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ABSTRACT 
The VIrtual Super Optics Reconfigurable Swarm (VISORS) mission is a distributed space telescope consisting of two 
6U CubeSats that utilize precision formation flying to detect and study the fundamental energy release regions of the 
solar corona. The inherent complexities and risks associated with two spacecraft operating in close proximity, as well 
as the unique restrictions of the spacecrafts’ design, make careful autonomous execution crucial to the success of the 
mission. To address these challenges, this paper outlines the development of the Hosted Software Application (HSA) 
flight software which manages the Guidance, Navigation, and Control (GNC) algorithms, the payload finite state 
machine, and the spacecraft and formation level fault management system. An overview of the HSA provides context 
for the motivation and requirements driving the design of the flight software system. The architecture of the HSA is 
presented and shown to be derived from the Mission Events Timeline (MET) for each of the relevant phases of the 
mission. Finally, this paper briefly discusses the software's implementation and test campaign.

INTRODUCTION 
As the overall number of space launches increases, the 
number of rideshare opportunities has also increased, 
directly contributing to the increase in CubeSat launches 
from under 100 cumulatively by 2013 to over 1800 by 
2022.1 Increased access to space has enabled many 
entities, such as higher education universities, to enter 
the small satellite development space. However, 
developing small satellites comes with many challenges, 
especially at the university level. Even though launch 
opportunities have decreased in cost, funding issues, 
along with a lack of overall experience and a high 
turnover rate of students, lead to projects that are rushed, 
lack redundancy, and lack adequate testing. These issues 
permeate to the subsystem level and affect their 
reliability and robustness.  

The lack of student experience and knowledge is 
especially apparent in flight software (FSW) 
development, as FSW is often considered a ‘black box’ 
due to how difficult it can be to develop. At the 
university level, the tools and framework to start writing 
FSW are often non-existent. This results in missions that 
have to develop tools and infrastructure before they can 
even begin development. This additional work further 
exacerbates the issues many small satellite missions face 
and leads to additional cost and schedule overruns. One 
way to mitigate this issue is to use software frameworks 
that provide much of the basic development tooling and 
design the software to be as simple, yet robust, as 
possible. Reducing the complexity of the design eases 
the burden on software developers but also simplifies the 
lives of mission operators who, more often than not, 

were not involved with the development of the FSW. As 
a result, spending a significant amount of time 
meticulously planning out a software design can 
decrease overall development time and help university-
level teams stick to their tight schedules.   

However, designing a FSW system from scratch is 
extremely difficult. For a formation flying mission, such 
as the one presented in this paper, the flight software 
architecture becomes even more complex as additional 
subsystems pertinent to formation flying are introduced, 
including formation level fault detection, inter-satellite 
link, relative propulsion, and distributed science 
instruments. The FSW must also handle any concurrency 
issues that arise when controlling two independent 
spacecraft that must work together, such as ensuring that 
both spacecraft do not have different formation state 
information. Instead of immediately diving into the 
specifics of the flight software itself, this paper 
highlights a design approach which first looks at the 
concept of operations (CONOPS) and mission events 
timeline (MET) for every phase of the mission. By first 
determining what each spacecraft needs to do to 
accomplish the goals of the formation, the specific tasks 
that the FSW must complete can be more granularly 
identified. This inherently leads to FSW requirements 
that drive how the software should be architected to 
complete those tasks.  

The goal of this paper is to illustrate the design of the 
Hosted Software Application (HSA) flight software on 
the VISORS mission. By discussing the development 
lifecycle of the HSA, this paper intends to serve as a 
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roadmap for students who may develop similar software 
systems for other formation flying or single spacecraft 
missions. First, an overview of the VISORS mission is 
given, with an emphasis on the aspects of the mission 
that the HSA manages. Next, an overview of the goals 
and requirements of the HSA is discussed. The paper 
then details how the design of the HSA was derived from 
the MET for each phase of the mission. Finally, the 
implementation and testing of the HSA are briefly 
discussed. 

VISORS MISSION OVERVIEW 
The goal of the VISORS mission is to detect and study 
the fundamental energy-release regions of the solar 
corona. The mission achieves its science goals with a 
distributed space telescope consisting of two 6U 
CubeSats, the Detector Spacecraft (DSC) and the Optics 
Spacecraft (OSC) as seen in Fig 1. The spacecraft buses 
are nearly identical commercial off the shelf (COTS) 
XB1 buses provided by Blue Canyon Technologies 
(BCT). The XB1 provides the spacecraft chassis, the 
main flight computer, the attitude determination and 
control (ADCS) system, and the ultra-high frequency 
(UHF) space-to-ground communication architecture. 
The rest of the spacecraft is comprised of the payload, 
including a cold-gas propulsion system (PROP), inter-
satellite communications hardware (XLINK), a payload 
avionics interface board (PAIB), and science 
instrumentation. Each of the payload subsystems was 
designed and developed by one of the 11 different 
institutions on the VISORS mission. VISORS is funded 
by the National Science Foundation (NSF) and was 
originally devised at the CubeSat Ideas Lab in 2019. 

