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MODEL PREDICTIVE PATH INTEGRAL CONTROL FOR
SPACECRAFT RENDEZVOUS AND PROXIMITY OPERATIONS ON

ELLIPTIC ORBITS

Tomohiro Sasaki*, Koki Ho†, and E. Glenn Lightsey ‡

This paper presents a nonlinear control framework for spacecraft rendezvous and
proximity operations on elliptic orbits using Model Predictive Path Integral (MPPI)
control. Path integral control is a sampling-based nonlinear stochastic optimal
control algorithm that can avoid linear and quadratic approximations in both dy-
namics and cost functions. While this control method has gained popularity in the
robotics community due to its algorithmic effectiveness, it remains unexplored in
astrodynamics. This paper demonstrates a comprehensive closed-loop simulation
of spacecraft rendezvous employing MPPI and evaluates its control performance
through these simulations.

INTRODUCTION

Path integral control, rooted in sampling-based optimal control,1, 2 has made notable strides in
the field of robotics. Path integral control delivers a framework to solve a finite horizon nonlinear
optimal control problem efficiently. Particularly, the path integral controller is extremely powerful
when it incorporates nonlinear dynamics, stochastic dynamics, high-dimensional state space, and
constraints due to its natural features of robustness to modeling errors and disturbances.

A standout application of path integral control is its use in predictive control, termed Model
Predictive Path Integral Control (MPPI).3, 4 Recent research reveals its potential across various areas,
including autonomous vehicles,5 quadrotors,5 fixed-wing aircraft,6 vertical take-off and landing
aircraft,7 robot manipulation,8 and space robotic manipulation.9 Given these successes, there is a
reason to believe MPPI could also be valuable for spacecraft rendezvous and proximity operations.

MPPI’s strength lies in its ability to optimize using samples without making assumptions about
system dynamics or cost functions. The original idea of the path integral control is that the value
function of the optimal control problem, which is the minimum value of the cost function, is trans-
formed into an expectation over the possible trajectories known as path integral using the Feynman-
Kac lemma.10 Then, the stochastic Hamilton-Bellman-Jacobi (HJB) equation of the optimal control
problem, a stochastic partial differential equation, can be transformed into a stochastic differen-
tial equation. While the HJB equation can be solved backward in time, the stochastic differential
equation can be solved forward in time with a forward sampling of stochastic diffusion processes.
The classical path integral control assumes that the dynamics must be affine in control and satisfy
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a specific relationship between noise and controls. However, Theodorou and Todorov generalized
the path integral framework by making a connection between classical path integral control and
information theoretic notions of free energy and relative entropy, known as Kullback–Leibler (KL)
divergence.2 Furthermore, Williams et. al generalized the framework for a complete control non-
affine system.5

Historically, relative motion control, a subclass of astrodynamics guidance, navigation, and con-
trol problems, has been achieved by open-loop control and error correction control each time. This
type of control approach is sometimes undesirable regarding safe and robust spacecraft relative
motion control. With increased computing capability, model predictive control (MPC) is becom-
ing popular in space applications as a modern feedback control algorithm. The MPC controller
solves a deterministic finite optimal control problem at every control update step and uses the first
component of the generated control sequence. The MPC controller has advantages over traditional
open-loop and feedback control algorithms in handling state and control constraints and effectively
predicting the system’s dynamic behavior. Linear MPC with quadratic programming has already
shown its effectiveness in spacecraft rendezvous and docking on circular orbits.11, 12 Moreover, lin-
ear MPC has demonstrated simulation performance for spacecraft rendezvous on near-rectilinear
Halo orbits.13 Nonlinear MPC with sequential quadratic programming has also been studied for
rendezvous and proximity operations. Recent interest in rendezvous and proximity operations study
is shifting towards robust nonlinear feedback control for achieving robust and safe maneuvers.

This paper presents a path integral control framework for spacecraft rendezvous and proximity
operations under a predictive control setting and aims to explore how well sampling-based con-
trollers like MPPI can be adapted to astrodynamics applications.

