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METHODS FOR DUAL-OBJECTIVE HIGH-ENERGY TOUR DESIGN

Yuri Shimane*, and Keidai Iiyama†

High-energy, multi-fly-by tours are a complex design task that typically arises in
planetary moon tours, such as those of the Jupiterian or Saturnian systems. In-
spired by this challenge, the 2022 edition of the Space Optimisation Competition
(SpOC) organized by the Advanced Concepts Team included a problem involving
a ∆V and time of flight optimization of a tour visiting the seven planets of the
Trappist-1 star system. This work introduces the preliminary analyses and heuris-
tics developed to tackle the multiobjective optimization problem, along with the
results found for the Trappist-1 tour problem.

INTRODUCTION

Multi-fly-by trajectories with high incoming energy have been gaining significant attention over
the past decades due to their applicability in moon-tour missions of mutli-moon systems such as
the Jupiter and Saturn systems. These high-energy tours can be challenging to design due to the
combinatorial nature of the fly-by paths, the phasing of the moons, combined with the limited fuel,
or ∆V budget, of the spacecraft.

To tackle this challenge, some analytical insights may be obtained through techniques such as
Tisserand graphs1 or V-infinity and Tisserand leveraging transfers (VILT/TILT).2–8 The end goal
typically results in a global optimization problem, where both ∆V and time of flight, potentially
among other objectives, are to be minimized. During the GECCO 2022 Space Optimisation Com-
petition (SpOC),9 hosted by the Advanced Concepts Team (ACT) of the European Space Agency,
one of the problems posed was designing such high-energy tours for visiting each of the seven plan-
ets of the Trappist-1 star system exactly once, with the objective of minimizing both ∆V and time
of flight (TOF). While our visit to our stellar neighbor might not happen for another while, the chal-
lenges and lessons learned in solving this problem are directly applicable to the moon-tour problem,
especially in cases where a rapid tour of all bodies of interest is desirable.

The problem organizers have formulated the tour design problem as a variant of the MGA-1DSM
model. The MGA-1DSM model is a commonly used formulation for designing multi-gravity assist
(MGA) transfers, including a single deep-space maneuver (DSM) during each leg.10 This formu-
lation is particularly well-suited for large-scale global search algorithms as in its simplest form, it
can be posed with only box constraints on the variable, making it suitable for metaheuristic-based
global optimization algorithms.10–12 By incorporating the bodies at which the spacecraft is to con-
duct fly-bys as integer variables to the problem, the MGA-1DSM model can also optimize across
various fly-by sequences.
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Table 1: Parameters of the Trappist-1 tour problem

Variable Value

Star µ, km3/s2 1.19246521e+10
Safety radius rcrit, km 834840
Reference epoch Tref 2019-Mar-02 00:00:00 UTC
Starting radius Rstart, km 1,495,978,706.91
Starting speed Vstart, km/s 10
Planet radius Rk (k = 0, . . . , 6), km 6378

In this work, we introduce the procedures that were developed during SpOC to tackle the tour
design problem. Fundamentally, two types of tours are hypothesized, each prioritizing either the
minimization of ∆V or TOF. Part of the difficulty in the tour problem is the selection of fly-by
sequence, which is combinatorial in nature. To this end, we introduce a metric based on the achiev-
able kinetic energy change of the spacecraft through a given fly-by; this enables us to prioritize
the more effective planets to fly-by at the earlier half of the tour, and only vary the sequence of
the latter planets, thus reducing the combinatorial dimension. From a method standpoint, we lever-
age an island-based parallel metaheuristics paradigm13–15 along with a sliding local optimization
framework for improving triplets of fly-by sequences within the tour, which we refer to as Triplet
Boosting. We report on these methods applied to the SpOC problem, which serves as an analog to
a possible moon tour problem in the solar system context.

This paper is organized as follows: first, the problem posed in the SpOC, along with the modified
MGA-1DSM, are introduced. This is followed by a discussion of the uncovered intuitions into
this type of tour, along with heuristics developed to reduce the problem complexity. Thirdly, some
of the optimization techniques devised for this problem are introduced. The results found for the
Trappist-1 tour are then reported. Finally, concluding remarks are presented.

