
1

Design of the Hosted Software Application
for the VISORS Mission

Ebenezer Arunkumar1 and E. Glenn Lightsey2

Georgia Institute of Technology, Atlanta, Georgia, 30318

The VIrtual Super Optics Reconfigurable Swarm (VISORS) mission is a distributed
telescope system consisting of two 6U CubeSats that utilize precision formation flying to detect
and study the fundamental energy release regions of the solar corona. The inherent
complexities and risks associated with two spacecraft operating in close proximity, as well as
the unique restrictions of the spacecrafts’ design, make careful autonomous execution crucial
to the success of the mission. To address these challenges, this paper outlines the development
of the Hosted Software Application (HSA) flight software which manages the Guidance,
Navigation, and Control algorithms, the payload finite state machine, and the spacecraft and
formation level fault management system. An overview of the HSA provides context for the
motivation and requirements driving the design of the flight software system. The architecture
of the HSA is presented and shown to be derived from the Mission Events Timeline (MET) for
each of the relevant phases of the mission. Finally, a brief outline of the implementation and
testing of the software is discussed.

I. Nomenclature
ADCS = Attitude, Determination, and Control Subsystem
BCT = Blue Canyon Technologies
CCSDS = Consultative Committee for Space Data Systems
CONOPS = Concept of Operations
COTS = Commercial Off the Shelf
CSIE = Compact Spectral Image Electronics
EVR = Event Verification Record
FSW = Flight Software
FPP = F Prime Prime
GNC = Guidance, Navigation, and Control
GNSS = Global Navigation Satellite System
HSA = Hosted Software Application
IPC = Inter-process Communication
MET = Mission Events Timeline
NO-OP = No Operation
PSM = Payload State Machine
VISORS = VIrtual Super-resolution Optics with Reconfigurable Swarms

II. Introduction
 As the overall number of space launches increases, the number of rideshare opportunities has also increased,
directly contributing to the increase in CubeSat launches from under 100 cumulatively by 2013 to over 1800 by 2022
[1]. This increased access to space has enabled many entities, such as higher education universities, to enter the small
satellite development space. However, developing small satellites comes with many challenges, especially at the
university level. Even though launch opportunities have decreased in cost, funding issues, along with a lack of overall

1 Graduate Research Assistant, Daniel Guggenheim School of Aerospace Engineering, earunkumar3@gatech.edu
1 Professor, Daniel Guggenheim School of Aerospace Engineering, glenn.lightsey@gatech.edu

2

experience and a high turnover rate of students, lead to projects that are rushed, lack redundancy, and lack adequate
testing. These issues permeate to the subsystem level and affect their reliability and robustness. This issue is especially
apparent for flight software (FSW) development, as FSW is often considered a black box due to its inherent lack of
physical manipulation. At the university level, the tools and framework to start writing FSW are often non-existent.
This results in missions that have to develop tools and infrastructure before they can even begin to design the FSW.
This additional work further exacerbates the issues many small satellite missions face and leads to additional cost and
schedule overruns. One way to mitigate this issue is to design the software such that it is as simple, yet robust, as
possible. Reducing the complexity of the design eases the burden on software developers but also simplifies the lives
of mission operators who, more often than not, were not involved with the development of the FSW. As a result,
spending a significant amount of time meticulously planning out a software design can decrease overall development
time and help university-level teams stick to their tight schedules.

 However, designing a FSW system from scratch is extremely difficult. For a formation flying mission, such as the
one presented here, the flight software architecture becomes even more complex as additional subsystems pertinent to
formation flying are introduced, including formation level fault detection, inter-satellite link, relative propulsion, and
distributed science instruments. The FSW must also handle any concurrency issues that arise when controlling two
independent spacecraft that must work together, such as ensuring that both spacecraft do not have different formation
state information. The first step to approaching this problem is not to dive into the specifics of the flight software
itself, but instead to look at the concept of operations (CONOPS) and mission events timeline (MET) for every phase
of the mission. By first determining what each spacecraft needs to do to accomplish the goals of the formation, the
specific tasks that the FSW must complete can be more granularly identified. This inherently leads to FSW
requirements that drive how the software should be architected to complete those tasks.

 The goal of this paper is to illustrate the design of the Hosted Software Application (HSA) flight software on the
VISORS mission. By discussing the development lifecycle of the HSA, this paper intends to serve as a resource for
students who will continue to develop the HSA and for students who may develop similar software systems for other
formation flying missions. In section III, an overview of the VISORS mission is given, with an emphasis on the aspects
of the mission that the HSA manages. In section IV, an overview of the goals and requirements of the HSA is
discussed. Section V details the design of the HSA with special attention given to how the design is derived from the
MET for each phase of the mission. Finally, in section VI the implementation and testing of the HSA are briefly
discussed.

III. VISORS Mission Overview
 The goal of the VISORS mission is to detect and study the fundamental energy-release regions of the solar corona.
The mission achieves its science goals with a distributed space telescope consisting of two 6U CubeSats, the Detector
Spacecraft (DSC) and the Optics Spacecraft (OSC) as seen in Fig 1. The spacecraft buses are nearly identical
commercial off the shelf (COTS) XB1 buses provided by Blue Canyon Technologies (BCT). The XB1 provides the
spacecraft chassis, the main flight computer, the attitude determination and control (ADCS) system, and the ultra-high
frequency (UHF) space-to-ground communication architecture. The rest of the spacecraft is comprised of the payload,
including a cold-gas propulsion system (PROP), inter-satellite communications hardware (XLINK), a payload
avionics interface board (PAIB), and science instrumentation. Each of the payload subsystems was designed and
developed by one of the 11 different institutions on the VISORS mission. VISORS is funded by the National Science
Foundation (NSF) and was originally devised at the CubeSat Ideas Lab in 2019.

3

Fig 1. CAD of Detector Spacecraft (left) and Optics Spacecraft (right) [2]

The VISORS mission is officially classified as a technology demonstration mission, focusing on the design and

development of novel technologies such as differential carrier-phase global navigation satellite system (GNSS)
navigation [3], inter-satellite communications, and a cold gas propulsion system for high precision relative
maneuvering [4]. These technologies work together to enable the VISORS spacecraft to maneuver to a relative
separation of 40 meters during a science observation, the focal length required to obtain images of the sun in the He
II 304 Å line, as shown in Fig 2. These novel technologies also enable the mission to meet its minimum science success
goal of obtaining a single image of the sun in this He II 304 Å wavelength with a resolution of 0.2 arcseconds [2].

Fig 2. VISORS formation alignment during observation [5]

 The science instrumentation that enables these images are distributed across the two spacecraft [2]. The OSC
contains the extreme ultraviolet photon sieve optic which focuses incoming light onto the detector instrument located
on the DSC. The OSC also contains a laser rangefinder (LRF) that is used for different purposes by the guidance,
navigation, and control (GNC) algorithms and the science team on the ground. During an observation attempt, the
GNC algorithms have the ability to autonomously use the LRF data to help control the formation into the observation
alignment. After downlinking the LRF telemetry, the science team uses the timestamps on the ranging data to help
inform their decision on which images they want to downlink. On the DSC, the detector instrument contains the
Compact Spectral Image Electronics (CSIE) which controls the camera and processes the images before preparing
them for downlink. While the science instrumentation differs between the two spacecraft, many of the payload
subsystems are nearly identical. This design decision simplifies overall system development, as well as the spacecraft
integration and test campaign [6]. The VISORS mission is currently awaiting the delivery of flight payload subsystems
and the DSC bus, shown in Fig 3. The integration and test campaign for both spacecraft will begin in the fall of 2023,
with a projected spacecraft delivery date of July 2024.

