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LEARNING REACHABILITY FOR HAZARD DETECTION AND
AVOIDANCE IN PLANETARY LANDING

Kento Tomita∗, Byeong-Un, Jo†, Koki Ho‡

Autonomous hazard detection and avoidance (HD&A) poses a stochastic perception-
aware guidance problem, where the visible surface depends on the trajectory, and
the safest target locations are kept updated. For the concurrent optimization of
the target and trajectory, evaluating the reachable surface under guidance con-
straints in real-time is critical, but it requires solving optimization problems mul-
tiple times. To bypass the optimization-based computation of the reachable sur-
face, we propose to learn the parameterized reachable surface by a neural network,
which ultimately enables the reachability-aware guidance algorithms. This paper
presents the proposed parameterization method and validation results by numeri-
cal simulations.

INTRODUCTION

Autonomous hazard detection and avoidance (HD&A) is becoming a standard practice for space
missions with a lander. While the first HD&A maneuver was successfully performed manually by
Apollo astronauts in 1969, it took another 44 years before the Chang’e-3 lunar lander demonstrated
autonomous HD&A capability in 2013.1 In 2021, both Mars 2020 and Tianwen-1 demonstrated
autonomous HD&A in Mars landing scenarios. Mars 2020 leveraged image-based terrain rela-
tive navigation to successfully avoid the pre-identified hazards,2, 3 while Tianwen-1 used real-time
HD&A based on Chang’e-3’s experience.4, 5 These missions demonstrated the indispensability of
autonomous HD&A technology for future exploration missions, such as the Dragonfly mission to
Titan.6 For further details, refer to a recent review study on HD&A for space missions.7

One of the unique challenges of HD&A is guidance optimization under safety map uncertainty.
Due to physical limitations of the sensor, the spacecraft can only estimate the probability of safety
over a certain area. The size, resolution, and prediction accuracy of the safety map depend on the
sensor’s position, pose, and local topography. The uncertainty of the safety map makes it unrealistic
to make a definitive decision on the landing target and associated guidance trajectory in the early
phases of the terminal descent.

However, the studies on propellant-optimal powered descent guidance (PDG) algorithms under
target uncertainty remain limited. Despite the notable successes of propellant-optimal PDG algo-
rithms over the last decade, particularly in closed-form guidance8, 9 and computational guidance
approaches,10–14 the majority of studies have assumed a predefined landing target. A few excep-
tions include the work by Iiyama et al.,15 in which deep reinforcement learning was applied to the
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simultaneous optimization of target selection and parameterized Zero-Effort Miss and Zero-Effort
Velocity (ZEM/ZEV) guidance algorithm using a simple hazard detection model. Recently, Hayner,
Buckner, et al.16 proposed the Adaptive Deferred Decision Trajectory Optimization (Adaptive-
DDTO), an adaptive version of DDTO by Elango et al.17 that optimizes the guidance trajectory for
potential divert maneuvers.

The critical components of HD&A are realiable and efficient algorithms for stochastic hazard
detection (HD) and for reachability evaluation. For the stochastic HD algorithm, Ivanov et al.18

developed the probabilistic hazard detection algorithm considering uncertainty in the range mea-
surements of LiDAR sensors. Tomita et al.19 applied Bayesian deep learning techniques to solve
the same problem more efficiently with the improved performance. Recently, Tomita and Ho20 de-
veloped the Gaussian random field-based algorithm to handle the topographic uncertainty, which is
most critical due to the sparsity of LiDAR measurement from a high altitude. Given a stochastic
safety map, efficiently evaluating reachable targets is necessary to optimaly guide the spacecraft to
the safest landing target. Eren et al.21 employed convex optimization to efficiently construct the
innter and outer approximation of the reachable set, and Yang and Liu22 proved that the reachable
set is indeed convex and compact under certain conditions.

