094315	-0.000002	-0.3080517	-3.316E-08	-0.00510
VI.b.10	LENGTH*DRYWT	7.7273E-09	0.10125076	0.0000001	1.310299331	1.6012E-09	0.02098
VI.b.11	LENGTH*LENGTH	0.0001908	4.526532052	0.0027616	65.51609494	0.0000306	0.72595
VI.b.12	AFREL*AFLIFE	-0.00204	-2.039791417	0.0011254	1.125284932	0.000854	0.85391
VI.b.13	AFREL*DRYWT	-0.000526	-44.7422934	-0.004736	-402.8507634	-0.00013	-11.0579
VI.b.14	AFREL*LENGTH	-3.321968	-511.6166293	-59.38659	-9146.134762	-0.816685	-125.777
VI.b.15	AFREL*AFREL	0	0	0	0	0	
VI.c Outp	outs						
No.	Name	Value	Units	Comment			
VI.c.1	Ground Turn-Around-Time (TAT)	8.8	days	From AATE Response Sur	face Equation		
VI.c.2	Facilities Cost	148.3	USD (\$M)	in FY\$1999			
VI.c.3	Labor Cost per Flight	0.85069	USD (\$M) / Flight	in FY\$1999			
VI.c.4	LRU Cost per Flight	0.15522	USD (\$M) / Flight	in FY\$1999			
	Propellant Cost per Flight	0.06141	USD (\$M) / Flight	in FY\$1999			
VIc 5							
VI.c.5 VI.c.6	Total Labor Personnel Required per Flight	699	people	Based on total yearly labor	cost with FTE salary of	\$150K in FY\$1999	

Figure 6.9. Sample Sheet from RDS Model: Operations

OT&E and TFU								
l monetary figures in i f:NAFCOM 1992 CEI	yellow are in FY1992 USD (\$M)							
	In Program Year FYS 2000							
D	DTE Total 4.792.58							
	TFU Total \$ 1.440							
Denter 10T CT	AGE REUSABLE	Weisha	DDTE			TFU		
a Booster IST ST. Level 1	Level 2 Level 3	Weight (lb)	Level 1	Level 2	Level3	Level 1	Level 2	Level 3
Wing G		10,202	\$217.28			\$38.39		
Tail Gr		1,381	\$72.18			\$17.04		
Body G		20,340	\$314.30			\$112.01		
TPS Gr		5,353	\$309.76			\$81.48		
Landing Main D		10,647	\$55.94			\$19.78		
RCS Pr	opulsion Subsystems	934	\$78.31			\$45.98		
	opulsion	1,102	\$102.14			\$41.47		
Primary		777	\$33.47			\$13.24		
	al Conversion & Dist.	2,811	\$79.82			\$38.60		
	ic Systems	2,011	\$0.00			\$0.00		
	Control Actuation	522	\$75.62			\$35.13		
Avionic		1,600	\$107.56			\$6.35		
Enviror	mental Control	2,109	\$66.81			\$18.25		
Persona	l Equipment	-	\$0.00			\$0.00		
	Airframe System Subtotal	57,777	\$1,513.19			\$467.73		
	System Test Hardware (STH)		\$654.82			\$0.00		
	Integration, Assembly, & Checkout (IACO)		\$78.58			\$56.13		
	System Test Operations (STO)		\$102.68			\$0.00		
	Ground Support Equipment (GSE)		\$140.96			\$0.00		
	System Engineering & Integration (SE&I)		\$224.12			\$23.57		
	Program Management (PM)		\$81.43			\$16.42		
	Processing Total		\$1,282.57			\$96.12		
	Contingency							
	Fee							
	Program Support							
	Cost Margin	20%			20%			
	Airframe System Total opulsion(less cowl)	3,239	\$3,354.92 \$119.52			\$676.62 \$58.75		
Maiii Fi								
	Propulsion System Subtotal	3,239	\$119.52			\$58.75		
	System Test Hardware (STH)		\$94.01			\$0.00		
	Integration, Assembly, & Checkout (IACO)		\$11.28			\$7.05		
	System Test Operations (STO)		\$14.74			\$0.00		
	Ground Support Equipment (GSE)		\$14.37			\$0.00		
	System Engineering & Integration (SE&I)		\$22.85			\$2.96		
	Program Management (PM)		\$8.30			\$2.06		
	Processing Total		\$165.56			\$12.07		
	Contingency							
	Fee							
	Program Support Cost Margin	20%			20%			
	Propulsion System Total		\$342.09			\$84,99		
	Booster System Total		DDTE	\$ 2.702		TEU	1 137 01	
	Dooster System Total		Airframe	\$ 3,441		Airframe	\$ 712	1