 

Figure 1. CAD of Detector Spacecraft (left) and 
Optics Spacecraft (right)2 

The VISORS mission is officially classified as a 
technology demonstration mission, focusing on the 
design and development of novel technologies such as 
differential carrier-phase global navigation satellite 
system (GNSS) navigation, inter-satellite 
communications, and a cold gas propulsion system for 
high precision relative maneuvering.3,4 These 
technologies work together to enable the VISORS 
spacecraft to maneuver to a relative separation of 40 
meters during a science observation, the focal length 
required to obtain images of the sun in the He II 304 Å 
line, as shown in Fig 2. These novel technologies also 
enable the mission to meet its minimum science success 
goal of obtaining a single image of the sun in this He II 
304 Å wavelength with a resolution of 0.2 arcseconds.2 

The science instrumentation that enables these images 
are distributed across the two spacecraft.2 The OSC 
contains the extreme ultraviolet photon sieve optic which 
focuses incoming light onto the detector instrument 
located on the DSC. The OSC also contains a laser 
rangefinder (LRF) that is used for different purposes by 
the guidance, navigation, and control (GNC) algorithms 
and the science team on the ground. During an 
observation attempt, the GNC algorithms have the 
ability to autonomously use the LRF data to help control 
the formation into the observation alignment. After 
downlinking the LRF telemetry, the science team uses 
the timestamps on the ranging data to help inform their 
decision on which images they want to downlink. On the 
DSC, the detector instrument contains the Compact 
Spectral Image Electronics (CSIE) which controls the 
camera and processes the images before preparing them 

Figure 2. VISORS formation alignment during observation5 
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for downlink. While the science instrumentation differs 
between the two spacecraft, many of the payload 
subsystems are nearly identical. This design decision 
simplifies overall system development, as well as the 
spacecraft integration and test campaign.6 The VISORS 
mission is currently awaiting the delivery of flight 
payload subsystems and the DSC bus, shown in Fig 3. 
The integration and test campaign for both spacecraft 
will begin in the fall of 2023, with a projected spacecraft 
delivery date of July 2024.  

 

Figure 3. Detector Spacecraft during testing at BCT7 

GNC Overview 
At a high level, the GNC system on the VISORS mission 
has two goals. First and foremost, since VISORS is a 
formation flying mission, the GNC algorithms must 
ensure that the spacecraft avoid collisions. This is done 
passively through the design of the relative orbits and 
actively through preemptive collision avoidance 
maneuvers. The passive safety margin guarantees that 
the spacecraft will not collide for at least 2 orbits in the 
absence of maneuvers. The collision avoidance 
maneuvers aim to increase the relative separation in the 
radial-normal plane of the radial-tangential-normal 
(RTN) frame while introducing relative drift in the 
tangential frame. The second main goal of the GNC 
algorithms is to control the formation to millimeter-level 
position accuracy and micrometer per second-level 
velocity accuracy to ensure that the science instruments 
can take images that are in focus, on target, and have 
acceptable smearing. These GNC goals are captured in 
the VISORS mission objectives shown in Table 1 and 
discussed in more detail in Ref 3. 

Table 1. VISORS Mission Objectives (GNC-related 
objectives in bold) 

Identifier Objective 

MO-001 Capture and downlink coronal imagery to determine 
the existence of energy-release regions in the solar 
corona 

MO-002 Control formation to millimeter-level position 
accuracy 

MO-003 Inter-satellite communication link enabling 
autonomous maneuver planning 

MO-004 E/I-vector separation to enable passive collision 
avoidance and maintain near-proximity relative 
orbits 

MO-005 Propulsion systems for formation-keeping and 
reconfiguration 

Staying in a 40-meter relative separation formation 
configuration for the whole mission is risky and 
expensive from an energy and delta-v standpoint. As a 
result, the GNC algorithms have defined multiple orbit 
configurations that will occur over the course of the 
mission. These orbits are defined in Table 2. In addition 
to these pre-defined relative orbits, the spacecraft may be 
in a configuration with no relative orbit (for example 
during commissioning or after an escape maneuver). The 
design of the GNC algorithms is such that for all of these 
relative orbits, only one spacecraft is maneuvering at a 
time. The active spacecraft (the deputy) performs 
relative maneuvers about the passive spacecraft (the 
chief).  

Table 2. Mission Defined Relative Orbits 

Relative Orbit Description 

Science Orbit Ellipse with nominal relative separation of 40 
meters  

Standby Orbit Minimum relative separation of 200 meters  

Transfer Orbit Relative orbit trajectory to reconfigure the 
formation between the science and standby orbit 

CONOPS Overview 
The design of the mission concept of operations 
(CONOPS) was driven by the various mission-defined 
relative orbits described in the previous section as well 
as the constraints imposed by being a payload of the 
COTS XB1 spacecraft. The CONOPS can be separated 
into two main sections – the spacecraft state diagrams 
and the mission events timeline. The spacecraft finite 
state machines detail the logical conditions of the 
spacecraft and formation and define the entry and exit 
criteria of each state.8 On the other hand, the MET 
outlines the specific spacecraft and formation-level 
actions that occur during each phase of the mission. The 
VISORS MET's are discussed in more detail in a latter 
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section. For clarity, nomenclature related to the VISORS 
state machines is given in Table 3.  

Table 3. VISORS CONOPS Nomenclature 

Nomenclature Description 

Spacecraft 
Modes 

BCT defined states for the COTS XB1 
spacecraft 

Mission Modes VISORS specific states of the formation 

Subsystem 
States 

Individual ‘state’ of each payload subsystem 
(ON or OFF) 

Spacecraft Role Delineation of which spacecraft is the active, 
maneuvering, spacecraft and which one is the 
passive, non-maneuvering, spacecraft 

The first set of states for the VISORS spacecraft, the 
spacecraft modes, are shown in Fig 4. These modes are 
defined by BCT and are standardized for the XB1 
spacecraft. When the spacecraft is initially launched, it 
will boot up in Launch Mode and then autonomously 
transition into Sun Point Mode at the conclusion of a 30-
minute deployment timer. In Sun Point Mode, the 
spacecraft slews to point its solar panels toward the sun 
while only keeping BCT subsystems powered on. No 
payload subsystems are turned on until a ground 
command is given to put the spacecraft into Fine 
Reference Point (FRP) mode. In the event that the battery 
voltage drops below a critical threshold, the spacecraft 
will go into Survival Mode from either Sun Point or FRP 
modes for the sole purpose of charging its batteries. BCT 
restricts the payload to be off in Sun Point and Survival 
modes to prevent unnecessary power draws. This 
restriction, along with the fact that the BCT state 
machine cannot be modified, led to the creation of a 
second, mission-specific, state machine. 

