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OPTIMIZATION OF EARTH-MOON LOW-THRUST-ENHANCED
LOW-ENERGY TRANSFER

Yuji Takubo*, Yuri Shimane†, and Koki Ho‡

This work proposes an optimization method for the novel class of lunar transfer
that leverages both low-thrust acceleration and weak stability boundary effects si-
multaneously. Such translunar orbits are aimed at filling the gap that exists in
conventional transfer options in the trade-off between the time of flight and mass
ratio. We first generate the candidates for the initial guess via backward propa-
gation from a cislunar periodic orbit. These trajectories are corrected into feasi-
ble solutions, then further optimized based on a multiple-shooting method with a
Sims-Flanagan transcription. The obtained transfer time of the solutions is around
45-70 days, which is almost half of the traditional ballistic transfers (90-110 days)
with a few percent increase in its propellant mass, showing a huge benefit of per-
forming the low-thrust propulsion in the Earth-Moon low-energy transfer.

INTRODUCTION

The cislunar domain is attracting government and private interest alike as the new frontier of
humanity’s permanent outpost in space. As the number of activities increases, traffic to the cislunar
space will become ever more frequent. Considering the complex cislunar activity as a logistics
problem,1–3 it is essential to have a multitude of transfer options, varying in time of flight, transfer
cost, and/or realizable spacecraft (S/C) architecture. There are, up to date, two major strategies
for designing impulsive transfers to the cislunar system: direct transfers and low-energy transfers
(LET). Both strategies may incorporate Earth-phasing orbits and lunar flybys, allowing for a more
flexible launch window and reducing the C3 requirement on the launch vehicle.

LETs, also referred to as ballistic lunar transfers (BLT), are of particular interest due to the lower
arrival specific energy with respect to the Moon compared to direct transfers.4–6 This results in
lower lunar orbit insertion (LOI) cost at the expense of higher translunar orbit insertion (TOI) cost,
which can be typically executed by the launch vehicle. The lower arrival energy is achieved by
leveraging the gravitational perturbation of the Sun, as shown in Fig. 1, where the time of flight
(TOF) ranges from 70 to 120 days.6, 7 While this long TOF, combined with the high apogee, renders
LETs unfavorable for crewed missions, such transfers are advantageous for robotic exploration
and/or cargo delivery. In the past year alone, NASA’s CAPSTONE mission, the Korea Pathfinder
Lunar Orbiter (KPLO) mission, and ispace’s M1 mission all utilized LETs.

In the context of low-thrust cislunar transfers, several works have leveraged invariant manifold
structures of Earth-Moon L1 libration point orbits (LPOs),9–11 which results in the spiral trajectory
family from the Earth. Other studies applied low-thrust propulsion systems to the lunar transfer

*Former Undergraduate Student, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332.
†Ph.D. Candidate, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332.
‡Assistant Professor, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332.

1



Figure 1: Influence of tidal forces over the S/C trajectory in Sun-Earth rotating frame.8

with indirect method12 or reinforcement learning-based approach.13 Multiple papers studied Earth-
Moon low-energy low-thrust transfers, however the primary usage of the low-thrust propulsion has
been limited to the lunar capture phase of the transfer.14, 15 Parrish considered the addition of ∆V
to the LET to the Earth-Moon L2 rectilinear Halo orbit (NRHO), while the application is limited
to the correction maneuver but not the overall optimal transfer with the propulsion system.16 To
support prosperous human activities in the cislunar region, it is preferable to have a wide range of
transfer options, trading off the transfer cost and TOF.8 It is evident that there is a gap in transfer
options between direct transfers and LETs.

The proposed work aims to uncover transfers of this “intermediate” range by introducing low-
thrust acceleration. This strategy essentially enhances the effect of the Sun-perturbation,17, 18 as
though the Sun had a greater gravitational acceleration; hence, this class of transfers is named
“enhanced low-energy transfers (ELET)”. The idea of integrating LET and low-thrust propulsion
to reach Earth-Moon L2 periodic orbits is examined by Scheuerle et al.,19 while the search of the
trajectory families is based on the correction scheme (i.e., natural parameter continuation).

The primary contribution of this paper is in the optimization method for this new type of transfer.
First, initial guess candidates are generated based on the grid search with the pre-determined policy
of the thrusting directions. Next, the collected initial guess candidates are corrected into feasible
trajectories that satisfy terminal conditions at the LPO and LEO. Finally, the corrected initial guesses
are used as initial guesses of the optimization that locally minimizes the TOF, providing the trade-off
of the added system mass and the reduced TOF. In order to perform the correction and optimization,
a multiple-shooting scheme based on Sims-Flanagan transcription (SFT)20 is developed.