PROBLEM DESCRIPTION

The problem consists of designing a tour of the seven planets of the Trappist-1 system, minimiz-
ing both the total ∆V consumption and TOF. The order in which the planets are to be visited
referred to hereafter as the sequence, as well as the corresponding trajectory, dictated by vari-
ables such as the times of flight and fly-by geometry, is to be determined. This is formulated as
a modified MGA-1DSM problem, provided by the organizers. Since the problem has two objec-
tives, the scoring between competitors is done based on a hypervolume with the reference point at
∆V = 2500m/s and TOF = 4000 days.

Table 1 gives the main parameters of the problem, and Table 2 shows the given information of the
Trappist-1 system. It is noteworthy that these planets have very short periods, making the Trappist-1
system comparable to the Jupiterian and Saturnian moon systems.

Overview of Modified MGA-1DSM

The modified MGA-1DSM problem begins the tour at a prescribed distance far from the star as
well as its planets, at Rstart = 10AU, with a prescribed speed of Vstart = 104m/s, at a reference
epoch Tref . This may be understood as starting the tour at the sphere of influence (SOI) of the
Trappist-1 star. The actual starting position vector, Rstart, may be chosen anywhere on this sphere
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Table 2: Orbital elements at reference epoch of planets in the Trappist-1 system data considered for
the SpOC problem

Index Body a, km e i, deg Ω, deg ω, deg M , deg µ, km3/s2

0 b 1,726,412 4.55e-03 1.100 238.359 126.222 33.410 5.42117394e+05
1 c 2,364,738 1.08e-03 1.300 221.022 80.780 -89.795 5.16943538e+05
2 d 3,331,123 6.24e-03 0.500 90.265 147.445 -28.385 1.53814412e+05
3 e 4,378,053 5.77e-03 0.300 344.160 135.094 45.002 2.74488719e+05
4 f 5,760,326 8.61e-03 0.010 171.427 179.829 -145.164 4.12597189e+05
5 g 7,006,907 4.00e-03 1.200 166.633 25.312 12.599 5.24878452e+05
6 h 9,262,180 3.78e-03 2.300 282.809 176.197 -12.121 1.27946920e+05

within a latitude of ±30 deg. Then, the initial leg of the tour is a Lambert-leg, connecting Rstart at
the initial epoch t0 with the position vector of the first planet of the sequence RP0 with a chosen
time of flight TOF0. The associated cost with this initial leg is computed by

∆V1 = V L0
1 − Vstart (1)

where V
Lj

k with k ∈ [1, . . . , 7] and j = [0, 1] denotes the velocity magnitude of the kth Lambert
leg at the beginning (j = 0) or end (j = 1) of the leg. Note that this expression assumes the initial
velocity vector V start can always be aligned with the post-maneuver velocity vector direction. Fol-
lowing the arrival at the first planet, the remaining 6 legs to visit the 6 remaining planets following
the original MGA-1DSM formulation. All Lambert legs are assumed to have less than a single
revolution and to be counter-clockwise.

The decision vector consists of both continuous variables xc and integer variables xi. The integer
variables are

xi = [s1, s2, s3, s4, s5, s6, s7] (2)

which corresponds to the order of the visited planets. The continuous variables are given by

xc = [xleg 0,xleg 1,xleg 2,xleg 3,xleg 4,xleg 5,xleg 6]

xleg k =

{
[u, v, T0] if k = 0

[βk, ξp,k, ηk, Tk] if k = 1, . . . , 6

(3)

The starting position vector is constructed from xleg 0 via

Rstart = Rstart
[
cosϕ cos θ cosϕ cos θ sinϕ

]T (4)

where
θ = 2πu

ϕ = arccos (2v − 1)− π

2

(5)

Then, the first Lambert leg is then solved between Rstart and the position vector of the first planet,
given by s1, at epoch Tref + T0, with time-of-flight T0.