Figure 6.10. Sample Sheet from RDS Model: Cost

/ehicle: F	aomics Hyperion 20k - Rev 8/99					
- All mor	netary figures in FY2018 USD (\$M) constant dollars					
.a Prog	rammatic Schedule and Economic Environment					
No.	Name		Value	-	Units	Comment
V.a.1	Program Start Year and Fiscal Year			2018	FY	······
V.a.2	IOC (Initial Operating Capability):			2025	Year	
V.a.3	Number of Years In Program			28	Years	
V.a.4	Number of Flight Years In Program			21	No. of years	
				3.0%	%	
V.a.6	Tax Rate			30.0%	%	
V.a.7	Capital On-hand at Program Start	s		1,000	USD (\$M)	
V.a.8	Amount of Each Equity Offering:	s		1,000	USD (\$M)	Equity Market Accessed 3 Times In Early Part of Program
V.a.9	Average Ann. Interest Rate:			8.00%	%	
	Tax Holiday Program Duration			0	No. of years	Item G.4 in VIFs
				30%	%	Item E.2 in VIFs
V.a.12	SG&A Expense Per Year			5	USD (\$M)	
.b Vehic	icle and Propulsion Cost					
No.	Name		Value		Units	Comment
V.b.1	Booster Frame DDT&E Cost	s		7,421	USD (\$M)	From Cost Sheet
V.b.2	Booster Frame TFU Cost	s		1,536	USD (\$M)	From Cost Sheet
V.b.3	Booster Engine DDT&E Cost	s		738 183	USD (\$M)	From Cost Sheet
V.b.4	Booster Engine TFU Cost	\$		183	USD (\$M)	From Cost Sheet
.c Facili	lities, Operations and Maintainence (O+M), and Insura	nce Cost				
No.	Name		Value	0.700	Units	Comment
V.c.1	Overall Vehicle Reliability (MTBF)	<i>c</i>		9,780	Flights	Item R.1 in VIFs
V.c.2 V.c.3	Module Based Facilities Cost per Site Ground Turn-Around-Time (TAT)	s		260.0 8.8	M \$/module/site days	From Operations Sheet From Operations Sheet
		s		1.492	USD (\$M) / Flight	From Operations Sheet
		s		0.272	USD (\$M) / Flight	From Operations Sheet
				0.272	USD (SM) / Flight	From Operations Sneet
				0.100	THE OWNER AND A PERMANAN	
		s		0.108	USD (\$M) / Flight	From Operations Sheet
V.c.7	Total Vehicle Recurring Cost / Flight	s s		1.684	USD (\$M) / Flight	From Operations Sheet Item C.6 In VIFs
V.c.7 V.c.8	Total Vehicle Recurring Cost / Flight Max Vehicle Flight Rate Per Year			1.684 30.7	USD (\$M) / Flight Flights / year	From Operations Sheet
V.c.7 V.c.8 V.c.9	Total Vehicle Recurring Cost / Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss)		1	1.684 30.7 5.0%	USD (\$M) / Flight	From Operations Sheet Item C.6 In VIFs
V.c.7 V.c.8 V.c.9 V.c.10	Total Vehicle Recurring Cost / Flight Max Vehicle Flight Rate Per Year		1.	1.684 30.7	USD (\$M) / Flight Flights / year	From Operations Sheet Item C.6 In VIFs
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11	Total Vehicle Recurring Cost / Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate	\$	1.	1.684 30.7 5.0% 022E-04	USD (\$M) / Flight Flights / year %	From Operations Sheet Item C.6 In VIFs
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11	Total Vehicle Recurring Cost / Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cost Per Flight	\$	1.0 Value	1.684 30.7 5.0% 022E-04	USD (\$M) / Flight Flights / year %	From Operations Sheet Item C.6 In VIFs
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 .d Gove	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cox Per Flight errument Contribution Assumptions (exclusive of launch Ariframe DDT&E	\$		1.684 30.7 5.0% 022E-04 0.26	USD (\$M) / Flight Flights / year % USD (\$M) / Flight <u>Units</u> %	From Operations Sheet Line C & In VIFs From Operations Sheet
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 V.d Gove No. V.d.1 V.d.1 V.d.2	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Prenium (over estimated loss) Expected Failure Rate Liability Insurance Cost Per Flight errument Contribution Assumptions (exclusive of launce Marter DDT&E Propulsion DDT&E EPOPublic DDT&E	\$		1.684 30.7 5.0% 022E-04 0.26 25%	USD (\$M) / Flight Flights / year % USD (\$M) / Flight <u>Units</u> % %	From Operations Sheet Line C & In VIFs From Operations Sheet
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 V.d Gove No. V.d.1 V.d.1 V.d.2 V.d.3	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cox Per Flight errument Contribution Assumptions (exclusive of launch Ariframe DDT&E Ariframe DDT&E Ariframe TPU	\$		1.684 30.7 5.0% 022E-04 0.26 25% 25% 0%	USD (SM) / Flight Flights / year % USD (SM) / Flight UsD (SM) / Flight Units % % %	From Operations Sheet Line C & In VIFs From Operations Sheet
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 V.d Gove No. V.d.1 V.d.1 V.d.2 V.d.3 V.d.4	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cost Per Flight errument Contribution Assumptions (exclusive of launch Airframe DDT&E Airframe DDT&E Airframe TFU Propulsion DDT&E Propulsion TFU	\$		1.684 30.7 5.0% 022E-04 0.26 25% 25% 0% 0%	USD (SM) / Flight Flights / year % USD (SM) / Flight Units % % % %	From Operations Sheet Line C & In VIFs From Operations Sheet
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 V.d Gove V.d.1 V.d.1 V.d.2 V.d.3 V.d.4 V.d.5	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cox Per Flight Arifrante DTRZE Propulsion DDT&E Ariframe DTRZE Propulsion DDT&E Ariframe TFU Propulsion TFU Propulsion TFU Facilities	\$		1.684 30.7 5.0% 022E-04 0.26 25% 25% 0% 0% 100%	USD (SM) / Flight Flights / year % USD (SM) / Flight Units % % % % % % %	From Operations Sheet Line C & In VIFs From Operations Sheet
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 V.d Gove V.d.1 V.d.1 V.d.2 V.d.3 V.d.4 V.d.5	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cost Per Flight errument Contribution Assumptions (exclusive of launch Airframe DDT&E Airframe DDT&E Airframe TFU Propulsion DDT&E Propulsion TFU	\$		1.684 30.7 5.0% 022E-04 0.26 25% 25% 0% 0%	USD (SM) / Flight Flights / year % USD (SM) / Flight Units % % % %	From Operations Sheet Line C & In VIFs From Operations Sheet
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 V.d Gove V.d.1 V.d.2 V.d.2 V.d.3 V.d.4 V.d.5 V.d.6	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cox Per Flight Arifrante DTRZE Propulsion DDT&E Ariframe DTRZE Propulsion DDT&E Ariframe TFU Propulsion TFU Propulsion TFU Facilities	\$		1.684 30.7 5.0% 022E-04 0.26 25% 25% 0% 0% 100%	USD (SM) / Flight Flights / year % USD (SM) / Flight Units % % % % % % %	From Operations Sheet Line C & In VIFs From Operations Sheet
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 V.d Gove No. V.d.1 V.d.2 V.d.3 V.d.4 V.d.5 V.d.6 V.d.6 V.d.6 V.d.6	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cost Per Flight erament Contribution Assumptions (exclusive of launch Airframe DDT&E Airframe DDT&E Airframe DDT&E Airframe TFU Propulsion DDT&E Airfititis Ops. & Maint. mercial Cargo (LEO-PLIO) Pricing Summary	\$		1.684 30.7 5.0% 022E-04 0.26 25% 25% 0% 100% 0%	USD (SM) / Flight Flight / year % USD (SM) / Flight Units % % % % % %	From Operations Sheet Line C & In VIFs From Operations Sheet
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 V.d Gove No. V.d.1 V.d.2 V.d.3 V.d.4 V.d.5 V.d.4 V.d.5 V.d.6 V.d.6 V.c.1	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cox Per Flight errument Contribution Assumptions (exclusive of launch Airframe DTPAE Propulsion DDT&E Airframe DTPAE Propulsion TDU Facilities Ops. & Maint. mercial Cargo (LEO-PLTO) Pricing Summary PL Capability (LEO Equiv.)	\$	Value	1.684 30.7 5.0% 022E-04 0.26 25% 25% 0% 0% 0% 100% 0% 20,000	USD (SM) / Flight Flight / year % USD (SM) / Flight Units % % % % % % % % % % % % % % % % % % %	From Operations Sheet Item C in IVIFs From Operations Sheet Comment
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 V.d.Gove V.d.1 V.d.2 V.d.3 V.d.4 V.d.5 V.d.5 V.d.6 V.d.5 V.d.6 V.c.10 V.d.10 V.d.2 V.d.3 V.d.4 V.d.5 V.d.5 V.d.5 V.d.2 V.d.5 V.d.2	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cost Per Flight erament Contribution Assumptions (exclusive of launch Airframe DDT&E Populsion DDT&E Airframe DDT&E Populsion DDT&E Airframe TFU Propulsion TU Facilities Ops. & Maint. mercial Cargo (LEO-PLIO) Pricing Summary PL Capability (LEO Equiv.) Statis Yearly Launch Price	\$	Value	1.684 30.7 5.0% 022E-04 0.26 25% 25% 25% 0% 0% 100% 0% 100% 0% 20,000 1626.24	USD (SM) / Flight Flight / year % USD (SM) / Flight Units % % % % % % % % % % % % % % % % % % %	From Operations Sheet Item C is nVIFs From Operations Sheet Comment
V.c.7 V.c.8 V.c.9 V.c.10 V.c.10 V.c.11 V.d.1 V.d.1 V.d.1 V.d.2 V.d.3 V.d.4 V.d.5 V.d.4 V.d.5 V.d.6 V.d.6 V.d.6 V.d.6 V.d.6 V.d.1 V.d.5 V.d.6 V.d.10 V.d.10 V.d.10 V.d.10 V.d.10 V.d.11 V.d.10 V.d.10 V.d.10 V.d.11 V.d.10 V.d.10 V.d.10 V.d.10 V.d.10 V.d.10 V.d.10 V.d.10 V.d.10 V.d.10 V.d.10 V.d.10 V.d.10 V.d.11 V.d.10 V.d.10 V.d.10 V.d.10 V.d.10 V.d.10 V.d.11 V.d.2 V.d.3 V.d.10 V.d.11 V.d.2 V.d.3 V.d.10 V.d.2 V.d.3 V.d.4 V.d.4 V.d.5 V.d.6 V.d.10 V.d.2 V.d.2 V.d.10 V.d.2 V.d	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Prenium (over estimated loss) Expected Failure Rate Liability Insurance Cox Per Flight Insurance Cox Per Flight Ariframe DTATEA Propulsion DDT&EA Ariframe DTATEA Propulsion DTDTEE Ariframe TFU Propulsion TFU Facilities Ops. & Maint. mercial Cargo (LEO-PLTO) Pricing Summary Inc. Capability (LEO Equiv.) Statis Yearly Launch Price	\$	Value	1.684 30.7 5.0% 022E-04 0.26 25% 25% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	USD (SM) / Flight Flights / year % USD (SM) / Flight Units % % % % % % % % % % % % % % % % % % %	From Operations Sheet Item C is In VIFs From Operations Sheet Comment Comment