PROBLEM DESCRIPTION AND OVERALL APPROACH

In this paper, the optimal control from the Earth’s parking orbit to the lunar periodic orbit is con-
sidered. The trajectory optimization problem for ELETs entails two important characteristics. First,
the trajectory is generated in the four-body system comprised of the Sun, Earth, Moon, and S/C.
The dynamics in this system are extremely sensitive, so the forward propagation and backpropaga-
tion of the dynamics, especially around the celestial bodies, would create a nonnegligible numerical
inconsistency. This motivates the tailored numerical method for efficient convergence of the cor-
rection and optimization. The second characteristic is that the S/C may exert low-thrust propulsion
in the dynamical system. Due to the continuous thrust policy, the optimal control problem with
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time-variant thrust is underlined in the problem. Moreover, such an optimization problem is highly
nonlinear and multi-modal, which raises another question about the search for a good initial guess
in order to reach the local optimum quickly.

The summary of the method that is developed in this paper is as follows:

• Dynamics and coordinate frame: bi-circular restricted four-body problem (BCR4BP) in the
Sun-B1 rotating frame.

• Initial guess candidate search: grid-search with backward propagation from the LPO.

• Correction from the initial guess candidate to a feasible initial guess: multiple-shooting based
on SFT, solved by a nonlinear optimizer (SNOPT21).

• Optimization: minimizing TOF, multiple-shooting based on SFT, solved by a nonlinear opti-
mizer (SNOPT).

In the following sections, each component that comprises the proposed method is elaborated.

DYNAMICAL SYSTEMS MODELING

When designing low-energy transfers in cislunar space, the effect of the Earth, Moon, and Sun
must all be taken into account. At the preliminary design stage, this is commonly done by either
patching the Sun-Earth circular restricted three-body problem (CR3BP) and Earth-Moon CR3BP
in a fashion similar to patched-conics design4, 22–24 or by considering the bi-circular restricted four-
body problem (BCR4BP).7, 25–31 In this paper, the BCR4BP is adopted to describe the S/C dynamics
in the Earth-Moon system, as it provides a more intuitive frame in which the trajectory of a LET can
be studied compared to the Earth-Moon rotating frame-based dynamics. This will be particularly
critical when defining heuristic thrust policies for generating initial guess candidates, which will be
discussed further in the subsequent section.

Normalization

The normalization (non-dimensionalization) of the length, mass, and time is performed to ensure
favorable numerical behavior. Let mE , mL, and ms be the dimensional masses of the Earth, Moon,
and Sun. The nondimensional parameters are summarized in Table. 1.

Table 1: Nondimensional parameters in the Sun-Earth-Moon system

Notation Definition Value
m∗ mE +mL 6.046× 106 kg
l∗ Earth-Moon distance 3.8475× 105 km
t∗ (one sidereal day) / 2π 4.06075× 104 s
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(a) Earth-Moon rotating frame (b) Sun-B1 rotating frame

Figure 2: Coordinate frames for BCR4BP

With the nondimensional parameters, the mass of the Earth, Moon, and Sun are scaled as follows:

µ1 =
mE

m∗

µ2 =
mL

m∗ = 1− µ1

µS =
ms

m∗ .

(1)

Note that due to the normalization, the Earth-B1 distance and Moon-B1 distance, where B1 is the
Earth-Moon barycenter, are equivalent to µ2 and 1− µ2, respectively. Additionally, we introduce a
parameter to express the distance between the Sun and Earth-Moon system as follows:

as =
(Sun-B1 distance)

l∗
(2)

Equations of Motion

There exist two prominent coordinate frames for the BCR4BP. One is based on the Earth-Moon
rotating frame that adds gravitational perturbation from the Sun, which is assumed to be rotating
around the Earth-Moon barycenter B1 in a circular manner. Assuming that the Sun-B1 rotation and
the Earth-Moon rotation are co-planar, the BCR4BP in the Earth-Moon rotating frame is presented
in Fig. 2a. The other approach is to consider the dynamics in the Sun-B1 rotating frame. Under
the coplanar assumption, the coordinate frame is shown in Fig. 2b. This coordinate frame further
assumes that the origin of the rotation is at the Sun but not at B2, which is the barycenter of the Sun
and B1; this assumption enables these two coordinate frames to be completely equivalent through
an adequate rotation.

Using the coordinate system of the rotating frame, the relationship between the second-order
derivative in the inertial frame and the synodic frame is written as

I

(
d2

dt2
r⃗

)
= b

(
d2

dt2
r⃗

)
+ 2ω⃗ × b

(
d

dt
r⃗

)
+ ω⃗ ×

(
ω⃗ × br⃗

)
=

F⃗

m
, (3)

4



where I(·) is the state representation in the inertial frame, and b(·) is that in the rotating frame that
shares the same origin with the inertial frame. Resolving this in the Sun-B1 rotating frame, the
coordinates of the S/C [x3, y3, z3] and their derivatives, the equations of motion become as follows:

ẍ3 = x3 + 2ẏ3 +
Fx

m

ÿ3 = y3 − 2ẋ3 +
Fy

m

z̈3 =
Fz

m
.

