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The VIrtual Super Optics Reconfigurable Swarm (VISORS) mission is a distributed 
telescope system consisting of two 6U CubeSats that utilize precision formation flying to detect 
and study the fundamental energy release regions of the solar corona. The inherent 
complexities and risks associated with two spacecraft operating in close proximity, as well as 
the unique restrictions of the spacecrafts’ design, make careful autonomous execution crucial 
to the success of the mission. To address these challenges, this paper outlines the development 
of the Hosted Software Application (HSA) flight software which manages the Guidance, 
Navigation, and Control algorithms, the payload finite state machine, and the spacecraft and 
formation level fault management system. An overview of the HSA provides context for the 
motivation and requirements driving the design of the flight software system. The architecture 
of the HSA is presented and shown to be derived from the Mission Events Timeline (MET) for 
each of the relevant phases of the mission. Finally, a brief outline of the implementation and 
testing of the software is discussed. 

I. Nomenclature 
ADCS = Attitude, Determination, and Control Subsystem 
BCT = Blue Canyon Technologies 
CCSDS = Consultative Committee for Space Data Systems  
CONOPS = Concept of Operations 
COTS = Commercial Off the Shelf 
CSIE = Compact Spectral Image Electronics 
EVR = Event Verification Record 
FSW = Flight Software 
FPP = F Prime Prime 
GNC = Guidance, Navigation, and Control 
GNSS = Global Navigation Satellite System 
HSA = Hosted Software Application 
IPC = Inter-process Communication  
MET = Mission Events Timeline 
NO-OP = No Operation 
PSM = Payload State Machine 
VISORS = VIrtual Super-resolution Optics with Reconfigurable Swarms 

II. Introduction 
 As the overall number of space launches increases, the number of rideshare opportunities has also increased, 
directly contributing to the increase in CubeSat launches from under 100 cumulatively by 2013 to over 1800 by 2022 
[1].  This increased access to space has enabled many entities, such as higher education universities, to enter the small 
satellite development space. However, developing small satellites comes with many challenges, especially at the 
university level. Even though launch opportunities have decreased in cost, funding issues, along with a lack of overall 
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experience and a high turnover rate of students, lead to projects that are rushed, lack redundancy, and lack adequate 
testing. These issues permeate to the subsystem level and affect their reliability and robustness. This issue is especially 
apparent for flight software (FSW) development, as FSW is often considered a black box due to its inherent lack of 
physical manipulation. At the university level, the tools and framework to start writing FSW are often non-existent. 
This results in missions that have to develop tools and infrastructure before they can even begin to design the FSW. 
This additional work further exacerbates the issues many small satellite missions face and leads to additional cost and 
schedule overruns. One way to mitigate this issue is to design the software such that it is as simple, yet robust, as 
possible. Reducing the complexity of the design eases the burden on software developers but also simplifies the lives 
of mission operators who, more often than not, were not involved with the development of the FSW. As a result, 
spending a significant amount of time meticulously planning out a software design can decrease overall development 
time and help university-level teams stick to their tight schedules.   
 
 However, designing a FSW system from scratch is extremely difficult. For a formation flying mission, such as the 
one presented here, the flight software architecture becomes even more complex as additional subsystems pertinent to 
formation flying are introduced, including formation level fault detection, inter-satellite link, relative propulsion, and 
distributed science instruments. The FSW must also handle any concurrency issues that arise when controlling two 
independent spacecraft that must work together, such as ensuring that both spacecraft do not have different formation 
state information. The first step to approaching this problem is not to dive into the specifics of the flight software 
itself, but instead to look at the concept of operations (CONOPS) and mission events timeline (MET) for every phase 
of the mission. By first determining what each spacecraft needs to do to accomplish the goals of the formation, the 
specific tasks that the FSW must complete can be more granularly identified. This inherently leads to FSW 
requirements that drive how the software should be architected to complete those tasks.  
  
 The goal of this paper is to illustrate the design of the Hosted Software Application (HSA) flight software on the 
VISORS mission. By discussing the development lifecycle of the HSA, this paper intends to serve as a resource for 
students who will continue to develop the HSA and for students who may develop similar software systems for other 
formation flying missions. In section III, an overview of the VISORS mission is given, with an emphasis on the aspects 
of the mission that the HSA manages. In section IV, an overview of the goals and requirements of the HSA is 
discussed. Section V details the design of the HSA with special attention given to how the design is derived from the 
MET for each phase of the mission. Finally, in section VI the implementation and testing of the HSA are briefly 
discussed. 

III. VISORS Mission Overview 
 The goal of the VISORS mission is to detect and study the fundamental energy-release regions of the solar corona. 
The mission achieves its science goals with a distributed space telescope consisting of two 6U CubeSats, the Detector 
Spacecraft (DSC) and the Optics Spacecraft (OSC) as seen in Fig 1. The spacecraft buses are nearly identical 
commercial off the shelf (COTS) XB1 buses provided by Blue Canyon Technologies (BCT). The XB1 provides the 
spacecraft chassis, the main flight computer, the attitude determination and control (ADCS) system, and the ultra-high 
frequency (UHF) space-to-ground communication architecture. The rest of the spacecraft is comprised of the payload, 
including a cold-gas propulsion system (PROP), inter-satellite communications hardware (XLINK), a payload 
avionics interface board (PAIB), and science instrumentation. Each of the payload subsystems was designed and 
developed by one of the 11 different institutions on the VISORS mission. VISORS is funded by the National Science 
Foundation (NSF) and was originally devised at the CubeSat Ideas Lab in 2019. 
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Fig 1. CAD of Detector Spacecraft (left) and Optics Spacecraft (right) [2] 

 
The VISORS mission is officially classified as a technology demonstration mission, focusing on the design and 

development of novel technologies such as differential carrier-phase global navigation satellite system (GNSS) 
navigation [3], inter-satellite communications, and a cold gas propulsion system for high precision relative 
maneuvering [4]. These technologies work together to enable the VISORS spacecraft to maneuver to a relative 
separation of 40 meters during a science observation, the focal length required to obtain images of the sun in the He 
II 304 Å line, as shown in Fig 2. These novel technologies also enable the mission to meet its minimum science success 
goal of obtaining a single image of the sun in this He II 304 Å wavelength with a resolution of 0.2 arcseconds [2]. 

