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COSTATES FEEDBACK CONTROL FOR MASS-OPTIMAL
LOW-THRUST TRANSFERS

Yuri Shimane*, Dario Izzo†, and Koki Ho‡

Designing efficient low-thrust trajectories involves solving optimal control prob-
lems, which can be computationally intensive. One promising approach to tackle
this challenge is to use a neural network (NN) as a scheme for obtaining the con-
trol input that guides the spacecraft to its targeted orbit. This work explores the
use of a NN for learning the costates from the current and targeted states, which
can be used together with Pontryagin’s maximum principle and optimal control
theory to derive the control to provide a feedback loop for controlling the space-
craft. In effect, this is a policy approximation scheme, even though it does not
explicitly have the controls as its output. The proposed method is applied to a set
of orbits departing from near-ecliptic near-Earth object targeting the Earth’s orbit
for a mass optimal orbit transfer.

INTRODUCTION

Rapid construction of optimal low-thrust transfers is a central problem that arises in many mis-
sion design applications. For example, feasibility studies for near-Earth asteroids (NEA) typically
involve constructing trajectories to a large set of objects in the Solar system. Traditional approaches
for solving the optimization problem involved in low-thrust trajectory design are typically regarded
in terms of indirect or direct methods. Indirect methods involve leveraging optimal control theory
to construct a two-point boundary value problem (TPBVP) whose solution is the (local) optimal tra-
jectory. In contrast, direct methods convert the design task into a nonlinear programming problem
(NLP) with the states and the controls as variables at discrete times along the transfer. Both methods
have their unique advantages and disadvantages, but one common issue with these two approaches
is the fact that they involve numerically solving either a BVP or an NLP, with convergence being
dependent on having a good initial guess.

This can become problematic for example when conducting space architecture trade studies,
where large numbers of optimal or near-optimal trajectories must be evaluated. One approach to
tackle this challenge is to use feedback controllers and simply integrate the trajectory forward in
time with the controller in the loop. While simpler controllers working on linearized dynamics
struggle to perform well on the nonlinear two-body problem, Lyapunov controllers, such as the Q-
law studied by Petropoulos1–3 and later used by multiple works,4–7 provide an efficient framework
for designing sub-optimal transfers. The sub-optimality inherently comes from the feedback archi-
tecture and the use of pre-determined heuristic rules for thrusting or coasting at a given instance
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along the transfer. As a remedy to this drawback, Holt et al8 considered the use of reinforcement
learning (RL) to tune these heuristic rules according to the current state of the spacecraft.

The use of neural networks (NN) in the context of solving orbit transfer optimal control prob-
lems has seen increasing attention over the past few years.9–15 The NNs studied in these works,
commonly termed as Guidance and Control Network (G&CNET) can be categorized for learning
the value or the objective value,12 the initial costates,11, 14 or the control, also known as policy ap-
proximation.10, 12–15 The data sets in these works vary, but typically involve interplanetary orbits in
the vicinity of Earth’s orbit. For example, Li et al11 considered a data set of Earth-Mars transfers
and Earth-asteroid transfers, while Izzo and Öztürk12 used a data set of Earth-Venus orbit transfers.
While traditional trajectory design typically has to trade between open-loop optimization or sub-
optimal solution obtained from feedback form, an NN-based scheme is able to yield near-optimal
trajectories in a feedback form, hence providing a completely different paradigm for trajectory de-
sign.

Successful training of a NN requires a sufficiently large data set, which would be expensive to
generate if the optimal control problem was to be solved multiple times as TPBVPs. Meanwhile, if
the data set can be designed to contain trajectories within a boxed region in state space, the so-called
backward generation of optimal examples12 may be leveraged. This technique involves backward
propagation of states and costates that meet the transversality condition, thus generating an arbitrary
optimal trajectory via a simple numerical integration.