Although convex optimization is efficient, it is impractical to solve them multiple times for re-
altime decision makings or more higher level guidance optimization whose inner loop involves the
reachability evaluation. To further improve the efficiency of the reachability evaluation, we propose
to learn the parameterized reachable surface by a neural network. We introduce the powered descent
guidance problem with the target visibility constraint and the corresponding reachable surface with
the parameterization method. Training data is generated by exploiting the convexity of the approxi-
mated reachable set and the convex optimization. We demonstrate the effectiveness of the proposed
method with the numerical simulations.

REACHABLE SURFACE

This section introduces the notion of the reachable surface and the proposed parameterization
method. Informally, the reachable surface is the set of points on the ground that are reachable
by the lander while satisfying the constraints such as the soft landing constraints or the visibility
constraints. We first define the dynamics and constraints of the lander, and then define the reachable
surface. Finally, we introduce the proposed parameterization method for the reachable surface.

Equations of Motion and Control Constraints

The motion of a planetary lander in terminal descent is described in a topocentric Cartesian coor-
dinate frame by the system of equations

ṙ = v r(t0) = r0 (1a)

v̇ = Tthrust/m+ g v(t0) = v0 (1b)

ṁ = −α‖Tthrust‖ m(t0) = m0 (1c)

where r ∈ R3 is the position, v ∈ R3 is the velocity, m ∈ R is the mass, Tthrust ∈ R3 is the thrust
force, g ∈ R3 is the gravitational acceleration, and α ∈ R is a positive mass-flow parameter. The
initial conditions are denoted by the subscript 0 and the time of the initial conditions is denoted by
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t0. The thrust vector is constrained by

0 < ρ1 ≤ ‖Tthrust‖ ≤ ρ2 (2a)

‖Tthrust‖ cos(θp) ≤ Tthrust · ez (2b)

where ρ1 and ρ2 are the minimum and maximum thrust magnitudes, ez = [0, 0, 1]T is the unit
vector in the z-direction, and θp is the maximum thrust pointing angle.

Visibility Constraints

The unique constriant we introduce for HD&A is the target visibility constraint, which restrict
the trajectory to remain within a cone of visibility of the target. In other words, the target must be
visible from the lander at all times. The target visibility constraint is defined by

‖E (r(t)− r(tf )) ‖ ≤ (r(t)− r(tf )) · ez tan(θFOV/2), E = [ex, ey] (3)

where r(tf ) is the position at the time of landing, ex, ey, ez are the unit vectors in the x, y, and
z directions, respectively, and θFOV is the field of view (FOV) of the camera. Although the target
visibility constraint is mathematically equivalent to the glide slope constraint, the visibility con-
straint imposes a more stringent constraint on the trajectory as the half of FOV angle (i.e., 5-45
degrees) is typically much smaller than the regular maximum glide slope angle (i.e., 85 degrees).
Figure 1 illustrates the mathematical equivalence of the target visibility constraint and the glide
slope constraint.

Figure 1: The target visibility constraint. The lander must remain within the cone of visibility of
the target, which is mathematically equivalent to the glide slope constraint.

The remaining state constraints are the mass constraint and the boundary conditions for soft
landing, which are defined by

mdry ≤ m(t) (4a)

rz(tf ) = 0, v(tf ) = 0 (4b)

where mdry is the dry mass of the lander and we assume rz(tf ), the altitude of the lander at the time
of landing, is zero.
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Reachable Surface

The reachable surface is defined as the set of all horizontal positions at tf that can be reached
from the initial state at t0 while satisfying the equations of motion Eq. (1), control constraints Eq.
(2), and state constraints Eqs. (3) and (4).

RS(tf ) =
{
(rx(tf ), ry(tf )) | there exists a trajectory satisfying Eqs. (1), (2), (3)

and (4) from (r(t0),v(t0),m(t0)) to (r(tf ),v(tf ),m(tf ))
} (5)

We introduce the two-ellipse model to parameterize the boundary of the reachable surface. The
two-ellipse model is defined in the two dimensional coordinate frame whose origin is at the initial
horizontal position and x-axis is taken to be the downrange direction, i.e. the direction of the initial
velocity projected onto the local horizontal plane. The reachable surface is axisymmetric about the
downrange direction and approximated by two ellipses, one for the negative-donwrange direction
and one for the positive-downrange direction, whose origins are on x-axis.