The consecutive MGA-1DSM legs begin with the planetary fly-by at the kth planet with a fly-by
radius rp,k given by

rp,k = ξp,kRk (6)
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where Rk is the radius of the planet, and a plane-orientation angle βk, resulting in an outgoing
velocity vk,out given by10

vk,∞ in = vk,in − V sk

efly-by = 1 +
rp,kv

2
k,∞ in

µsk

δfly-by = 2arcsin (1/efly-by)

vk,∞ out = ṽk,in

[
cos(δk )̂i+ cos(βk) sin(δk )̂j+ sin(βk) cos(δk)k̂

]
vk,out = V sk + vk,∞ out

(7)

where the unit vectors are given by

î =
ṽk,in

ṽk,in

ĵ =
î ∧ V sk

∥̂i ∧ V sk∥
k̂ = î ∧ ĵ

(8)

and the incoming velocity vk,in is obtained from the previous leg, and V sk is the planet’s velocity
at the encounter epoch; note that the fly-by is assumed to be instantaneous, resulting in a discrete
change in spacecraft velocity. During the fly-by, the spacecraft flies on a hyperbolic orbit with
eccentricity efly-by and turn-angle δfly-by. The post-fly-by spacecraft state is propagated by a time
of flight ηkTk. Finally, a Lambert problem is solved to connect this propagated position with the
position of the next planet in the sequence, sk+1, at the next encounter epoch Tencounter,k+1, given
by

Tencounter, k+1 = Tref +
k∑

i=0

Ti (9)

with a time of flight (1− ηk)Tk. In effect, this results in a velocity discontinuity of magnitude ∆Vk

at epoch

TDSM, k = Tref +
k−1∑
i=0

Ti + ηkTk (10)

which corresponds to the DSM of this leg.

Optimization Problem Formulation

The resulting optimization problem is multi-objective mixed-integer nonlinear programming (MO-
MINLP), given by

min
xc,xi

∆V,TOF

s.t. hsequence(xi) = 0

gperiapsis(xc,xi) ≤ 0

(11)

where xc is the vector of continuous decision variables, and xi is the vector of integer decision
variables. The objectives are given by

∆V =
7∑

k=1

∆Vk (12)
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Table 3: Bounds on optimization variables

Variable Lower bound value
¯
(·) Upper bound value (̄·)

u 0 1
v 0.25 0.75
T0 5 2000
β 0 2π
rp 1.1 100
η 0.001 0.999
Tk 5 2000

TOF =
7∑

k=1

Tk (13)

The equality constraint hsequence is to ensure that each planet is visited exactly once, and is given by

hsequence(xi) = |{xi}| − 7 (14)

which requires the set of xi to be size 7. The inequality constraint gperiapsis is to ensure the periapsis
of the spacecraft trajectory is at all times above a given threshold radius rcrit from the star, and is
given by

gperiapsis(xc,xi) = rcrit −min
k

(rmin,k) (15)

where rmin,k is the periapsis with respect to the star during the kth leg. Practically speaking, this
means that for each leg, the periapsis of the spacecraft immediately after the fly-by and immediately
after the DSM must both be checked, and the smaller value is taken as rmin,k.

If the sequence of the tour is fixed, the problem reduces to multi-objective nonlinear programming
(MO-NLP), given by

min
xc

∆V,TOF

s.t. gperiapsis(xc) ≤ 0
(16)

By removing the integer variables, a large set of efficient algorithms for MO problems can be ap-
plied, hence allowing the identification of optimal, albeit likely local, solutions. If the objective is
unified via aggregation, the problem can be further reduced to a single-objective nonlinear program-
ming (NLP),

min
xc

w1∆V + w2TOF

s.t. gperiapsis(xc,xi) ≤ 0
(17)

Of course, the weight parameters can be expressed as a single scalar ratio w1/w2 as well.

PROBLEM ANALYSIS

Insights have been found through a preliminary analysis of the problem. In this section, we
comment on the observations made on the decision variables, the overarching types of tour that we
aim to find, and the fly-by sequences.
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Bounds on Decision Variables

While bounds are provided on the decision variables of the problems, tighter bounds around
ranges of known optimal values would help metaheuristic algorithms reach competitive solutions
faster. This must be done with caution in order to avoid restricting the search in unfavorable ways,
where potentially good solutions would be omitted.