(4)

The vector components of the external force F⃗ resolved in the Sun-B1 frame are given by

Fx

m
= −µS

r330
x3 +

µ1

r331
[as + xE − x3] +

µ2

r332
[as + xL − x3] +

Tx

m

Fy

m
= −µS

r330
y3 +

µ1

r331
(yE − y3) +

µ2

r332
(yL − y3) +

Ty

m

Fz

m
= −µS

r330
z3 +

µ1

r331
(zE − z3) +

µ2

r332
(zL − z3) +

Tz

m

r30 =
√

x23 + y23 + z23

r31 =
√

(x3 − xE)2 + (y3 − yE)2 + (z3 − zE)2

r32 =
√
(x3 − xL)2 + (y3 − yL)2 + (z3 − zL)2

(5)

where the terms are ordered as Sun-gravity, Earth-gravity, Moon-gravity, and the acceleration by
the thrust in the Sun-B1 rotating frame [Tx, Ty, Tz]; rij is the scalar distance from point i to j,
where i, j = 0, 1, 2, 3 represents the Sun, Earth, Moon, and S/C, respectively; finally, m is the
spacecraft mass. The position of the Earth and Moon with respect to B1 is given by [xE , yE , zE ]
and [xL, yL, zL]. Under the assumption of coplanar BCR4BP, these coordinates are expressed as
follows: xEyE

zE

 =

−µ2 cos θM
−µ2 sin θM

0

 ,

xLyL
zL

 =

(1− µ2) cos θM
(1− µ2) sin θM

0

 , (6)

where θM is the Moon’s phase in the Sun-B1 frame, which is the Moon-B1 line with respect to the
x-axis in the Sun-B1 rotating frame, as shown in Fig. 2b. This is derived from the angular velocity
of the Moon around B1, ωM , as

θM = θM,0 + ωM t, (7)

where θM,0 is the Moon’s phase at the initial epoch. Note that the dependence of θM on time makes
the four-body dynamics a non-autonomous system. A comprehensive discussion of the dynamical
systems in the BCR4BP is summarized in.31

In addition to position and velocity, the evolution of mass is expressed in the following differential
equation:

ṁ = −Tmax

Ispg
τ, (8)
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where Tmax is a thrust magnitude, Isp is a specific impulse, g is the standard gravity, and τ ∈ [0, 1]
is the control throttle.

In the remainder of this paper, all trajectories are plotted in the Sun-B1 rotating frame with the
origin shifted to B1. Furthermore, the term quadrant refers to the one defined in this coordinate
frame, as shown in Fig. 3b.

INITIAL GUESS CANDIDATES GENERATION

The database of initial guess candidates is generated using heuristic thrust policies that are hy-
pothesized to “enhance” the LETs by reducing the TOF at the cost of some propellant expenditure.
Grid search is performed through the terminal state at the LPO, where the trajectories are propagated
in −t direction and filtered based on criteria that keep potentially-feasible Earth-Moon transfers.

Given the geometry of the LPO, the terminal position in the orbit rLPO can be defined by two
parameters: θM,LPO and ϕLPO. θM,LPO is the Moon’s phase at the arrival epoch. ϕLPO parameterizes
the phase in the LPO, defined as ϕLPO = tLPO/P ∈ [0, 1], where P is the period of the LPO, and
tLPO is the propagation time from a reference point. In this work, the orbit state in CR3BP that
is closer to the Earth among two intersections of the orbit and the x − z plane in the Earth-Moon
rotating frame serves as the reference point.

The terminal velocity vLPO is automatically defined based on the eigenvector direction of the
state transition matrix at rLPO that generated in CR3BP.9 Additional parameters ϵr, ϵv are defined,
which are the coefficients applied to the direction of the eigenvalues of the state transition matrix at
the given departure position in the orbit to generate the terminal states. Note that all trajectories are
propagated with the BCR4BP, so the given direction will not be on the surface of the exact invariant
manifold. However, the energetically-free insertion into the LPO due to the weak stability boundary
effect is reasonably expected by defining the vLPO in this fashion.

When generating the initial guesses, the maximum thrust is always applied to the S/C by default.
Assuming the existence of a thrust direction that reduces the TOF at any state, the thrust history of
the minimum TOF trajectory would also be close to full-throttle for the entire transfer. Therefore,
a well-informed initial guess of the thrust direction is available, maintaining full-throttle on the
low-thrust propulsion constitutes a rational conjecture.

Nevertheless, we pose two phases that the S/C coasts ballistically. First, the thrust is turned off for
a certain period before the arrival at the LPO. This way, the S/C can successfully leverage the weak
stability boundary effect and perform the energetically-free orbit insertion to the LPO. Additionally,
thrusting is not allowed during the Launch and Early Orbit Phase (LEOP). Thrusting in this period is
likely to be undesirable as the S/C performs the mission necessitate system checks. This constraint is
realized by turning off the thrust when the range of the S/C from B1 in the backpropagated trajectory
is shorter than the Moon-B1 distance; this phase corresponds to the launch from the Earth’s parking
orbit when propagating the dynamics in the forward direction. It is also worth noting that thrusting
in the LEOP is ineffective (except for a targeting maneuver) because the launch velocity is relatively
high and the S/C reaches the Moon’s semi-major axis in about 3 days; low-thrust propulsion would
not be able to apply enough ∆V in this short period of time.