 

 
Figure 4. BCT Defined Spacecraft Modes9 

When the spacecraft is in FRP mode, the payload 
operates within the constraints of the mode diagram 
shown in Fig 5. During the early phases of the mission 
while the ground operators are performing payload 
commissioning, the payload will stay in its preliminary 
operations mode. Once all preliminary operations have 
been completed, the spacecraft will transition into the 
first of three nominal mission modes, Standby. Since the 
GNC algorithms have defined three main relative orbits 
for nominal operations, it follows that each of these 
orbits correlates one-to-one with a payload mission 
mode. During a nominal science campaign, the payload 

will transition from Standby mode to Science mode via 
Transfer mode. The payload also contains two off-
nominal mission modes – Escape and Safe modes. If 
there is a collision risk, hardware payload fault, or 
software payload fault, the payload will transition into 
either the Escape or Safe mode, depending on the nature 
of the fault. If the payload first enters into the Escape off-
nominal mode, it will autonomously transition into Safe 
mode after an escape maneuver is performed. On the 
other hand, if the payload first enters Safe mode, it will 
stay in Safe mode unless it has to perform an escape 
maneuver (which would send it into Escape mode and 
then back into Safe). Note that the payload is not allowed 
to perform more than one escape maneuver in sequence 
in order to prevent the spacecraft from triggering 
maneuvers that could potentially further harm the safety 
of the formation. Ground operator intervention can 
restore the spacecraft’s ability to go into Escape mode as 
well as allow the payload to return to its nominal mission 
modes from Safe mode. This ensures that the spacecraft 
only return to nominal operations after a thorough 
analysis of what caused the spacecraft to enter Safe mode 
in the first place.  

 

Figure 5. Payload Defined Mission Modes 
In each of the payload mission modes, there is a 
parameterized configuration of payload subsystem 
states. This configuration defines which payloads are 
operational during each mission mode and ensures that 
no subsystem state is set to ON unless it is required in 
that mode. However, since VISORS is a formation flying 
mission, all payload subsystems except the science 
instrumentation are critical to maintaining the 
formation's relative configuration. As a result, most of 
the payloads will always be ON during every payload 
mission mode unless there is an off-nominal condition. 
In addition, if the spacecraft ever exits the FRP 
spacecraft mode all payload subsystems are powered off 
by BCT.  

HOSTED SOFTWARE APP REQUIREMENTS 
Each of the subsystems onboard the two spacecraft have 
hardware specific software systems to manage 
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subsystem level tasks. This simplifies the overall 
software system of the spacecraft as there are now 
discrete software packages for each subsystem instead of 
one large software package for all subsystems. For 
example, the propulsion software is solely responsible 
for the command and telemetry interface for the 
propulsion hardware and firing thruster valves. 
Similarly, the CSIE subsystem is solely responsible for 
taking science observations. However, during the initial 
design of the VISORS mission, it was apparent that 
additional higher-level on-board software was needed 
for four reasons: 

1) To host the GNC algorithms 
2) To manage the payload finite state machine 
3) To monitor and respond to payload faults 
4) To communicate with all payload subsystems 

To meet the four goals shown above, the software system 
needed to interface with all payload subsystems. 
However, the only hardware subsystem that had data 
interfaces with all subsystems was the XB1 flight 
computer. Thus, it was decided that the additional 
software – the Hosted Software Application - would be 
hosted on an independent partition of the flight 
computer. The following sections detail the background 
for each of the four goals of the HSA and outline the 
level two requirements that are derived from those goals. 
These requirements help identify the various modules of 
software that are required for the HSA to perform its 
tasks.10 Aside from the requirements that come from 
these four goals, additional requirements are also 
outlined that stem from the HSA being a software 
payload on the BCT XB1 flight computer.  

HSA-GNC Interaction 
Due to the complex nature of the GNC software, it was 
determined from an early stage that the GNC algorithms 
should be a separate module of software from any other 
software system on the spacecraft. However, due to the 
computational and memory constraints of the 
microcontrollers on payload subsystems, the GNC 
algorithms needed to execute on a more capable 
processor. To avoid changing the design of any of the 
payload subsystems to include a more powerful 
processor, the BCT XB1 flight computer was chosen to 
run the GNC algorithms since it met the computational 
requirements. Since the XB1 can only support one 
payload software subsystem, the Stanford team delivered 
the GNC algorithm as a C++ library that can be compiled 
into the HSA executable. To enable this architecture, the 
HSA includes a module of software called the GNC 
Controller that provides any inputs that the GNC library 
needs and accurately responds to the outputs from the 
GNC library. The GNC Controller also enables the GNC 
algorithms to run on its own thread so that the tasks of 

the rest of the HSA never interfere with the run-time of 
the GNC algorithms. The requirements outlining the 
GNC interaction with the HSA are documented in Table 
4. 

Table 4. HSA Requirements related to the GNC 
Subsystem 

ID Requirement 

HSA-002 The HSA shall include the GNC library in the 
compiled executable. 