Tour Orbital Plane and Variable v Changing the orbital plane either through fly-by’s or DSMs
would involve using the effect of the fly-by or the ∆V maneuver itself to this end; it is possible to
reason that the least amount of orbital plane change should be conducted. Therefore, it is possible
to bound v further than the provided bounds in Table 3, such that the initial inclination of the
spacecraft is below the largest inclination among the Trappist-1 system planets. This corresponds
to an inclination of 2.3◦ of planet h, resulting in bounds on v ∈ [0.48, 0.52].

Bounds on Time of Flight of Initial Leg From the reasons mentioned later in Section., the initial
encounter planet is fixed to the inner planet b. Figure.1 shows the relationship between the initial
leg TOF and required ∆V sampled in the prescribed bound v ∈ [0.48, 0.52]. The required ∆V
of the initial leg is determined exclusively by the TOF, due to the geometry of the initial arc. Let
r1, r2 be the initial and final points of the initial arc. From Lagrange’s equation, the time of flight
is a function of semi-major axis a, the sum of the distances of the initial and final point from the
primary attractor r1 + r2, and the length of the chord c of the triangle having r1, r2 as sides, as
follows.

TOF = f(a, r1 + r2, c) (18)

In the given problem setting, we have r1 ≫ r2, and therefore r1 ≈ c, r1 + r2. r1 is also fixed to
10AU from the problem constraints, so r1+ r2 and c are nearly constant in our problem. Therefore,
from Eq.(18), the semi-major axis a and the energy of the initial arc is determined almost exclusively
by the TOF. The ∆V is determined by the difference in the (fixed) initial energy and the energy of
the initial leg, so it is also determined exclusively by the TOF. From Figure.1, we can see the total
∆V hits the minimum around the total TOF of 1500 days which creates a trade-off between TOF
and ∆V when TOF≤ 1500. Considering the orbital period of the first encounter planet is 1.25 days,
the phasing of the trajectory could be adjusted by slightly changing the initial TOF, and therefore
there is nearly no merit in setting the initial TOF substantially larger than 1500 days. From this
observation, we bounded the initial TOF to TOF ∈ [1350, 1500].

Types of Tour

The dual objective nature of the tour design problem may be understood as a management task of
the spacecraft’s energy and mission duration. Two possible philosophies have been hypothesized for
the tour, namely (a) one that aims at reducing the energy continuously throughout the tour, and (b)
another that initially reduces the energy and then sustains a similar energy level over the remaining
time.

The first type referred to hereafter as the Oberth-type, is the strategy of choice to prioritize the
minimization of the TOF. This is achieved by continuously pumping energy out of the spacecraft,
both through fly-by’s and maneuvers. The maneuvers should be placed near the periapsis of each
leg in order to leverage the Oberth effect. This type of tour would result in relatively low apoapsis,
which makes the adjustment of the orbital planes for successive planetary encounters more costly.

The second type, on the other hand, referred to hereafter as the VILT-type, is the strategy of choice
to prioritize the minimization of the ∆V . The idea behind this type of tour is similar to V-infinity
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Figure 1: Time of flight (TOF) vs required Delta-V for the initial leg. For each TOF, the parameter
u is sampled from 51 values in the range [0, 1], and v is sampled from 5 values in the range [0.48,
0.52]

leveraging transfers (VILTs), where only minor corrective maneuvers are placed near the apoapsis
in order to adjust the orbital plane and/or phase for the next planetary encounter. In this type of tour,
the reduction of the spacecraft energy is less aggressive, hence the apoapsis remains higher than the
Oberth-type. While this causes the TOF to be longer, the higher apoapsis is beneficial for keeping
the orbital plane adjustment cost low.

Figure 2 shows the time-history of the spacecraft energy of the solutions found for the Trappist-1
tour problem. The wide variation in energy over time illustrates the existence of the Oberth-type
tours, VILT-type tours, as well as concessions of the two types.