In this work, we propose a NN for learning the costates of mass-optimal low-thrust transfers
and use this as a feedback scheme for guiding the spacecraft. This is in effect an indirect policy
approximation, where the NN is combined with optimal control theory to obtain the policy. While
leveraging NN to learn the initial costates for solving time-optimal OCP with an indirect method
has previously been studied by Li et al,11 the primary use for the costates NN in this work is its use
as a feedback controller. This way, we can robustly obtain near-optimal trajectories, even with the
mass-optimal problem, which is known to have a much smaller convergence radius than the time-
optimal problem solved. This is enabled by the nature of our data set involving training samples
collected along many locations along multiple transfers, compared to Li et al’s dataset involving
only the initial costates of optimal transfers between single initial and final orbits, respectively.
Furthermore, if the theoretical, local optimal trajectory is sought, the costates NN can still be used
effectively to generate an initial guess. We also explore this avenue of application by formulating a
multiple-shooting approach to solve the indirect problem.

This paper is organized as follows: first, the orbit transfer problem, along with the relevant op-
timal control theory, is introduced. Then, the design of the neural network is discussed. This is
followed by a demonstration of the proposed approach using a data set based on NEOs. Finally, the
last Section provides conclusive remarks.

ORBIT TRANSFER PROBLEM AND PONTRYAGIN’S MAXIMUM PRINCIPLE

The orbit transfer problem consists of guiding the spacecraft from its initial state to a targeted
orbit; it differs from rendez-vous problem as we do not require the spacecraft to match the phase with
a particular target. In this work, the transfer problem is studied in the modified equinoctial elements
(MEE). As such, the target orbit is given by 5 of the slow MEE elements, x∗

oe = [p∗, f∗, g∗, h∗, k∗].
In this section, we start by introducing the two-body dynamics of the spacecraft in MEE. Then,
Pontryagin’s Maximum Principle (PMP) is discussed.
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Spacecraft Dynamics

It is convenient, in the process of deriving the optimal control problem, to express the dynamics
in terms of the perturbed and secular components; let xoe = [p, f, g, h, k, L] and define B(xoe) and
D(xoe) such that
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Then, the dynamics take the compact form

F (x,u) =

[
ẋoe

ṁ

]
=

[c1
m
B(xoe)u(t) +D(xoe)

−c2u(t)

]
(3)

where c1 is the maximum thrust, and c2 are the maximum thrust and the mass-flow rate given by

c2 =
c1

Ispg0
(4)

Pontryagin’s Maximum Principle

Consider the minimum-control problem with the cost index J given by

J =

∫ tf

0
L(x(t),u(t), t)dt =

∫ tf

0
[u− ε log [u(1− u)]] dt (5)

Here, ε is a homotopy parameter that can be gradually decreased from 1 to approach 0, and transition
from an energy-optimal problem to a mass-optimal problem. Figure 1 shows the optimal control
magnitude profiles for a sample orbit transfer problem with decreasing ε.

From optimal control theory, by adjoining the dynamics to the cost, the Hamiltonian H is given
by

H(x,λ,u) = L+ λTF (x,u)

= [u− ε log [u(1− u)]] +
c1
m
λTB(xoe)u+ λL

√
µ

p3
w2 − λmc2u

(6)

where L is the Mayer cost, λ ∈ Rn is the costates vector of the orbital elements, and λm is the
costate of the mass.

The costates dynamics are given by

λ̇ = −∂H
∂x

(7)
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Figure 1. Example of optimal control magnitude profile smoothing via homotopy parameter ε

The full expression for this derivative is provided in the Appendix of Izzo and Öztürk.12 From
Pontryagin’s Maximum Principle (PMP), the optimal control u∗ is given by

u∗ = argmin
u

H (8)

which is given by

u∗ = −u∗(t)
B(xoe)

Tλ

∥B(xoe)Tλ∥2
(9)

where the thrust magnitude u∗ is given by

u∗(t) =
2ε

2ε+ SF (t) +
√

4ε2 + SF (t)2
(10)

with the switching function SF (t) is given by

SF (t) = 1− c1
m
|B(xoe)