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 V.d.1 V.d.1 V.d.1 V.d.2 V.d.3 V.d.4 V.d.3 V.d.4 V.d.5 V.d.6 V.d.6 V.c.1 V.c.1 V.c.10 V.d.10 V.d.	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cost Per Flight erament Contribution Assumptions (exclusive of launch Airframe DDT&E Propulsion DDT&E Airframe DDT&E Propulsion DDT&E Airframe TFU Propulsion TFU Facilities Ops. & Maint. mercial Cargo (LEO-PLIC0) Pricing Summary PL Capability (LEO Equiv.) Static Yearly Launch Price Statis Yearly Launch Price PY of CSTS Price Curve	\$	Value	1.684 30.7 5.0% 022E-04 0.26 25% 25% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 20,000 1626.24 32.52 1994	USD (SM) / Flight Flights / vear % USD (SM) / Flight Units % % % % % % % % % % % % % % % % % % %	From Operations Sheet Iem C 5 In VIFs From Operations Sheet Comment Comment Less than FY of Static Yearly Launch Price above
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 V.d.1 V.d.2 V.d.3 V.d.4 V.d.3 V.d.4 V.d.5 V.d.6 V.d.5 V.d.6 V.c.10 V.c.10 V.c.10 V.c.10 V.c.10 V.c.10 V.c.10 V.c.2 V.c.10 V.d.10 V.d.20 V.d.10 V.d.20 V.d.10 V.d.20 V.d.20 V.d.10 V.d.20 V.	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cox Per Flight Insurance Cox Per Flight Ariframe DTPAE Propulsion DDT&E Ariframe DTPAE Propulsion DTDE Facilities Ops. & Maint. Intercial Cargo (LEO-PLIO) Pricing Summary Intercial Cargo (LEO-PLIO) Pricing Summary D C. Capability (LEO Equiv.) Statis Yearly Launch Price Statis Yearly Launch Price Pro Grass Cargo Charge Price wo Growth	\$	Value	1.684 30.7 5.0% 022E-04 0.26 25% 25% 0% 0% 0% 0% 0% 0% 0% 0% 20,000 1626.24 32.52 1994 772	USD (SM) / Flight Flights / vear % USD (SM) / Flight Units % % % % % % % % % % % % % % % % % % %	From Operations Sheet Item C 5 in VIFs From Operations Sheet Comment Comment Less than FY of Static Yearly Launch Price above
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 V.d.4 Gove V.d.1 V.d.2 V.d.3 V.d.4 V.d.5 V.d.4 V.d.5 V.d.4 V.d.5 V.d.4 V.d.5 V.d.6 V.c.1 V.c.1 V.d.2 V.c.10 V.d.1 V.d.2 V.d.1 V.d.1 V.d.1 V.d.2 V.d.1 V.d.2 V.d.1 V.d.2 V.d.1 V.d.2 V.d.	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Vera Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cost Per Flight erament Contribution Assumptions (exclusive of launch Airframe DDT&E Propulsion DDT&E Airframe DDT&E Propulsion DDT&E Airframe TPU Propulsion DTU Eacilities Ops. & Maint. mercial Cargo (LEO-PLTO) Pricing Summary PL Capability (LEO Equiv.) Static Yearly Launch Price Static Yearly Launch Price PY of CSTS Price Carve Annual Payload for Charged Price wGrowth Annual Payload for Charged Price wGrowth	\$	Value	1.684 30.7 5.0% 022E-04 0.26 25% 25% 0% 0% 100% 0% 100% 0% 20,000 1626.24 32.52 1994 7722 1,003	USD (SM) / Flight Flights / ver % USD (SM) / Flight Units % % % % % % % % % % % % % % % % % % %	From Operations Sheet Iem C 5 in VIFs From Operations Sheet Comment Comment Less than FY of Static Yearly Launch Price above
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 d Gove V.d.1 V.d.1 V.d.2 V.d.3 V.d.4 V.d.5 V.d.4 V.d.5 V.d.6 V.d.6 V.c.1 No. V.c.1 V.c.2 V.c.3 V.c.2 V.c.3 V.c.9 V.c.9 V.c.9 V.c.9 V.c.10	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cox Per Flight Insurance Cox Per Flight Ariframe DTPAE Propulsion DDT&E Ariframe DTPAE Propulsion DTDE Facilities Ops. & Maint. Intercial Cargo (LEO-PLIO) Pricing Summary Intercial Cargo (LEO-PLIO) Pricing Summary D C. Capability (LEO Equiv.) Statis Yearly Launch Price Statis Yearly Launch Price Pro Grass Cargo Charge Price wo Growth	\$	Value	1.684 30.7 5.0% 022E-04 0.26 25% 25% 0% 0% 0% 0% 0% 0% 0% 0% 20,000 1626.24 32.52 1994 772	USD (SM) / Flight Flights / vear % USD (SM) / Flight Units % % % % % % % % % % % % % % % % % % %	From Operations Sheet Iem C 5 in VIFs From Operations Sheet Comment Comment Less than FY of Static Yearly Launch Price above
V.c.7 V.c.8 V.c.9 V.c.9 V.c.10 V.c.11 V.d.1 V.d.1 V.d.1 V.d.1 V.d.2 V.d.3 V.d.4 V.d.4 V.d.5 V.d.4 V.d.5 V.d.6 V.c.9 V.d.1 V.d.1 V.d.2 V.d.3 V.d.4 V.d.5 V.d.5 V.d.6 V.d.5 V.d.6 V.d.5 V.d.6 V.d.5 V.d.6 V.d.5 V.d.6 V.d.5 V.d.6 V.d.5 V.d.6 V.d.5 V.d.6 V.d.5 V.d.6 V.d.5 V.d.6 V.d.7 V.d.7 V.d.7 V.d.7 V.d.7 V.d.7 V.d.7 V.d.7 V.d.7 V.d.7 V.d.6 V.d.	Total Vehicle Recurring Cox/ Flight Max Vehice Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cox Per Flight Insurance Cox Per Flight Ariframe DTPAE Propulsion DDT&E Ariframe DTPAE Propulsion DTDE Facilities Ops. & Maint. Intercial Cargo (LEO-PLIO) Pricing Summary Intercial Cargo (LEO-PLIO) Pricing Summary PL Capability (LEO Equiv.) Statis Yearly Launch Price Statis Yearly Launch Price Statis Yearly Launch Price Pro Gross Cargo Charge Price wo Growth Annual Payload for Charged Price wo Growth Annual Payload for Charged Price wo Growth Francional Flight per Year	\$	Value	1.684 30.7 5.0% 022E-04 0.26 25% 25% 25% 0% 0% 100% 0% 20,000 1626.24 32.52 1994 772 1,003 59.0	USD (SM) / Flight Flights / vear % USD (SM) / Flight Units Units % % % % % % % % % % % % % % % % % % %	From Operations Sheet Item C 5 in VIFs From Operations Sheet Comment Comment Less than FY of Static Yearly Launch Price above
V.c.7 V.c.8 V.c.9 V.c.9 V.c.10 V.c.11 V.d.1 V.d.1 V.d.1 V.d.1 V.d.1 V.d.2 V.d.3 V.d.4 V.d.5 V.d.4 V.d.5 V.d.6 V.d.5 V.d.6 V.c.9 V.d.1 V.d.1 V.d.2 V.d.3 V.d.4 V.d.5 V.d.5 V.d.6 V.d.5 V.d.6 V.c.9 V.d.6 V.d.5 V.d.6 V.d.5 V.d.6 V.d.5 V.d.6 V.d.5 V.d.6 V.d.6 V.d.6 V.d.7 V.d.7 V.d.7 V.d.7 V.d.7 V.d.7 V.d.7 V.d.7 V.d.7 V.d.6 V.d.7 V.d.6 V.d.	Total Vehicle Recurring Cox/ Flight Max Vehice Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cox Per Flight Insurance Cox Per Flight Ariframe DTATEA Propulsion DDT&EA Ariframe DTATEA Propulsion DTDEF Ariframe TFU Propulsion TFU Facilities Ops. & Maint. Intercial Cargo (LEO-PLIO) Pricing Summary Intercial Cargo (LEO-PLIO) Pricing Summary DE Capability (LEO Equiv.) Statis Yearly Launch Price Statis Yearly Launch Price Statis Yearly Launch Price Prof Capability (LEO Equiv.) Statis Yearly Launch Price Pri Capability (CEO Equiv.) Statis Yearly Launch Price Pri Capability (LEO Equiv.) Statis Yearly Launch Price Pri Capability (LEO Equiv.)	\$	Value	1.684 30.7 5.0% 022E-04 0.26 25% 25% 25% 0% 0% 100% 0% 20,000 1626.24 32.52 1994 772 1,003 59.0	USD (SM) / Flight Flights / vear % USD (SM) / Flight Units Units % % % % % % % % % % % % % % % % % % %	From Operations Sheet Iem C 5 In VIFs From Operations Sheet Comment Comment Less than FY of Static Yearly Launch Price above
V.c.7 V.c.9 V.c.9 V.c.9 V.c.10 V.c.11 V.d.1 V.d.1 V.d.2 V.d.3 V.d.4 V.d.3 V.d.4 V.d.5 V.d.5 V.d.5 V.d.4 V.d.5 V.d.5 V.d.5 V.d.4 V.c.9 V.d.1 V.d.2 V.d.3 V.d.4 V.d.5 V.d.5 V.d.6 V.c.9 V.c.9 V.c.9 V.c.9 V.c.9 V.d.1 V.d.2 V.d.5 V.d.4 V.d.2 V.c.9 V.c.9 V.c.9 V.c.9 V.c.9 V.d.4 V.d.2 V.d.4 V.d.2 V.c.9 V.c.	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Year Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cox Per Flight errument Contribution Assumptions (exclusive of launch Airframe DTPAE Propulsion DDT&E Airframe DTPAE Propulsion DTDE Facilities Ops. & Maint. mercial Cargo (LEO-PLTO) Pricing Summary PL Capability (LEO Equiv.) Static Yearly Launch Price Static Yearly Launch Price Static Yearly Launch Price Static Yearly Launch Price Prof. Capability (LEO Equiv.) Static Yearly Launch Price PY of CSTS Price Curve Annual Payload for Charged Price wo Growth Annual Payload for Charged Price woGrowth Fractional Flights in Program	\$	Value	1.684 30.7 5.0% 022E-04 0.26 25% 25% 25% 0% 0% 100% 0% 20,000 1626.24 32.52 1994 772 1,003 59.0	USD (SM) / Flight Flights / year % USD (SM) / Flight Units % % % % % % % % % % % % % % % % % % %	From Operations Sheet Item C is NUFS From Operations Sheet Comment Comment Less than FY of Static Yearly Launch Price above Based upon curve fit of CSTS LEO Cargo Delivery elastic market curve, los
V.c.7 V.c.8 V.c.9 V.c.10 V.c.11 V.d.2 V.d.2 V.d.2 V.d.2 V.d.2 V.d.2 V.d.2 V.d.5 V.d.4 V.d.2 V.d.5 V.d.6 V.d.1 V.d.2 V.d.9 V.d.	Total Vehicle Recurring Cox/ Flight Max Vehicle Flight Rate Per Vera Insurance Premium (over estimated loss) Expected Failure Rate Liability Insurance Cost Per Flight erument Contribution Assumptions (exclusive of launch Airframe DDT&E Propulsion DDT&E Airframe DDT&E Propulsion DDT&E Airframe TDT Populsion DT&E Airframe TDT Populsion DT&E Airframe TDT Pacificitie Ops. & Maint. mercial Cargo (LEO-PLTO) Pricing Summary PL Capability (LEO Equiv.) Static Yearly Launch Price Static Yearly Launch Price Static Yearly Launch Price Fr'al CSTS Price Carve Annual Psyload for Charged Price wo Growth Annual Psyload for Charged Price wordsowth Fractional Flight per Year Total Flights in Program	\$	Value	1.684 30.7 5.0% 0.22E-04 0.26 25% 25% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	USD (SM) / Flight Flights / var % USD (SM) / Flight Units % % % % % % % % % % % % % % % % % % %	From Operations Sheet Item C 6 In VIFs From Operations Sheet Comment Comment Less than FY of Static Yearly Launch Price above Based upon curve fit of CSTS LEO Cargo Delivery elastic market curve, los