DYNAMICS MODEL

This paper investigates the high-fidelity relative dynamic model for achieving high-precision ren-
dezvous and proximity operations. This paper considers the chief-deputy representation for mod-
eling spacecraft rendezvous and proximity operations. The chief-deputy model defines the deputy
position and velocity with respect to the chief state. Hence, the chief-deputy model does not have to
deal with both chief and deputy absolute position and velocity but deals with chief absolute position
and velocity and deputy relative position and velocity.

This paper leverages the nonlinear dynamics model developed by Xu and Wang,14 which pro-
vides the representation of nonlinear relative dynamics in the presence of J2 perturbations without
assuming specifics about the chief spacecraft orbits. Two distinct coordinate frames must be defined
to derive the equations of motion for relative motion, as depicted in Figure 1. An Earth-centered
inertial (ECI) coordinate frame is defined to locate the position of the chief spacecraft in an inertial
frame. Here, the X̂ direction points toward the vernal equinox, the Ẑ direction toward the North
pole, and the Ŷ direction completes the right-handed coordinate frame. Subsequently, a local-
vertical-local-horizontal (LVLH) frame is defined to locate the position of the deputy spacecraft
with respect to the chief spacecraft. In this frame, the x̂ direction aligns with the chief’s position
vector pointing along the radial vector, and the ẑ aligns with the angular momentum vector of the
chief spacecraft, and the ŷ direction completes the right-handed coordinate frame:

x̂ = r/r, ẑ = h/h, ŷ = ẑ× x̂
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Figure 1. ECI and LVLH coordinate frames

Now, the nonlinear equations of motion of the chief orbit are expressed in terms of orbital ele-
ments as follows:

ṙ = vx

v̇x = − µ

r2
+

h2

r3
− kJ2

r4
(1− 3 sin2 i sin2 θ)

ḣ = −kJ2 sin
2 i sin 2θ

r3
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h

r2
+

2kJ2 cos
2 i sin2 θ

hr3

i̇ = −kJ2 sin 2i sin 2θ

2hr3

Ω̇ = −2kJ2 cos i sin
2 θ

hr3

(1)

where r is the magnitude of the position vector, vx is the magnitude of the radial velocity vector,
hang is the magnitude of the specific angular momentum, i is the inclination, Ω is the right ascension
of the ascending node, and θ is the argument of latitude, kJ2 = 3J2µR

2
e/2 is a constant parame-

ter of J2 perturbation. J2 is the second zonal harmonic coefficient of the Earth, µ is the Earth’s
gravitational parameter, and Re is the Earth’s equatorial radius.

Next, the nonlinear equations of motion of relative motion for j-th deputy spacecraft with respect
to the chief spacecraft are as follows:

ẍj = 2ẏjωz − xj
(
n2
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z

)
+ yjω̇z − zjωxωz − (ζj − ζ) sin i sin θ − r

(
n2
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)
+ uj,x

ÿj = −2ẋjω̇z + 2żjωx − xjω̇z − yj
(
n2
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z − ω2
x

)
+ zjω̇x − (ζj − ζ) sin i cos θ + uj,y

z̈j = −2ẏjωx − xjωxωz − yjω̇x − zj
(
n2
j − ω2

x

)
− (ζj − ζ) cos i+ uj,z

(2)

where (ωx, ωz) and (ω̇x, ω̇z) are angular velocities and accelerations of the chief spacecraft, re-
spectively given by:
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ωx = −kJ2(sin 2i sin θ)
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, ωz =
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and n, nj , ζ, ζj are given by:
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n2
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with

rj =
√

(r + xj)
2 + y2j + z2j

rjZ = (r + xj) sin i sin θ + yj sin i cos θ + zj cos i.

This paper considers a single chief and single deputy system, and thus j = 1 for all time.