HSA-003 The HSA shall interface with the GNC library in 
accordance with the GNC ICD  

HSA-010 The GNC Library within the HSA shall run on its own 
thread. 

HSA-011 
 

All checksum validated data received by the HSA 
from the ISL shall be immediately forwarded to the 
GNC library.  

HSA-021 The HSA shall parse the information contained in the 
time at tone packet received from the BCT Bus and 
deliver it to the GNC Software library. 

VISORS Finite State Machine 
To manage the payload mission modes, spacecraft 
formation role, and subsystem states, the HSA includes 
a software module called the Payload State Machine 
(PSM). Since the mission mode and subsystem states are 
inherently tied together, only one software module was 
needed to control both items instead of separating control 
into distinct modules. For conciseness and simplicity, the 
spacecraft role – active or passive – is also managed by 
the PSM even though it is not directly tied to a mission 
mode or subsystem state (since either spacecraft can be 
active or passive at any point).  

The PSM can manipulate the modes, states, and roles of 
the spacecraft and formation in three different ways – via 
ground command, via predetermined nominal operations 
configurations, and via off-nominal fault response 
operations. Firstly, the PSM can always be commanded 
to change any modes, states, or roles via ground 
command. Regardless of what is occurring internally on 
the spacecraft, commands from the ground always take 
precedence over any autonomous actions. This decision 
was made so that ground operators could retain full 
manual control in case on-board autonomy did not 
behave as expected. Secondly, during nominal 
operations the PSM changes its modes based on 
interactions with the GNC Controller; once the GNC 
algorithms have transitioned between the various 
mission-defined relative orbits, the PSM will be alerted 
to change into the corresponding mode. During each of 
the nominal modes, the subsystem states are toggled 
based on the parameterized configuration that 
corresponds to each mission mode. During nominal 
operations, the spacecraft’s role does not change and is 
set to whatever the ground operators designated at the 
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beginning of the mission. Finally, the PSM can change 
any mode, state, or role via recommendations from the 
fault management system. Depending on the type of fault 
– collision risk, hardware fault, software fault – the PSM 
will change the mission mode, subsystem states, or 
spacecraft role.  

State machines on formation flying missions have 
another layer of complexity as the mission must decide 
how they want to address congruency in the states 
between the spacecraft. For the VISORS mission, 
congruency is achieved by ensuring that both spacecraft 
must always attempt to be in the same payload mission 
mode as the other spacecraft. This means that the 
spacecraft must always be interchanging their mission 
modes over the XLINK system. However, while 
symmetry in states between spacecraft is preferred, there 
are a few operational scenarios where the spacecraft are 
not in the same mission mode. For example, if the active 
(maneuvering) spacecraft goes into Escape mode the 
passive (non-maneuvering) spacecraft will automatically 
transition into Safe mode since it is not performing a 
maneuver. This ensures that both spacecraft do not 
perform escape maneuvers at the same time. The HSA 
requirements surrounding the PSM are found in Table 5.  

Table 5. HSA Requirements related to the Payload 
State Machine 

ID Requirement 

HSA-004 The HSA shall include a state machine to actuate 
mission modes and subsystem states in accordance 
with the Subsystem States Document. 

HSA-018 The HSA shall send commands to the PAIB to toggle 
power to payload subsystems. 

VISORS Fault Management Overview 
On most spacecraft, fault management systems are 
autonomous systems that strive to detect, isolate, and 
recover from any situations that upset nominal 
operations.11 These systems are often the products of 
failure modes and effects analysis that attempt to 
understand the different failure modes and what the 
resulting fallout would be for each scenario.12 For 
formation flying missions such as VISORS, additional 
failure modes must be considered such as the risk of 
collision between spacecraft. This additional failure 
mode results in a contingency operations architecture 
that must manage subsystem and formation-level 
faults.13 Since many of the subsystems on a formation 
flying mission are dedicated solely to enabling safe 
formation flight, subsystem level and formation level 
faults are often coupled, potentially complicating the 
autonomous fault response.  

To correctly diagnose and respond to faults on VISORS, 
the fault management system is split into two distinct 
software modules - Fault Detection (FD) and Fault 
Response (FR).14 The FD module on each spacecraft is 
responsible for monitoring the telemetry points from all 
subsystems on both satellites and determining if any of 
them have crossed their nominal thresholds. By 
monitoring which telemetry fields go out of bounds, the 
FD module can diagnose the problem and understand 
what caused it. The key to the diagnosis is the fact that 
the FD modules have full state knowledge on the health 
of each spacecraft and thereby the health of the 
formation. The main challenge for the fault detection 
module is that monitoring one telemetry point alone is 
often not enough information to deduce the health of a 
subsystem or the formation. Telemetry points from 
multiple different sources must be analyzed to 
understand whether the spacecraft is experiencing a fault 
and to determine the source of that fault.  

Once the fault has been diagnosed, the FR module must 
decide the appropriate action to take to mitigate the fault. 
On the VISORS mission, fault responses consist of 
combinations of a mission mode switch, a subsystem 
power cycle or shut down, or a spacecraft role switch. 
Role switches are included as a fault response to take 
advantage of the fact that both spacecraft have 
maneuvering capability. Thus, in the event of a failure of 
the propulsion system on one spacecraft, the formation 
has redundancy and can continue its operation by 
allowing the other spacecraft to assume the active role. 
Regardless of the fault diagnosis passed into the fault 
response module, the response is always chosen to be as 
conservative as possible. This keeps the logic simple and 
ensures that the spacecraft can make any required 
autonomous decisions to keep the formation safe, while 
also waiting for ground operators to handle more 
complex formation-level responses.14  

To support the fault management system, a few 
additional software modules are required. For example, 
since the telemetry packets from other subsystems come 
in as serialized data, a parser component – the Telemetry 
(TLM) Parser - is necessary to unpack each of the 
subsystem data packets. Since the parsing of packets is 
only necessary for the fault management system, the 
TLM Parser only deserializes the specific telemetry 
fields necessary for fault detection. After all desired data 
is received and unpacked, it must be stored in a database 
for later retrieval by the FD module. This database 
software module is named the Polymorphic (Poly) 
Database as it stores telemetry fields in their native type 
instead of in serialized form. The HSA requirements 
related to the fault management system are found in 
Table 6.   