Figure 6.11. Sample Sheet from RDS Model: Economics (1)

V.n Financial and Income Statements (Constant Year Dollars)

		2018	2019			2020		2021		2022
Total Revenue	Ś	-	\$	460	\$	460	Ś	460	\$	4
Cost of Goods Sold										
Operations & Maintenance (Base Ops+Maint.+Insur.)			e				e		¢	
Operations & Maintenance (Base Ops+Maint.+insur.) Total Cost of Goods Sold	5		5	-	2		2		5	
Lotal Cost of Goods Sold		-	>	•			<u>`</u>	-		
Gross Profit	\$		s	460	\$	460	s	460	\$	4
Operating Expenses										
Selling, General, and Administrative Expenses	\$	-	s	5	\$	5	s	5	\$	
DDT&E + Acq. Cost	s	-	s	1.684	s	1.684	s	1.684	s	1.
Depreciation	ŝ	-	ŝ	2.252	ŝ	2.616	ŝ	2.981	ŝ	2.
Total Operating Expenses	\$		\$	3.941	\$	4,305	S	4.669	\$	4.
Income from Operations	ŝ	_	s ((3.481)	\$	(3.845)	s	(4.209)	\$	(3.
Interest Expense	\$	-	S	-	\$	18	s	135	\$	
Income Before Taxes	ŝ		s ((3,481)	\$	(3,863)	s	(4,345)	ŝ	(4,
Taxes on Income (Negative Tax Carryover)	s	-	s		s	-	s		s	
Is Year a Tax Holiday (1-Yes,0-No)				-		-		-		
Year of Tax Holiday				-				-		
Taxes on Income (Final)	\$	-	s	-	\$	-	s		\$	
Net Income After Taxes	\$	-	<mark>\$ (</mark>	(3.481)	\$	(3.863)	s	(4,345)	\$	(4,
Cumulative Net Income	\$	-	\$ ((3,481)	\$	(7,344)	\$	(11,688)	\$	(15,
Net Present Value Calculation										
		2018	2019			2020		2021		2022
Earnings before Interest and Taxes	\$	-		(3,481)		(3,845)		(4,209)		(3,
- Taxes (Negative Tax Carryover)	\$	-	\$	-	\$		\$	-	\$	
- Capital Expenditures (Booster Acq. + LEO Acq. + Facilitie		-		1,684		1,684		1,684		1,
+ Depreciation	Ś				\$	2.616		2.981		2.
Free Cash Flow	\$		S ((2.913)	Ś	(2.913)	S	(2.913)	\$	(2.
Discounted Value	\$		\$ ((2,330)	\$	(1,864)	\$	(1,491)	\$	(1,
Free Cash Flow Discounted Value and NPV Results with Pricing Parameters	\$ \$	-		(2,913) (2,330)		(2.913) (1,864)		(2,913) (1,491)		
Name		Value	Units			Comment				
Static Yearly Launch Price - Commercial Cargo		1.626.2	\$/lb			1-LEO-PLTO				
Static Yearly Launch Price - Government Cargo		9,562	\$/lb		Govt	LEO-PLTO, from VI	Fs, initia	ally a guess	Manipu	alate to obtain
IRR Goal		25.00%	%						Use as	goal
			USD (SM)							

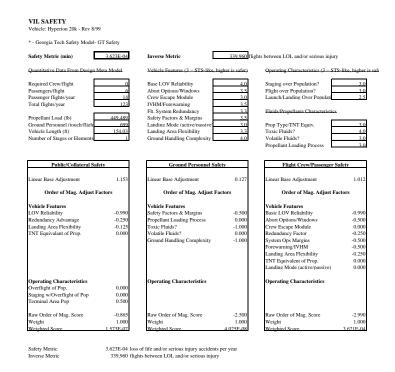


Figure 6.13. Sample Sheet from RDS Model: Safety

7.0 APPENDIX B: RESPONSE SURFACE GENERATION OF AATE MODEL FOR RDS MODEL

Since the original AATe spreadsheet-based model developed by NASA KSC is very large in terms of file size, a proxy for AATe to be used in the RDS model was developed using Response Surface Methodology (RSM). The first step was to set up a design of experiments (DoE) using JMP. Four independent variables were inputted into JMP with their corresponding high and low values, these variables and their RSE symbols include:

- 1.) Airframe Life (MTBR) or AFLIFE
- 2.) Dry Weight or DRYWT
- 3.) Vehicle Length or LENGTH
- 4.) Overall Vehicle Reliability (MTBF) or AFREL

The DoE was then used for response surface generation. A face-centered central composite design (CCD) was chosen for the DoE. A CCD spans a set of quantitative factors with fewer points than a standard Fractional Factorial multi-level design, without a large loss of efficiency. The CCD for the four market variables was a 3-level orthogonal design. This table was then put into AATe in order to obtain the values for the responses. For each of the 25 combinations, five output metrics of interest were recorded; the include 1.) Ground Turn-Around-Time (TAT); 2.) Facilities Cost; 3.) Labor Cost per Flight; 4.) LRU Cost per Flight; and 5.) Maximum Flight Capability per Year.

JMP is a statistical analysis software package that can be used to generate a Design of Experiments (DoE) table, perform an Analysis of Variance (ANOVA), to create Screening Tests and Prediction Profiles, and to attain the regression analysis results. For this portion, JMP was used to create the DoE table for use in the analysis of the response surface equations. The response surface equation approximates the relationship between the response and the design variables. The ANOVA analysis in JMP was used to generate the coefficients for the RSE. The regression analysis shows how good the fit is for the approximation. JMP was also used to create the higher fidelity 3-level DoE prediction profile tables. These were used to generate graphical plots of the response vs. each contributing variable. The prediction profiles show how the variability of each variable affected the given response.

The most popular response surface design is the central composite design. This design combines a twolevel fractional factorial with axial points and center points. Axial points are those points in the design for which one variable is set to the outer value and all others are set to their mean value. One of the benefits of using axial points is that one can choose points that are not only on the face of the design, but points outside of the design. These points that are outside of one's design allow you to get more accurate readings for those values near the edge. Center points are those points for which all the variable values are set at their mean values. Several center points can be used in order to take into account the possibility of experimental error. The experiments were comprised of only computer simulations in which no experimental error was present. Therefore, only one center point was used in the design.

Normalization of the independent variables was the next step in creating the experimental design. This was done mainly for bookkeeping purposes, as it makes the output of the design of experiments grid more legible. It also makes it easier to compare the experimental values with the high and low values. The four independent variables are listed below with their high and low values as well as their respective normalization parameters.

A response surface equation can now be generated using the data collected for each output metric for each simulated DoE case. The general form of a 2nd order polynomial response surface equation is shown below.

$$R = b_0 + \sum_{i=1}^n b_i x_i + \sum_{j=1}^{n-1} \sum_{i=j+1}^n b_{ij} x_i x_j + \sum_{i=1}^n b_{ii} x_i^2$$
(2)

The first term of this equation (b_o) represents the intercept of the quadratic equation. The second term is linear and represents the main effects of the independent variables. The third and forth terms represent higher order bilinear and quadratic factors of the independent variables. The response surface equation parameters for the 2nd order RSE were calculated using JMP. The results of these calculations can be seen below in Tables 7.1 and 7.2.

No.	Name	For Ground Turn-Around-Time (Days) Parameter Est.	For Max. Yearly Flight Rate (flights/year) Parameter Est.		
VI.b.1	Intercept	1314.3668	-4688.675		
VI.b.2	AFLIFE	0.0011122	-0.036095		
VI.b.3	DRYWT	0.000529	0.0008426		
VI.b.4	LENGTH	3.2695895	4.0576245		
VI.b.5	AFREL	-1300.943	4719.29		
VI.b.6	AFLIFE*AFLIFE	0.0000004	-6.599E-07		
VI.b.7	DRYWT*AFLIFE	-2.39E-11	-5.26E-12		
VI.b.8	DRYWT*DRYWT	-1.44E-13	1.359E-12		
VI.b.9	LENGTH*AFLIFE	-1.824E-07	7.1228E-08		
VI.b.10	LENGTH*DRYWT	7.7273E-09	4.5547E-09		
VI.b.11	LENGTH*LENGTH	0.0001908	-0.000237		
VI.b.12	AFREL*AFLIFE	-0.00204	0.037566		
VI.b.13	AFREL*DRYWT	-0.000526	-0.000852		
VI.b.14	AFREL*LENGTH	-3.321968	-4.011351		
VI.b.15	AFREL*AFREL	0	0		

 Table 7.1. AATe RSE Parameters for Selected Variables (1)

Table 7.2. AATe RSE Parameters for Selected Variables (2)

No.	Name	in FY\$1999 For Facilities Cost Parameter Est.	in FY\$1999 For Labor Cost per Flight Parameter Est.	in FY\$1999 For LRU Cost per Flight Parameter Est.
VI.b.1	Intercept	5780.9176	85.162974	14.790715
VI.b.2	AFLIFE	-0.010137	-0.001004	-0.000173
VI.b.3	DRYWT	0.0047516	0.0001301	0.000021
VI.b.4	LENGTH	58.665618	0.8077666	0.1503536
VI.b.5	AFREL	-5660.375	-83.63356	-14.52124
VI.b.6	AFLIFE*AFLIFE	0.0000043	7.2536E-08	1.141E-08
VI.b.7	DRYWT*AFLIFE	-2.02E-10	-4.82E-12	-7.69E-13
VI.b.8	DRYWT*DRYWT	-2.19E-12	2.713E-15	2.214E-16
VI.b.9	LENGTH*AFLIFE	-0.000002	-3.316E-08	-6.228E-09
VI.b.10	LENGTH*DRYWT	0.0000001	1.6012E-09	2.966E-10
VI.b.11	LENGTH*LENGTH	0.0027616	0.0000306	0.0000052
VI.b.12	AFREL*AFLIFE	0.0011254	0.000854	0.0001497
VI.b.13	AFREL*DRYWT	-0.004736	-0.00013	-0.000021
VI.b.14	AFREL*LENGTH	-59.38659	-0.816685	-0.151864
VI.b.15	AFREL*AFREL	0	0	0

8.0 APPENDIX C: VISUAL BASIC FOR APPLICATIONS (VBA) SCRIPTS FOR RDS MODEL

8.1 LEARNING CURVE ROUTINE

Option Explicit

Function Learningcurve(lcpercent As Double, produced As Integer, toproduce As Integer) As Double

'Calculates effect of the learning curve given the number of units being produced

'Inputs:

,

' lcpercent = learning curve percentage (expressed as a decimal)

' produced = number of units already produced

' toproduce = number of units to produce in a given interval

,

,

'Outputs:

' Learningcurve = number of cumulative units made (fractional)

'Multiply the output,

' Learningcurve, by TFU cost to obtain the acquisition cost for toproduce units

'Application.Volatile

If (toproduce ≤ 0 Or lcpercent = 0 Or produced < 0) Then

Learningcurve = 0

Exit Function

End If

Dim k As Integer

Dim lcmatrix() As Double

'Create a matrix, lcmatrix to hold the learning curve effect on each kth unit

ReDim lcmatrix(produced + toproduce, 2)

Dim sumtoproduce As Double

sumtoproduce = 0

' First column in lcmatrix is signifier of kth unit made

For k = 0 To (produced + toproduce - 1)

lcmatrix(k, 1) = k + 1

Next k

' Second column in lcmatrix is signifier of the learning curve effect on each kth unit

For k = 0 To (produced + toproduce - 1)

lcmatrix(k, 2) = lcmatrix(k, 1) ^ (Application.WorksheetFunction.Ln(lcpercent) / Application.WorksheetFunction.Ln(2))