4

Fig 3. Detector Spacecraft during testing at BCT [7]

A. GNC Overview

 At a high level, the GNC system on the VISORS mission has two goals. First and foremost, since VISORS is a
formation flying mission, the GNC algorithms must ensure that the spacecraft avoid collisions. This is done passively
through the design of the relative orbits and actively through preemptive collision avoidance maneuvers. The passive
safety margin guarantees that the spacecraft will not collide for at least 2 orbits in the absence of maneuvers. The
collision avoidance maneuvers aim to increase the relative separation in the relative-normal plane of the relative-
tangential-normal (RTN) frame while introducing relative drift in the tangential frame. The second main goal of the
GNC algorithms is to control the formation to millimeter-level position accuracy and micrometer per second-level
velocity accuracy to ensure that the science instruments can take images that are in focus, on target, and have
acceptable smearing. These GNC goals are captured in the VISORS mission objectives shown in Table 1 and discussed
in more detail in Ref. [3].

Table 1. VISORS Mission Objectives (GNC-related objectives in bold)

Identifier Objective
MO-001 Capture and downlink coronal imagery to determine the existence of energy-

release regions in the solar corona
MO-002 Control formation to millimeter-level position accuracy
MO-003 Inter-satellite communication link enabling autonomous maneuver planning
MO-004 E/I-vector separation to enable passive collision avoidance and maintain

near-proximity relative orbits
MO-005 Propulsion systems for formation-keeping and reconfiguration

 Staying in a formation configuration where the spacecraft have a 40-meter relative separation, is risky and
expensive from an energy and delta-v standpoint. As a result, the GNC algorithms have defined multiple orbit
configurations that will occur over the course of the mission. These orbits are defined in Table 2. In addition to these
pre-defined relative orbits, the spacecraft may be in a configuration with no relative orbit (for example during
commissioning or after an escape maneuver). The design of the GNC algorithms is such that for all of these relative
orbits, only one spacecraft is maneuvering at a time. The active spacecraft (the deputy) performs relative maneuvers
about the passive spacecraft (the chief).

5

Table 2. Mission Defined Relative Orbits

Relative Orbit Description
Science Orbit Minimum relative separation of 40 meters
Standby Orbit Minimum relative separation of 200 meters
Transfer Orbit Relative orbit trajectory to reconfigure the formation between the science

and standby orbit

B. CONOPS Overview

The design of the mission concept of operations (CONOPS) was driven by the various mission-defined relative

orbits described in the previous section as well as the constraints imposed by being a payload of the COTS XB1
spacecraft. The CONOPS can be separated into two main sections – the spacecraft state diagrams and the mission
events timeline (MET). The spacecraft finite state machines detail the logical conditions of the spacecraft and
formation and define the entry and exit criteria of each state [8]. On the other hand, the MET outlines the specific
spacecraft and formation-level actions that occur during each phase of the mission. The VISORS MET's are discussed
in more detail in section V while the VISORS state machines are discussed in this section. For clarity, nomenclature
related to the VISORS state machines is given in Table 3.

Table 3. VISORS CONOPS Nomenclature

Nomenclature Description
Spacecraft Modes BCT defined states for the COTS XB1 spacecraft
Mission Modes VISORS specific states of the formation

Subsystem States Individual ‘state’ of each payload subsystem (ON or OFF)
Spacecraft Role Delineation of which spacecraft is the active, maneuvering, spacecraft and

which one is the passive, non-maneuvering, spacecraft

 The first set of states for the VISORS spacecraft, the spacecraft modes, are shown in Fig 4. These modes are
defined by BCT and are standardized for the XB1 spacecraft. When the spacecraft is initially launched, it will be in
Launch Mode. However, after the 30-minute deployment timer, the spacecraft immediately transitions into Sun Point
Mode. In this mode, the spacecraft slews to point its solar panels toward the sun to charge its batteries while only
keeping BCT subsystems powered on. No payload subsystems are turned on until a ground command is given to put
the spacecraft into Fine Reference Point (FRP) mode. In the event of the battery voltage dropping below a critical
threshold, the spacecraft can go into Survival Mode from either Sun Point or FRP modes to minimize power
consumption and charge the batteries. BCT restricts the payload to be off in Sun Point and Survival modes to prevent
unnecessary power draws that would cause the spacecraft to not charge its batteries. This restriction, along with the
fact that the BCT state machine cannot be modified, led to the creation of a second, mission-specific, state machine.

Fig 4. BCT Defined Spacecraft Modes [9]

 When the spacecraft is in FRP mode, the payload operates within the constraints of the mode diagram shown in
Fig 5. During the early phases of the mission while the ground operators are performing payload commissioning, the
payload will stay in its preliminary operations mode. Once all preliminary operations have been completed, the
spacecraft will transition into the first of three nominal mission modes, Standby. Since the GNC algorithms have
defined three main relative orbits for nominal operations, it follows that each of these orbits correlates one-to-one with
a payload mission mode. During a nominal science campaign, the payload will transition from Standby mode to

6

Science mode via Transfer mode. The payload also contains two off-nominal mission modes – Escape and Safe modes.
If there is a collision risk, hardware payload fault, or software payload fault, the payload will transition into either the
Escape or Safe mode, depending on the nature of the fault. If the payload first enters into the Escape off-nominal
mode, it will autonomously transition into Safe mode after an escape maneuver is performed. On the other hand, if
the payload first enters Safe mode, it will stay in Safe mode unless it has to perform an escape maneuver (which would
send it into Escape mode and then back into Safe). Note that the payload is not allowed to perform more than one
escape maneuver in sequence in order to prevent the spacecraft from triggering maneuvers that could potentially
further harm the safety of the formation. Ground operator intervention can restore the spacecraft’s ability to go into
Escape mode as well as allow the payload to return to its nominal mission modes from Safe mode. This ensures that
the spacecraft only return to nominal operations after a thorough analysis of what caused the spacecraft to enter Safe
mode in the first place.

Fig 5. Payload Defined Mission Modes

 In each of the payload-defined mission modes, there is a parameterized configuration of subsystem states for the
payload subsystems during each mission mode. This configuration defines which payloads are operational during each
mission mode and ensures that no subsystem state is set to ON unless it is required in that mode. However, since
VISORS is a formation flying mission, all payload subsystems except the science instrumentation are critical to the
stability of the formation. As a result, most of the payloads will always be ON during every payload mission mode
unless there is an off-nominal condition. In addition, if the spacecraft ever exits the FRP spacecraft mode all payload
subsystems are powered off by BCT.