Fig 2. VISORS formation alignment during observation [5] 

 The science instrumentation that enables these images are distributed across the two spacecraft [2]. The OSC 
contains the extreme ultraviolet photon sieve optic which focuses incoming light onto the detector instrument located 
on the DSC. The OSC also contains a laser rangefinder (LRF) that is used for different purposes by the guidance, 
navigation, and control (GNC) algorithms and the science team on the ground. During an observation attempt, the 
GNC algorithms have the ability to autonomously use the LRF data to help control the formation into the observation 
alignment. After downlinking the LRF telemetry, the science team uses the timestamps on the ranging data to help 
inform their decision on which images they want to downlink. On the DSC, the detector instrument contains the 
Compact Spectral Image Electronics (CSIE) which controls the camera and processes the images before preparing 
them for downlink. While the science instrumentation differs between the two spacecraft, many of the payload 
subsystems are nearly identical. This design decision simplifies overall system development, as well as the spacecraft 
integration and test campaign [6]. The VISORS mission is currently awaiting the delivery of flight payload subsystems 
and the DSC bus, shown in Fig 3. The integration and test campaign for both spacecraft will begin in the fall of 2023, 
with a projected spacecraft delivery date of July 2024.  
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Fig 3. Detector Spacecraft during testing at BCT [7] 

A. GNC Overview 
  
 At a high level, the GNC system on the VISORS mission has two goals. First and foremost, since VISORS is a 
formation flying mission, the GNC algorithms must ensure that the spacecraft avoid collisions. This is done passively 
through the design of the relative orbits and actively through preemptive collision avoidance maneuvers. The passive 
safety margin guarantees that the spacecraft will not collide for at least 2 orbits in the absence of maneuvers. The 
collision avoidance maneuvers aim to increase the relative separation in the relative-normal plane of the relative-
tangential-normal (RTN) frame while introducing relative drift in the tangential frame. The second main goal of the 
GNC algorithms is to control the formation to millimeter-level position accuracy and micrometer per second-level 
velocity accuracy to ensure that the science instruments can take images that are in focus, on target, and have 
acceptable smearing. These GNC goals are captured in the VISORS mission objectives shown in Table 1 and discussed 
in more detail in Ref. [3].  

Table 1. VISORS Mission Objectives (GNC-related objectives in bold) 

Identifier Objective 
MO-001 Capture and downlink coronal imagery to determine the existence of energy-

release regions in the solar corona 
MO-002 Control formation to millimeter-level position accuracy 
MO-003 Inter-satellite communication link enabling autonomous maneuver planning 
MO-004 E/I-vector separation to enable passive collision avoidance and maintain 

near-proximity relative orbits 
MO-005 Propulsion systems for formation-keeping and reconfiguration 

 
 Staying in a formation configuration where the spacecraft have a 40-meter relative separation, is risky and 
expensive from an energy and delta-v standpoint. As a result, the GNC algorithms have defined multiple orbit 
configurations that will occur over the course of the mission. These orbits are defined in Table 2. In addition to these 
pre-defined relative orbits, the spacecraft may be in a configuration with no relative orbit (for example during 
commissioning or after an escape maneuver). The design of the GNC algorithms is such that for all of these relative 
orbits, only one spacecraft is maneuvering at a time. The active spacecraft (the deputy) performs relative maneuvers 
about the passive spacecraft (the chief).  
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Table 2. Mission Defined Relative Orbits 

Relative Orbit Description 
Science Orbit Minimum relative separation of 40 meters  
Standby Orbit Minimum relative separation of 200 meters  
Transfer Orbit Relative orbit trajectory to reconfigure the formation between the science 

and standby orbit 

B. CONOPS Overview 
 
The design of the mission concept of operations (CONOPS) was driven by the various mission-defined relative 

orbits described in the previous section as well as the constraints imposed by being a payload of the COTS XB1 
spacecraft. The CONOPS can be separated into two main sections – the spacecraft state diagrams and the mission 
events timeline (MET). The spacecraft finite state machines detail the logical conditions of the spacecraft and 
formation and define the entry and exit criteria of each state [8]. On the other hand, the MET outlines the specific 
spacecraft and formation-level actions that occur during each phase of the mission. The VISORS MET's are discussed 
in more detail in section V while the VISORS state machines are discussed in this section. For clarity, nomenclature 
related to the VISORS state machines is given in Table 3.  

Table 3. VISORS CONOPS Nomenclature 

Nomenclature Description 
Spacecraft Modes BCT defined states for the COTS XB1 spacecraft 
Mission Modes VISORS specific states of the formation 

Subsystem States Individual ‘state’ of each payload subsystem (ON or OFF) 
Spacecraft Role Delineation of which spacecraft is the active, maneuvering, spacecraft and 

which one is the passive, non-maneuvering, spacecraft 
 
 The first set of states for the VISORS spacecraft, the spacecraft modes, are shown in Fig 4. These modes are 
defined by BCT and are standardized for the XB1 spacecraft. When the spacecraft is initially launched, it will be in 
Launch Mode. However, after the 30-minute deployment timer, the spacecraft immediately transitions into Sun Point 
Mode. In this mode, the spacecraft slews to point its solar panels toward the sun to charge its batteries while only 
keeping BCT subsystems powered on. No payload subsystems are turned on until a ground command is given to put 
the spacecraft into Fine Reference Point (FRP) mode. In the event of the battery voltage dropping below a critical 
threshold, the spacecraft can go into Survival Mode from either Sun Point or FRP modes to minimize power 
consumption and charge the batteries. BCT restricts the payload to be off in Sun Point and Survival modes to prevent 
unnecessary power draws that would cause the spacecraft to not charge its batteries. This restriction, along with the 
fact that the BCT state machine cannot be modified, led to the creation of a second, mission-specific, state machine. 
 

 
Fig 4. BCT Defined Spacecraft Modes [9] 

 When the spacecraft is in FRP mode, the payload operates within the constraints of the mode diagram shown in 
Fig 5. During the early phases of the mission while the ground operators are performing payload commissioning, the 
payload will stay in its preliminary operations mode. Once all preliminary operations have been completed, the 
spacecraft will transition into the first of three nominal mission modes, Standby. Since the GNC algorithms have 
defined three main relative orbits for nominal operations, it follows that each of these orbits correlates one-to-one with 
a payload mission mode. During a nominal science campaign, the payload will transition from Standby mode to 
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Science mode via Transfer mode. The payload also contains two off-nominal mission modes – Escape and Safe modes. 
If there is a collision risk, hardware payload fault, or software payload fault, the payload will transition into either the 
Escape or Safe mode, depending on the nature of the fault. If the payload first enters into the Escape off-nominal 
mode, it will autonomously transition into Safe mode after an escape maneuver is performed. On the other hand, if 
the payload first enters Safe mode, it will stay in Safe mode unless it has to perform an escape maneuver (which would 
send it into Escape mode and then back into Safe). Note that the payload is not allowed to perform more than one 
escape maneuver in sequence in order to prevent the spacecraft from triggering maneuvers that could potentially 
further harm the safety of the formation. Ground operator intervention can restore the spacecraft’s ability to go into 
Escape mode as well as allow the payload to return to its nominal mission modes from Safe mode. This ensures that 
the spacecraft only return to nominal operations after a thorough analysis of what caused the spacecraft to enter Safe 
mode in the first place.  
 