Tλ| − c2λm (11)

Transversality Conditions

For an orbit transfer problem, the five slow elements are targeted, while the final true longitude,
final mass, and final time tf are free. As such, the transversality conditions are

λL(tf ) = 0, λm(tf ) = 0, H(tf ) = 0 (12)

The optimal control problem can thus be posed as a boundary value problem (BVP) through the
indirect method, with the shooting function Φ : R8 → R8 given by

Φ(λ(0), tf ) =



p(tf )− p∗

f(tf )− f∗

g(tf )− g∗

h(tf )− h∗

k(tf )− k∗

λL(tf )
λm(tf )
H(tf )


(13)

Effectively, the variables λ(0) and tf must be chosen to satisfy Φ = 0.
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DATA SET PREPARATION

Training neural networks typically require large data sets, which may in some cases be pro-
hibitively expensive to generate. However, in the case of learning optimal trajectories, large data
sets may be generated efficiently through the so-called backward generation of optimal examples.12

At its core, this method is a data augmentation scheme, where a large number of optimal trajectory
data can be generated from a few pre-solved trajectories. The computational benefit is substantial, as
solving the optimal control problem in an indirect manner can be a cumbersome task, especially for
the mass optimal problem with ε → 0. In this section, the specific implementation of the backward
generation process that is used in this work.

Backward Generation of Optimal Examples

The data set is generated via two steps; initially, around 100 “seed” optimal trajectories are com-
puted between randomly sampled initial states x(0) and the target slow states x∗

oe from a pre-
defined set X . Then, the final states and costates of each seed optimal transfer are perturbed and
corrected to meet the transversality conditions (13). Finally, the new, perturbed states and costates
are propagated backward in time, where a sample is recorded at multiple points in time along each
propagation.

Seed Generation To design the seed optimal transfer, the indirect optimal control problem must
be solved. This is done via single shooting with equation (13) as the shooting function. A value of
ε = 1 is used to increase the radius of convergence. Then, ε is gradually reduced and the shooting
problem is resolved, using the previous solution as initial guess, until we arrive at a solution with
ε = 10−5.

Seed Perturbation Once a seed optimal transfer is obtained, we seek to modify its final states and
costates in such a way that the new pair of states and costates still obey the transversality conditions
(13). This resulting pair corresponds to the final targeted states and corresponding costates of an
entirely different optimal transfer than its seed.

Obtaining a new valid states-costates pair first involves perturbing the seed final states and costates;
this will, in all practical cases, violate the transversality conditions and therefore warrants a correc-
tive step. Note that in Izzo and Öztürk,12 the data set consisted of orbit transfers heading to Venus
orbit; hence, the target slow states were fixed, and the costates perturbation was chosen in such a
way that the transversality is satisfied. In contrast, in this work, since the final states are also to be
perturbed, a perturbation-correction scheme is necessary.

Let y∗
f ∈ R14 be the final states and costates of a seed optimal transfer. We initially perturb this

by

ỹ
(0)
f = y∗

f + δy

= y∗
f +

[
δp δf δg δh δk δL δλp δλf δλg δλh δλk 0 0

]T (14)

Note that δλL = δλm = 0 since the transversality conditions requires λL = λm = 0. Assuming
that the new optimal transfer sought has a target state that is moved by

[
δp δf δg δh δk δL

]
,

the only transversality condition that is yet to be satisfied is the Hamiltonian H(tf ) = 0. Let RH be
the residual of the Hamiltonian, given by the first two terms of H,

RH|y=ỹf
= [u− ε log [u(1− u)]] +

c1
m
λTB(xoe)u (15)
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Then, the aim is to correct the perturbations vector δy such that RH = 0. This is a multi-variable
root-solving problem with 12 variables (where λL and λm are dropped since they are fixed to 0) and
a scalar root. Hence, a minimum-norm update law given by