IV. Hosted Software Application Overview

 Each of the subsystems onboard the two spacecraft have their own software systems to manage the tasks of that
subsystem. This simplifies the overall software system of the spacecraft as there are now discrete software packages
for each subsystem instead of one large software package for all subsystems. For example, the propulsion software is
solely responsible for the command and telemetry interface for the propulsion hardware and firing thruster valves.
Similarly, the CSIE subsystem is solely responsible for taking science observations. However, during the initial design
of the VISORS mission, it was apparent that additional software was needed for four reasons:

1) To host the GNC algorithms
2) To manage the finite state machine
3) To monitor and respond to payload faults
4) To communicate with all payload subsystems

 To meet the four goals shown above, the software system needed to interface with all payload subsystems.
However, the only hardware subsystem that had data interfaces with all subsystems was the XB1 flight computer.

7

Thus, it was decided that the additional software – the Hosted Software Application - would be hosted on an
independent partition of the flight computer. The following sections detail the background for each of the four goals
of the HSA and outline the level two requirements that are derived from those goals. These requirements help identify
the various modules of software that are required for the HSA to perform its tasks [10]. Aside from the requirements
that come from these four goals, additional requirements are also outlined that stem from the HSA being a software
payload on the BCT XB1 flight computer.

A. HSA-GNC Interaction

 Due to the complex nature of the GNC subsystem, it was determined from an early stage that the GNC algorithms
should be a separate module of software from any other software system on the spacecraft. However, due to the
computational and memory constraints of the microcontrollers on payload subsystems, the GNC algorithms need to
execute on a more capable processor. To avoid changing the design of any of the payload subsystems to include a
more powerful processor, the BCT XB1 flight computer was chosen to run the GNC algorithms since it met the
computational requirements. Since the XB1 can only support one payload software subsystem, the Stanford team
delivered the GNC algorithm as a C++ library that can be compiled into the HSA executable. To enable this
framework, the HSA includes a module of software called the GNC Controller that provides any inputs that the GNC
library needs and accurately responds to the outputs from the GNC library. The GNC Controller also enables the GNC
algorithms to run on its own thread so that the tasks of the rest of the HSA never interfere with the run-time of the
GNC algorithms. The requirements outlining the GNC interaction with the HSA are documented in Table 4.

Table 4. HSA Requirements related to the GNC Subsystem

ID Requirement
HSA-002 The HSA shall include the GNC library in the compiled executable.
HSA-003 The HSA shall interface with the GNC library in accordance with the GNC ICD
HSA-010 The GNC Library within the HSA shall run on its own thread.
HSA-011

All checksum validated data received by the HSA from the ISL shall be immediately forwarded to
the GNC library.

HSA-021 The HSA shall parse the information contained in the time at tone packet received from the BCT
Bus and deliver it to the GNC Software library.

B. VISORS Finite State Machine

 To manage the mission modes, subsystem states, and spacecraft role of each spacecraft, the HSA includes a
software module called the Payload State Machine (PSM). Since the mission mode and subsystem states are
inherently tied together, only one software module was needed to control both items instead of separating control into
distinct modules. For conciseness and simplicity, the spacecraft role – active or passive – is also managed by the PSM
even though it is not directly tied to a mission mode or subsystem state (since either spacecraft can be active or passive
at any point).

 The PSM can manipulate the modes, states, and roles of the spacecraft and formation in three different ways – via
ground command, via predetermined nominal operations configurations, and via off-nominal fault response
operations. Firstly, the PSM can always be commanded to change any modes, states, or roles via ground command.
Regardless of what is occurring internally on the spacecraft, commands from the ground always take precedence over
any autonomous actions. Secondly, during nominal operations the PSM changes its modes based on interactions with
the GNC Controller; once the GNC algorithms have transitioned between the various mission-defined relative orbits,
the PSM will be alerted to change into the corresponding mode. During each of the nominal modes, the subsystem
states are toggled based on the parameterized configuration that corresponds to each mission mode. During nominal
operations, the spacecraft’s role does not change and is set to whatever the ground operators designated at the
beginning of the mission. Finally, the PSM can change any mode, state, or role via recommendations from the fault
management system. Depending on the type of fault – collision risk, hardware fault, software fault – the PSM will
change the mission mode, subsystem states, or spacecraft role.

 State machines on formation flying missions have another layer of complexity as the mission must decide how
they want to address congruency in the states between the spacecraft. For the VISORS mission, congruency is achieved

8

by ensuring that both spacecraft must always attempt to be in the same payload mission mode as the other spacecraft.
This means that the spacecraft must always be interchanging their mission modes over the XLINK system. However,
while perfect symmetry in states between spacecraft is always the goal of the PSM, there are a few operational
situations where the spacecraft are not in the same mission mode. If one of the spacecraft goes into Escape mode or
leaves the FRP spacecraft mode (and thus the PSM gets shut off), the other spacecraft will automatically go into Safe
mode. This ensures that the nominally functioning spacecraft does not perform excessive propulsive maneuvers and
can safely wait for the ground to intervene. The HSA requirements surrounding the PSM are found in Table 5.

Table 5. HSA Requirements related to the Payload State Machine

ID Requirement
HSA-004 The HSA shall include a state machine to actuate mission modes and subsystem states in

accordance with the Subsystem States Document.
HSA-018 The HSA shall send commands to the PAIB to toggle power to payload subsystems.

C. VISORS Fault Management Overview

 On most spacecraft, fault management systems are autonomous systems that strive to detect, isolate, and recover
from any situations that upset nominal operations [11]. These systems are often the products of failure modes and
effects analysis that attempt to understand the different failure modes and what the resulting fallout would be for each
scenario [12]. For formation flying missions such as VISORS, additional failure modes must be considered such as
the risk of collision between spacecraft. This additional failure mode results in a contingency operations architecture
that must manage subsystem and formation-level faults [13]. Since many of the subsystems on a formation flying
mission are dedicated solely to enabling safe formation flight, these faults are often coupled, potentially complicating
the autonomous fault response.

 To correctly diagnose and respond to faults on VISORS, the fault management system is split into two distinct
software modules - Fault Detection and Diagnosis (FD) and Fault Response (FR) [14]. The FD module is
responsible for monitoring the telemetry points from all subsystems and determining if any of them have crossed the
nominal thresholds. By monitoring which telemetry fields go out of bounds, the FD module can diagnose the problem
and understand what caused it. To make these informed diagnoses of the fault conditions, the FD module on each
spacecraft requires access to not only the local spacecraft’s telemetry but also the remote spacecraft’s telemetry. This
gives the spacecraft full state knowledge on the health of each spacecraft and thereby the health of the formation. The
time at which the telemetry points were last updated also provides the FD module insight into the health of the
formation. For example, if the telemetry from the remote spacecraft has not been updated in the last 30 minutes, it is
fair to assume that there may be a problem with the local or remote XLINK hardware, or that the remote spacecraft
has turned off its payload subsystems (due to exiting spacecraft FRP mode). This highlights the main challenge for
the fault detection module – monitoring one telemetry point alone is often not enough information to deduce the health
of a subsystem or the formation. Telemetry points from multiple different sources must be analyzed to understand
whether the spacecraft is experiencing a fault and determining the source of that fault.