 
Fig 5. Payload Defined Mission Modes 

 In each of the payload-defined mission modes, there is a parameterized configuration of subsystem states for the 
payload subsystems during each mission mode. This configuration defines which payloads are operational during each 
mission mode and ensures that no subsystem state is set to ON unless it is required in that mode. However, since 
VISORS is a formation flying mission, all payload subsystems except the science instrumentation are critical to the 
stability of the formation. As a result, most of the payloads will always be ON during every payload mission mode 
unless there is an off-nominal condition. In addition, if the spacecraft ever exits the FRP spacecraft mode all payload 
subsystems are powered off by BCT.  

IV. Hosted Software Application Overview 

 Each of the subsystems onboard the two spacecraft have their own software systems to manage the tasks of that 
subsystem. This simplifies the overall software system of the spacecraft as there are now discrete software packages 
for each subsystem instead of one large software package for all subsystems. For example, the propulsion software is 
solely responsible for the command and telemetry interface for the propulsion hardware and firing thruster valves. 
Similarly, the CSIE subsystem is solely responsible for taking science observations. However, during the initial design 
of the VISORS mission, it was apparent that additional software was needed for four reasons: 
 

1) To host the GNC algorithms 
2) To manage the finite state machine 
3) To monitor and respond to payload faults 
4) To communicate with all payload subsystems 

 
 To meet the four goals shown above, the software system needed to interface with all payload subsystems. 
However, the only hardware subsystem that had data interfaces with all subsystems was the XB1 flight computer. 
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Thus, it was decided that the additional software – the Hosted Software Application - would be hosted on an 
independent partition of the flight computer. The following sections detail the background for each of the four goals 
of the HSA and outline the level two requirements that are derived from those goals. These requirements help identify 
the various modules of software that are required for the HSA to perform its tasks [10].  Aside from the requirements 
that come from these four goals, additional requirements are also outlined that stem from the HSA being a software 
payload on the BCT XB1 flight computer.  

A. HSA-GNC Interaction 
  
 Due to the complex nature of the GNC subsystem, it was determined from an early stage that the GNC algorithms 
should be a separate module of software from any other software system on the spacecraft. However, due to the 
computational and memory constraints of the microcontrollers on payload subsystems, the GNC algorithms need to 
execute on a more capable processor. To avoid changing the design of any of the payload subsystems to include a 
more powerful processor, the BCT XB1 flight computer was chosen to run the GNC algorithms since it met the 
computational requirements. Since the XB1 can only support one payload software subsystem, the Stanford team 
delivered the GNC algorithm as a C++ library that can be compiled into the HSA executable. To enable this 
framework, the HSA includes a module of software called the GNC Controller that provides any inputs that the GNC 
library needs and accurately responds to the outputs from the GNC library. The GNC Controller also enables the GNC 
algorithms to run on its own thread so that the tasks of the rest of the HSA never interfere with the run-time of the 
GNC algorithms. The requirements outlining the GNC interaction with the HSA are documented in Table 4. 

Table 4. HSA Requirements related to the GNC Subsystem 

ID Requirement 
HSA-002 The HSA shall include the GNC library in the compiled executable. 
HSA-003 The HSA shall interface with the GNC library in accordance with the GNC ICD  
HSA-010 The GNC Library within the HSA shall run on its own thread. 
HSA-011 

 
All checksum validated data received by the HSA from the ISL shall be immediately forwarded to 
the GNC library.  

HSA-021 The HSA shall parse the information contained in the time at tone packet received from the BCT 
Bus and deliver it to the GNC Software library. 

B. VISORS Finite State Machine 
 

 To manage the mission modes, subsystem states, and spacecraft role of each spacecraft, the HSA includes a 
software module called the Payload State Machine (PSM). Since the mission mode and subsystem states are 
inherently tied together, only one software module was needed to control both items instead of separating control into 
distinct modules. For conciseness and simplicity, the spacecraft role – active or passive – is also managed by the PSM 
even though it is not directly tied to a mission mode or subsystem state (since either spacecraft can be active or passive 
at any point).  
 
 The PSM can manipulate the modes, states, and roles of the spacecraft and formation in three different ways – via 
ground command, via predetermined nominal operations configurations, and via off-nominal fault response 
operations. Firstly, the PSM can always be commanded to change any modes, states, or roles via ground command. 
Regardless of what is occurring internally on the spacecraft, commands from the ground always take precedence over 
any autonomous actions. Secondly, during nominal operations the PSM changes its modes based on interactions with 
the GNC Controller; once the GNC algorithms have transitioned between the various mission-defined relative orbits, 
the PSM will be alerted to change into the corresponding mode. During each of the nominal modes, the subsystem 
states are toggled based on the parameterized configuration that corresponds to each mission mode. During nominal 
operations, the spacecraft’s role does not change and is set to whatever the ground operators designated at the 
beginning of the mission. Finally, the PSM can change any mode, state, or role via recommendations from the fault 
management system. Depending on the type of fault – collision risk, hardware fault, software fault – the PSM will 
change the mission mode, subsystem states, or spacecraft role.  
 
 State machines on formation flying missions have another layer of complexity as the mission must decide how 
they want to address congruency in the states between the spacecraft. For the VISORS mission, congruency is achieved 
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by ensuring that both spacecraft must always attempt to be in the same payload mission mode as the other spacecraft. 
This means that the spacecraft must always be interchanging their mission modes over the XLINK system. However, 
while perfect symmetry in states between spacecraft is always the goal of the PSM, there are a few operational 
situations where the spacecraft are not in the same mission mode. If one of the spacecraft goes into Escape mode or 
leaves the FRP spacecraft mode (and thus the PSM gets shut off), the other spacecraft will automatically go into Safe 
mode. This ensures that the nominally functioning spacecraft does not perform excessive propulsive maneuvers and 
can safely wait for the ground to intervene. The HSA requirements surrounding the PSM are found in Table 5.  

Table 5. HSA Requirements related to the Payload State Machine 

ID Requirement 
HSA-004 The HSA shall include a state machine to actuate mission modes and subsystem states in 

accordance with the Subsystem States Document. 
HSA-018 The HSA shall send commands to the PAIB to toggle power to payload subsystems. 