Next k

' sumtoproduce = number of cumulative units made

' from number of units already produced to the number of units to produce

For k = (produced) To (produced + toproduce - 1)

```
sumtoproduce = sumtoproduce + lcmatrix(k, 2)
```

Next k

Learningcurve = sumtoproduce

End Function

8.2 IO SOLVER ROUTINE

Option Explicit

Sub IOSolver()

'Uses MS Solver to converge the vehicle for a given set of inputs

'Performs the solver routine until the value of the "solved for" value

' reaches s specifiued tolerance below

'Application.Volatile

'Initialize static variables

Dim counter_continue As Integer

Dim tolerance_temp As Double

Dim end_iterations As Integer

Dim iterations_counter As Integer

'Define static variables

'Tolerance_temp for convergence

'End_interations to determine the number of overall iterations to stop at

' Define an iterations counter

counter_continue = 1

 $tolerance_temp = 0.01$

 $end_iterations = 5$

 $iterations_counter = 1$

'Select the inputs and outputs sheet

Worksheets("Inputs & Outputs"). Activate

'Reset the solver for this iteration

SolverReset

'Perform until the value of the "solved for" value is less than the tolerance_temp value

'Acts to initiate a new solver iteration, resetting solver and running

While (counter_continue = 1 And iterations_counter < end_iterations)

' Set up the options for solver

SolverOptions MaxTime:=30, Iterations:=100, Precision:=0.01, _

AssumeLinear:=False, StepThru:=False, Estimates:=2, Derivatives:=2, _

SearchOption:=1, IntTolerance:=5, Scaling:=True, Convergence:=0.01, _

AssumeNonNeg:=False

' Set up the constraint for solver

SolverAdd CellRef:="\$F\$84", Relation:=2, FormulaText:="0"

' Initialize the solver and run

SolverOK SetCell:=Range("\$F\$83"), MaxMinVal:=3, ValueOf:="0", _

ByChange:=Range("\$F\$85:\$F\$86")

SolverSolve UserFinish:=True

' If the value of the "solved for" value is less than the tolerance than stop If Abs(Range("\$F\$83").Value) < tolerance_temp Then counter_continue = 0

End If

'Increment the iteration counters

iterations_counter = iterations_counter + 1

Wend

End Sub

8.3 DETERMINISTIC DOE ROUTINE

Option Explicit

Sub DeterministicDOE()

'Uses MS Solver to converge the vehicle for a given set of inputs

' Performs the solver routine until the value of the "solved for" value

' reaches a specified tolerance below

'Performs for a given input DOE set of possible technologies and

' guesses for vehicle length and government price per lb

'Application.Volatile

Dim main_counter As Integer

Dim end_counter As Integer

 $main_counter = 91$

 $end_counter = 92$

While main_counter <= end_counter

' Copy the initial values of the DOE run

Sheets("Determ. DOE").Select

Range(Cells(main_counter + 4, 3), Cells(main_counter + 4, 13)).Select

Selection.Copy

Sheets("Tech. Select").Select

Cells(14, 3).Select

Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:=False, Transpose:=False

Sheets("Inputs & Outputs").Select

'Paste an initial guess for Solver

'Initial guesses in cells for vehicle length and government price per lb

Range(Cells(94, 8), Cells(95, 8)).Select

Selection.Copy

Cells(85, 6).Select

Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:=False, Transpose:=False

'Uses MS Solver to converge the vehicle for a given set of inputs

'Performs the solver routine until the value of the "solved for" value

' reaches a specified tolerance below

'Application.Volatile

'Initialize static variables

Dim counter_continue As Integer

Dim tolerance_temp As Double

Dim end_iterations As Integer

Dim iterations_counter As Integer

'Define static variables

'Tolerance_temp for convergence

'End_interations to determine the number of overall iterations to stop at

'Define an iterations counter

counter_continue = 1

 $tolerance_temp = 0.001$

 $end_iterations = 5$

iterations_counter = 1

'Select the inputs and outputs sheet

Worksheets("Inputs & Outputs"). Activate

'Reset the solver for this iteration

SolverReset

'Perform until the value of the "solved for" value is less than the tolerance_temp value

'Acts to initiate a new solver iteration, resetting solver and running

While (counter_continue = 1 And iterations_counter < end_iterations)

' Set up the options for solver

SolverOptions MaxTime:=30, Iterations:=100, Precision:=0.01, _

AssumeLinear:=False, StepThru:=False, Estimates:=2, Derivatives:=2, _

SearchOption:=1, IntTolerance:=5, Scaling:=True, Convergence:=0.01, _

AssumeNonNeg:=False

' Set up the constraint for solver

SolverAdd CellRef:="\$F\$84", Relation:=2, FormulaText:="0"

'Initialize the solver and run

SolverOK SetCell:=Range("\$F\$83"), MaxMinVal:=3, ValueOf:="0", _

ByChange:=Range("\$F\$85:\$F\$86")

SolverSolve UserFinish:=True

' If the value of the "solved for" value is less than the tolerance than stop

If Abs(Range("\$F\$83").Value) < tolerance_temp Then

counter_continue = 0

End If

' Increment the iteration counters

iterations_counter = iterations_counter + 1

Wend

'Copy the current values of the output variables to the Deterministic DOE table

Range(Cells(91, 4), Cells(104, 4)).Select

'Range("D91:D102").Select

Selection.Copy

Sheets("Determ. DOE").Select

Cells(main_counter + 4, 15).Select

'Range("O5").Select

Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, SkipBlanks:=False, Transpose:=True

' Increment the main counter by 1

 $main_counter = main_counter + 1$

Wend

End Sub

9.0 APPENDIX D: LISTING OF COMPUTATIONAL CODES

Cost And Business Analysis Module (CABAM)

CABAM is an economic and business model for evaluating reusable launch vehicles. The model is a complete life cycle cost model developed as a Microsoft Excel spreadsheet. CABAM was developed and is currently being maintained at the Georgia Institute of Technology under Dr. John Olds. Assumptions about the economic environment (tax rate, inflation rate, etc.), payload size of vehicle, component vehicle weights, complexity factors, operations costs, and facilities costs are coupled with market forecast models and a pricing strategy to yield various economic results like IRR, NPV, cash flows, and complete Life Cycle Costs.

Crystal Ball

Crystal Ball is a Monte Carlo simulation tool used as an add-in to the Microsoft Excel spreadsheet. Various distributions can be selected for assumption cells to yield statistical results for forecast cells that are outputs of the assumption cells. Crystal Ball is a user-friendly, graphically oriented forecasting and risk analysis program that provides the probability of certain outcomes (Crystal Ball Manual). It uses Monte Carlo simulation to forecast the entire range of results possible for a given situation. Furthermore, it shows the designer's confidence levels, so that the likelihood of a specific event taking place is known. Crystal Ball is preferred for such research work since it allows the designer to determine whether the project will stay within budget, the chance that the project will finish on time, and how likely it is to achieve a certain level of profitability.

JMP

JMP is a statistical analysis software package that was used to generate the Design of Experiments (DoE) table, perform the Analysis of Variance (ANOVA), to create the Screening Tests and Prediction Profiles, and to attain the regression analysis results. The ANOVA was performed on the DoE in order to determine the relationship between the response and the noise/control variables.

ATIES

10.0 APPENDIX E: DETERMINISTIC RDS MODE L OUTPUTS

Case	А			8	(Exclusion)				
1		В	С	D	Е	F	G	Н	Ι	J	K
	1	1	1	1	1	1	1	1	-1	1	1
2	1	1	1	1	1	1	1	1	-1	1	-1
3	1	1	1	1	1	1	1	1	-1	-1	1
4	1	1	1	1	1	1	1	1	-1	-1	-1
17			1	1		-1		1	-1		
	1	1			1		1			1	1
18	1	1	1	1	1	-1	1	1	-1	1	-1
19	1	1	1	1	1	-1	1	1	-1	-1	1
20	1	1	1	1	1	-1	1	1	-1	-1	-1
33	1	1	1	1	-1	1	1	1	-1	1	1
34	1	1	1	1	-1	1	1	1	-1	1	-1
35	1	1	1	1	-1	1	1	1	-1	-1	1
49	1	1	1	1	-1	-1	1	1	-1	1	1
50	1	1	1	1	-1	-1	1	1	-1	1	-1
51	1	1	1	1	-1	-1	1	1	-1	-1	1
97	1	1	1	-1	-1	1	1	1	-1	1	1
98	1	1	1	-1	-1	1	1	1	-1	1	-1
	1	1	1	-1	-1	1	1	1	-1	-1	-1
99											
113	1	1	1	-1	-1	-1	1	1	-1	1	1
129	1	1	-1	1	1	1	1	1	-1	1	1
131	1	1	-1	1	1	1	1	1	-1	-1	1
257	1	-1	1	1	1	1	1	1	-1	1	1
258	1	-1	1	1	1	1	1	1	-1	1	-1
259	1	-1	1	1	1	1	1	1	-1	-1	1
260	1	-1	1	1	1	1	1	1	-1	-1	-1
273	1	-1	1	1	1	-1	1	1	-1	1	1
274	1	-1	1	1	1	-1	1	1	-1	1	-1
275	1	-1	1	1	1	-1	1	1	-1	-1	1
276	1	-1	1	1	1	-1	1	1	-1	-1	-1
289	1	-1	1	1	-1	-1	1	1	-1	-1	-1
290	1	-1	1	1	-1	1	1	1	-1	1	-1
291	1	-1	1	1	-1	1	1	1	-1	-1	1
305	1	-1	1	1	-1	-1	1	1	-1	1	1
307	1	-1	1	1	-1	-1	1	1	-1	-1	1
353	1	-1	1	-1	-1	1	1	1	-1	1	1
354	1	-1	1	-1	-1	1	1	1	-1	1	-1
369	1	-1	1	-1	-1	-1	1	1	-1	1	1
385	1	-1	-1	1	1	1	1	1	-1	1	1
387	1	-1	-1	1	1	1	1	1	-1	-1	1
401	1	-1	-1	1	1	-1	1	1	-1	1	1
513	-1	1	1	1	1	1	1	1	-1	1	1
515	-1	1	1	1	1	1	1	1	-1	-1	1
516	-1	1	1	1	1	1	1	1	-1	-1	-1
529	-1	1	1	1	1	-1	1	1	-1	-1	-1
		1		1		-1		1	-1	-1	
531	-1		1		1		1				1
545	-1	1	1	1	-1	1	1	1	-1	1	1
546	-1	1	1	1	-1	1	1	1	-1	1	-1
547	-1	1	1	1	-1	1	1	1	-1	-1	1
561	-1	1	1	1	-1	-1	1	1	-1	1	1
609	-1	1	1	-1	-1	1	1	1	-1	1	1
769	-1	-1	1	1	1	1	1	1	-1	1	1
770	-1	-1	1	1	1	1	1	1	-1	1	-1
771	-1	-1	1	1	1	1	1	1	-1	-1	1
772	-1	-1	1	1	1	1	1	1	-1	-1	-1
785	-1	-1	1	1	1	-1	1	1	-1	1	1
786	-1	-1	1	1	1	-1	1	1	-1	1	-1
787	-1	-1 -1	1	1	1	-1 -1		1	-1 -1	-1	
			-				1				1
788	-1	-1	1	1	1	-1	1	1	-1	-1	-1
801	-1	-1	1	1	-1	1	1	1	-1	1	1
803	-1	-1	1	1	-1	1	1	1	-1	-1	1
817	-1	-1	1	1	-1	-1	1	1	-1	1	1
865	-1	-1	1	-1	-1	1	1	1	-1	1	1