Note that there are other methods to explore the solution space, such as natural parameter con-
tinuation.19 While it can present the evolution of the trajectory family from a chosen one, it is also
a non-trivial task to find such an initial trajectory to start with. Additionally, it is difficult to dis-
cuss the optimality of the obtained trajectory family, which is the primary reason this method is not
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adopted in this work.

Heuristic Thrust Directions

We develop four heuristics of the thrust direction policy to generate the initial guess candidates,
which effectiveness is compared in this work. In this subsection, the derivation of each thrust
direction and the rationale behind the selection of it is discussed.

Tangent to B1 The first policy considered is to apply the force in a tangential direction to B1.
In the Sun-B1 rotating frame, the S/C velocity is almost radial to B1 after the launch, and gradually
increases the tangential component as it approaches the LPO, which is represented as a circular
motion around B1. Additionally, the tidal force exerted on the S/C at apoapsis is nearly tangential
to B1. Based on this observation, the proposed policy was considered to be effective as this thrust
direction is augmenting the tidal force at the apoapsis in the second and fourth quadrants and sup-
ports the overall rotating motion of the S/C around B1. Therefore, the thrust direction is expressed
as

î
∗
= Sun-B1 rot.

(
ẑ× (rS/C − rE)

|ẑ× (rS/C − rE)|

)
, (9)

where ẑ = [0, 0, 1]T , and Sun-B1rot.(·) represents the state resolved in the Sun-B1 rotating frame.

Velocity direction in the Sun-B1 frame Another simple heuristic that can be considered is to
thrust in the direction that accelerates the S/C velocity at each moment. In spite of its simplicity,
the thrust direction aligns with that of the tidal force at apoapsis, which reduction of TOF can be
expected.

î
∗
= Sun-B1rot.

(
vS/C

|vS/C|

)
(10)

Maximization of Jacobi Constant Scheuerle et al. discussed the thrust direction from the per-
spective of energy.19 The increase in the instantaneous Jacobi constant in the Earth-Moon rotation
frame, which represents the energy in the Earth-Moon-S/C three-body system, is observed through-
out the transfer and the proposed thrust direction policy was to apply the thrust direction that maxi-
mizes it.

JC = 2U − (ẋ2 + ẏ2 + ż2) (11)

where U =
1

2
(x2 + y2) +

1− µ2

r13
+

µ2

r23
(12)

It is derived that the maximizing direction of the instantaneous Jacobi constant is the anti-velocity
direction of the S/C in the Earth-Moon rotating frame. Therefore, the thrust direction is expressed
as

î
∗
= argmax

γ,β

E-M rot.
(
dJCinst

dt

)
= − E-M rot.

(
vS/C

|vS/C|

)
, (13)

where E-M rot.(·) represents the state representation in the Earth-Moon rotating frame.

7



Tidal force Direction The final thrust policy is to apply the thrust along the Sun-perturbation
i.e., tidal force. The fundamental factor that realizes the Earth-Moon LET in the four-body problem
is due to this acceleration at the second and fourth quadrant in the Sun-B1 frame, as shown in Fig.
1. Hence, this thrust policy enhances the magnitude of the Sun-perturbation that is exerted on the
S/C. The tidal force applied to the S/C is expressed as follows:8

Ftidal =
µS

R3

[
R̂R̂T − I3×3

]
(rS/C − rE) (14)

where R is the Sun-Earth distance vector, R is its norm, and R̂ := R/R. Furthermore, rS/C and
rE are the S/C and Earth position vector, respectively. Therefore, the thrust direction is defined as
follows:

î
∗
= Sun-B1rot.

(
Ftidal

|Ftidal|

)
. (15)

OPTIMIZATION METHOD

Providing a feasible solution to an optimizer contributes to its convergence, especially for prob-
lems with sensitive nonlinear constraints. However, the initial guess candidates discussed in the
previous section have a wide range of periapsis altitudes, which are not strictly feasible. Therefore,
we first generate a batch of feasible trajectories via a correction process, followed by an optimiza-
tion step. Although the first correction process could be skipped if a good initial guess was obtained,
having this step not only provides a more efficient convergence of the optimization but also accom-
modates a broader exploration of the initial guess candidates. The following subsections elaborate
on the multiple-shooting scheme with SFT, and discuss the constraints and objectives of the opti-
mization problem.

Multiple-Shooting Method

The correction of the initial guess candidates and the optimization are done via a direct method;
trajectories are discretized into a finite number of arcs and converted to the parameter optimization
problem. In this work, a multiple-shooting scheme based on SFT is developed as shown in Fig. 3.
The design variable vector x comprises the following elements:

x = [xlr,xmid,xLPO]

xlr = [rlr,vlr,mlr, t1, t2, τ 2]

xmid = [rmid,vmid,mmid, t3, t4, τ 3, τ 4]

xLPO = [θM,LPO, ϕLPO, t5, τ 5]

τ j = [τ j1 , γ
j
1, β

j
1, ..., τ

j
k , γ

j
k, β

j
k, ...τ

j
n, γ

j
n, β

j
n], k ∈ [1, n].