δỹ
(i+1)
f = δỹ

(i)
f −

(
DR(i)

)T [
(DR(i))(DR(i))T

]−1
RH

(
δỹ

(i)
f

)
(16)

where DR(i) is the Jacobian given by

DR(i) =
∂RH

∂δ̃yf

∣∣∣∣∣
y=y∗

f+δỹ
(i)
f

(17)

is used until RH ≈ 0 within a tolerance, set to 10−10. Note that the minimum-norm update is
beneficial in our case as it allows for the convergence to the closest local root from the initially
perturbed states and costates ỹ(0)

f .

NEURAL NETWORK DESIGN

The aim of this work is to design a NN that can be used as part of a feedback controller of the
spacecraft. Previous studies have looked into training a NN to learn the control inputs, namely
the thrust magnitude and the thrust direction, directly.9–13 As an alternative approach, this work
proposes learning the costates and leveraging optimal control theory to obtain the control inputs.

The proposed method has a few notable advantages; on top of being able to guide the spacecraft’s
path via feedback, the obtained trajectory’s optimality (13) can also be checked as the costates
history is obtained as well. Furthermore, the NN can be leveraged to generate an initial guess to
obtain the optimal trajectory via multiple shooting, by first obtaining a transfer via feedback, then
sampling a few points along the transfer as initial guesses for the control nodes.

Network Design

The network’s inputs and outputs, the loss function, and the overall structure of the network are
now described.

Inputs To predict the optimal control, the NN requires the current state of the spacecraft x ∈ R7.
In addition, if the NN is to be used for orbit transfers to various final orbits, the targeted slow states
x∗
oe ∈ R5 must also be included as inputs. Note that the true longitude L is a periodic variable, which

can become a nuisance when trying to learn the behavior of the dynamics. Intuitively, considering
the case where L is defined in the range [0, 2π], for some small ϵ, the behavior of the dynamics for
L ≈ ϵ and L ≈ 2π − ϵ is expected to be similar, even though the difference of L is close to 2π. To
avoid this issue, the true longitude may be expressed in terms of two auxiliary variables Lx and Ly,
both defined in [−1, 1], such that

Lx = cos(L), Ly = sin(L) (18)

and
L = atan2(Ly, Lx) (19)

By replacing L with Lx and Ly, the network input dimension increases by 1.
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Figure 2. Schematic for feedback controlled dynamics with costates-feedback controller

Outputs The outputs must give sufficient information with reasonable accuracy to recreate the
optimal control u. In this work, we design the NN to return the costates λ ∈ R7 that corresponds to
the inputs, from which the optimal control can be reconstructed via Pontryagin’s minimum principle.

Loss Function The choice of the loss function has a critical impact on the performance of the
neural network. Fundamentally, the regression process involves approximating the true value via
the prediction of the model; the mean-squared error (MSE) is

ℓMSE =
1

N

N∑
i=1

(zi − ẑi)
2 (20)

where z are the true and ẑ are the predicted values of the outputs. While not included in this
work, the use of additional terms such as the residual on the transversality condition may also be
considered, as was explored in Izzo and Öztürk.12

Network Structure A few network structure, along with activation functions, has been experi-
mented. As suggested by previous works, this type of application tends to require fewer hidden
layers than other, more complicated learning tasks.12 Here, we employ 3 fully-connected hidden
layers, each with 256 neurons, using a ReLU activation function.

Feedback Controller Scheme

The costates-feedback controller consists of using the NN indirectly to generate the control input
u. Specifically, the NN takes in the states as input and outputs the costates λ; through PMP, u
is determined by applying equations (9) and (10). Figure 2 shows the feedback architecture with
this controller. The black box at the top left is the NN, while the red PMP box corresponds to the
evaluation of the two aforementioned equations. Taking the state x and the control u, the state is
updated through the dynamics, and after each state update, convergence to the target is checked.
Note that although the costates are approximated at each time-step through the NN, it is never
propagated.