Fly-by Sequence Considerations

For both types of tours, conducting a fly-by that provides a bigger change in energy sooner is
preferable, as it enables the tour to profit from the lowered energy for a longer duration. Looking
at Table 2 it is possible to observe that the planets have values of µk that vary by up to about 4
fold. In particular, planets b, g, and c have the largest µk in descending order. The effectiveness of
a fly-by is however not only determined by the value of µk of the planet, but also by the distance
of the planet from its host star, as well as the closest fly-by radius at which the spacecraft can fly.
Furthermore, due to the need for phasing, it is noted that the sequence corresponding to decreasing
fly-by efficiency is not necessarily the optimal sequence.

Metric of fly-by efficiency The efficiency of the fly-by comes from the ability of a planet to
“bend” the path of a spacecraft; in effect, this is embodied by the eccentricity of the fly-by hy-
perbola within the sphere of influence of the flyby body, which we seek to bring as close as possible
to 1. Note that a decrease in eccentricity also results in a longer time of flight within the sphere of
influence of the planet, but this is still assumed to have a negligible effect on the total time of flight
of the tour due to the high energies associated with the spacecraft as it conducts fly-by with respect
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Figure 2: History of energy after each fly-by and maneuver for the Trappist-1 tour problem.
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Figure 3: Simplified fly-by analysis for computing the maximum change in kinetic energy obtain-
able from a fly-by with the kth planet.

to the planets.

To arrive at a heuristic metric for evaluating the efficiency of conducting a fly-by at a given
planet, we consider fly-by’s of the spacecraft on an elliptical orbit whose periapsis corresponds to
the semi-major axis of the innermost planet RP0 , as illustrated in Figure 3.

Assuming all planets are on circular orbits and are coplanar with the spacecraft’s ellipse, for a
given apoapsis rA, the interplanetary velocity magnitude vk,in and flight path angle γ of the space-
craft prior to its fly-by at the kth planet, where k ∈ {1, . . . , 7}, are obtained from the Keplerian
relations

vk,in =

√
µ

(
2

RPk

− 1

rA +RPk

)
(19)

where RPk
represents the semi-major axis of planet k, and

γ = arctan

(
e sin f

1 + e cos f

)
(20)
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where e and f are respectively the eccentricity and true anomaly of the interplanetary trajectory of
the spacecraft prior to fly-by, given by

e =
rA − rP
rA + rP

=
rA −RP0

rA +RP0

(21)

cos f =
1

e

(
a(1− e2)

RPk

− 1

)
(22)

Note again that the periapsis of the spacecraft’s interplanetary trajectory rP is assumed to coincide
with the semi-major axis of the inner-most planet rather than the fly-by planet of interest. Using the
interplanetary velocity magnitude vk,in and the flight path angle γ, the V-infinity magnitude of the
spacecraft in the frame of reference of planet k is given by

vk,∞ in =

√
(vk,in cos γ − VPk

)2 + (vk,in sin γ)
2 (23)

where VPk
=

√
µ/RPk

is the velocity magnitude of planet k, for which a circular orbit has been
assumed. Then, from basic analyses of velocity diagrams, the change in kinetic energy of the
spacecraft in the interplanetary frame of reference is given by16

∆Ek =
2VPk

vk,∞ in cosα

1 +
rp,kv

2
k,∞ in

µk

(24)

where α is the angle between the planet’s velocity vector and the vector difference vk,∞ out−vk,∞ in.
Since the aim of the fly-by in the context of this work is to reduce the energy of the spacecraft, the
minimum value of ∆Ek can be obtained when α = π, and the fly-by radius rp,k is set at its lowest
possible value.

Figure 4 shows values of ∆Ek for all seven planets k ∈ {1, . . . , 7} with varying values of the
spacecraft’s interplanetary apoapsis rA. Effectively, by visiting the planets in decreasing order of
|∆Ek|, we are achieving the theoretically optimal sequence of fly-by from the sole point of view of
reducing the energy of the spacecraft as early in the tour as possible.