Table 10.1 Technology Combinations for TOPSIS Top 25 Deterministic Rankings

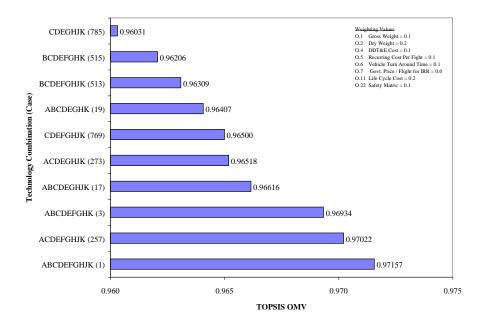


Figure 10.1. TOPSIS OEC Ranking of Top 10 Technology Combinations for WS 1

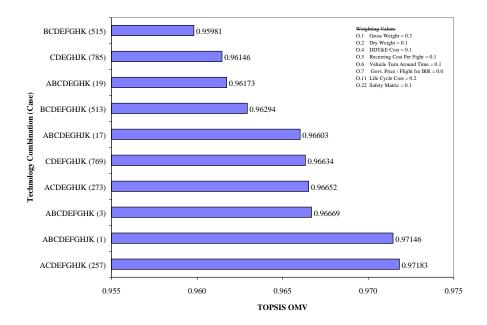


Figure 10.2. TOPSIS OEC Ranking of Top 10 Technology Combinations for WS 2

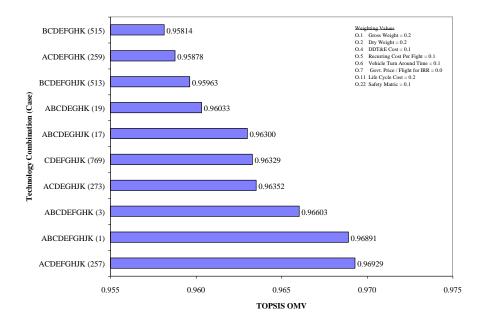


Figure 10.3. TOPSIS OEC Ranking of Top 10 Technology Combinations for WS 3

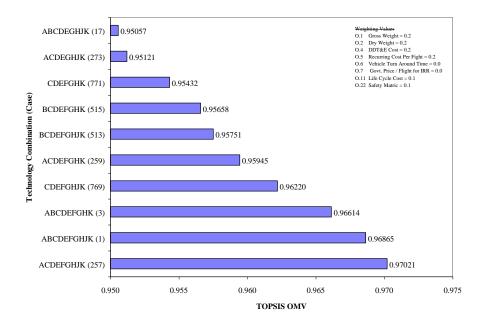


Figure 10.4. TOPSIS OEC Ranking of Top 10 Technology Combinations for WS 4

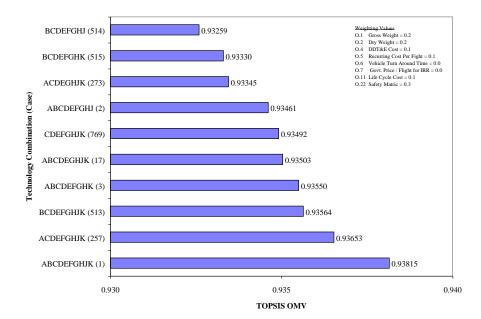


Figure 10.5. TOPSIS OEC Ranking of Top 10 Technology Combinations for WS 5

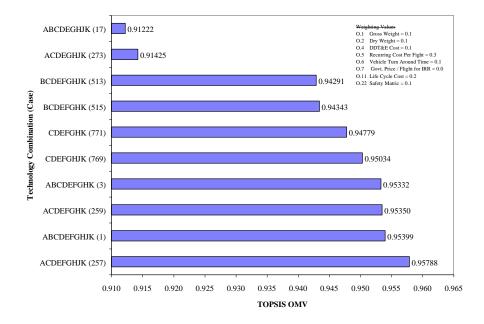


Figure 10.6. TOPSIS OEC Ranking of Top 10 Technology Combinations for WS 6

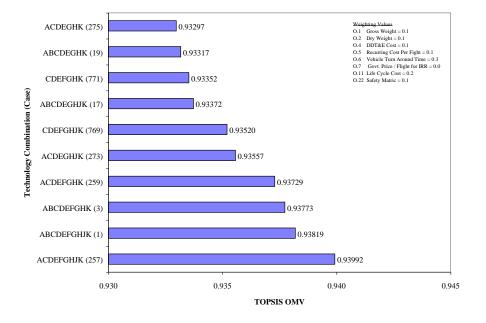


Figure 10.7. TOPSIS OEC Ranking of Top 10 Technology Combinations for WS 7

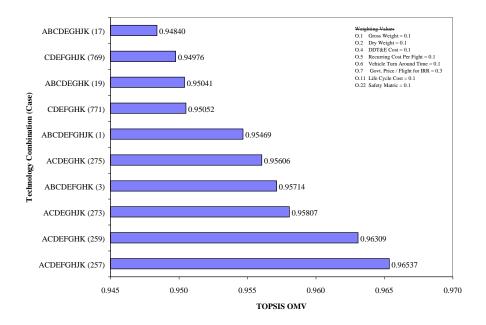
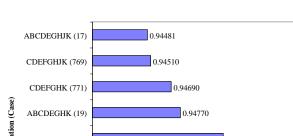



Figure 10.8. TOPSIS OEC Ranking of Top 10 Technology Combinations for WS 8

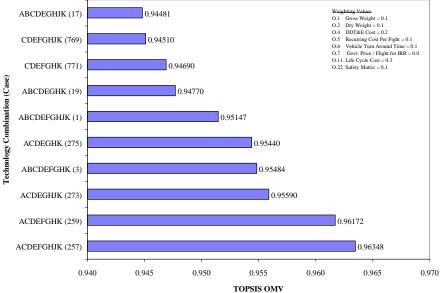


Figure 10.9. TOPSIS OEC Ranking of Top 10 Technology Combinations for WS 9

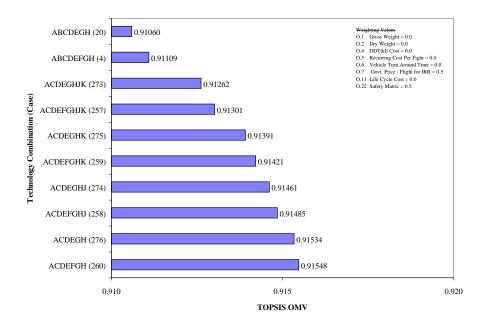


Figure 10.10. TOPSIS OEC Ranking of Top 10 Technology Combinations for WS 11

11.0 APPENDIX E: PROBABILISTIC RDS MODEL OUTPUTS

Statistics	Dry Weight	Gross Weight	Fuselage Length	
Trials	1000	1000	1000	
Mean	51,117	321,567	126.6	
Median	50,968	321,574	126.6	
Mode				
Standard Deviation	2,659	20,796	3.1	
Variance	7,072,244	432,484,553	9.7	
Skewness	0.08	0.04	-0.07	
Kurtosis	2.79	2.57	2.53	
Coeff. of Variability	0.05	0.06	0.02	
Range Minimum	43,607	267,528	118.1	
Range Maximum	59,553	382,284	135.0	
Range Width	15,946	114,757	16.9	
Mean Std. Error	84.10	657.64	0.10	

Table 11.1. Probabilistic Forecast Statistics (1)

Table 11.2. Probabilistic Forecast Statistics (2)

Statistics	DDT&E cost	Recurring cost / flight	Vehicle Turnaround Time	
Trials	1000	1000	1000	
Mean	3,875	0.94	6.55	
Median	3,881	0.94	6.55	
Mode				
Standard Deviation	141	0.05	0.45	
Variance	19,970	0.00	0.20	
Skewness	-0.13	-0.13	-0.08	
Kurtosis	3.02	2.71	2.79	
Coeff. of Variability	0.04	0.05	0.07	
Range Minimum	3,383	0.78	5.00	
Range Maximum	4,325	1.07	7.77	
Range Width	942	0.29	2.77	
Mean Std. Error	4.47	0.00	0.01	

Table 11.3. Probabilistic Forecast Statistics (3)