Let ai, bi, xci be the semi-major axis, semi-minor axis, and the x-coordinate of the center of the
ith ellipse where i = 1, 2, respectively. Suppose ellipse 1 forms the negative-downrange side of the
reachable surface and ellipse 2 forms the positive-downrange side, and they intersect at (xp,±yp) ∈
RS where yp > 0. Let xmin = xc1 − a1 and xmax = xc2 + a2 be the minimum and maximum
x-coordinates of the reachable surface, respectively. Then, the two-ellipse model is defined by the
parameters p = [xmin, xmax, xp, yp, a1, a2] and is given by

R̂S(p) = R̂S1 ∪ R̂S2

R̂S1 =
{
(x, y) | (x− xc1)

2

a21
+
y2

b21
≤ 1, x ∈ [xmin, xp]

}
R̂S2 =

{
(x, y) | (x− xc2)

2

a22
+
y2

b22
≤ 1, x ∈ [xp, xmax]

}
xc1 = xmin + a1, xc2 = xmax − a2,

bi =
aiyp√

a2i − (xp − xci)2
, i = 1, 2.

(6)

Figure 2 illustrates the two-ellipse model.

DATA GENERATION

This section discribes the reachable surface data generation algorithms. We first review the im-
portant results of lossless convexification of the constrained reachable set first proposed and numer-
ically demonstrated by Eren et al.21 and later formally proved by Yang et al.22 Then, we formulate
the problems specific to the reachable set computation. Finally, we present reachability-based effi-
cient domain selection of the reachable set data generation.

Constrained Reachable Set via Convex Optimization

Constrained reachable set for our problem is defined as follows.

R(tf ) =
{
x(tf ) ∈ R7 | there exists a trajectory satisfying Eqs. (1)(2)(3)(4)

}
(7)
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Figure 2: The two-ellipse model. The reachable surface is approximated by two ellipses, one for
the negative-downrange half and one for the positive-downrange half.

where x = (r,v,m) is the state of the powered descent dynamics. To apply the lossless convexifi-
cation to the nonconvex control constraint of Eq. (2), we first convert the nonlinear dynamics to the
linear dynamics.11 By introducing the following change of variables,

σ =
‖Tthrust‖
m

, u =
Tthrust

m
, ζ = lnm (8)

we obtain the linear dynamics with nonconvex control constraint:

ṙ = v, v̇ = u+ g, ζ̇ = −ασ. (9)

subject to

‖u‖ = σ (Nonconvex) (10a)

u · êz ≥ σ cos(θp) (Convex) (10b)

ρ1e
−ζ ≤ σ ≤ ρ2e−ζ (Nonconvex). (10c)

Acikmese et al.11, 21 introduced the tighter approximation at the cost of marginal errors to convexify
the control constraint of Eq. (10c). Introducing the deterministic lower bound of ζ as ζ = ln(m0 −
ρ2t), the approximated control constraints are given by

‖u‖ = σ (Nonconvex) (11a)

u · êz ≥ σ cos(θp) (Convex) (11b)

ρ1e
−ζ

(
1−

(
ζ − ζ

)
+

(
ζ − ζ

)2
2

)
≤ σ ≤ ρ2e−ζ

(
1−

(
ζ − ζ

))
(Convex). (11c)
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The fully convex controll constrains are obtained by replacing the remaining nonconvex constraint
of Eq. (11a) with the convex constraint

‖u‖ ≤ σ. (12)

Then, the main results of lossless convexification of reachable set (Theorem 10 in (Reference 22))
are summarized as follows.