Down Selection of Fly-by Sequence Based on the provided information on the planets, the in-
nermost planet provides by far the largest kinetic energy change. Since the first leg can be started
from any location at 10 AU, phasing does not become an issue either. Also, for this initial fly-by, in
particular, both the Oberth-type and VILT-type tours need to reduce the spacecraft energy, Hence,
planet 0 makes for a good candidate as the first fly-by planet.

Subsequent planets may also be fixed following a similar argument, however, phasing constraints
make this choice more nuanced. As a strategy, we initially only froze the first planet and permuted
the remaining 6, but eventually reduced the permutation of to be only for the last 4 planets, fixing
the first three planets to the sequence [0, 1, 5], following a decreasing order in ∆Ek.

OPTIMIZATION TECHNIQUES

In an attempt to obtain a diverse Pareto front, the tour problem is solved by fixing the fly-by
sequence based on the considerations previously introduced and applying various techniques to
further improve the search process. This is repeated for all combinations of promising sequences.
The initial solution is sought through the use of metaheuristic algorithms organized in the so-called
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Figure 4: Values of ∆Ek for increasing apoapsis radius rA. The optimal energy reduction sequence
via fly-by alone is [0, 1, 5, 4, 3, 2, 6].

archipelago paradigm,15 where different algorithms can evolve independently in parallel while also
sharing solutions at certain intervals.

Due to the difficulty of phasing and encountering planets at the right timings, it has been found
that improving the TOF of a given solution is extremely challenging. In contrast, the ∆V could
be reduced with relative ease through small adjustments of the fly-by parameters or DSM location.
We refer to this latter process as “boosting” a given solution. Specifically, we introduce a sliding
algorithm that takes triplets of planets at a time and optimizes the two arcs between them, which we
call triplet boosting.

In this section, we first provide a brief discussion on the application of metaheuristic techniques
relevant to generating promising solutions. Then, we introduce the triplet boosting scheme.

Overview of Metaheuristics Techniques

Extensive use of the pygmo library17 has been made to use the archipelago architecture with a
combination of various metaheuristic algorithms. The archipelago is particularly useful as it allows
for different algorithms to be dispatched at once when there is no prior insight as to which algorithm
is best suited for the problem at hand. In fact, Izzo et al15 report performance improvements in many
test problems when the “migration” operation, where the best solution obtained from one algorithm
is inserted in the solution pool of another algorithm, is allowed.

As discussed in the Problem Description Section, the original problem is a constrained, MO-
MINLP, for which no effective algorithm exists. Typically in the context of using metaheuristics, vi-
olation of constraints may be added to the objective function as large penalty terms, thus converting
the problem to be unconstrained. Even then, unconstrained MO-MINLP remains difficult to solve.
We have performed a few experiments on a MO-MINLP formulation using the Non-Dominated
Sorting GA (NSGA2)18 and the Multi-objective Hypervolume-based ACO (MHACO),19 but soon
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Figure 5: DBSCAN of pre-boosted solutions in terms of leg times of flight.

found that solving multiple continuous MO-NLPs, with fixed sequences at each instance, yields
better results.

MO-NLPs may also be solved with NSGA2 and MHACO, or also in addition the Multi-objective
EA with Decomposition (MOEA/D).20 However, we note that due to the aforementioned significant
difficulty in improving the TOF compared to improving the ∆V , we found that aggregating the two
objectives and using algorithms for NLPs is best suited to this problem. To solve the NLP, the Self-
adaptive Differential Evolution (saDE)21 and the Extended Ant Colony Optimization (GACO)19 are
used extensively.

Boosting solutions

Due to the nature of many-fly-by trajectory, finding the right timings of encountering each celes-
tial body is the major challenge; as such, once a solution is found, it has been found to be difficult to
obtain meaningful improvement on the time of flight, as the phasing of the planets are “locked-in”.
In contrast, improvements in ∆V have been far more likely to be possible, often by relocating and
fine-tuning the timing and direction of the maneuvers. Hence, a process internally referred to as
“boosting” has been devised to improve promising solutions, particularly in terms of the total ∆V .