Arunkumar 7 37th Annual Small Satellite Conference 

Table 6. HSA Requirements related to the Fault 
Management System 

ID Requirement 

HSA-005 The HSA shall include a Fault Detection and 
Response Block to monitor all fault scenarios 
specified in the Fault Analysis Matrix. 

VISORS HSA Communication Overview 
Since the HSA is hosted on the XB1 flight computer, its 
interface must comply with the specifications of the XB1 
spacecraft. The XB1 requires that all payload 
subsystems, including the HSA, communicate using the 
Consultative Committee for Space Data Systems 
(CCSDS) Space Packet Protocol. This protocol specifies 
that every software data packet contains at least a 6-byte 
header that contains packet version numbers, packet 
identification, packet sequence number, and packet data 
length.15 As a result, the HSA must have the 
functionality to frame any outgoing data packets and 
deframe any incoming data packets per the CCSDS 
protocol. This functionality is encapsulated in two 
different software modules – the CCSDS Framer and 
CCSDS Deframer.  

To route the data to the correct location during the 
framing and deframing step, each packet contains a 
unique packet identification number, often called the 
APID. To communicate digitally with the BCT Bus 
FSW, as shown in Fig 6, the HSA contains a software 
module - IPC Driver - that uses the inter-process 
communication protocol.16 The HSA requirements that 
relate to the software interfaces with the rest of the 
payload are listed in Table 7. 

 

 

Table 7. HSA Requirements Related to SW 
Interfaces 

ID Requirement 

HSA-008 The HSA shall send all generated telemetry to the 
BCT Bus radio downlink buffer using the interface 
specified in the BCT SW API. 

HSA-015 The HSA shall interface with the BCT FSW using the 
ports specified in the BCT SW API. 

HSA-016 The HSA shall adhere to the CCSDS Protocol 
Specifications specified in the BCT XB1 ICD when 
communicating with the spacecraft bus. 

HSA-017 The HSA shall adhere to the APID ranges specified in 
the BCT XB1 ICD (BUS-EC-001) for communication 
with other subsystems. 

Additional HSA Requirements 
In addition to the modules discussed above, several 
additional modules are necessary to provide basic 
embedded systems functionality. For the HSA to 
interface with ground operators, software modules to 
receive commands (CMD Dispatcher), send distinct 
fixed-size telemetry packets (Downlink Packetizer), 
configure parameters for the HSA software (Parameter 
Database), and log software event verification records 
(EVRs) (Event Logger) are included within the software 
executable. Additionally, the HSA includes software 
modules that enable a robust implementation and 
execution of logic such as modules for continuous 
execution loops of rate groups (Linux Timer, Rate 
Group Driver, Active Rate Group), data buffer 
managers (Buffer Manager & Static Memory), assert 
handling (Fatal Adapter & Fatal Handler) and time 
correlation based off of the XB1 system clock (Linux 
Time). Finally, the HSA contains a module - System 
Resources - to characterize the resource utilization of the 
HSA to ensure it stays under requirements HSA-012 and 
HSA-013 found in Table 8.  

 

Figure 6. Payload Subsystem Interface Diagram 



Arunkumar 8 37th Annual Small Satellite Conference 

Table 8. Miscellaneous HSA Requirements 

ID Requirement 

HSA-001 The hosted software application (HSA) shall compile 
into a single executable in accordance with the BCT 
SW API. 

HSA-007 The HSA shall generate a telemetry packet at a rate 
specified in the data budget. 

HSA-012 The HSA shall not take up more than 4 MB of 
program memory per BCT XB1 ICD (BUS-EC-001). 

HSA-013 The HSA shall not take up more than 60 MB of RAM 
per the BCT XB1 ICD 

HSA-014 The HSA shall have a method to determine which 
spacecraft it is running on. 

The complete list of the software modules found in the 
HSA is shown in Table 9. The breakup of scope between 
modules could have been done in multiple different 
ways, depending on the system architect. However, the 
guiding principle for this specific delineation of software 
modules was the separation of concerns philosophy. 
Separation of concerns states that the software system 
should be decomposed into modules that each discretely 
solve the different aspects of the problem.17 This 
principle lends itself well to the component-based 
architecture of the Fprime software framework, 
discussed in the next section.18 Additionally, as shown in 
Table 9, many of the modules were provided and built 
into the Fprime framework, reducing overall 
development time.  