Statistics	Govt. Price / lb (required for IRR)	Life cycle cost (LCC)	Safety Metric
Trials	1000	1000	1000
Mean	3,988.3	46,740	393,071
Median	3,990.9	46,771	392,194
Mode			
Standard Deviation	178.0	1,813	17,401
Variance	31,695.6	3,288,170	302,806,995
Skewness	-0.06	-0.03	0.22
Kurtosis	2.95	2.99	2.59
Coeff. of Variability	0.04	0.04	0.04
Range Minimum	3,391.5	40,671	350,471
Range Maximum	4,602.5	52,871	439,977
Range Width	1,211.0	12,201	89,506
Mean Std. Error	5.63	57.34	550.28

Percentiles	Dry Weight	Gross Weight	Fuselage Length	DDT&E cost	Recurring cost / flight	Vehicle Turnaround Time	Govt. Price / lb (required for IRR)	Life cycle cost (LCC)	Safety Metric
0.0%	43,607	267,528	118.1	3,383	0.78	5.00	3,391.5	40,671	350,471
2.5%	45,899	282,239	120.5	3,582	0.83	5.63	3,634.4	43,108	362,800
5.0%	46,571	287,222	121.3	3,631	0.85	5.80	3,680.1	43,637	366,525
50.0%	50,968	321,574	126.6	3,881	0.94	6.55	3,990.9	46,771	392,194
95.0%	55,602	356,472	131.6	4,100	1.01	7.27	4,280.6	49,729	423,892
97.5%	56,291	363,031	132.5	4,139	1.02	7.44	4,334.4	50,239	429,398
100.0%	59,553	382,284	135.0	4,325	1.07	7.77	4,602.5	52,871	439,977

Table 11.4. Percentiles

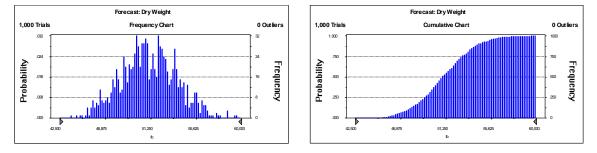


Figure 11.1. Dry Weight Frequency and Cumulative Distributions

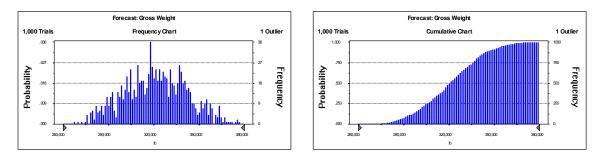


Figure 11.2. Gross Weight Frequency and Cumulative Distributions

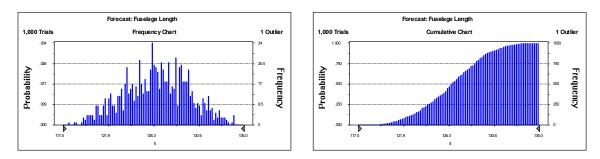


Figure 11.3. Fuselage Length Frequency and Cumulative Distributions

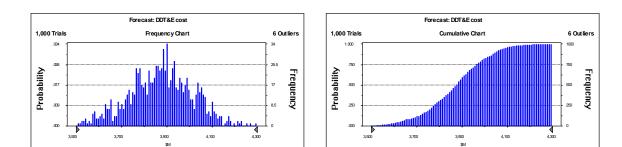


Figure 11.4. DDT&E Cost Frequency and Cumulative Distributions

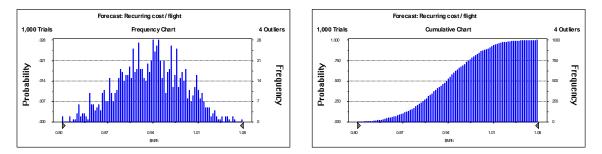


Figure 11.5. Recurring Cost per Flight Frequency and Cumulative Distributions

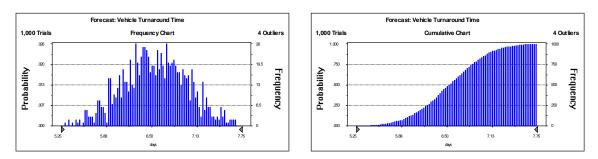


Figure 11.6. Vehicle TAT Frequency and Cumulative Distributions

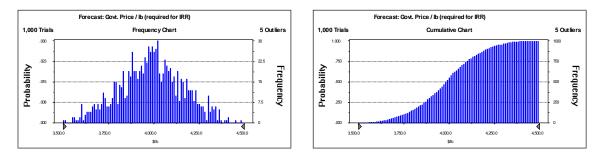


Figure 11.7. Government Price per lb Frequency and Cumulative Distributions

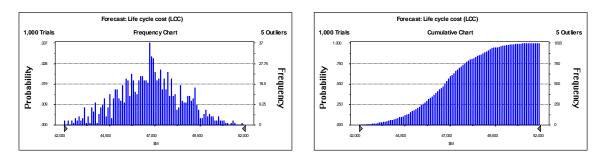


Figure 11.8. Life Cycle Cost (LCC) Frequency and Cumulative Distributions

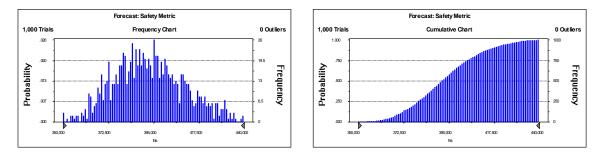


Figure 11.9. Safety Metric Frequency and Cumulative Distributions

Tech. + k factor*	Dry Weight	Gross Weight	Fuselage Length	DDT&E cost	Recurring cost / flight	Vehicle Turnaround Time	Govt. Price / lb (required for IRR)	Life cycle cost (LCC)	Safety Metric
A.16	0.0	0.0	0.0	0.5	0.0	0.0	0.4	0.4	0.0
B.16	0.0	0.0	0.0	0.2	0.1	0.0	0.1	0.2	0.0
B.18	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
B.7	0.2	0.2	0.2	0.1	0.0	0.0	0.2	0.2	0.0
C.15	0.2	0.1	0.1	0.1	0.0	0.0	0.1	0.1	0.0
C.16	0.1	0.1	0.1	0.2	0.1	0.0	0.1	0.2	0.0
C.18	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0
C.6	0.1	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.0
C.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C.8	0.1	0.0	0.0	0.2	0.0	0.0	0.2	0.2	0.0
D.15	0.0	0.0	0.0	0.0		0.0		0.0	0.0
D.20	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.1	0.1
D.21	0.0	0.0	0.0	0.0		0.7	0.0	0.0	0.0
D.24	0.0	0.0	0.0	0.0		0.0		0.0	0.4
E.17	0.0	0.0	0.0	0.0		0.0		0.0	0.0
E.19	0.0	0.0	0.0	0.0		0.0		0.0	0.1
E.20	0.0	0.0	0.0	0.1	0.7	0.0		0.1	0.0
E.21	0.0	0.0	0.0	0.1	0.0	0.4		0.1	0.0
E.24	0.0	0.0	0.0	0.0		0.0		0.0	0.8
F.20	0.0	0.1	0.1	0.1	0.4	0.0		0.1	0.0
G.11	0.2	0.1	0.1	0.2		0.0		0.2	0.0
G.15	0.0	0.0	0.0	0.0	0.0	0.0		0.1	0.0
G.20	0.0	0.0	0.0	0.0		0.1	0.0	0.0	0.0
G.21	0.1	0.1	0.1	0.0		0.4		0.1	0.0
G.24	0.0	0.0	0.0	0.1	0.0	0.0		0.0	0.4
G.4	0.2	0.2	0.2	0.1	0.0	0.1	0.1	0.1	0.0
G.5	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.0
H.1	0.8	0.9	0.9	0.6	0.1	0.1	0.6	0.6	0.0
H.17 H.19	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0		0.1 0.0	0.1 0.0	0.1 0.0	0.0
H.19 H.23	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0 0.1
н.25 Н.24	0.0	0.0	0.0	0.0	0.0	0.1		0.1	0.1
H.9	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.2
I.17	0.2	0.1	0.1	0.1	0.0	0.0		0.2	0.0
I.17 I.19	0.0	0.0	0.0	0.1	0.0	0.0		0.0	0.0
I.17 I.23	0.0	0.0	0.0	0.0	0.0	0.0		0.1	0.0
I.23 I.24	0.0	0.0	0.0	0.0		0.0		0.0	0.0
I.9	0.0	0.0	0.0	0.0		0.0		0.0	0.0
J.16	0.0	0.0	0.0	0.0		0.0		0.0	0.0
J.18	0.0	0.0	0.0	0.2	0.0	0.0		0.2	0.0
J.2	0.2	0.2	0.2	0.1	0.0	0.1		0.1	0.0
J.8	0.0	0.0	0.0	0.1		0.0		0.1	0.0
K.16	0.0	0.0	0.0	0.1		0.0		0.1	0.0
K.18	0.0	0.0	0.0	0.0		0.0		0.0	0.0
K.20	0.1	0.0	0.0	0.0		0.0		0.0	0.0
K.21	0.0	0.0	0.0	0.0		0.4		0.0	0.0
K.22	0.0	0.0	0.0	0.0		0.0		0.0	0.0
K.8	0.1	0.1	0.1	0.1		0.0		0.1	0.0

Note: * Nomenclature indicates [Technology I.D. Letter].[Technical k factor I.D. Number]

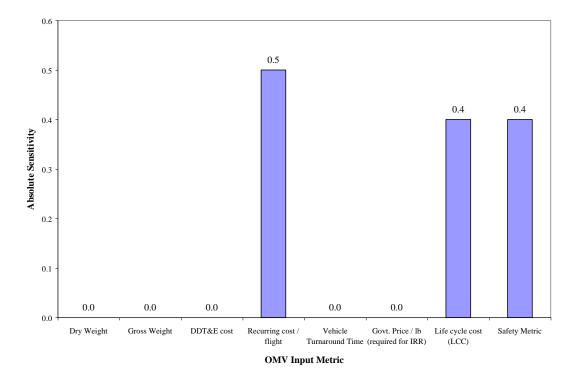
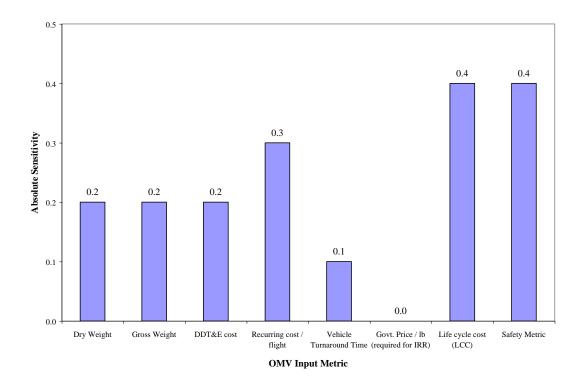