C. VISORS Fault Management Overview  
 
 On most spacecraft, fault management systems are autonomous systems that strive to detect, isolate, and recover 
from any situations that upset nominal operations [11]. These systems are often the products of failure modes and 
effects analysis that attempt to understand the different failure modes and what the resulting fallout would be for each 
scenario [12]. For formation flying missions such as VISORS, additional failure modes must be considered such as 
the risk of collision between spacecraft. This additional failure mode results in a contingency operations architecture 
that must manage subsystem and formation-level faults [13]. Since many of the subsystems on a formation flying 
mission are dedicated solely to enabling safe formation flight, these faults are often coupled, potentially complicating 
the autonomous fault response.  
  
 To correctly diagnose and respond to faults on VISORS, the fault management system is split into two distinct 
software modules - Fault Detection and Diagnosis (FD) and Fault Response (FR) [14]. The FD module is 
responsible for monitoring the telemetry points from all subsystems and determining if any of them have crossed the 
nominal thresholds. By monitoring which telemetry fields go out of bounds, the FD module can diagnose the problem 
and understand what caused it. To make these informed diagnoses of the fault conditions, the FD module on each 
spacecraft requires access to not only the local spacecraft’s telemetry but also the remote spacecraft’s telemetry. This 
gives the spacecraft full state knowledge on the health of each spacecraft and thereby the health of the formation. The 
time at which the telemetry points were last updated also provides the FD module insight into the health of the 
formation. For example, if the telemetry from the remote spacecraft has not been updated in the last 30 minutes, it is 
fair to assume that there may be a problem with the local or remote XLINK hardware, or that the remote spacecraft 
has turned off its payload subsystems (due to exiting spacecraft FRP mode). This highlights the main challenge for 
the fault detection module – monitoring one telemetry point alone is often not enough information to deduce the health 
of a subsystem or the formation. Telemetry points from multiple different sources must be analyzed to understand 
whether the spacecraft is experiencing a fault and determining the source of that fault.  
 
 Once the fault has been diagnosed, the FR module service must decide the appropriate action to take to mitigate 
the fault. On the VISORS mission, fault responses consist of combinations of a mission mode switch, a subsystem 
power cycle or shut down, or a spacecraft role switch. Since both spacecraft have nearly identical payload subsystems 
and either spacecraft can assume the active role, the VISORS formation has a limited sense of redundancy. For 
example, if one of the propulsion systems onboard is rendered inoperable, the mission can still achieve its success 
criteria, since the other spacecraft can assume the active role. Regardless of the fault diagnosis passed into the fault 
response module, the response is always chosen to be as conservative as possible. This keeps the logic simple and 
ensures that the spacecraft can make any required autonomous decisions to keep the formation safe, while also waiting 
for ground operators to handle the more complex formation-level responses [14].  
 
 To support the fault management system, a few additional software modules are required. For example, since the 
telemetry packets from other subsystems come in as serialized data, a parser component – the Telemetry (TLM) 
Parser - is necessary to unpack each of the subsystem data packets. Since the parsing of packets is only necessary for 
the fault management system, the TLM Parser only deserializes the specific telemetry fields necessary for fault 
detection. After all desired data is received and unpacked, it must be stored in a database for later retrieval by the FD 
module. This database software module is named the Polymorphic (Poly) Database as it stores telemetry fields in 
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their native type instead of in serialized form. The HSA requirements related to the fault management system are 
found in Table 6.  

Table 6. HSA Requirements related to the Fault Management System 

ID Requirement 
HSA-005 The HSA shall include a Fault Detection and Response Block to monitor all fault scenarios 

specified in the Fault Analysis Matrix. 

D. VISORS HSA Communication Overview 
 
 Since the HSA is hosted on the XB1 flight computer, its interface must comply with the specifications of the XB1 
spacecraft. The XB1 requires that all payload subsystems, including the HSA, communicate using the Consultative 
Committee for Space Data Systems (CCSDS) Space Packet Protocol. This protocol specifies that every software data 
packet contains at least a 6-byte header that contains packet version numbers, packet identification, packet sequence 
number, and packet data length [15]. As a result, the HSA must have the functionality to frame any outgoing data 
packets and deframe any incoming data packets per the CCSDS protocol. This functionality is encapsulated in two 
different software modules – the CCSDS Framer and CCSDS Deframer.  
 

 
Fig 6. Payload Subsystem Interface Diagram 

 To route the data to the correct location during the framing and deframing step, each packet contains a unique 
packet identification number, often called the APID. To communicate digitally with the BCT Bus FSW, as shown in 
Fig 6, the HSA contains a software module - IPC Driver - that uses the inter-process communication protocol [16]. 
The HSA requirements that relate to the software interfaces with the rest of the payload are listed in Table 7.  

Table 7. HSA Requirements Related to SW Interfaces 

ID Requirement 
HSA-008 The HSA shall send all generated telemetry to the BCT Bus radio downlink buffer using the 

interface specified in the BCT SW API. 
HSA-015 The HSA shall interface with the BCT FSW using the ports specified in the BCT SW API. 
HSA-016 The HSA shall adhere to the CCSDS Protocol Specifications specified in the BCT XB1 ICD 

when communicating with the spacecraft bus. 
HSA-017 The HSA shall adhere to the APID ranges specified in the BCT XB1 ICD (BUS-EC-001) for 

communication with other subsystems. 

E. Additional HSA Requirements  
 
 In addition to the modules discussed above, several additional modules are necessary to provide basic embedded 
systems functionality. For the HSA to interface with ground operators, software modules to receive commands (CMD 
Dispatcher), send distinct fixed-size telemetry packets (Downlink Packetizer), configure parameters for the HSA 
software (Parameter Database), and log software event verification records (EVRs) (Event Logger) are included 
within the software executable. Additionally, the HSA includes software modules that enable a robust implementation 
and execution of logic such as modules for continuous execution loops of rate groups (Linux Timer, Rate Group 
Driver, Active Rate Group), data buffer managers (Buffer Manager & Static Memory), assert handling (Fatal 
Adapter & Fatal Handler) and time correlation based off of the XB1 system clock (Linux Time). Finally, the HSA 
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contains a module - System Resources - to characterize the resource utilization of the HSA to ensure it stays under 
requirements HSA-012 and HSA-013 found in Table 8.  