RESULTS

The proposed NN architecture is applied for orbit transfer problems to NEOs. Firstly, the training
data set is summarized. Then, the performance of the neural network for varying hyper-parameters
and the choice of architectures are summarized.

NEO data set

The data set used for this experiment consists of 28,054,626 training data and 7,013,657 testing
data. Figure 3 shows the distribution of the initial Keplerian elements from which optimal transfers
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Figure 3. Distribution of asteroid Keplerian elements in training data

Figure 4. Sample of 200 training orbits from which the spacecraft departs, targeting
the Earth’s orbit

to Earth, whose slow elements are given by


p∗

f∗

g∗

h∗

k∗

 =


0.99969
−0.00376
0.01628

−7.702× 10−6

6.188× 10−7

 (21)

Figure 4 shows the orbit of 200 randomly selected samples from the training data-set. As seen in
these two Figures, the considered data-set in this work consists of a relatively larger range in semi-
major axis and eccentricity and a relatively smaller range in inclination. We note that this small
inclination renders the data-set easier to learn, as the initial and targeted orbital planes are not too
far from being aligned.
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Table 1. Keplerian elements of test asteroid problem

SMA, DU ECC INC, deg RAAN, deg AOP, deg TA, deg

1.287430 0.213730 0.124686 -119.976687 -53.522961 229.592676

Figure 5. Example optimal transfer (guide) and costates-feedback-controlled transfer
(pink) to asteroid

Transfer Design Application

The trained network’s performance is tested for transfer problems to asteroids. As an example,
consider the transfer problem to a fictitious object with Keplerian elements given in Table 1. The
actual optimal transfer and the NN feedback controlled transfer are shown in Figure 5 and the time-
history of the costates, control magnitude, and 2-norm distance from the target elements (i.e. the
Earth’s elements) are shown in Figure 6.

The trained network is used to design transfers from a sample of 70,136 cases in the test data.
Among them, 96.6% of the cases arrived at the targeted semi-parameter p∗ within an error of 0.001,
or an offset of 1.495× 105 km. From these cases, Figure 7 shows the distribution of the final mass
and time of flight offset, as well as the 2-norm offset of the final spacecraft elements from the target
state x∗

oe.

CONCLUSION

In this work, the use of a neural network for learning mass-optimal orbit transfers has been
explored. The proposed network is able to bring the spacecraft from initial orbits that are not
restricted to a single orbit (such as that of a planet) to Earth with a success rate of over 95%.
Overall, the proposed framework provides an inexpensive approach that enables fast evaluation
of these optimal transfers; the data generation can be completed by simply solving initial value
problems by propagating arbitrary state and costate pairs that satisfy the transversality condition.
The neural network itself does not consist of many hidden layers compared and may be trained with
a moderate amount of time and hardware resources. Finally, the trained network may be used as a
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Figure 6. Time-history of costates, 2-norm offset from target elements, and control magnitude

Figure 7. Histogram of final mass, time of flight, and states offset among converged
cases, corresponding to 96.6% of the total test cases
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feedback controller, thus providing near-optimal transfers in a non-iterative manner.

The use of a neural network is particularly useful in contexts where a fast evaluation of approx-
imate low-thrust transfers forms the building block of a larger problem. Space logistics problems
such as crewed campaigns of deep space, on-orbit servicing, as well as complex trajectory design
challenges such as the Global Trajectory Optimisation Competition (GTOCs) are examples where
this type of tool may lend itself well.

It is noted that if exact optimal transfers that meet transversality conditions at a higher precision
are required, the neural network-based feedback control alone is inadequate. Nevertheless, since the
network is constructed to return the costates as opposed to the controls, it can be used to generate
initial guesses for indirect method-based trajectory optimization problems with an arbitrarily fine
temporal mesh.
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