PATH INTEGRAL CONTROL

This section introduces information theoretic path integral control with importance sampling.
The following discrete-time stochastic dynamical system is considered in this paper:

xt+1 = f(xt,vt), k = 0, 1, . . . , N − 1 (3)

where xt ∈ Rn denotes the state of the dynamical system at time step t, vt ∈ Rm denotes a
control input for the system, F denotes the discrete nonlinear state-transition function of the system.
It is assumed that the system does not have direct control over the input variable vt, but the system
transforms control mean input ut into the actual control input vt by a white-noise process with the
density function as

vt ∼ N (ut,Σ), (4)

where Σ ∈ Rm×m denotes the covariance of the control variable. This is a valid noise assumption
for spacecraft rendezvous and proximity operations since the controller input has to go through a
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lower-level control block before reaching the actual plant. The next step is to construct sequences
of input variables and mean input variables as

V = [v0,v1, . . . ,vN−1] ∈ Rm×N ,

U = [u0,u1, . . . ,uN−1] ∈ Rm×N .

There are two different distributions to address the optimal control process. One distribution is
the probability distribution P of an input sequence V in the uncontrolled system (U ≡ 0):

p(V) = Z−1
N−1∏
t=0

exp

(
−1

2
vT
t Σvt

)
, (5)

and the other distribution is the probability distribution Q of an open-loop input sequence in the
controlled system:

q(V) = Z−1
N−1∏
t=0

exp

(
−1

2
(vt − ut)

TΣ(vt − ut)

)
, (6)

where Z = ((2π)m|Σ|)
1
2 . Here, the discrete-time optimal control problem is assumed to be of the

form of:

min
U∈U

EQ

[
ϕ(xN ) +

N−1∑
t=0

ℓ(xt,ut)

]
, (7)

where U is the set of admissible control sequences, ℓ(·, ·) is the instantaneous cost, and ϕ(·) is the
terminal cost. The running cost is further defined with a state-dependent cost and a control cost as

ℓ(xt,ut) = q(xt) +
λ

2
uT
t Σ

−1ut, (8)

where λ ∈ R+ denotes the inverse temperature of the free energy of the control system and is the
hyper-parameter of this control algorithm. Note that the state violation cost, such as safe constraints,
can be taken into account in the state-dependent cost q(·). Let C be the total state-dependent cost
of the trajectory given by:

C(x0,x1, . . . ,xN ) = ϕ(xN ) +

N−1∑
t=0

q(xt). (9)

LetH be a mapping from the input sequence along with an initial condition to a resulting trajec-
tory. Then, the state-dependent cost given an input sequence is defined as

S(V) = C(H(V;x0)) (10)

The free energy of the control system is now defined as:

F(S,p,x0, λ) = −λ log

(
EP

[
− 1

λ
S(V)

])
, (11)
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where the expectation is taken with respect to P. Applying Jensen’s inequality, we can find the
upper bound of the free energy as:

F(S,p,x0, λ) ≤ EQ [S(V)] + λDKL(Q|P), (12)

where DKL(Q|P) denotes the Kullback-Leibler (KL) divergence defined as follows:

DKL(Q|P) = EQ

[
log

(
dQ
dP

)]
.

The KL divergence is a measure for comparing distances between two probability distributions.
In this case, the KL divergence is a distance between uncontrolled and controlled distributions.
Let Q∗ be optimal distribution, then the free energy is minimized computed with S and Q∗. Now
Equation (12) implies the optimization problem for the given dynamical system and control input
where free energy is the lower bound of the inequality. Practically speaking, optimal distribution
Q∗ cannot directly optimized. Instead, the controlled distribution Q is shifted as close as possible
to the optimal distribution Q∗. The minimization problem that has to be solved can be transformed
into:

U∗ = arg min
U∈U

DKL(Q∗|Q). (13)

In the literature,5 the authors showed that the solution to minUDKL(Q∗|Q) as

ut =

∫
q∗(V)vtdV. (14)

where q∗(V) is the density function of optimal distribution Q given by:

q∗(V) =
1

η
exp

(
− 1

λ
S(V)

)
p(V). (15)