Assumption 1 The state constraint of Eq. (3) is active at most over a discrete set; i.e., {t ∈ (0, tf ) |
Eq. (3) is active} is empty or a discrete set.

Theorem 1 Let R`(tf ) be the reachable set of the linear dynamics with nonconvex control con-
straints andRc(tf ) be the reachable set of the linear dynamics with convex control constraints:

R`(tf ) =
{
x(tf ) ∈ R7 | Eqs. (9)(11)(3)(4)

}
(13)

Rc(tf ) =
{
x(tf ) ∈ R7 | Eqs. (9)(12)(11b)(11c)(3)(4)

}
(14)

If Assumption 1 holds, we haveR`(tf ) = Rc(tf ), and they are convex and compact.

In summary, under the control input such that Assumption 1 holds; i.e., the visibility constraint is
active at most over a discrete set, the original reachable set can be well approximated by a convex
and compact reachable set. It is also an inner approximation because of the tighter approximation
of the control constraint of Eq. (10c) by Eq. (11c).

R(tf ) ≈ R`(tf ) = Rc(tf ), R(tf ) ⊆ R`(tf ) = Rc(tf ). (15)

Maximum Range Problem

The reachable surface RS(tf ) is a subspace of the reachable set R(tf ) (i.e., RS(tf ) is the set of
x, y coordinates ofR(tf )), and we defineRS,`(tf ) andRS,c(tf ) as the reachable surface ofR`(tf )
andRc(tf ), respectively:

RS(tf ) = {(rx(tf ), ry(tf )) | (r(tf ),v(tf ),m(tf )) ∈ R(tf )} (16a)

RS,`(tf ) = {(rx(tf ), ry(tf )) | (r(tf ),v(tf ),m(tf )) ∈ R`(tf )} (16b)

RS,c(tf ) = {(rx(tf ), ry(tf )) | (r(tf ),v(tf ),m(tf )) ∈ Rc(tf )} . (16c)

and
RS(tf ) ≈ RS,`(tf ) = RS,c(tf ), RS(tf ) ⊆ RS,`(tf ) = RS,c(tf ). (17)

Note that the reachable surfaceRS,c(tf ) is a convex and compact set, and we can obtain its boundary
points by solving the maximum range problem, which is a convex optimization and defined as
follows.

Problem 1 (maximum range problem) Given an interior point rint = (xint, yint, 0) where (xint, yint) ∈
RS,c \ ∂RS,c and a direction d = (dx, dy, 0) ∈ R3, we solve the maximization problem

max
u(·),σ(·)

d · (r(tf )− rint) (18)

subject to Eqs. (9), (12), (11b), (11c), (3), and (4) and the following boundary conditions

d× (r(tf )− rint) = 0 (19)
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Equation (19) enforces the landing position to be on the line passing through rint and parallel to
d. The maximum range problem is solved for a number of directions d to obtain a set of discrete
points of the reachable surface boundary. The axisymmetricity of the reachable surface is exploited
to reduce the number of directions d to be considered and also to find the interior point rint. The
interior point is obtained by solving Problem 1 with the specific parameters as follows.

Problem 2 (interior point search) Given the initial state x(t0) = (r(t0),v(t0),m(t0)), consider
the coordinate frame whose origin is (rx(t0), ry(t0), 0), x-axis is parallel to the horizontal velocity
(i.e., downrange direction), and y-axis is the crossrange direction. Obtain the interior point

rint =

(
1

2
(xmin + xmax), 0, 0

)
(20)

where xmin and xmax are the solutions of Problem 1 where (d, rint) = (−ex,0) and (ex,0), respec-
tively.