Figure 11.10. Sensitivity of Technology A on OEC Input Metrics

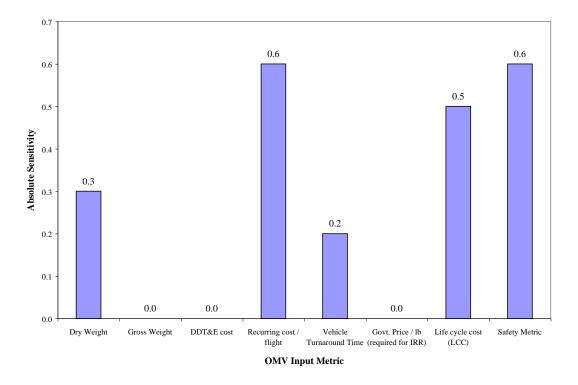


Figure 11.12. Sensitivity of Technology C on OEC Input Metrics

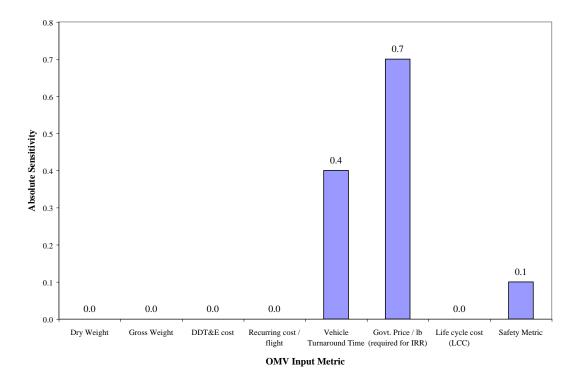


Figure 11.13. Sensitivity of Technology D on OEC Input Metrics

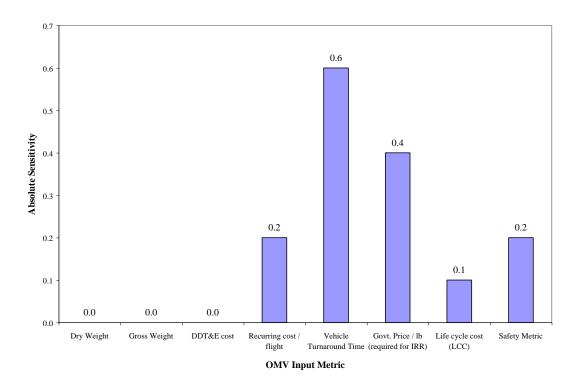


Figure 11.14. Sensitivity of Technology E on OEC Input Metrics

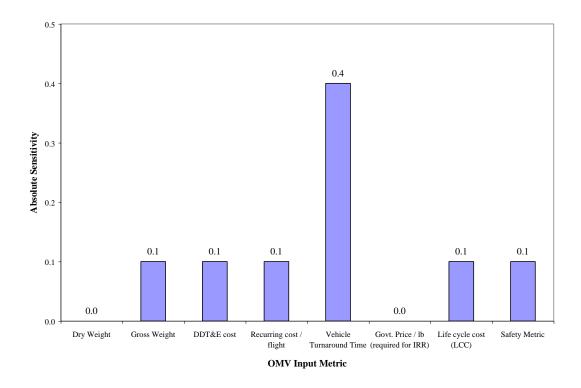


Figure 11.15. Sensitivity of Technology F on OEC Input Metrics

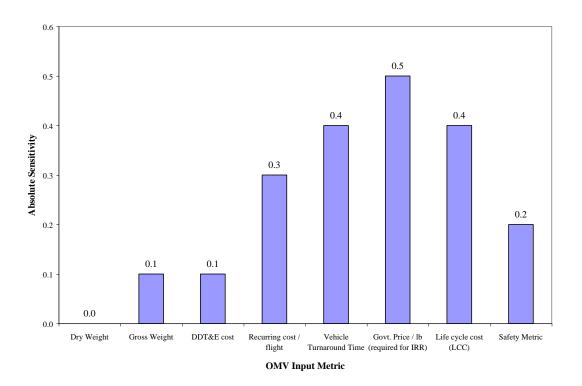


Figure 11.16. Sensitivity of Technology G on OEC Input Metrics

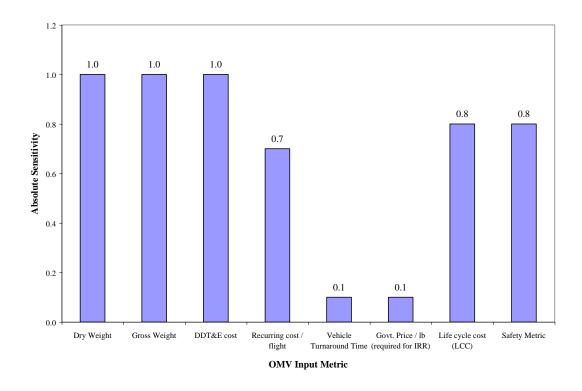


Figure 11.17. Sensitivity of Technology H on OEC Input Metrics

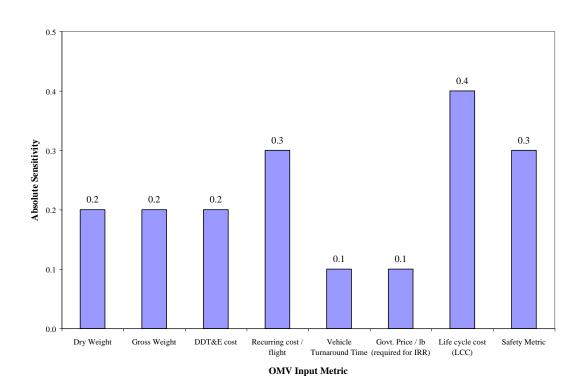


Figure 11.18. Sensitivity of Technology J on OEC Input Metrics

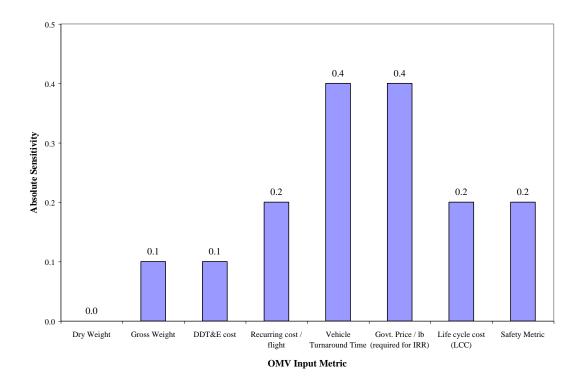


Figure 11.19. Sensitivity of Technology K on OEC Input Metrics

12.0 REFERENCES

- 1. NASA Advanced Space Transportation Program (ASTP). About ASTP: Advanced Space Transportation Program Space Transportation. http://astp.msfc.nasa.gov/astpabout.html. 2000.
- Mavris, D.N., Kirby, M.R., "Technology Identification, Evaluation, and Selection for Commercial Transport Aircraft", 58th Annual Conference Of Society of Allied Weight Engineers, San Jose, California 24-26 May, 1999.
- Kirby, M.R., Mavris, D.N., "Forecasting the Impact of Technology Infusion on Subsonic Transport Affordability", World Aviation Congress and Exposition, Anaheim, CA, September 28-30, 1998. SAE-985576.
- Kirby, M. R. and D. N. Mavris, "Forecasting Technology Uncertainty in Preliminary Aircraft Design," 4th World Aviation Congress and Exposition, San Francisco, CA, October 19-21, 1999. SAE paper no. 1999-01-5631.
- Mavris, D.N., Baker, A.P., Schrage, D.P., "Implementation of a Technology Impact Forecast Technique on a Civil Tiltrotor", Proceedings of the 55th National Forum of the American Helicopter Society, Montreal, Quebec, Canada, May 25-27, 1999.
- Mavris, D.N., Kirby, M.R., Qiu, S., "Technology Impact Forecasting for a High Speed Civil Transport", World Aviation Congress and Exposition, Anaheim, CA, September 28-30, 1998. SAE-985547.
- Mavris, D.N., Soban, D.S., and Largent, M.C., "An Application of a Technology Impact Forecasting (TIF) Method to an Uninhabited Combat Aerial Vehicle", 1999 AIAA/SAE World Aviation Congress, San Francisco, CA, Oct 19-21, 1999. SAE/AIAA 1999-01-5633.
- Olds, J., Bradford, J., Charania, A., Ledsinger, L., McCormick, D., Sorensen, K., "Hyperion: An SSTO Vision Vehicle Concept Utilizing Rocket-Based Combined Cycle Propulsion," AIAA 99-4944, 9th International Space Planes and Hypersonic Systems and Technologies Conference, Norfolk, VA, November 1-5, 1999.
- Mavris, D.N., Bandte, O., DeLaurentis, D.A., "Determination of System Feasibility and Viability Employing a Joint Probabilistic Formulation", 37th Aerospace Sciences Meeting & Exhibit, Reno, NV, January 11-14, 1999. AIAA 99-0183.

- Mavris, D.N., Mantis, G., Kirby, M.R. "Demonstration of a Probabilistic Technique for the Determination of Economic Viability," SAE-975585.
- Mavris, D.N., Bandte, O., DeLaurentis, D.A., "Robust Design Simulation: A Probabilistic Approach to Multidisciplinary Design," AIAA Journal of Aircraft, Vol. 36, No. 1, Jan-Feb 1999. pp. 298-307.