Typical information theoretic MPPI utilizes iterative importance sampling to estimate the optimal
control solution given a current control distribution. Rewrite Equation (14) as:∫

q(V)
q∗(V)p(V)

p(V)q(V)
vkdV. (16)

Thus, the optimal control input can be expressed in terms of an expectation with respect to Q as:

u∗
t = EQ [w(V)vt] , (17)

where w is the importance sampling weight given by:

w(V) =
1

η
exp

(
− 1

λ
S(V) +

N−1∑
t=0

−vT
t Σ

−1vt +
1

2
uT
t Σ

−1ut

)
(18)
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Algorithm 1: Model Predictive Path Integral Control Simulation
Input: f : Transition model
K: Number of samples
N : Number of timesteps
U: Initial control sequence
Σ, ϕ, q, λ: Control hyper-paramter
Xref : Reference trajectory

1 while Goal not reached do
2 x0 ← StateEstimate();
3 for k ← 0 to K − 1 do
4 x← x0; Sample Vk = {vk

0 ,v
k
1 , . . . ,v

k
N−1};

5 for t→ 0 to N − 1 do
6 xt ← f(xt−1,vt−1);
7 S(V)+ = q(xt) + λuT

t−1Σ
−1(vt−1 − ut−1);

8 S(V)+ = ϕ(xN );

9 β ← mink [S(V)];
10 η ←

∑K−1
k=1 exp

(
− 1

λ(S(V)− β
)
;

11 for k ← 0to K − 1 do
12 w(V) = 1

η exp
(
− 1

λS(V) +
∑N−1

k=0 −vT
k Σ

−1vk +
1
2u

T
kΣ

−1uk

)
;

13 for t← 0 to N − 1 do
14 ut+ =

∑K−1
k=0 w(V)(vt − ut);

15 ExecuteCommand(u0);
16 for t← 0to N − 1 do
17 ut−1 ← ut;

18 uN−1 ← Sample(uN−1);

NUMERICAL SIMULATION

This paper demonstrates a spacecraft rendezvous on a geosynchronous transfer orbit. Informa-
tion theoretic MPPI using importance sampling is implemented for the maneuver controller. The
controller considers collision avoidance and control constraints in the optimal control problem, en-
suring a safe and reliable operation. The control commands are executed in a predictive control
setting, with an extended Kalman filter estimating the current states of relative position and velocity
vectors at each time step. MPPI is implemented as a tracking controller for a given reference tra-
jectory. The open-loop reference trajectory is generated through constrained differential dynamic
programming (CDDP) algorithm.15 The simulation duration is set to tf = 37000 s with time step
of dt = 1 s. The prediction length of MPPI control is 50 with its sampling time of Ts = 10 s.
The control update occurs at every 10 s. The EKF estimates the deputy spacecraft state given the
measurements at every 1 s. The initial mean orbital elements of the chief spacecraft are:

a = 24439 km, e = 0.719, i = 0.05 deg, Ω = 0 deg

ω = 20 deg, f = 0 deg
(19)

The initial and final states are chosen to satisfy relatively stable deputy states given by:16
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xj,0 = 100 m, yj,0 = 0 m, zj,0 = 200 m, ẋj,0 = 0 m/s

ẏj,0 = −0.23 m/s, żj,0 = 0 m/s
(20)

xj,f = 20 m, yj,f = 0 m, zj,f = 40 m, ẋj,f = 0 m/s

ẏj,f = −0.0459 m/s, żj,f = 0 m/s
(21)

The state-dependent cost for tracking control with a collision avoidance sphere constraint is given
by:

q(xt) = (xt − xref,t)
T Q (xt − xref , t) + CCA1CA(xt), (22)

where Q = 10I6 and cCA = 108 . 1CA(x) is a collision avoidance indicator function to imitate
state constraints for collision avoidance in this framework given by:

1CA(x) =

{
1 if

√
x2 + y2 + z2 ≤ 20 m ,

0 else .