 Once the fault has been diagnosed, the FR module service must decide the appropriate action to take to mitigate
the fault. On the VISORS mission, fault responses consist of combinations of a mission mode switch, a subsystem
power cycle or shut down, or a spacecraft role switch. Since both spacecraft have nearly identical payload subsystems
and either spacecraft can assume the active role, the VISORS formation has a limited sense of redundancy. For
example, if one of the propulsion systems onboard is rendered inoperable, the mission can still achieve its success
criteria, since the other spacecraft can assume the active role. Regardless of the fault diagnosis passed into the fault
response module, the response is always chosen to be as conservative as possible. This keeps the logic simple and
ensures that the spacecraft can make any required autonomous decisions to keep the formation safe, while also waiting
for ground operators to handle the more complex formation-level responses [14].

 To support the fault management system, a few additional software modules are required. For example, since the
telemetry packets from other subsystems come in as serialized data, a parser component – the Telemetry (TLM)
Parser - is necessary to unpack each of the subsystem data packets. Since the parsing of packets is only necessary for
the fault management system, the TLM Parser only deserializes the specific telemetry fields necessary for fault
detection. After all desired data is received and unpacked, it must be stored in a database for later retrieval by the FD
module. This database software module is named the Polymorphic (Poly) Database as it stores telemetry fields in

9

their native type instead of in serialized form. The HSA requirements related to the fault management system are
found in Table 6.

Table 6. HSA Requirements related to the Fault Management System

ID Requirement
HSA-005 The HSA shall include a Fault Detection and Response Block to monitor all fault scenarios

specified in the Fault Analysis Matrix.

D. VISORS HSA Communication Overview

 Since the HSA is hosted on the XB1 flight computer, its interface must comply with the specifications of the XB1
spacecraft. The XB1 requires that all payload subsystems, including the HSA, communicate using the Consultative
Committee for Space Data Systems (CCSDS) Space Packet Protocol. This protocol specifies that every software data
packet contains at least a 6-byte header that contains packet version numbers, packet identification, packet sequence
number, and packet data length [15]. As a result, the HSA must have the functionality to frame any outgoing data
packets and deframe any incoming data packets per the CCSDS protocol. This functionality is encapsulated in two
different software modules – the CCSDS Framer and CCSDS Deframer.

Fig 6. Payload Subsystem Interface Diagram

 To route the data to the correct location during the framing and deframing step, each packet contains a unique
packet identification number, often called the APID. To communicate digitally with the BCT Bus FSW, as shown in
Fig 6, the HSA contains a software module - IPC Driver - that uses the inter-process communication protocol [16].
The HSA requirements that relate to the software interfaces with the rest of the payload are listed in Table 7.

Table 7. HSA Requirements Related to SW Interfaces

ID Requirement
HSA-008 The HSA shall send all generated telemetry to the BCT Bus radio downlink buffer using the

interface specified in the BCT SW API.
HSA-015 The HSA shall interface with the BCT FSW using the ports specified in the BCT SW API.
HSA-016 The HSA shall adhere to the CCSDS Protocol Specifications specified in the BCT XB1 ICD

when communicating with the spacecraft bus.
HSA-017 The HSA shall adhere to the APID ranges specified in the BCT XB1 ICD (BUS-EC-001) for

communication with other subsystems.

E. Additional HSA Requirements

 In addition to the modules discussed above, several additional modules are necessary to provide basic embedded
systems functionality. For the HSA to interface with ground operators, software modules to receive commands (CMD
Dispatcher), send distinct fixed-size telemetry packets (Downlink Packetizer), configure parameters for the HSA
software (Parameter Database), and log software event verification records (EVRs) (Event Logger) are included
within the software executable. Additionally, the HSA includes software modules that enable a robust implementation
and execution of logic such as modules for continuous execution loops of rate groups (Linux Timer, Rate Group
Driver, Active Rate Group), data buffer managers (Buffer Manager & Static Memory), assert handling (Fatal
Adapter & Fatal Handler) and time correlation based off of the XB1 system clock (Linux Time). Finally, the HSA

10

contains a module - System Resources - to characterize the resource utilization of the HSA to ensure it stays under
requirements HSA-012 and HSA-013 found in Table 8.

Table 8. Miscellaneous HSA Requirements

ID Requirement
HSA-001 The hosted software application (HSA) shall compile into a single executable in accordance with

the BCT SW API.
HSA-007 The HSA shall generate a telemetry packet at a rate specified in the data budget.
HSA-012 The HSA shall not take up more than 4 MB of program memory per BCT XB1 ICD (BUS-EC-

001).
HSA-013 The HSA shall not take up more than 60 MB of RAM per the BCT XB1 ICD
HSA-014 The HSA shall have a method to determine which spacecraft it is running on.

 The complete list of the software modules found in the HSA is shown in Table 9. The breakup of scope between
modules could have been done in multiple different ways, depending on the system architect. However, the guiding
principle for this specific delineation of software modules was the separation of concerns philosophy. Separation of
concerns states that the software system should be decomposed into modules that each discretely solve the different
aspects of the problem [17]. This principle lends itself well to the component-based architecture of the Fprime software
framework [18], discussed in the next section.

Table 9. List of all modules in the HSA

Component
Name

Description Development
Type

CMD
Dispatcher

Distributes commands to all components Built-In

Parameter
Database

Store non-volatile parameters used by any component Built-In

TLM Database Stores telemetry generated by any component Built-In
Event Logger Log flight software ‘events’ for greater insight into the FSW

execution
Built-In

Linux Timer Output a constant tick to the RG components at a specified
time interval based off of the system clock

Built-In

Rate Group
Divider

Divide constant tick from linux timer into ticks for each rate
group

Built-In

Rate Group
Component

Distribute rate group calls to other components at correct rate Built-In

Linux Time Correlate software timestamps to system time Built-In
Buffer Manager Manage memory allocation for components using dynamic

buffer sizes
Built-In

Static Memory Manage memory allocation for components using fixed
buffer sizes

Built-In

Fatal Adapter Intercept assert calls and log corresponding fatal events Built-In
Fatal Handler Handle fatal events by delaying segmentation fault by one

second to allow for fatal events to propagate to the ground
system

Built-In

System
Resources

Track resource utilization of CPU and RAM Built-In

Poly Database Store telemetry values from subsystems that pertain to fault
detection

Built-In

CCSDS Framer Pack outgoing data packets into the CCSDS Format Custom
CCSDS

Deframer
Unpack incoming CCSDS data packets to retrieve desired

data
Custom

IPC Driver Communicate with the BCT Bus FSW using IPC protocol Custom
TLM Parser Unpacks desired telemetry fields from subsystem telemetry

packets
Custom

11

Downlink
Packetizer

Forms fixed size data packets containing HSA telemetry Custom

Fault Detection Detect and diagnose payload level fault conditions Custom
Fault Response Choose appropriate payload response based off fault

diagnosis
Custom

Payload State
Machine

Control mission mode, subsystem state, and formation role Custom

GNC Controller Provide wrapper for the GNC algorithm library Custom

V. Hosted Software App Design

 With all required software modules defined, the design of the HSA can be developed. Two main items impact the
design of the HSA and are discussed in the following subsections. First, the choice of flight software architecture is
discussed. Secondly, the interactions between the aforementioned software modules are outlined. To provide context
for how the software modules interact with each other, the HSA-related CONOPS and mission events timelines for
every phase of the mission are discussed in depth.