Table 8. Miscellaneous HSA Requirements 

ID Requirement 
HSA-001 The hosted software application (HSA) shall compile into a single executable in accordance with 

the BCT SW API. 
HSA-007 The HSA shall generate a telemetry packet at a rate specified in the data budget. 
HSA-012 The HSA shall not take up more than 4 MB of program memory per BCT XB1 ICD (BUS-EC-

001). 
HSA-013 The HSA shall not take up more than 60 MB of RAM per the BCT XB1 ICD 
HSA-014 The HSA shall have a method to determine which spacecraft it is running on. 

 
 The complete list of the software modules found in the HSA is shown in Table 9. The breakup of scope between 
modules could have been done in multiple different ways, depending on the system architect. However, the guiding 
principle for this specific delineation of software modules was the separation of concerns philosophy. Separation of 
concerns states that the software system should be decomposed into modules that each discretely solve the different 
aspects of the problem [17]. This principle lends itself well to the component-based architecture of the Fprime software 
framework [18], discussed in the next section. 

Table 9. List of all modules in the HSA 

Component 
Name 

Description  Development 
Type 

CMD 
Dispatcher 

Distributes commands to all components  Built-In  

Parameter 
Database 

Store non-volatile parameters used by any component Built-In 

TLM Database Stores telemetry generated by any component  Built-In 
Event Logger Log flight software ‘events’ for greater insight into the FSW 

execution 
Built-In 

Linux Timer Output a constant tick to the RG components at a specified 
time interval based off of the system clock 

Built-In 

Rate Group 
Divider 

Divide constant tick from linux timer into ticks for each rate 
group  

Built-In 

Rate Group 
Component 

Distribute rate group calls to other components at correct rate Built-In 

Linux Time Correlate software timestamps to system time Built-In 
Buffer Manager Manage memory allocation for components using dynamic 

buffer sizes 
Built-In 

Static Memory Manage memory allocation for components using fixed 
buffer sizes 

Built-In 

Fatal Adapter Intercept assert calls and log corresponding fatal events Built-In 
Fatal Handler Handle fatal events by delaying segmentation fault by one 

second to allow for fatal events to propagate to the ground 
system 

Built-In 

System 
Resources 

Track resource utilization of CPU and RAM Built-In 

Poly Database Store telemetry values from subsystems that pertain to fault 
detection 

Built-In 

CCSDS Framer Pack outgoing data packets into the CCSDS Format Custom 
CCSDS 

Deframer 
Unpack incoming CCSDS data packets to retrieve desired 

data  
Custom 

IPC Driver Communicate with the BCT Bus FSW using IPC protocol Custom 
TLM Parser Unpacks desired telemetry fields from subsystem telemetry 

packets 
Custom 
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Downlink 
Packetizer 

Forms fixed size data packets containing HSA telemetry Custom 

Fault Detection Detect and diagnose payload level fault conditions Custom 
Fault Response Choose appropriate payload response based off fault 

diagnosis 
Custom 

Payload State 
Machine 

Control mission mode, subsystem state, and formation role Custom 

GNC Controller Provide wrapper for the GNC algorithm library Custom 

V. Hosted Software App Design  

 With all required software modules defined, the design of the HSA can be developed. Two main items impact the 
design of the HSA and are discussed in the following subsections. First, the choice of flight software architecture is 
discussed. Secondly, the interactions between the aforementioned software modules are outlined. To provide context 
for how the software modules interact with each other, the HSA-related CONOPS and mission events timelines for 
every phase of the mission are discussed in depth. 

A. HSA Software Architecture 
 
The main driver for choosing the software architecture for the HSA was picking a framework that would best 

enable fast and robust development, while also providing tools for developers and operators for testing and operations. 
The most common choices for software frameworks for CubeSat-level missions are either cFS (core flight software) 
developed at NASA Goddard [19], a custom built-from-scratch framework, or Fprime developed by NASA JPL [20]. 
For the VISORS mission, all GT software was written within the Fprime framework (v3.1.1) due to prior experience 
among the members in the lab as well as existing development tools that were developed for previous missions. 

  
 Fprime is an open-source C++ framework that was initially released to the public in 2018. It is a component-based 
point-to-point architecture that enables modularity and reuse of software [20]. Fprime ships with several ready-to-use 
components that are found on most embedded systems projects such as a Command Dispatcher, Parameter Database, 
and Telemetry Database, among others. Table 9 shows that about 60% of the components were already available 
within the Fprime framework while about 40% were custom designed for the VISORS mission. Fprime also provides 
supporting tools to speed up development, testing, and operations, such as a custom ground data segment (GDS) as 
well as several all-inclusive autocoders that autogenerate large swaths of code based on simply the input and output 
interfaces to each component [21]. The Fprime architecture consists of three main parts – Ports, Components, and 
Topologies. Each software module, or component, consists of input and output ports that define the data structure. 
The component has handler functions for each of the input and output ports that define the logic that must be executed 
to send or receive data. Additional functions can also be defined in the component C++ code. Components are then 
hooked up to other components within the topology. The topology, such as the one shown in in Fig 7, ultimately 
provides an overarching view of the design of the software executable, called a deployment.  
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Fig 7. F' Component-Based Architectural Pattern [18] 

The one obvious drawback to having so many discrete components in a deployment is that connecting them 
together in the topology can be confusing for large deployments that require numerous port connections. However, 
another huge benefit to using Fprime is that for many of the built-in components, Fprime either connects them in the 
topology automatically or provides clear documentation on how they should be connected to other components. Thus, 
the more complicated part of the puzzle becomes defining the specific data types that need to be exchanged between 
components. By looking at the MET for each phase of the mission, the software architect can outline exactly what 
data must be transferred between components. This definition of the input and output interfaces of each component 
then corresponds directly to the set of Fprime ports on each component. 

B. HSA Interface Definitions from Mission Events Timelines 
 
The entire VISORS mission can be split into distinct phases, as seen in Table 10, each of which can be further 

characterized with a MET to describe the specific actions the HSA takes during each of the phases. Many of the FSW 
actions require the use of multiple components since the scope of each component is limited. Thus, outlining each of 
the FSW actions will directly derive how the components should be connected.  