Table 9. List of all modules in the HSA 

Component 
Name 

Description Development 
Type 

CMD 
Dispatcher 

Distributes commands to all 
components  

Built-In  

Parameter 
Database 

Store non-volatile parameters 
used by any component 

Built-In 

TLM 
Database 

Stores telemetry generated by any 
component  

Built-In 

Event 
Logger 

Log flight software ‘events’ for 
greater insight into the FSW 
execution 

Built-In 

Linux Timer Output a constant tick to the RG 
components at a specified time 
interval based off of the system 
clock 

Built-In 

Rate Group 
Divider 

Divide constant tick from linux 
timer into ticks for each rate 
group  

Built-In 

Rate Group 
Component 

Distribute rate group calls to other 
components at correct rate 

Built-In 

Linux Time Correlate software timestamps to 
system time 

Built-In 

Buffer 
Manager 

Manage memory allocation for 
components using dynamic buffer 
sizes 

Built-In 

Static 
Memory 

Manage memory allocation for 
components using fixed buffer 
sizes 

Built-In 

Fatal 
Adapter 

Intercept assert calls and log 
corresponding fatal events 

Built-In 

Fatal 
Handler 

Handle fatal events by delaying 
segmentation fault by one second 
to allow for fatal events to 
propagate to the ground system 

Built-In 

System 
Resources 

Track resource utilization of CPU 
and RAM 

Built-In 

Poly 
Database 

Store telemetry values from 
subsystems that pertain to fault 
detection 

Built-In 

CCSDS 
Framer 

Pack outgoing data packets into 
the CCSDS Format 

Custom 

CCSDS 
Deframer 

Unpack incoming CCSDS data 
packets to retrieve desired data  

Custom 

IPC Driver Communicate with the BCT Bus 
FSW using IPC protocol 

Custom 

TLM Parser Unpacks desired telemetry fields 
from subsystem telemetry packets 

Custom 

Downlink 
Packetizer 

Forms fixed size data packets 
containing HSA telemetry 

Custom 

Fault 
Detection 

Detect and diagnose payload level 
fault conditions 

Custom 

Fault 
Response 

Choose appropriate payload 
response based off fault diagnosis 

Custom 

Payload 
State 
Machine 

Control mission mode, subsystem 
state, and formation role 

Custom 

GNC 
Controller 

Provide wrapper for the GNC 
algorithm library 

Custom 

HOSTED SOFTWARE APP FRAMEWORK 
With all required software modules defined, the design 
of the HSA can be developed. The first step to starting 
development is to choose the flight software architecture. 
The main driver for choosing the software architecture 
for the HSA was picking a framework that would best 
enable fast and robust development, while also providing 
tools for developers and operators for testing and 
operations. The most common choices for software 
frameworks for CubeSat-level missions are either cFS 
(core flight software) developed at NASA Goddard, 
Fprime developed by NASA JPL, or a custom built-
from-scratch framework.19, 20 For the VISORS mission, 
all GT software was written within the Fprime 
framework (v3.1.1) due to prior experience among the 
members in the lab as well as existing development tools 
that were developed for previous missions. 

Fprime is an open-source C++ framework that was 
initially released to the public in 2018. It is a component-
based point-to-point architecture that enables modularity 
and reuse of software.20 Fprime ships with several ready-
to-use components that are found on most embedded 
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systems projects such as a Command Dispatcher, 
Parameter Database, and Telemetry Database, among 
others. Table 9 shows that about 60% of the components 
were already available within the Fprime framework 
while about 40% were custom designed for the VISORS 
mission. Fprime also provides supporting tools to speed 
up development, testing, and operations, such as a 
custom ground data segment (GDS) as well as several 
all-inclusive autocoders that autogenerate large swaths 
of code based on simply the input and output interfaces 
to each component.21  

The Fprime architecture consists of three main parts – 
Ports, Components, and Topologies. Each software 
module, or component, consists of input and output ports 
that define the data structure. The component has handler 
functions for each of the input and output ports that 
define the logic that must be executed to send or receive 
data. Additional functions can also be defined in the 
component C++ code. Components are then hooked up 
to other components within the topology. The topology, 
such as the one shown in in Fig 7, ultimately provides an 
overarching view of the design of the software 
executable, called a deployment.  

 

 
Figure 7. F' Component-Based Architectural 

Pattern18 

The one obvious drawback to having so many discrete 
components in a deployment is that connecting them 
together in the topology can be confusing for large 
deployments that require numerous port connections. 
However, another huge benefit to using Fprime is that 
for many of the built-in components, Fprime either 
connects them in the topology automatically or provides 
clear documentation on how they should be connected to 
other components. Thus, the more complicated aspect of 
the topology becomes defining the specific data types 
that need to be exchanged between components. By 
looking at the MET for each phase of the mission, the 
software architect can outline exactly what data must be 
transferred between components. This definition of the 
input and output interfaces of each component then 

corresponds directly to the set of Fprime ports on each 
component. 

HOSTED SOFTWARE APP OPERATIONAL 
USAGE 
To provide context for how the software modules 
interact with each other, the HSA-related CONOPS and 
mission events timelines for every phase of the mission 
must be defined. The entire VISORS mission can be split 
into distinct phases, as seen in Table 10, each of which 
can be further characterized with a MET to describe the 
specific actions the HSA takes during each of the phases. 
Many of the FSW actions require the use of multiple 
components since the scope of each component is 
limited. Thus, outlining each of the FSW actions will 
directly derive how the components should be 
connected.  

Table 10. HSA status in each phase of the mission 

Phase Description HSA 
Status 

Launch + Solar 
Array Deployment 

The Spacecraft wait for 30 
minutes before deploying solar 
arrays and turning on all of the 
BCT subsystems 

OFF 

Initial Bus 
Commissioning 

Ground-based commissioning 
campaign to verify the 
functionality of the BCT 
subsystems 

OFF 

Payload 
Commissioning 

Ground-based commissioning 
campaign to verify the 
functionality of the payload 
subsystems 

ON 

Formation 
Acquisition 

Manually command the 
spacecraft into the standby 
formation configuration 

ON 

Standby Wait in standby formation 
configuration for the command to 
start a science campaign 

ON 

Science Campaign Go from the standby to science 
orbits and take science 
observations 

ON 

Off Nominal Any time a spacecraft detects a 
fault and must respond 

ON 

The following subsections detail the HSA-oriented MET 
for all phases of the mission for which the HSA will be 
ON. Each subsection will then outline the port 
connections necessary to achieve each step of the MET. 
These port connections between the components can be 
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seen in the simplified topology diagram shown in Fig 8. 
This diagram includes most of the custom components 
within the deployment but leaves out many of the built-
in components for brevity.  