A. HSA Software Architecture

The main driver for choosing the software architecture for the HSA was picking a framework that would best

enable fast and robust development, while also providing tools for developers and operators for testing and operations.
The most common choices for software frameworks for CubeSat-level missions are either cFS (core flight software)
developed at NASA Goddard [19], a custom built-from-scratch framework, or Fprime developed by NASA JPL [20].
For the VISORS mission, all GT software was written within the Fprime framework (v3.1.1) due to prior experience
among the members in the lab as well as existing development tools that were developed for previous missions.

 Fprime is an open-source C++ framework that was initially released to the public in 2018. It is a component-based
point-to-point architecture that enables modularity and reuse of software [20]. Fprime ships with several ready-to-use
components that are found on most embedded systems projects such as a Command Dispatcher, Parameter Database,
and Telemetry Database, among others. Table 9 shows that about 60% of the components were already available
within the Fprime framework while about 40% were custom designed for the VISORS mission. Fprime also provides
supporting tools to speed up development, testing, and operations, such as a custom ground data segment (GDS) as
well as several all-inclusive autocoders that autogenerate large swaths of code based on simply the input and output
interfaces to each component [21]. The Fprime architecture consists of three main parts – Ports, Components, and
Topologies. Each software module, or component, consists of input and output ports that define the data structure.
The component has handler functions for each of the input and output ports that define the logic that must be executed
to send or receive data. Additional functions can also be defined in the component C++ code. Components are then
hooked up to other components within the topology. The topology, such as the one shown in in Fig 7, ultimately
provides an overarching view of the design of the software executable, called a deployment.

12

Fig 7. F' Component-Based Architectural Pattern [18]

The one obvious drawback to having so many discrete components in a deployment is that connecting them
together in the topology can be confusing for large deployments that require numerous port connections. However,
another huge benefit to using Fprime is that for many of the built-in components, Fprime either connects them in the
topology automatically or provides clear documentation on how they should be connected to other components. Thus,
the more complicated part of the puzzle becomes defining the specific data types that need to be exchanged between
components. By looking at the MET for each phase of the mission, the software architect can outline exactly what
data must be transferred between components. This definition of the input and output interfaces of each component
then corresponds directly to the set of Fprime ports on each component.

B. HSA Interface Definitions from Mission Events Timelines

The entire VISORS mission can be split into distinct phases, as seen in Table 10, each of which can be further

characterized with a MET to describe the specific actions the HSA takes during each of the phases. Many of the FSW
actions require the use of multiple components since the scope of each component is limited. Thus, outlining each of
the FSW actions will directly derive how the components should be connected.

Table 10. HSA status in each phase of the mission

Phase Description HSA Status
Launch + Solar

Array Deployment
The Spacecraft wait for 30 minutes before deploying solar arrays and

turning on all of the BCT subsystems
OFF

Initial Bus
Commissioning

Ground-based commissioning campaign to verify the functionality of
the BCT subsystems

OFF

Payload
Commissioning

Ground-based commissioning campaign to verify the functionality of
the payload subsystems

ON

Formation
Acquisition

Manually command the spacecraft into the standby formation
configuration

ON

Standby Wait in standby formation configuration for the command to start a
science campaign

ON

Science Campaign Go from the standby to science orbits and take science observations ON
Off Nominal Any time a spacecraft detects a fault and must respond ON

 The following subsections detail the HSA-oriented MET for all phases of the mission for which the HSA will

be ON (since the HSA is a payload subsystem that can be turned off by BCT). Each subsection will then outline the
port connections necessary to achieve each step of the MET. These port connections between the components can be
seen in the topology diagram shown in Fig 8. This image includes most of the custom components within the
deployment but leaves out many of the built-in components for brevity.

13

Fig 8. HSA Topology without most of the Fprime built-in components

1. Payload Commissioning

 After the BCT Bus hardware subsystems have been commissioned, the next step is to commission the payload
subsystems. The HSA portion of the payload commissioning is distributed among the rest of the payload
commissioning steps. Since the HSA communicates with all payload subsystems, the HSA interfaces must be checked
after turning on any subsystem. This will mainly consist of verifying that commands can be sent to the subsystem and
that telemetry is received back from the subsystem. The sequence for this preliminary operations campaign is
illustrated in Fig 9.

Fig 9. Payload Commissioning Sequence

 The HSA to BCT FSW verification step validates the mission operator’s ability to send commands to and
receive telemetry from the HSA. This step consists of sending the HSA a no operation (NO-OP) command and
verifying that it sends out an EVR upon the completion of that command. The NO-OP command is used since it
is a simple command that does nothing but acknowledge receipt of the command. The HSA interface verification

14

steps for each of the subsystems are similar to the previous step but delegate the HSA to send the NO-OP command
instead of the ground. After the HSA sends out the command it will, depending on the subsystem, either wait for
a direct response from the subsystem or parse its telemetry to see if the subsystem processed the command. The
HSA will also verify that it receives telemetry from every payload subsystem.

 During the calibration section of commissioning, most of the ground-based commands are routed directly to
the desired payload subsystem and do not go through the HSA., the only calibration related to the HSA deployment
is during the GNC and Prop calibration steps. During GNC calibration, the ground sends several commands to the
GNC Controller which simply passes those commands to the GNC algorithms. Receipt of these commands is
captured via EVRs and telemetry packets. The port connections required between HSA components for this phase
of the mission are outlined below in Table 11.

Table 11. HSA Port Connections Required for the Commissioning Phase

Payload Commissioning Step HSA Action Related HSA Port Connection
HSA ←→ BCT Interface

Verification
HSA receives NO-OP command

from the ground
IPC Driver → CCSDS Deframer →

CMD Dispatcher
HSA ←→ BCT Interface

Verification
HSA responds to NO-OP command Downlink Packetizer → CCSDS

Framer → IPC Driver
HSA ←→ Subsystem Interface

Verification
HSA sends out NO-OP command Payload State Machine → CCSDS

Framer → IPC Driver
HSA ←→ Subsystem Interface

Verification
HSA receives confirmation of NO-

OP command
IPC Driver → CCSDS Deframer →

Payload State Machine
OR

IPC Driver → CCSDS Deframer →
TLM Parser → Poly Database →

Payload State Machine
HSA ←→ Subsystem Interface

Verification
HSA verifies reception of telemetry

from subsystem
IPC Driver → CCSDS Deframer →

TLM Parser
GNC Calibration HSA receives ground commands

for GNC Controller
IPC Driver → CCSDS Deframer →

CMD Dispatcher → GNC
Controller

GNC Calibration GNC Controller responds to
commands with events

Downlink Packetizer → CCSDS
Framer → IPC Driver

GNC Calibration GNC algorithm initiates a
propulsive maneuver

GNC Controller → CCSDS Framer

2. Formation Acquisition

 Once commissioning is finished, operators will transition into the formation acquisition phase of the mission. In
this phase, the main goal is not only to put the spacecraft into the Standby mode formation configuration but also to
verify the performance of subsystems that depend on the spacecraft being in formation. The order of steps in this
phase, as seen in Fig 10, is important as the XLINK subsystem needs to be performance tested first since this will
enable the testing that follows on the GNC and fault management systems. The final step, after the critical subsystems
are tested, must be to enable autonomy as this will allow the spacecraft to take corrective action in the event of a fault.
The duration of this phase must be kept short since the spacecraft will be in close formation without an autonomous
way to escape until autonomy is enabled by the mission operators at the end of the phase.