(16)

First, rlr,vlr, and mlr describes the control node placed around the lunar radius. The forward propa-
gation from the LEO state could be extremely sensitive as the initial state is very close to the Earth.
This is alleviated by placing a control node relatively far from the Earth and then backpropagating
to the LEO state from it, which provides numerical stability and faster convergence of optimization.
Another control node is placed around the apoapsis with respect to the Earth to improve the conver-
gence, which states are described in rmid,vmid, and mmid. Finally, θM,LPO and ϕLPO define the LPO
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(a) Propagation directions, control nodes, and match points

(b) A sample initial guess candidate transcribed into the multiple-
shooting scheme. The yellow circle is the Moon orbit, the black
dot at the center is B1, and the exterior black circle is the Earth-
Moon L2. The center of x-coordinates is shifted to B1. The
quadrants are shown in Roman numerals.

Figure 3: Multiple-shooting method

state, as discussed in the previous section. In this formulation, the terminal mass of the S/C at the
LPO is set to be constant, therefore excluded from the design variables.

The throttle of the engine is parameterized by τ jk ∈ [0, 1], j = 2, 3, 4, 5 (i.e., T = τ jkTmax), and
γjk and βj

k represent the angles that determine the direction of the thrust, where n is the number
of segments allocated for each leg. Note that there is no τ 1 because the leg corresponding to t1 is
ballistic due to the LEOP, and for planar problems, βj

k = 0 holds. Finally, tj , j = 1, 2, . . . , 5 are
the norms of the propagation time assigned for each leg, as shown in Fig. 3a. Note that the final leg
with the transfer time t5 is divided into two different legs; the final arrival leg is ballistic, and the
remaining arc is a trusted arc. The predefined coasting duration is the same as the value used for the
initial guess candidate generation.

A sample trajectory transcribed from the initial guess candidate into the multiple-shooting scheme
is shown in Fig. 3b. The blue legs represent the ballistic legs, and the nodes represent the discretiza-
tion of the leg by multiple arcs. Even though the trajectory is reconstructed from the continuous
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trajectory, the positional error in the yellow and green leg is confirmed. This exemplifies the numer-
ical inconsistency of forward propagation and backward propagation.

Optimization Problem

The trajectory optimization problem is written as follows, using the aforementioned multiple-
shooting method:

min
x

J (x) (17)

such that ||rlr(−t1)||2 = rLEO (18)

(rlr(−t1)− rE) · vlr(−t1) = 0 (19)

[rlr(t2),vlr(t2),mlr(t2)] = [rmid(−t3),vmid(−t3),mmid(−t3)] (20)

[rmid(t4),vmid(t4),mmid(t4)] = [rLPO(−t5),vLPO(−t5),mLPO(−t5)] . (21)

First, Eq. 18 constrains the departure state at the Earth’s parking orbit to be at a certain altitude.
Additionally, Eq. 19 requires the departure state to be tangent to the Earth (and the parking orbit).
Eq. 20 and 21 enforce the continuation of the states at each break point, as shown in Fig. 3a.

Due to the pronounced nonlinearity of the dynamics, finding a feasible solution space for this
problem itself is already non-trivial. Hence, a generalized nonlinear optimizer SNOPT21 is adopted
for the correction process. A constant objective, low feasibility tolerance, and high optimality toler-
ance lead SNOPT to modify the design variables, which are originally infeasible, into the feasible
domain. Only constraints Eqs. 18 - 21 are considered in the correction process as the primary pur-
pose of this process is to generate a batch of feasible solutions that can serve as an initial guess for
further optimization.

It is of particular interest in this work to search for the minimum TOF transfer. Therefore the
objective for the optimization is set to J (x) = TOF =

∑5
i=1 ti. Note that the scaling of the

variables and constraints is critical for robust convergence in a sensitive solution space. For this
problem, we normalize the S/C mass based on the arrival mass to avoid the numerical instability if
it is normalized by m∗. As shown in the following section, even after this treatment, the normalized
S/C mass m̃ consumes its propellant in the order of 10−2, while the remaining states vary in the
order of 100. The variables are further scaled properly so that all variables and constraints fed to the
optimization solver have a similar order of magnitude.

RESULTS AND ANALYSIS

The collected batches of trajectories and optimized representative solutions are presented in this
section. As a case study, the transfer from LEO (rLEO = 6,875 km) to an Earth-Moon L2 Lyapunov
orbit with a period of 14.82956 days is considered; the properties of the orbit are summarized in Ta-
ble 2. Note that this leads to the entire problem being two-dimensional, and therefore βk

j = 0 ∀k, j
holds for the following discussion. Furthermore, the low-thrust propulsion system is assumed to
have Tmax = 0.4 N and Isp =2,500 s. Finally, the arrival mass at the LPO is set to mLPO =2,500
kg.

To make a bundle of initial guess candidates, the two-dimensional grid space of θM,LPO and ϕLPO
are generated, where θM,LPO is discretized by 60, and ϕLPO is discretized by 300; this leads to the
generation of 18,000 trajectories for each thrust policy. Additionally, the coefficients for the arrival
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x0 y0 z0 vx0 vy0 vz0 period stability index
1.122687986019680 0.0 0.0 0.0 0.1650993133797783 0.0 3.41036 618.761847

Table 2: Earth-Moon Lyapunov orbit parameter (normalized, coordinates are in Earth-Moon rotat-
ing frame (Fig.2a)).

velocity at LPO are set to ϵr = ϵv = 1e-5. The terminal coasting duration towards the arrival state
at the LPO is set to 10 days.