Payload Commissioning 
After the BCT Bus hardware subsystems have been 
commissioned, the next step is to commission the 
payload subsystems. The HSA portion of the payload 
commissioning is distributed among the rest of the 
payload commissioning steps. Since the HSA 
communicates with all payload subsystems, the HSA 
interfaces must be checked after turning on any 
subsystem. This will consist of verifying that commands 
can be sent to the subsystem and that telemetry is 
received back from the subsystem. The sequence for this 
preliminary operations campaign is illustrated in Fig 9. 
The HSA to BCT Bus FSW interactions must be 
validated first since all communication with the ground 
go through BCT FSW.  

 

Figure 9. Payload Commissioning Sequence 

The HSA to BCT FSW verification step validates the 
mission operator’s ability to send commands to and 
receive telemetry from the HSA. This step consists of 
sending the HSA a no operation (NO-OP) command and 
verifying that it sends out an EVR upon the completion 
of that command. The NO-OP command is used since it 
is a simple command that does nothing but acknowledge 
receipt of the command. The HSA interface verification 
steps for each of the subsystems are similar to the 
previous step but delegate the HSA to send the NO-OP 
command instead of the ground. After the HSA sends out 
the command it will, depending on the subsystem, either 
wait for a direct response from the subsystem or parse its 
telemetry to see if the subsystem processed the 
command. The HSA will also verify that it receives 
telemetry from every payload subsystem.  

During the calibration section of commissioning, most of 
the ground-based commands are routed directly to the 
desired payload subsystem and do not go through the 
HSA, the only calibration related to the HSA deployment 
is during the GNC and Prop calibration steps. During 
GNC calibration, the ground sends several commands to 
the GNC Controller which simply passes those 
commands to the GNC algorithms. Receipt of these 
commands is captured via EVRs and telemetry packets. 
The port connections required between HSA 
components for this phase of the mission are outlined 
below in Table 11. 

 

 

Figure 8. HSA Topology without most of the Fprime built-in components 
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Table 11. HSA Port Connections Required for the 
Commissioning Phase 

Payload 
Commissioning 

Step 

HSA Action Related HSA Port 
Connection 

HSA ←→ BCT 
Interface 
Verification 

HSA receives 
NO-OP command 
from the ground 

IPC Driver → CCSDS 
Deframer → CMD 
Dispatcher 

HSA ←→ BCT 
Interface 
Verification 

HSA responds to 
NO-OP command 

Downlink Packetizer 
→ CCSDS Framer → 
IPC Driver 

HSA ←→ 
Subsystem Interface 
Verification 

HSA sends out 
NO-OP command 

Payload State Machine 
→ CCSDS Framer → 
IPC Driver 

HSA ←→ 
Subsystem Interface 
Verification 

HSA receives 
confirmation of 
NO-OP command 

IPC Driver → CCSDS 
Deframer → Payload 
State Machine  
OR 
IPC Driver → CCSDS 
Deframer → TLM 
Parser → Poly 
Database → Payload 
State Machine 

HSA ←→ 
Subsystem Interface 
Verification 

HSA verifies 
reception of 
telemetry from 
subsystem 

IPC Driver → CCSDS 
Deframer → TLM 
Parser  

GNC Calibration HSA receives 
ground commands 
for GNC 
Controller  

IPC Driver → CCSDS 
Deframer → CMD 
Dispatcher → GNC 
Controller 

GNC Calibration GNC Controller 
responds to 
commands with 
events 

Downlink Packetizer 
→ CCSDS Framer → 
IPC Driver 

GNC Calibration  GNC algorithm 
initiates a 
propulsive 
maneuver  

GNC Controller → 
CCSDS Framer 

Formation Acquisition 
Once commissioning is finished, operators will 
transition into the formation acquisition phase of the 
mission. In this phase, the main goal is not only to put 
the spacecraft into the Standby mode formation 
configuration but also to verify the performance of 
subsystems that depend on the spacecraft being in 
formation. The order of steps in this phase, as seen in Fig 
10, is important as the XLINK subsystem needs to be 
performance tested first since this will enable the testing 
that follows on the GNC and fault management systems. 
The final step after the formation is acquired must be to 
enable autonomy so that the spacecraft can take 

corrective action in the event of a fault, since the relative 
dynamics occur faster than a ground response is possible. 
The duration of this phase must be kept short since the 
spacecraft will be in standby formation without an 
autonomous way to escape until autonomy is enabled by 
the mission operators at the end of the phase. 

The main new port connections found in this mission 
phase are related to the fault management system. The 
design of the fault management system lends itself to a 
linear data flow between its components. The fault 
detection component passes its diagnosis to the fault 
response component which passes recommended actions 
to the payload state machine. Autonomous fault 
responses are actuated through the payload state 
machine. This segmented approach, seen in the port 
connections outlined in Table 12, fulfills the separation 
of concerns guideline.  