DBSCAN in terms of Time of Flight In order to categorize the trajectories into families, DB-
SCAN in terms of times of flight of each leg has proven to be particularly useful at automatically
identifying families of trajectories. DBSCAN is a density-based data clustering algorithm first in-
troduced by Ester et al.22

Figure 5 shows an example of DBSCAN applied to a set of solutions with a fixed sequence. The
clustered solutions correspond to families of trajectories sharing similar directions of periapsis. The
best solution with respect to the ∆V from each cluster can then easily be identified as a candidate
for further improvement.
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Triplet Boosting We performed “triplet boosting” to update the timing of the deep space maneu-
vers and planetary flybys in an iterative manner to reduce ∆V locally while keeping the sequence
fixed and planet flyby and phasing constraints satisfied. Here, a ”triplet” is defined as a set of trajec-
tories that connects three planets, containing two deep-space maneuvers and an intermediate flyby,
as shown in Fig.6 and Fig.7.

Figure 6: Triplets of flyby planets. Five triplets are constructed from the seven-planet sequence.

Figure 7: Parameters of each triplet. The three variables colored in red are the variables that are
optimized and updated. The nine parameters that are colored in blue are the parameters that are
fixed during optimization (boundary conditions). Other parameters in black are the intermediate or
output variables. In the “Triplet Boosting” optimization, the first and fourth leg is constructed from
forward and back propagation from the boundary conditions, and the two middle legs are calculated
by solving the Lambert Problem.

The high-level procedure is described in Algorithm.1. For each triplet, we optimize two parame-
ters that determine the timing of the deep space maneuver (ηi, ηi+1) and the flyby time of the second
planet in the triplet (ηm) to minimize the ∆V for the two deep space maneuvers. During the opti-
mization, we constrain the initial and final conditions (position, velocity, time) of the triplet so that
the updated variables will not change the flyby trajectories outside the triplet.
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The optimization problem which is solved for triplet i is described as follows.

min
ηi,ηi+1,ηm

∆Vi +∆Vi+1

s.t.


ξi+1 ≥ 1.1

|ṽi+1,in| − |ṽi+1,out| = 0

0.001 ≤ ηi, ηi+1, ηm ≤ 0.999

(25)

Above, ∆Vi,∆Vi+1, ξi+1, ṽi+1,in, ṽi+1,out (see Fig.7 and “Problem Description” section for the de-
tails) are functions of the optimization variable ηi, ηi+1, ηm and the boundary constraints rsi , vi,out,
rsi+2 , vi+2,in, Tencounter,i, Tencounter,i+2. The procedure of this calculation is shown in Algorithm
2. Optimization is performed via Sequential Least Squares Programming (SLSQP) method in the
scipy.optimize function,23 and the initial guesses of the three η variables are calculated from the
solutions before boosting.

Algorithm 1 High level algorithm of triplet boosting

1: Given: xi,xc that satisfies constraint
2: Propagate trajectory and obtain Tencounter,j , rsj ,vj,in,vj,out for j = 1, . . . 7
3: for k = 1 : Niter do ▷ Iterate several times
4: for i = 1 : 5 do ▷ For each triplet
5: ηi, ηi+1, tm ← Solve Optimization Problem (25) ▷ Objective and constraint are

calculated using Algorithm 2
6: Update ηi+1, Tencounter,i+1, rsi+1 ,vi+1,in,vi+1,out

RESULT ON TRAPPIST-1 SYSTEM

The trajectory search pipeline presented thus far has been applied for the Trappist-1 System tour
problem. This section reports on the Pareto front that has been found.

Figure 8 shows the 1000 Pareto front solutions with colors based on the sequences, and Figure
9 shows the same Pareto front solutions but colored in terms of values of specific design variables.
Firstly, it is possible to note that all sequences belonging to the Pareto start with the innermost planet
(planet 0), and 7 out of 8 of the best solutions’ sequences then transfer to planet 1. As for the third
planet, 5 out of 8 solutions utilize planet 5. This aligns with the order of the flyby-efficiency shown
in Figure.4.