Among the generated trajectories, ones with the first periapsis radius to the Earth in 3,000 ≤
rp ≤30,000 km are kept as good initial guess candidates. Additionally, considering the realistic
launch direction, only trajectories with positive z-component of the angular momentum at their
periapsis states are preserved. This filters out the trajectories that are launched in the opposite
direction to the Earth’s rotation. Moreover, we allow the lunar flybys up to once right after the
launch and do not consider the trajectories that have flybys around at the arrival phase. Compared
to the lunar flyby a few days after the launch, ones that happen in the final few weeks of the transfer
have a much smaller relative velocity to the Moon, requiring the consideration of flyby in a multi-
body regime. The proposed transcription cannot handle this, and trajectory optimization with such
“slow” flybys is left to future research. Finally, the trajectories that have multiple apoapsides are
eliminated from the initial guess candidates because not only such a geometry is also not compatible
with this transcription scheme but the TOFs of the transfers are usually much longer.

Corrected Trajectory families

The trajectory families generated by the grid search and the following correction are shown in
Fig. 4. The color of the trajectories represents the TOF of the transfers. Note that these trajectories
no longer follow the exact thrust policies after the correction, while they retain the overall structure
of the families generated via the grid search. Various geometries of trajectories can be found in each
thrust policy.

First, trajectories that are corrected from the no-thrust policy (i.e., BLT) have TOFs in the range
of 90 to 110 days (Fig.4a), which agree with the values from past literature. On the contrary, all
feasible trajectories that use the low-thrust propulsion enjoyed a significant reduction in the TOF,
including the 45-day transfer for the shortest with the thrust in the max. JCinst direction (Fig. 4d).
Among the four thrust heuristics that we hypothesized, thrusting in max. JCinst direction clearly
outperforms the other options in terms of TOF. Trajectories that have less than 50 days of TOF are
only found in the max. JCinst direction and the tangential direction with respect to B1.

Another important observation is the emergence of the transfers which apoapsides lay on the first
and third quadrants in the Sun-B1 frame, which has not been observed to the best of our knowledge.
While these transfers do not leverage the natural dynamical system, the low-thrust propulsion is
resisting the disadvantageous tidal force direction in the first and third quadrants, which still leads
to shorter TOFs.

The launch and arrival properties of the obtained trajectories are presented in Fig. 5. First, a
widely distributed launch window is observed from Fig. 5a, being available at almost any time.
On the contrary, Fig. 5b shows that the distribution of the arrival geometry of the Sun, Earth,
and Moon is not uniform, where the transfers are almost prohibitive in 90 ≤ θM,LPO ≤ 135◦ and
270 ≤ θM,LPO ≤ 325◦. Fig. 5c combines the previous two plots and correlates the departure
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Moon angle θM,LPO and the arrival Moon angle θM,LPO. It is confirmed that the thrust policies are
insensitive to θM,LEO to reach a certain reachable θM,LPO.

The arrival state at the LPO is also an important metric from the mission design perspective
because diversity in the arrival state will expand the choices in its mission operation. Fig. 5d
represents the distribution of the solutions corresponding to ϕarr, the indicator of the phase in the
LPO when the S/C is inserted into it. We can observe that each thrust policy has a distinct range of
arrival points, where the ballistic transfers, transfers with max. JCinst direction and those with tidal
force direction prefer the first half of the LPO from the intersection of the orbit and x− z plane that
is closer to the Earth (i.e., y ≥ 0 in the Earth-Moon rotating frame), while the trajectories with the
tangential thrust to B1 and those with the thrust in velocity direction choose the second half of the
LPO as their arrival states.

Optimized trajectories from the representative solution points

The solutions with the minimum TOF from each thrust policy are chosen as representative tra-
jectories to validate the performance of the proposed optimization scheme. Fig. 6 presents the
distribution of the TOF and the departure mass normalized by the arrival mass (2,500 kg), m̃LEO,
which are the key objectives for the preliminary mission design; the minimum TOF solutions are
presented in white marks. A linear relationship between the TOF and mLEO is generally observed
because we enforced the S/C to full-throttle its thrust when generating the initial guess candidates.
Note that there are some exceptions for a number of trajectories with the thrust along the velocity
direction in the Sun-B1 frame and one trajectory corrected from the BLT. This is because the scat-
tered trajectories are corrected from the initial guess candidates with free TOF and m̃LEO, where
some of them converged to a trajectory that has drastically different geometry or thrust profile to the
corresponding initial guess candidate.