The terminal cost is given by:

ϕ(x,xref) = (x− xref)
TQf (x− xref). (23)

where Qf = 1000I6. In the process of MPPI optimization, control-bound constraints are taken into
account as,

umin ≤ ut ≤ umax, (24)

with

umax = −umin = 6× 10−6

Finally, this paper uses the following measurement model for estimating the position and velocity
of deputy spacecraft:

y = I6 x+ vmeas (25)

where vmeas ∼ N (0,Rmeas) and Rmeas = diag(10−2, 10−2, 10−2, 10−4, 10−4, 10−4). Additive
process noise matrix of the dynamics is set to Qproc = 10−11I6. The initial covariance matrix of
state is P = diag(5× 10−7, 5× 10−7, 5× 10−7, 10−4, 10−4, 10−4).

Figure 2 shows the three-dimensional relative trajectory of the deputy spacecraft with respect to
the chief spacecraft. The number of samples is K = 3000. The covariance of the control variables

8



Figure 2. Three-dimensional MPPI closed-loop simulation trajectory

is Σ = 10−11 I3. The inverse temperature is λ = 1. The MPPI controller uses an estimated state
by EKF and output control command to the spacecraft. The filter converges rapidly after the start of
simulation. The maneuver involves both in-plane and out-of-plane relative motion control. Larger
portions of the control effort are taken after passing the relative apoapsis, which coincides with the
inertial apoapsis.

Figure 18 shows two two-dimensional relative trajectories of the deputy spacecraft with respect to
the chief spacecraft. Both in-plane (left figure in Figure 18) and out-of-plane (right figure in Figure
18) trajectories have satisfied the sphere collision avoidance constraint.

Figure 3. Two-dimensional MPPI closed-loop simulation trajectories with a sphere
constraint. The left figure is the plane of the radial direction (x) and the along-track
direction. The right figure is the plane of the along-track direction and the cross-track
direction.

Figure 4 shows the control input history of MPPI spacecraft rendezvous. Throughout the simu-
lation, MPPI found controls within the given control bounds. The out-of-plane control effort fluc-
tuation is larger than the in-plane ones. As control input may flutter due to the nature of sampling
in sampling-based control, the resulting control sequence has a small variation on the control tra-
jectory. This flutter phenomenon would be fixed by tuning the covariance of control variables and
the number of samples. However, MPPI still finds a feasible control input during its operation. The
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total velocity change, which is calculated by summing up the two norms of velocity changes, is
∆V = 0.139 m/s.

Figure 4. Control Input History

Table 1 shows the state-dependent trajectory cost and fuel usage ∆V comparison given the num-
ber of samples and the inverse temperature. The table implies that the increase in the number of
samples does not directly improve the controller performance for both state-dependent trajectory
cost and fuel usage, which contradicts to natural expectation. In addition, the state-dependent tra-
jectory cost varies with the inverse temperature λ. If the inverse temperature is high and the number
of samples is not enough, the controller performance will be dropped significantly.

Table 1. Trajectory and ∆V cost comparison given the number of samples and the inverse temperature

Inverse Temperature λ 0.1 1 10

Number of Samples, K State Cost ∆V , m/s State Cost ∆V , m/s State Cost ∆V , m/s

1000 0.0559 0.139 1.09 0.139 1.71 0.139
2000 0.00976 0.139 0.0232 0.139 0.00608 0.139
3000 0.0389 0.139 0.00208 0.139 0.0299 0.139

CONCLUSION AND FUTURE WORK

This paper demonstrated a sampling-based nonlinear model predictive control (MPC) for space-
craft rendezvous and proximity operations. The model predictive path integral (MPPI) controller
successfully completed a relative motion maneuver with state and control constraints and an ex-
tended Kalman filter. The MPPI controller can also be used for highly nonlinear spacecraft relative
motion control with a realistic number of samples, as general robotic applications consider. Future
work includes line-of-sight constraints, range and angle measurements, and attitude control for the
full spacecraft rendezvous and docking.
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