Fig 10. Formation Acquisition Sequence

15

The main new port connections found in this mission phase are related to the fault management system. The design
of the fault management system lends itself to a linear flow where the fault detection component passes diagnosis to
the fault response component which passes recommended actions to the payload state machine which performs the
actions. This segmented approach, seen in the port connections outlined in Table 12, fulfills the separation of concerns
guideline.

Table 12. HSA Port Connections required for the Formation Acquisition Phase

Formation Acquisition Step HSA Action Related HSA Port Connection
GNC Performance Tests GNC exchanges state information with

other spacecraft
GNC Controller → CCSDS Framer

→ IPC Driver
GNC Performance Tests GNC executes propulsive maneuvers GNC Controller → CCSDS Framer
GNC Performance Tests GNC Controller reads in temperature

and pressure fields from PROP
telemetry

GNC Controller → Poly Database

Fault Management
Performance Tests

Fault Detection reads in telemetry from
payload subsystems

IPC Driver → CCSDS Deframer →
TLM Parser → Poly Database →

Fault Detection
Fault Management
Performance Tests

Fault Response receives fault diagnosis
and chooses the most suitable response

Fault Detection → Fault Response

Fault Management
Performance Tests

Payload State Machine receives the
recommended response and acts on it if

allowed to do so

Fault Response → Payload State
Machine

Enable Autonomy Payload State Machine receives a
ground command to enable autonomous

actions

IPC Driver → CCSDS Deframer →
CMD Dispatcher → Payload State

Machine

3. Science Campaign

 The science campaign phase of the mission is the most complicated portion of the mission due to the number of
coupled actions between the GNC, ADCS, and science instruments. The timeline of tasks that the HSA accomplishes
during this phase is shown in Fig 11 and Fig 12. These figures are adapted from the work first done in Ref 2. First, the
ground verifies the feasibility of the science campaign by assessing the health of the payload subsystems on both
spacecraft as well as characterizing the amount of delta-v and science data storage that is available on board. After
confirming that a science campaign is possible, ground operators configure various science parameters such as the
observation target on the sun, number of observation frames, exposure time, and parameters for image compression
algorithms. The last ground-based command that is sent is a command to the PSM to set the current mode to Transfer
mode.

Fig 11. Initiation of Science Campaign

 At this point, the ground-based setup of the science campaign is complete, and the spacecraft takes over to
autonomously complete the science campaign. The first task the PSM does is switch the primary spacecraft pointing

16

constraint to be GPS-to-Zenith so that the GNC algorithms can receive quality navigation data for the initialization of
its navigation algorithm [2]. After the navigation algorithm finishes its initialization sequence, the algorithm plans a
set of maneuvers that will take the formation from the standby configuration to the science configuration.

Fig 12. Science Orbit and Observation Timeline

 Once the spacecraft is in the correct relative orbit configuration for Science mode, the PSM switches its internal
mission mode to Science. Once this occurs, the CSIE gets turned ON and is passed the aforementioned science
parameters. The GNC algorithms plan and execute additional propulsive maneuvers to drive the formation to the
observation configuration when the spacecraft are over either of the Earth’s poles. Immediately before the science
observation, the HSA executes a series of commands to point the spacecraft in the correct target direction, turn OFF
the magnetorquers and UHF downlink, and turn ON the Laser Range Finder. The magnetorquers and UHF downlink
are turned OFF to ensure that there is no electromagnetic interference with the science instrumentation during a science
observation. The port connections required for this phase of the mission are documented in Table 13.

Table 13. HSA Port Connections required for the Science Campaign Phase

Science Campaign Step HSA Action Related HSA Port Connection
Configure science parameters HSA accepts a command to set desired

target observation location
IPC Driver → CCSDS Deframer →
CMD Dispatcher → Payload State

Machine
Configure science parameters HSA sends desired observation location

to GNC Controller for their use in
algorithms

Payload State Machine → GNC
Controller

Command Transfer Mode PSM accepts a command to switch
mission modes

IPC Driver → CCSDS Deframer →
CMD Dispatcher → Payload State

Machine
Switch Pointing Constraint PSM autonomously commands BCT to

perform a switch in the pointing
constraint

Payload State Machine → CCSDS
Framer → IPC Driver

Execute Propulsive Maneuvers GNC Controller commands propulsive
maneuvers

GNC Controller → CCSDS Framer

Disable/Enable Subsystems PSM enables or disables subsystems
based off of the

Payload State Machine → CCSDS
Framer → IPC Driver

Command an Observation GNC Controller will alert the HSA
when an observation needs to occur

GNC Controller → Payload State
Machine → CCSDS Framer → IPC

Driver

17

4. Off-Nominal Scenarios

The final mission phase relevant to the HSA is unique in that it does not have a predetermined linear timeline of

events. Instead, this phase has multiple different entry criteria that each illicit a different response from the spacecraft
formation. However, from a software perspective, complexity is minimized by having the same set of Fprime
components handle all fault conditions. This ensures that the data flow between components is the same regardless of
what the actual mission scenario is. The fault management system must ensure that the fault diagnosis between the
spacecraft is identical. As a result, the fault detection component must be continuously exchanging its diagnosis
information as shown in Fig 13.

Fig 13. Distributed Fault Management System Data Flow

The fault detection data flow is enabled by the continuous stream of incoming packets from each of the payload
subsystems. Since each packet is different, the TLM Parser component must identify the packet by its APID and
correspondingly unpack the message. Once the packet is unpacked into its respective telemetry fields, the TLM Parser
component will write the values into the Poly Database. From here, the fault detection component queries items in the
database and diagnoses the spacecraft or formation level fault, if any. Regardless of if there is a fault occurring, the
fault detection component will exchange diagnosis information with the other spacecraft. However, if there is a fault,
the FD component sends the diagnosis to the fault response component which determines the appropriate fault
response for the specific scenario [14]. Finally, the fault response component sends its response recommendation to
the PSM which acts upon the recommendation. If autonomy is enabled by the ground, the PSM will update its internal
variables (mission mode, subsystem states, formation role) according to the response recommendation and alert the
GNC Controller and/or the PSM on the other spacecraft of any changes as necessary. The port connections to enable
these interactions is shown in Table 14.