Fig. 7, 8, 9, and 10 illustrate the optimized representative trajectories with a thrust quiver and
the initial guess. The thick parts in the optimized trajectories represent the arcs where the thrust is
performed (i.e., τ jk > 0). Furthermore, the history of the in-plane thrust angle measured from the
x-axis of the Sun-B1 rotating frame is represented as γ̄. The in-plane thrust angle obtained from
the optimized trajectory is shown in the blue solid line, and the thrust angle corresponding to the
heuristic policy along the optimized trajectory is shown in the pink dotted line. Comparing the two
thrust angle histories, it is possible to study how much the optimized thrust policy is shifted from the
hypothesized heuristic trust direction. Finally, the in-plane thrust angle of the initial guess trajectory
is shown as the green solid line.

The values of TOF and departure mass of the corrected initial guess and the optimized trajectory
are shown in Table 3. First, all trajectories successfully converged with a lower TOF than that of
the corresponding initial guess, except for the one with the thrust along with tangential direction to
B1. This can be attributed to the multi-modal solution space, where the solution shifted to the other
local optima. As the optimization solver still exited with optimality while the shift in the TOF is
only less than 0.3 days, the entire solution space is considered to be highly multi-modal. Moreover,
since m̃LEO decreased after the optimization, the optimized solution is most likely shifted from
a local optimum that is on the Pareto front of TOF and m̃LEO, which has a slightly larger TOF
than the initial guess. Interestingly, the departure mass of all optimized solutions is decreased via
optimization. Since the original initial guess candidates are generated with the full-throttle low-
thrust propulsion, the decrease in TOF is considered to reduce the time of burn, resulting in a
smaller departure mass.
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Table 3: Optimizatoin results of the representative trajectories (min TOF solutions from each thrust
policy)

Thrust policy TOF, days m̃LEO

Tangent to B1
initial guess 49.691 1.0209
optimal 49.953 1.0184

S/C Velocity (Sun-B1 rot.)
initial guess 51.578 1.0217
optimal 50.125 1.0178

max. JCinst
initial 46.725 1.0193
optimal 45.746 1.0166

Tidal force
initial 52.105 1.0223
optimal 50.412 1.0184

Even though each trajectory falls into a different local optimum, several similarities in the (lo-
cally) optimal thrust policy can be discussed. First, all optimized trajectories decided to turn off the
thrust for the first few days even after the S/C passes the Moon’s semi-major axis. It is considered
that the thrust in the arc before the apoapsis does not contribute to the reduction of TOF. On the
contrary, the thrusts are added around and after the apoapsis, where the velocity of the S/C is much
smaller than right after the launch, for all optimized trajectories in the direction that enhances the
tidal force (Fig. 1). However, as illustrated in Fig. 10b, the optimal thrust direction completely
differs from the tidal force direction when the S/C enters the first and third quadrants. This is the
primary reason that the trajectories along with the tidal force are not necessarily the best heuris-
tic thrust policy with respect to the minimization of TOF compared to the thrust of max. JCinst
direction or that in the tangential direction to B1.

CONCLUSION

The trajectory optimization scheme for the low-thrust-enhanced low-energy transfer, ELET, in
the Sun-Earth-Moon system is presented in this paper. The three-staged process of initial guess
candidate search via grid search, correction process, and the final optimization successfully unveils
the new Earth-Moon transfer type whose TOF ranges from 45 to 70 days in compensation of a few
percent of the increase in mass. These transfers are locally optimal in the sense of minimum TOF
and disclose the potential for low-thrust propulsion-enhanced transfers to fill the gap in existing
translunar trajectory options in terms of TOF.

Augmentation of the low-energy transfer with the low-thrust propulsion will certainly contribute
to future activities in the cislunar domain, and further investigation for fast and efficient trajectory
design in such a complex dynamical system is expected. Also, fast approximation of such transfers
is critical for the integration of various transfer options into future space logistics problems. The
exploration of the various heuristic thrust policy in this work can enable their use for further trade
study and optimization of such transfers.
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[15] R. Epenoy and D. Pérez-Palau, “Lyapunov-based low-energy low-thrust transfers to the Moon,” Acta
Astronautica, Vol. 162, No. December 2018, 2019, pp. 87–97, 10.1016/j.actaastro.2019.05.058.

[16] N. L. Parrish, E. Kayser, S. Udupa, J. S. Parker, B. W. Cheetham, and D. C. Davis, “Ballistic lunar
transfers to near rectilinear halo orbit: Operational considerations,” AIAA Scitech 2020 Forum, 2020,
p. 1466.

[17] E. A. Belbruno and J. K. Miller, “Sun-perturbed Earth-to-Moon transfers with ballistic capture,” Journal
of Guidance, Control, and Dynamics, Vol. 16, No. 4, 1993, pp. 770–775.

[18] J. Kawaguchi, H. Yamakawa, T. Uesugi, and H. Matsuo, “On making use of lunar and solar gravity
assists in LUNAR-A, PLANET-B missions,” Acta Astronautica, Vol. 35, No. 9-11, 1995, pp. 633–642.

[19] S. T. Scheuerle, K. C. Howell, and D. D. C., “Low Thrust Augmentation for Ballistic Lunar Transfers,”
33rd AAS/AIAA Space Flight Mechanics Meeting, Austin, TX, 2023.

[20] J. A. Sims and S. N. Flanagan, “Preliminary Design of Low Thrust Interplanetary Missions,” AAS/AIAA
Astrodynamcist Specialist Conference, 1999.