Table 10. HSA status in each phase of the mission 

Phase Description HSA Status 
Launch + Solar 

Array Deployment 
The Spacecraft wait for 30 minutes before deploying solar arrays and 

turning on all of the BCT subsystems 
OFF 

Initial Bus 
Commissioning 

Ground-based commissioning campaign to verify the functionality of 
the BCT subsystems 

OFF 

Payload 
Commissioning 

Ground-based commissioning campaign to verify the functionality of 
the payload subsystems 

ON 

Formation 
Acquisition 

Manually command the spacecraft into the standby formation 
configuration 

ON 

Standby Wait in standby formation configuration for the command to start a 
science campaign 

ON 

Science Campaign Go from the standby to science orbits and take science observations ON 
Off Nominal Any time a spacecraft detects a fault and must respond ON 

 
 The following subsections detail the HSA-oriented MET for all phases of the mission for which the HSA will 

be ON (since the HSA is a payload subsystem that can be turned off by BCT). Each subsection will then outline the 
port connections necessary to achieve each step of the MET. These port connections between the components can be 
seen in the topology diagram shown in Fig 8. This image includes most of the custom components within the 
deployment but leaves out many of the built-in components for brevity.  
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Fig 8. HSA Topology without most of the Fprime built-in components 

 
1. Payload Commissioning 

 
 After the BCT Bus hardware subsystems have been commissioned, the next step is to commission the payload 
subsystems. The HSA portion of the payload commissioning is distributed among the rest of the payload 
commissioning steps. Since the HSA communicates with all payload subsystems, the HSA interfaces must be checked 
after turning on any subsystem. This will mainly consist of verifying that commands can be sent to the subsystem and 
that telemetry is received back from the subsystem. The sequence for this preliminary operations campaign is 
illustrated in Fig 9.  

 
Fig 9. Payload Commissioning Sequence 

 The HSA to BCT FSW verification step validates the mission operator’s ability to send commands to and 
receive telemetry from the HSA. This step consists of sending the HSA a no operation (NO-OP) command and 
verifying that it sends out an EVR upon the completion of that command. The NO-OP command is used since it 
is a simple command that does nothing but acknowledge receipt of the command. The HSA interface verification 
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steps for each of the subsystems are similar to the previous step but delegate the HSA to send the NO-OP command 
instead of the ground. After the HSA sends out the command it will, depending on the subsystem, either wait for 
a direct response from the subsystem or parse its telemetry to see if the subsystem processed the command. The 
HSA will also verify that it receives telemetry from every payload subsystem.  
 
 During the calibration section of commissioning, most of the ground-based commands are routed directly to 
the desired payload subsystem and do not go through the HSA., the only calibration related to the HSA deployment 
is during the GNC and Prop calibration steps. During GNC calibration, the ground sends several commands to the 
GNC Controller which simply passes those commands to the GNC algorithms. Receipt of these commands is 
captured via EVRs and telemetry packets. The port connections required between HSA components for this phase 
of the mission are outlined below in Table 11. 

Table 11. HSA Port Connections Required for the Commissioning Phase 

Payload Commissioning Step HSA Action Related HSA Port Connection 
HSA ←→ BCT Interface 

Verification 
HSA receives NO-OP command 

from the ground 
IPC Driver → CCSDS Deframer → 

CMD Dispatcher 
HSA ←→ BCT Interface 

Verification 
HSA responds to NO-OP command Downlink Packetizer → CCSDS 

Framer → IPC Driver 
HSA ←→ Subsystem Interface 

Verification 
HSA sends out NO-OP command Payload State Machine → CCSDS 

Framer → IPC Driver 
HSA ←→ Subsystem Interface 

Verification 
HSA receives confirmation of NO-

OP command 
IPC Driver → CCSDS Deframer → 

Payload State Machine  
OR 

IPC Driver → CCSDS Deframer → 
TLM Parser → Poly Database → 

Payload State Machine 
HSA ←→ Subsystem Interface 

Verification 
HSA verifies reception of telemetry 

from subsystem 
IPC Driver → CCSDS Deframer → 

TLM Parser  
GNC Calibration HSA receives ground commands 

for GNC Controller  
IPC Driver → CCSDS Deframer → 

CMD Dispatcher → GNC 
Controller 

GNC Calibration GNC Controller responds to 
commands with events 

Downlink Packetizer → CCSDS 
Framer → IPC Driver 

GNC Calibration  GNC algorithm initiates a 
propulsive maneuver  

GNC Controller → CCSDS Framer 

  
2. Formation Acquisition 
 
 Once commissioning is finished, operators will transition into the formation acquisition phase of the mission. In 
this phase, the main goal is not only to put the spacecraft into the Standby mode formation configuration but also to 
verify the performance of subsystems that depend on the spacecraft being in formation. The order of steps in this 
phase, as seen in Fig 10, is important as the XLINK subsystem needs to be performance tested first since this will 
enable the testing that follows on the GNC and fault management systems. The final step, after the critical subsystems 
are tested, must be to enable autonomy as this will allow the spacecraft to take corrective action in the event of a fault. 
The duration of this phase must be kept short since the spacecraft will be in close formation without an autonomous 
way to escape until autonomy is enabled by the mission operators at the end of the phase.  
 

 
Fig 10. Formation Acquisition Sequence 
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The main new port connections found in this mission phase are related to the fault management system. The design 
of the fault management system lends itself to a linear flow where the fault detection component passes diagnosis to 
the fault response component which passes recommended actions to the payload state machine which performs the 
actions. This segmented approach, seen in the port connections outlined in Table 12, fulfills the separation of concerns 
guideline.  

Table 12. HSA Port Connections required for the Formation Acquisition Phase 

Formation Acquisition Step HSA Action Related HSA Port Connection 
GNC Performance Tests GNC exchanges state information with 

other spacecraft  
GNC Controller → CCSDS Framer 

→ IPC Driver 
GNC Performance Tests GNC executes propulsive maneuvers  GNC Controller → CCSDS Framer 
GNC Performance Tests GNC Controller reads in temperature 

and pressure fields from PROP 
telemetry 

GNC Controller → Poly Database 

Fault Management 
Performance Tests 

Fault Detection reads in telemetry from 
payload subsystems 

IPC Driver → CCSDS Deframer → 
TLM Parser → Poly Database → 

Fault Detection  
Fault Management 
Performance Tests 

Fault Response receives fault diagnosis 
and chooses the most suitable response  

Fault Detection → Fault Response  

Fault Management 
Performance Tests 

Payload State Machine receives the 
recommended response and acts on it if 

allowed to do so 

Fault Response → Payload State 
Machine 

Enable Autonomy Payload State Machine receives a 
ground command to enable autonomous 

actions 

IPC Driver → CCSDS Deframer → 
CMD Dispatcher → Payload State 

Machine 
 
3. Science Campaign 
 
 The science campaign phase of the mission is the most complicated portion of the mission due to the number of 
coupled actions between the GNC, ADCS, and science instruments. The timeline of tasks that the HSA accomplishes 
during this phase is shown in Fig 11 and Fig 12. These figures are adapted from the work first done in Ref 2. First, the 
ground verifies the feasibility of the science campaign by assessing the health of the payload subsystems on both 
spacecraft as well as characterizing the amount of delta-v and science data storage that is available on board. After 
confirming that a science campaign is possible, ground operators configure various science parameters such as the 
observation target on the sun, number of observation frames, exposure time, and parameters for image compression 
algorithms. The last ground-based command that is sent is a command to the PSM to set the current mode to Transfer 
mode.  
 