Table 14. HSA Port connections required for off-nominal scenarios

Off-Nominal Scenarios Step HSA Action Related HSA Port Connection
Receive Payload Telemetry Poly DB updates the database with the

received subsystem telemetry
IPC Driver → CCSDS Deframer →

TLM Parser → Poly Database
Read Telemetry for Fault

Detection
Fault Detection polls the telemetry

database to retrieve the telemetry values
it is interested in

Fault Detection → Poly Database

Determine Fault Diagnosis Fault Detection passes diagnosis
information to the Fault Response

component

Fault Detection → Fault Response

Fault Response
Recommendation

Fault Response passes the PSM its
recommendation for corrective action

Fault Response → Payload State
Machine

18

Payload State Machine actuates
fault response

PSM alerts other spacecraft of mode or
role switch change

Payload State Machine → CCSDS
Framer → IPC Driver

Payload State Machine actuates
fault response

PSM receives an alert from other
spacecraft of mode or role switch

change

IPC Driver → CCSDS Deframer →
Payload State Machine

Payload State Machine actuates
fault response

PSM alerts the GNC Controller of
mode or role switch change

Payload State Machine → GNC
Controller

VI. HSA Implementation and Testing
With the HSA topology defined, the next step is to begin the implementation phase of the flight software. A high

level overview of this phase is given in Fig 14. The Fprime framework uses a modeling language called FPP (F Prime
Prime) to configure the interfaces of a component and topology. The first step to defining a component starts with
defining the data structures of each of its input and output ports in FPP. These ports can then be used in the FPP file
of the component itself. After all custom and built-in ports are defined, other commands, telemetry, and parameters
can be included in the component FPP file. Once the component definition is complete, the initial boilerplate C++
code is autogenerated through Fprime based on the FPP definitions [22]. This gives users a starting point for
developing the logic of their Fprime component.

Fig 14. Fprime Component Level Implementation and Testing Flowgraph

After all the work to define the scope of the components, write requirements, and generate the template C++
structure, the logic of the component can finally be written. At this point, with all the scaffolding in place, actually
developing the software for the component is not immensely difficult. However, software development is an iterative
process, so the implementation of the component will be continuously updated as it goes through its test campaign.
Just as with any other software system, modules of code in Fprime must undergo both unit testing and integration
testing. To complete these tests, Fprime provides a large suite of development tools.

Unit testing in Fprime begins in a similar fashion to component development – the boilerplate template for tester

code is generated based on the definitions of the component FPP. For the autogenerated tester code, the directionality
of the functions is inverted from the corresponding functions in the component C++ file itself. For example, if the
component FPP defines an input port A, the component C++ will define a function called A_handler to handle the
logic when that input port is invoked, while the tester C++ will define a function called invoke_to_A which can be
called to send data to the component. The tester component has complete access to the states and variables of the
component C++ code and as a result, can be written to completely validate all functionalities of the component [21].
By setting up the framework in this manner, every Fprime component can be unit tested in isolation without any other
components. The extent to which a unit test verfies the functionality of the component can often be characterized by
the code coverage of the unit test. Code coverage gives qualitative results on how many lines and logical branches of
the components C++ code were tested via the unit tests. For the VISORS mission, the goal for each component’s unit
test code coverage was 80%. Note that a high code coverage metric does not always mean that the component is
working nominally. There are often cases where a component cannot be fully tested unless it is interfaced with other
components in the topology. This leads to the next phase of the software testing framework – Integration Tests.

For the VISORS mission, integration testing was completed in two main ways. First, multiple related components

were tested together through an exerciser deployment. This test deployment is different from the flight deployment in
that it is specifically tailored to test a small subset of the overall flight functionality. By separating the flight

19

deployment into smaller sub-deployments, the functionality and operation of the components can be more easily
debugged and verified since fewer overall tasks are happening in the sub-deployment. Almost all the custom
components written for the VISORS mission are included in at least one exerciser deployment. Exerciser deployments
are almost exclusively run on a desktop computer instead of the flight hardware and may use the Fprime Ground Data
Segment (GDS) instead of the ground software used on flight. This allows faster and more iterative development.
Tests using the Fprime GDS can be manually implemented or scripted in Python using the GDS Application
Programming Interface (API), giving users the flexibility to completely customize their tests.

However, to verify that the component also works while running on a hardware platform, hardware integration

tests are developed. The Fprime deployments used for these tests are usually much more involved as they require
multiple components to enable users to interface with the software that is running on a different platform than their
computer. Fprime allows for integration tests to be scripted or for users to manually verify the software actions
occurring in the deployment. For VISORS, hardware integration tests must be compatible with the COSMOS ground
operations software. Users can use the Command and Telemetry Server in Cosmos to send commands to the spacecraft
or payload subsystems or write scripts to autonomously accomplish identical tasks. Note that scripts in COSMOS are
written using the Ruby programming language, not Python [23]. Thus, any scripts written in Python for integration
testing with the Fprime GDS must be adapted to work with COSMOS instead.

As each of the custom Fprime components for VISORS complete this implementation and testing paradigm, the

components are integrated into flight deployments. Once the deployment includes the components planned for that
specific flight software release, the flight deployment undergoes system-level testing where it runs on its hardware
platform and interfaces with the other payload subsystems onboard. This helps verify the data interfaces between
subsystems and ensures that the entire spacecraft system operates nominally. The integration tests scripts written
during integration testing can be reused or adapted for these system level tests.

VII. Conclusion
As formation flying missions become more abundant, multi-functional software systems like the HSA will become

more common. As the complexity of these software systems increase, it is vital to carefully consider how these systems
should be architected so that time can be saved on the development of the system. The contents of this paper aimed to
show this in action by providing a concise look at the design and development process of the HSA flight software
deployment. By thinking critically about what drives the design of the HSA, a robust, modular architecture was
developed. The design of the software system as well as the benefits of the Fprime software framework enabled fast,
concurrent development among all team members. This concurrency allowed for more time for testing and provided
a higher level of confidence that this ambitious mission could be successful regardless of schedule, cost, and staffing
constraints. As the development of the HSA continues into the future, developers should work with mission operators
to further iterate the design within the confines of the requirements of the mission. Further iteration will result in a
system that is even more user-friendly while also increasing reliability and robustness for ground based testing and on
orbit operations.

20

Appendix
Table 15. All HSA Requirements

ID Requirement
Functional Requirements

HSA-001 The hosted software application (HSA) shall compile into a single executable in accordance with the BCT SW API.

HSA-002 The HSA shall include the GNC library in the compiled executable.

HSA-003 The HSA shall interface with the GNC library in accordance with the GNC ICD.

HSA-004 The HSA shall include a state machine to actuate mission modes and subsystem states in accordance with the
Subsystem States Document.

HSA-005 The HSA shall include a Fault Detection and Response Block to monitor all fault scenarios specified in the Fault
Analysis Matrix.

HSA-007 The HSA shall generate a telemetry packet at a rate specified in the data budget.

HSA-008 The HSA shall send all generated telemetry to the BCT Bus radio downlink buffer using the interface specified in the
BCT SW API.

HSA-021 The HSA shall parse the information contained in the time at tone packet received from the BCT Bus and deliver it to
the GNC Software library.

Performance Requirements

HSA-010 The GNC Library within the HSA shall run on its own thread.

HSA-011 All checksum validated data received by the HSA from the ISL shall be immediately forwarded to the GNC library.

HSA-012 The HSA shall not take up more than 4 MB of program memory per BCT XB1 ICD.

HSA-013 The HSA shall not take up more than 60 MB of RAM per the BCT XB1 ICD.

HSA-014 The HSA shall have a method to determine which spacecraft it is running on.

Interface Requirements
HSA-015 The HSA shall interface with the BCT FSW using the ports specified in the BCT SW API.