[21] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP algorithm for large-scale constrained
optimization,” SIAM review, Vol. 47, No. 1, 2005, pp. 99–131.

[22] K. C. Howell and M. Kakoi, “Transfers between the Earth-Moon and Sun-Earth systems us-
ing manifolds and transit orbits,” Acta Astronautica, Vol. 59, No. 1-5, 2006, pp. 367–380,
10.1016/j.actaastro.2006.02.010.

[23] A. Zanzottera, G. Mingotti, R. Castelli, and M. Dellnitz, “Intersecting invariant manifolds in
spatial restricted three-body problems: Design and optimization of Earth-to-halo transfers in the
Sun–Earth–Moon scenario,” Vol. 17, 2012, pp. 832–843, 10.1016/j.cnsns.2011.06.032.

[24] R. Castelli, “Regions of prevalence in the coupled restricted three-body problems approximation,”
Communications in Nonlinear Science and Numerical Simulation, Vol. 17, No. 2, 2012, pp. 804–816,
10.1016/j.cnsns.2011.06.034.

[25] K. Yagasaki, “Sun-perturbed Earth-to-Moon transfers with low energy and moderate flight time,” Ce-
lestial Mechanics and Dynamical Astronomy, Vol. 90, No. 3, 2004, pp. 197–212.

14



[26] Y. Qi, S. Xu, and R. Qi, “Gravitational lunar capture based on bicircular model in restricted four
body problem,” Celestial Mechanics and Dynamical Astronomy, Vol. 120, No. 1, 2014, pp. 1–17,
10.1007/s10569-014-9554-7.

[27] Y. Qi and S. Xu, “Optimal earth-moon transfers using lunar gravity assist in the restricted
four-body problem,” Acta Astronautica, Vol. 134, No. January 2016, 2017, pp. 106–120,
10.1016/j.actaastro.2017.02.002.

[28] K. Onozaki, H. Yoshimura, and S. D. Ross, “Tube dynamics and low energy Earth – Moon trans-
fers in the 4-body system,” Advances in Space Research, Vol. 60, No. 10, 2017, pp. 2117–2132,
10.1016/j.asr.2017.07.046.

[29] N. Bosanac, A. D. Cox, K. C. Howell, and D. C. Folta, “Trajectory design for a cislunar CubeSat
leveraging dynamical systems techniques: The Lunar IceCube mission,” AAS Astrodynamics Specialists
onference, 2017, 10.1016/j.actaastro.2017.12.025.

[30] W. Bing-wei and L. Yin-shan, “Low-energy Lunar Trajectories with Lunar Flybys,” Chinese Astronomy
and Astrophysics, Vol. 42, No. 4, 2018, pp. 575–593, 10.1016/j.chinastron.2018.10.005.

[31] K. Boudad, Disposal dynamics from the vicinity of near rectilinear halo orbits in the Earth-Moon-Sun
system. PhD thesis, Purdue University Graduate School, 2019.

15



(a) No thrust (BLT) (b) tangential direction to B1

(c) velocity direction in the Sun-B1 frame (d) max. JCinst direction

(e) Tidal force direction

Figure 4: Feasible trajectories corrected from the initial guess candidates from each thrust policy.
All trajectories are plotted in the Sun-B1 frame. The yellow circle is the Moon orbit, the black dot
at the center is B1, and the exterior black circle is the Earth-Moon L2. The origin is shifted to B1.
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(a) TOF along with the departure geometry (θM,LEO) (b) TOF along with the arrival geometry (θM,LPO)

(c) Relationship between the departure and arrival
geometry

(d) TOF along with the arrival phase in the LPO
(ϕLPO)

Figure 5: Departure and Arrival properties of the obtained trajectories
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Figure 6: Relationship of the TOF and departure mass ratio for the corrected trajectories. Labels
correspond to the pre-correction heuristic thrust policies for the corresponding initial guess. White
markers indicate the minimum TOF solution for each thrust policy.

(a) Optimized trajectory and the initial guess (b) In-plane thrust angle history in the Sun-B1 frame

Figure 7: Optimized Earth-Moon transfer from the trajectory with thrust tangent to B1 (TOF:
49.953 days, m̃LEO : 1.0184)
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(a) Optimized trajectory and the initial guess (b) In-plane thrust angle history in the Sun-B1 frame

Figure 8: Optimized Earth-Moon transfer from the trajectory with thrust in velocity direction in the
Sun-B1 frame (TOF: 50.125 days, m̃LEO : 1.0178)

(a) Optimized trajectory and the initial guess (b) In-plane thrust angle history in the Sun-B1 frame

Figure 9: Optimized Earth-Moon transfer from the trajectory with thrust in max. JCinst direction
(TOF: 45.746 days, m̃LEO : 1.0166)
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(a) Optimized trajectory and the initial guess (b) In-plane thrust angle history in the Sun-B1 frame

Figure 10: Optimized Earth-Moon transfer from the trajectory with thrust in tidal force direction
(TOF: 50.412 days, m̃LEO : 1.0184)
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