Visualizing Selected transfers

From the Pareto front in Figure 8, the 8 circled solutions are selected and studied in further detail.
The trajectories are shown in Figure 10. There exists a difference in the DSM placement strategy
of the first two arcs among families: the fast families (e.g. sequence 0154362) conduct DSM near
the periapsis to reduce orbital energy, while families with smaller ∆V s conduct the DSM near the
apoapsis from the beginning (e.g. sequence 0243651), to achieve necessary plane breaking with
minimum effort. However, after the third flyby, every family performs ∆V near the apoapsis to
keep the total ∆V within the 2500 m/s upper bound constraint. From Figure 8 we also observe a
strong relationship between the initial arc TOF and the total ∆V : almost all trajectories with total
∆V below 1500 m/s have the initial TOF around 1500 days, which is energy effective as shown in
Figure 1.
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Algorithm 2 Computing the objective and constraint function of triplet boosting for triplet i

1: Given: rsi ,vi,out, rsi+2 ,vi+2,in, Tencounter,i, Tencounter,i+2 ▷ See Fig.7 for definitions
2: Variable: ηi, ηi+1, ηm ▷ Variables to optimize
3: tb ← Tencounter,i, tf ← Tencounter,i+2

4: tm ← tb + ηm(tf − tb)
5: rsi+1 ,vsi+1 ← PlanetEphemeris(oe(si+1), tm)
6: rDSM,i,v

DSM
i,in ← Propagate (rsi ,vi,out, ηi(tm − tb), µ)

7: rDSM,i+1,v
DSM
i+1,out ← Propagate (rsi+2 ,vi+2,in,−(1− ηi+1)(tf − tm), µ) ▷ Propagate

backwards in time
8: vDSM

i,out ,vi+1,in ← SolveLambert (rDSM,i, rsi+1 , (1− ηi)(tm − tb), µc) ▷ Lambert Problem
9: vi+1,out,v

DSM
i+1,in ← SolveLambert (rsi+1 , rDSM,i+1, ηi+1(tf − tm), µc)

10: ∆Vi ← |v+DV 1 − v−DV 1|
11: ∆Vi+1 ← |v+DV 2 − v−DV 2|
12: Objective: ∆Vi +∆Vi+1 ▷ Objective: Total ∆V
13: ṽi+1,in = vi+1,in − vsi+1 ▷ Pre-flyby V∞
14: ṽi+1,out = vi+1,out − vsi+1 ▷ Post-flyby V∞

15: δfb = arccos
(

ṽi+1,inṽi+1,out

|ṽi+1,in||ṽi+1,out|

)
▷ Compute deflection angle

16: rp,i+1 =
µsi+1

|ṽi+1,in|2

(
1

sin(0.5δfb)
− 1

)
17: ξi+1 =

rp,i+1

Ri+1

18: Constraint1: ξi+1 ≥ 1.1 ▷ Flyby radius constraint
19: Constraint2: |ṽi+1,in| − |ṽi+1,out| = 0 ▷ Ballistic flyby constraint

CONCLUSIONS

In this paper, findings from solving the dual-objective high-energy tour design have been reported.
While the problem is posed as a variant of the MGA-1DSM problem, the trajectory has a distinct
character from interplanetary fly-by MGA-1DSM trajectories due to the strong constraint of the
phasing between intermediate fly-by’s that is typical in a high-energy tour.

Both preliminary analysis on this class of problem that is based on analytical orbital mechan-
ics, as well as practical techniques for facilitating the multiobjective global optimization, has been
discussed. Notably, two types of transfers, coined as the Oberth-type and VILT-type, have been
hypothesized; then, expressions for arriving at the optimal fly-by sequence based on the obtainable
maximum change in kinetic energy have been derived. At the optimization stage, a combination
of archipelago paradigms for large-scale global optimization problems, coupled with a DBSCAN
process for pruning solutions and a boosting strategy that further optimizes the phasing between the
subsequent fly-by’s, has been proposed.

While some of the design decisions that were made, such as bounds on design variables, were
restricted by the problem definition of SpOC, the intuitions and approaches studied in this paper are
applicable to tour design problems outside of the competition.
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