 
Fig 11. Initiation of Science Campaign 

 At this point, the ground-based setup of the science campaign is complete, and the spacecraft takes over to 
autonomously complete the science campaign. The first task the PSM does is switch the primary spacecraft pointing 
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constraint to be GPS-to-Zenith so that the GNC algorithms can receive quality navigation data for the initialization of 
its navigation algorithm [2]. After the navigation algorithm finishes its initialization sequence, the algorithm plans a 
set of maneuvers that will take the formation from the standby configuration to the science configuration. 
 

 
Fig 12. Science Orbit and Observation Timeline 

 Once the spacecraft is in the correct relative orbit configuration for Science mode, the PSM switches its internal 
mission mode to Science. Once this occurs, the CSIE gets turned ON and is passed the aforementioned science 
parameters. The GNC algorithms plan and execute additional propulsive maneuvers to drive the formation to the 
observation configuration when the spacecraft are over either of the Earth’s poles. Immediately before the science 
observation, the HSA executes a series of commands to point the spacecraft in the correct target direction, turn OFF 
the magnetorquers and UHF downlink, and turn ON the Laser Range Finder. The magnetorquers and UHF downlink 
are turned OFF to ensure that there is no electromagnetic interference with the science instrumentation during a science 
observation. The port connections required for this phase of the mission are documented in Table 13. 

Table 13. HSA Port Connections required for the Science Campaign Phase 

Science Campaign Step HSA Action Related HSA Port Connection 
Configure science parameters HSA accepts a command to set desired 

target observation location  
IPC Driver → CCSDS Deframer → 
CMD Dispatcher → Payload State 

Machine 
Configure science parameters HSA sends desired observation location 

to GNC Controller for their use in 
algorithms  

Payload State Machine → GNC 
Controller 

Command Transfer Mode PSM accepts a command to switch 
mission modes 

IPC Driver → CCSDS Deframer → 
CMD Dispatcher → Payload State 

Machine 
Switch Pointing Constraint PSM autonomously commands BCT to 

perform a switch in the pointing 
constraint 

Payload State Machine → CCSDS 
Framer → IPC Driver 

Execute Propulsive Maneuvers  GNC Controller commands propulsive 
maneuvers  

GNC Controller → CCSDS Framer 

Disable/Enable Subsystems  PSM enables or disables subsystems 
based off of the  

Payload State Machine → CCSDS 
Framer → IPC Driver 

Command an Observation GNC Controller will alert the HSA 
when an observation needs to occur 

GNC Controller → Payload State 
Machine → CCSDS Framer → IPC 

Driver 
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4. Off-Nominal Scenarios 
 
The final mission phase relevant to the HSA is unique in that it does not have a predetermined linear timeline of 

events. Instead, this phase has multiple different entry criteria that each illicit a different response from the spacecraft 
formation. However, from a software perspective, complexity is minimized by having the same set of Fprime 
components handle all fault conditions. This ensures that the data flow between components is the same regardless of 
what the actual mission scenario is. The fault management system must ensure that the fault diagnosis between the 
spacecraft is identical. As a result, the fault detection component must be continuously exchanging its diagnosis 
information as shown in Fig 13.  

 
Fig 13. Distributed Fault Management System Data Flow 

The fault detection data flow is enabled by the continuous stream of incoming packets from each of the payload 
subsystems. Since each packet is different, the TLM Parser component must identify the packet by its APID and 
correspondingly unpack the message. Once the packet is unpacked into its respective telemetry fields, the TLM Parser 
component will write the values into the Poly Database. From here, the fault detection component queries items in the 
database and diagnoses the spacecraft or formation level fault, if any. Regardless of if there is a fault occurring, the 
fault detection component will exchange diagnosis information with the other spacecraft. However, if there is a fault, 
the FD component sends the diagnosis to the fault response component which determines the appropriate fault 
response for the specific scenario [14]. Finally, the fault response component sends its response recommendation to 
the PSM which acts upon the recommendation. If autonomy is enabled by the ground, the PSM will update its internal 
variables (mission mode, subsystem states, formation role) according to the response recommendation and alert the 
GNC Controller and/or the PSM on the other spacecraft of any changes as necessary. The port connections to enable 
these interactions is shown in Table 14. 

Table 14. HSA Port connections required for off-nominal scenarios 

Off-Nominal Scenarios Step HSA Action Related HSA Port Connection 
Receive Payload Telemetry Poly DB updates the database with the 

received subsystem telemetry 
IPC Driver → CCSDS Deframer → 

TLM Parser → Poly Database 
Read Telemetry for Fault 

Detection 
Fault Detection polls the telemetry 

database to retrieve the telemetry values 
it is interested in  

Fault Detection → Poly Database 

Determine Fault Diagnosis Fault Detection passes diagnosis 
information to the Fault Response 

component  

Fault Detection → Fault Response 

Fault Response 
Recommendation 

Fault Response passes the PSM its 
recommendation for corrective action 

Fault Response → Payload State 
Machine 
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Payload State Machine actuates 
fault response 

PSM alerts other spacecraft of mode or 
role switch change 

Payload State Machine → CCSDS 
Framer → IPC Driver 

Payload State Machine actuates 
fault response 

PSM receives an alert from other 
spacecraft of mode or role switch 

change  

IPC Driver → CCSDS Deframer → 
Payload State Machine  

Payload State Machine actuates 
fault response 

PSM alerts the GNC Controller of 
mode or role switch change 

Payload State Machine → GNC 
Controller 

VI. HSA Implementation and Testing 
With the HSA topology defined, the next step is to begin the implementation phase of the flight software. A high 

level overview of this phase is given in Fig 14. The Fprime framework uses a modeling language called FPP (F Prime 
Prime) to configure the interfaces of a component and topology. The first step to defining a component starts with 
defining the data structures of each of its input and output ports in FPP. These ports can then be used in the FPP file 
of the component itself. After all custom and built-in ports are defined, other commands, telemetry, and parameters 
can be included in the component FPP file. Once the component definition is complete, the initial boilerplate C++ 
code is autogenerated through Fprime based on the FPP definitions [22]. This gives users a starting point for 
developing the logic of their Fprime component.  