Initial Condition Search

The initial conditions, (x(t0), tgo), exists in 8 dimensional space, which makes it difficult to gen-
erate sufficient initial conditions and solving for the corresponding reachable sets. Exploiting the
symmetricity of the reachable set, we can reduce the dimensionality of the initial condition space
to 5; altitude, downrange velocity, horizontal velocity, mass, and time-to-go, which are denoted
as (rz(t0), vx(t0), vz(t0),m(t0), tgo). Although the initial condition space is still too large to ex-
plore extensively, we can further downselect them by introducing the notion of the feasible initial
conditions, which are defined as follows:

Definition 1 (feasible initial condition) An initial condition (x(t0), tgo) is feasible if there exists a
control input (u(·), σ(·)) such that the trajectory x(·) satisfies the dynamics (9) and the constraints
(12), (11b), (11c), (3), and (4).

The feasible initial conditions are essentially the constrained reachable set at t = t0 ∈ [0, tf ],
whose boundary is constrained such that x(t = 0) ∈ χ0 and the terminal condition of Eq. (19)
with tf = t0 + tgo, where χ0 is an appropriately chosen convex and compact set of states at t = 0.
Therefore, we can obtain the set of feasible initial conditions by solving the convex optimization
problems.21

Once the set of feasible initial condition is obtained, we can generate the initial conditions by
sampling from an outer approximation of the feasible initial condition set. Note that it is impor-
tant to sample from the outer approximation because it also generates infeasible initial conditions,
which are necessary to train the neural network to distinguish between feasible and infeasible initial
conditions.

NEURAL NETWORK ARCHITECTURE

We use a multilayer perceptron (MLP) model whose architecture is shown in Figure 3. The input
layer has 5 neurons, one for each of the initial condition elements; altitude, downrange velocity, hori-
zontal velocity, mass, and time-to-go, which are denoted as xIC = (rz(t0), vx(t0), vz(t0),m(t0), tgo).
The output layer has 7 neurons, one for the feasibility evaluation and the others for the parameter
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vector p = [xmin, xmax, xp, yp, a1, a2] of the two-ellipse model of the reachable surface. The activa-
tion function is the Rectified Linear Unit (ReLU) for the hidden layer, and the sigmoid function for
the output layer.

Figure 3: Neural network architecture.

Our loss function is defined as the sum of the mean squared error (MSE) of the predicted feasi-
bility and the reachable surface. The loss function is given by

L = Lfeas + Lreach, (21)

where Lfeas is the MSE of the feasibility evaluation, and Lreach is the MSE of the reachable surface
boundary errors. Let yfeas ∈ {0, 1} and ŷfeas = ffeas(xIC) ∈ [0, 1] be the ground truth and the
predicted value of the feasibility evaluation, respectively. Note that yfeas is a binary variable but
ŷfeas is a continuous variable from 0 to 1. The MSE of the feasibility evaluation is given by

Lfeas =
1

N

N∑
i=1

√
(y

(i)
feas − ŷ

(i)
feas)

2, (22)

where N is the batch size of training data.

To compute Lreach, we first compute the reachable surface boundary from the predicted parameter
vector p̂ = [x̂min, x̂max, x̂p, ŷp, â1, â2] with Eq. (6). Let {(x(i)j , y

(i)
j )}j be the ground truth boundary

points of the reachable surface, obtained by solving Problem 1 with the initial condition x
(i)
IC and a

set of direction vectors {dj}j where j = 1, ...,M . Then, we compute the predicted boundary points
{x̂(i)j , ŷ

(i)
j }j with Eq. (6) where x̂(i)j is computed as follows:

x̂
(i)
j = x̂

(i)
min +

x̂
(i)
max − x̂(i)min

x
(i)
max − x(i)min

(x
(i)
j − x

(i)
min). (23)

Then, the MSE of the reachable surface boundary error is given by

Lreach =
1

N

N∑
i=1

1

M

M∑
j=1

√
(x̂

(i)
j − x

(i)
j )2 + (ŷ

(i)
j − y

(i)
j )2. (24)
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EXPERIMENTS AND RESULTS