HSA-016 The HSA shall adhere to the CCSDS Protocol Specifications specified in the BCT XB1 ICD when communicating
with the spacecraft Bus

HSA-017 The HSA shall adhere to the APID ranges specified in the BCT XB1 ICD for communication with other subsystems.

HSA-018 The HSA shall send commands to the PAIB to toggle power to payload subsystems.

Acknowledgments

I would like to thank everyone who has supported, guided, and encouraged me through the last six years at Georgia
Tech – it has been the most formative years of my life. First and foremost, I would like to thank God for all the
abundant blessings he has given me in my life. To Appa and Amma and Edith, thank you for always pushing me to
work hard, be humble, and continue learning and growing. To the rest of my family, thank you for always encouraging
me to keep pursuing my interests. To Taylor Blackburn, thank you for being my biggest supporter through the ups
and downs of the last four years. To my friends and mentors at the Campus Christian Fellowship, thank you for helping
me pursue my faith, serve others, and giving me an amazing community of friends on campus. To my closest friends

21

and housemates during my time at Tech – Jeremy, Justin, Jake A, Jake T, Isaac, Karsten, and Grayson – thank you for
your amazing friendship and support whenever I spent tons of hours on research and classes.

To my friends and colleagues at the Space Systems Design Lab, thank you for all the long stressful, but endlessly
fun, hours that we spent working on our flight projects, I wouldn’t have it any other way. To Sterling Peet, thank you
for introducing me to Fprime, being patient with my relentless questions, and helping me develop my software
engineering skills. To my GT-1 teammates, thank you for doing whatever it took to get our little CubeSat into space!
To my teammates on VISORS – Antoine, Will, Max, Lizzie, Shan, Grace, Bryan, Michael, Mark, Sam H, Kevin,
Dominik, Donald, Spencer, Joseph, Justin, Alec, Henry, Kian, Adit – thank you for working so hard on this project
with me and making incredible progress on this insanely difficult mission. I can’t wait to see what you all accomplish.
To the greater VISORS team – Dr. Kamalabadi, Phil, Adrian, Jake, Tommaso, Toby, Om, Anika, and so many others
– thank you for all your work and the time you put in to make VISORS successful. It was an amazing experience to
lead this team and I am grateful to everyone for the opportunity to do so.

 Last but certainly not least, to Dr. Glenn Lightsey, thank you so much for relenting to a persistent freshman and
letting me join your research group as a sophomore undergrad. I would not be where I am professionally without the
guidance and opportunities you have given me over the course of the last five years. Working in your lab has been
one of the best parts of my time at Georgia Tech!

The work to develop the HSA for the VISORS mission is funded by the National Science Foundation under grant
No. 1936576. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.

References
[1] Kulu, “E. Nanosatellite Launch Forecasts 2022 - Track Record and Latest Prediction.” Small Satellite

Conference 2022.
[2] Lightsey, E. G., Arunkumar, E., Kimmel, E., Kolhof, M., Paletta, A., Rawson, W., Selvamurugan, S.,

Sample, J., Guffanti, T., Bell, T., Koenig, A., Amico, S. D. ’, Park, H., Rabin, D., Daw, A., Chamberlin, P.,
and Kamalabadi, F. “Concept of Operations for the VISORS Mission: A Two Satellite CubeSat Formation
Flying Telescope”. 44th Annual AAS Guidance, Navigation & Control Conference, Breckenridge, CO, 4-9
February 2022.

[3] Koenig, A. W., D’amico, S., and Lightsey, E. G. “Formation Flying Orbit and Control Concept for the
Visors Mission”. AIAA SciTech 2021 Forum, Virtual Event, 11-15 & 19-21 January 2021.

[4] Hart, S. T., Daniel, N. L., Hartigan, M. C., and Glenn Lightsey, E. “Design of the 3-D Printed Cold Gas
Propulsion Systems for the VISORS Mission”. 44th Annual AAS Guidance, Navigation & Control
Conference, Breckenridge, CO, 4-9 February 2022.

[5] Stanford University. “Formation Alignment During Observation, VISORS Systems Integration Review”.
2023.

[6] Kimmel, E., Paletta, A., Arunkumar, E., Krahn, G., and Glenn Lightsey, E. “Testing methodology for
Spacecraft Precision Formation Flying Missions”. 45th Annual AAS Guidance, Navigation & Control
Conference, Breckenridge, CO, 4-8 February 2023.

[7] Baron, D. “Image of DSC During Testing at BCT.” 2023.
[8] Schulte, P. Z. “A State Machine Architecture for Aerospace Vehicle Fault Protection”. 2018.
[9] Payne, J. “VISORS XB1 Spacecraft Bus Interface Control Document”. 2022.
[10] R. K. Kandt, "Experiences in Improving Flight Software Development Processes". IEEE Software, vol. 26,

no. 3, pp. 58-64, May-June 2009
[11] Jones, M., Fretz, K., Kubota, S., and Smith, C. A. “The Use of the Expanded FMEA in Spacecraft Fault

Management.” Annual Reliability and Maintainability Symposium (RAMS, 2018.
[12] Mcdonald, D., and Ligthtsey, E. G. “Fault Management in Small Satellites Lessons Learned from the Lunar

Flashlight and ARMADILLO Missions.”
[13] Paletta, A., Lightsey, G., Rawson, W., Arunkumar, E., Kimmel, E., Selvamurugan, S., Hauge, M., and

Guffanti, T. “Development of a Contingency Operations Architecture for the VISORS Formation Flying
Space Telescope.” 2022.

[14] Paletta, A., and Lightsey, G. “Development of an Autonomous Distributed Fault Management Architecture
for the VISORS Mission.” 2023.

22

[15] “Recommendation for Space Data System Standards BLUE BOOK RECOMMENDED STANDARD SPACE
PACKET PROTOCOL.” 2020.

[16] Krishnaveni, M. S., and Ruby, M. D. “Comparing and Evaluating the Performance of Inter Process
Communication Models in Linux Environment.” 2016.

[17] Tarr, P., Ossher, H., Harrison, W., and Sutton, S. M. N Degrees of Separation: Multi-Dimensional
Separation of Concerns. 1999.

[18] The F´ Framework Team. F´: A Flight-Proven, Multi-Platform, Open-Source Flight Software Framework.
[19] Mccomas, D., Wilmot, J., and Cudmore, A. “The Core Flight System (CFS) Community: Providing Low

Cost Solutions for Small Spacecraft.” 2016.
[20] Bocchino, R. L., Canham, T., Watney, G. J., Reder, L. J., and Levison, J. “FPrime: An Open-Source

Framework for Small-Scale Flight Software Systems.” Small Satellite Conference 2018.
[21] Rizvi, A., Ortega, K. F., and He, Y. “Developing Lunar Flashlight and Near-Earth Asteroid Scout Flight

Software Concurrently Using Open-Source F Prime Flight Software Framework.” Small Satellite
Conference 2022.

[22] Bocchino, R. L., Levison, J. W., and Starch, M. D. “FPP: A Modeling Language for F Prime”. IEEE
Aerospace Conference 2022.

[23] Melton, R. “Ball Aerospace COSMOS Open Source Command and Control System.”