 

 
Fig 14. Fprime Component Level Implementation and Testing Flowgraph 

After all the work to define the scope of the components, write requirements, and generate the template C++ 
structure, the logic of the component can finally be written. At this point, with all the scaffolding in place, actually 
developing the software for the component is not immensely difficult. However, software development is an iterative 
process, so the implementation of the component will be continuously updated as it goes through its test campaign. 
Just as with any other software system, modules of code in Fprime must undergo both unit testing and integration 
testing. To complete these tests, Fprime provides a large suite of development tools. 

 
Unit testing in Fprime begins in a similar fashion to component development – the boilerplate template for tester 

code is generated based on the definitions of the component FPP. For the autogenerated tester code, the directionality 
of the functions is inverted from the corresponding functions in the component C++ file itself. For example, if the 
component FPP defines an input port A, the component C++ will define a function called A_handler to handle the 
logic when that input port is invoked, while the tester C++ will define a function called invoke_to_A which can be 
called to send data to the component. The tester component has complete access to the states and variables of the 
component C++ code and as a result, can be written to completely validate all functionalities of the component [21]. 
By setting up the framework in this manner, every Fprime component can be unit tested in isolation without any other 
components. The extent to which a unit test verfies the functionality of the component can often be characterized by 
the code coverage of the unit test. Code coverage gives qualitative results on how many lines and logical branches of 
the components C++ code were tested via the unit tests. For the VISORS mission, the goal for each component’s unit 
test code coverage was 80%. Note that a high code coverage metric does not always mean that the component is 
working nominally. There are often cases where a component cannot be fully tested unless it is interfaced with other 
components in the topology. This leads to the next phase of the software testing framework – Integration Tests.  

 
For the VISORS mission, integration testing was completed in two main ways. First, multiple related components 

were tested together through an exerciser deployment. This test deployment is different from the flight deployment in 
that it is specifically tailored to test a small subset of the overall flight functionality. By separating the flight 
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deployment into smaller sub-deployments, the functionality and operation of the components can be more easily 
debugged and verified since fewer overall tasks are happening in the sub-deployment. Almost all the custom 
components written for the VISORS mission are included in at least one exerciser deployment. Exerciser deployments 
are almost exclusively run on a desktop computer instead of the flight hardware and may use the Fprime Ground Data 
Segment (GDS) instead of the ground software used on flight. This allows faster and more iterative development. 
Tests using the Fprime GDS can be manually implemented or scripted in Python using the GDS Application 
Programming Interface (API), giving users the flexibility to completely customize their tests.  

 
However, to verify that the component also works while running on a hardware platform, hardware integration 

tests are developed. The Fprime deployments used for these tests are usually much more involved as they require 
multiple components to enable users to interface with the software that is running on a different platform than their 
computer. Fprime allows for integration tests to be scripted or for users to manually verify the software actions 
occurring in the deployment. For VISORS, hardware integration tests must be compatible with the COSMOS ground 
operations software. Users can use the Command and Telemetry Server in Cosmos to send commands to the spacecraft 
or payload subsystems or write scripts to autonomously accomplish identical tasks. Note that scripts in COSMOS are 
written using the Ruby programming language, not Python [23]. Thus, any scripts written in Python for integration 
testing with the Fprime GDS must be adapted to work with COSMOS instead.  

 
As each of the custom Fprime components for VISORS complete this implementation and testing paradigm, the 

components are integrated into flight deployments. Once the deployment includes the components planned for that 
specific flight software release, the flight deployment undergoes system-level testing where it runs on its hardware 
platform and interfaces with the other payload subsystems onboard. This helps verify the data interfaces between 
subsystems and ensures that the entire spacecraft system operates nominally. The integration tests scripts written 
during integration testing can be reused or adapted for these system level tests.  

VII. Conclusion 
As formation flying missions become more abundant, multi-functional software systems like the HSA will become 

more common. As the complexity of these software systems increase, it is vital to carefully consider how these systems 
should be architected so that time can be saved on the development of the system. The contents of this paper aimed to 
show this in action by providing a concise look at the design and development process of the HSA flight software 
deployment. By thinking critically about what drives the design of the HSA, a robust, modular architecture was 
developed. The design of the software system as well as the benefits of the Fprime software framework enabled fast, 
concurrent development among all team members. This concurrency allowed for more time for testing and provided 
a higher level of confidence that this ambitious mission could be successful regardless of schedule, cost, and staffing 
constraints. As the development of the HSA continues into the future, developers should work with mission operators 
to further iterate the design within the confines of the requirements of the mission. Further iteration will result in a 
system that is even more user-friendly while also increasing reliability and robustness for ground based testing and on 
orbit operations. 
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Appendix 
Table 15. All HSA Requirements 

ID Requirement 
Functional Requirements 

HSA-001 The hosted software application (HSA) shall compile into a single executable in accordance with the BCT SW API. 

HSA-002 The HSA shall include the GNC library in the compiled executable. 

HSA-003 The HSA shall interface with the GNC library in accordance with the GNC ICD. 

HSA-004 The HSA shall include a state machine to actuate mission modes and subsystem states in accordance with the 
Subsystem States Document. 

HSA-005 The HSA shall include a Fault Detection and Response Block to monitor all fault scenarios specified in the Fault 
Analysis Matrix. 

HSA-007 The HSA shall generate a telemetry packet at a rate specified in the data budget. 

HSA-008 The HSA shall send all generated telemetry to the BCT Bus radio downlink buffer using the interface specified in the 
BCT SW API. 

HSA-021 The HSA shall parse the information contained in the time at tone packet received from the BCT Bus and deliver it to 
the GNC Software library. 

Performance Requirements 

HSA-010 The GNC Library within the HSA shall run on its own thread. 

HSA-011 All checksum validated data received by the HSA from the ISL shall be immediately forwarded to the GNC library.  

HSA-012 The HSA shall not take up more than 4 MB of program memory per BCT XB1 ICD. 

HSA-013 The HSA shall not take up more than 60 MB of RAM per the BCT XB1 ICD. 

HSA-014 The HSA shall have a method to determine which spacecraft it is running on. 

Interface Requirements 
HSA-015 The HSA shall interface with the BCT FSW using the ports specified in the BCT SW API. 

HSA-016 The HSA shall adhere to the CCSDS Protocol Specifications specified in the BCT XB1 ICD when communicating 
with the spacecraft Bus 

HSA-017 The HSA shall adhere to the APID ranges specified in the BCT XB1 ICD for communication with other subsystems. 

HSA-018 The HSA shall send commands to the PAIB to toggle power to payload subsystems. 
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