Reachablse Set Data Analysis

We generated 996,509 pairs of initial conditions, each of which are used as the input of Problem
1 for 15 times to obtain the corresponding set of boundary points of reachable surface. Note that
we only store the results satisfying Assumption 1. The number of feasible initial conditions are
321,924, which is 32.3% of the total data. Each initial condition is generated by sampling the initial
altitude rz(t0), the initial horizontal velocity vx(t0), the initial vertical velocity vz(t0), the initial
mass m(t0), and the time-to-go tgo from the uniform distribution over the outer approximation of
the reachable set of interest. The outer approximation of the reachable set, is obtaned by solving the
convex optimization problems with an appropriate initial state set,21 where we removed the visibility
constraint. Figure 4 shows the distribution of 10,000 random samples of generated data with their
feasibility. We can see the feasible points have a clear upper bound of the initial horizontal velocity
over altitudes, which is due to the visibility constraint, which is not imposed at the initial condition
search.
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Figure 4: Distribution of 10,000 random samples of generated data points with their feasibility.

Quantitative Analysis of the Reachable Surface Prediction

Table 1 shows the errors of the feasibility prediction and the reachable surface prediction. The
feasibility prediction output from the neural network model is continuous from 0 to 1, and we set
the threshold to 0.5, which results in the error of 1.54%. The reachable surface prediction error is
measured as the mean squared error of Euclidian distances between the predicted boundary points
and the ground truth data points, which results in the error of 6.77 meters on average with standard
deviation of 4.55 meters. The accuracy of the feasibility prediction depends on the threshold value.
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Table 1: Neural network prediction error.

Feasibility (%) Reachable Surface (m)

1.54% 6.77± 4.55

Figure 5 shows the rate of false feasible (i.e., infeasible but predicted feasible) and false infeasible
(i.e., feasible but predicted infeasible) predictions for different threshold values. The fraction of false
feasible predictions decreases as the threshold value increases, while the fraction of false infeasible
predictions increases. At threshold of about 0.85, the fraction of false feasible and false infeasible
predictions intersect each other at 1.0%. The distribution of the reachable surface prediction error
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Figure 5: Fraction of false feasible and false infeasible predictions for different threshold values.

is shown in Figure 6. Even though the prediction error is small on average, the error becomes large
for some initial conditions. For further investigation, we analyzed the prediction error for different
initial conditions, specifically for the different initial altitudes rz(t0) and initial horizontal velocities
vx(t0). Figure 7a shows the reachable surface prediction error for different initial altitudes. The
prediction error is larger for the higher initial altitudes, which aligns with the fact that the reachable
set is larger for the higher initial altitudes. Figure 7b shows the reachable surface prediction error for
different initial horizontal velocities. The effective prediction error range is largest for the middle
range of the initial horizontal velocities, which is from 20 to 30 meters per second.

Qualitative Analysis of the Reachable Surface Prediction

Figure 8 shows the reachable surface prediction for different initial conditions. Due to the visi-
bility constraint, the reachable surface is bounded by the circle with radius of rz(t0) tan(θFOV/2)
whose origin is the initial horizontal position. Figure 8 demonstrates that our neural network model
successfully predict the reachable surface with the proposed two-ellipse model. Figure 9 shows the
minimum-fuel trajectory with predicted reachable surface. It demonstrates the predicted reachable
surface changes its shape with the horizontal velocity and its size with the altitude.
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Figure 7: Analysis of reachable surface prediction error for various initial conditions.
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Figure 8: Reachable surface predictions for different initial conditions.
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CONCLUSION

We proposed to learn the parameterized reachable surface by a neural network for hazard detec-
tion and avoidance in planetary landing. We introduced the visibility constraint and the two-ellipse
model for the reachable surface parameterization. Lossless convexification techniques were utilized
to efficiently generate the training data. We also presented the neural network training architecture
where the true reachable surface parameters are not required, which enables the optimal prediction
from the data generated by a number of convex optimization problems. The trained neural network
was validated by numerical simulations and we demonstrated that the proposed approach enables
efficient and accurate evaluation of the reachable surface.
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