Table 12. HSA Port Connections required for the 
Formation Acquisition Phase 

Formation 
Acquisition 

Step 

HSA Action Related HSA Port 
Connection 

GNC 
Performance 
Tests 

GNC exchanges state 
information with other 
spacecraft  

GNC Controller → 
CCSDS Framer → 
IPC Driver 

GNC 
Performance 
Tests 

GNC executes 
propulsive maneuvers  

GNC Controller → 
CCSDS Framer 

GNC 
Performance 
Tests 

GNC Controller reads in 
temperature and 
pressure fields from 
PROP telemetry 

GNC Controller → 
Poly Database 

Fault 
Management 
Performance 
Tests 

Fault Detection reads in 
telemetry from payload 
subsystems 

IPC Driver → 
CCSDS Deframer → 
TLM Parser → Poly 
Database → Fault 
Detection  

Fault 
Management 
Performance 
Tests 

Fault Response receives 
fault diagnosis and 
chooses the most 
suitable response  

Fault Detection → 
Fault Response  

Fault 
Management 
Performance 
Tests 

Payload State Machine 
receives the 
recommended response 
and acts on it if allowed 
to do so 

Fault Response → 
Payload State 
Machine 

Enable 
Autonomy 

Payload State Machine 
receives a ground 
command to enable 
autonomous actions 

IPC Driver → 
CCSDS Deframer → 
CMD Dispatcher → 
Payload State 
Machine 

Figure 10. Formation Acquisition Sequence 
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Science Campaign 
The science campaign phase of the mission is the most 
complicated portion of the mission due to the number of 
coupled actions between the GNC, ADCS, and science 
instruments. The timeline of tasks that the HSA 
accomplishes during this phase is shown in  Fig 11 and 
Fig 12. These figures are adapted from the work first 
done in Ref 2. First, the ground verifies the feasibility of 
the science campaign by assessing the health of the 
payload subsystems on both spacecraft as well as 
characterizing the amount of delta-v and science data 
storage that is available on board. After confirming that 
a science campaign is possible, ground operators 
configure relevant science parameters such as the 
observation target on the sun, number of observation 
frames, exposure time, and parameters for image 
compression algorithms. The last ground-based 
command that is sent is a command to the PSM to set the 
current mode to Transfer mode.  

At this point, the ground-based setup of the science 
campaign is complete, and the spacecraft takes over to 
autonomously complete the science campaign. The first 
task the PSM does is switch the primary spacecraft 
pointing constraint to be GPS-to-Zenith so that the GNC 

algorithms can receive quality navigation data for the 
initialization of its navigation algorithm.2 After the 
navigation algorithm finishes its initialization sequence, 
the algorithm plans a set of maneuvers that will take the 
formation from the standby configuration to the science 
configuration. 

Once the spacecraft is in the correct relative orbit 
configuration for Science mode, the PSM switches its 
internal mission mode to Science. Once this occurs, the 
CSIE gets turned ON and is passed the aforementioned 
science parameters. The GNC algorithms plan and 
execute additional propulsive maneuvers to drive the 
formation to the observation configuration when the 
spacecraft are over either of the Earth’s poles. 
Immediately before the science observation, the HSA 
executes a series of commands to point the spacecraft in 
the correct target direction, turn OFF the magnetorquers 
and UHF downlink, and turn ON the Laser Range 
Finder. The magnetorquers and UHF downlink are 
turned OFF to ensure that there is no electromagnetic 
interference with the science instrumentation during a 
science observation. The port connections required for 
this phase of the mission are documented in Table 13. 

Figure 11. Initiation of Science Campaign 

Figure 12. Science Orbit and Observation Timeline 
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Table 13. HSA Port Connections required for the 
Science Campaign Phase 

Science Campaign 
Step 

HSA Action Related HSA Port 
Connection 

Configure science 
parameters 

HSA accepts a 
command to set 
desired target 
observation location  

IPC Driver → 
CCSDS Deframer 
→ CMD 
Dispatcher → 
Payload State 
Machine 

Configure science 
parameters 

HSA sends desired 
observation location 
to GNC Controller for 
their use in algorithms  

Payload State 
Machine → GNC 
Controller 

Command Transfer 
Mode 

PSM accepts a 
command to switch 
mission modes 

IPC Driver → 
CCSDS Deframer 
→ CMD 
Dispatcher → 
Payload State 
Machine 

Switch Pointing 
Constraint 

PSM autonomously 
commands BCT to 
perform a switch in 
the pointing constraint 

Payload State 
Machine → 
CCSDS Framer → 
IPC Driver 

Execute Propulsive 
Maneuvers  

GNC Controller 
commands propulsive 
maneuvers  

GNC Controller → 
CCSDS Framer 

Disable/Enable 
Subsystems  

PSM enables or 
disables subsystems 
based off of the  

Payload State 
Machine → 
CCSDS Framer → 
IPC Driver 

Command an 
Observation 

GNC Controller will 
alert the HSA when 
an observation needs 
to occur 

GNC Controller → 
Payload State 
Machine → 
CCSDS Framer → 
IPC Driver 

Off-Nominal Scenarios 
 
The final mission phase relevant to the HSA is unique in 
that it does not have a predetermined linear timeline of 
events. Instead, this phase has multiple different entry 
criteria that each illicit a different response from the 
spacecraft formation. However, from a software 
perspective, complexity is minimized by having the 
same set of Fprime components handle all fault 
conditions. This ensures that the data flow between 
components is the same regardless of what the actual 
mission scenario is. The fault management system must 
ensure that the fault diagnosis between the spacecraft is 
identical. As a result, the fault detection component must 
be continuously exchanging its diagnosis information as 
shown in Fig 13.  

 

Figure 13. Distributed Fault Management System 
Data Flow 

The fault detection data flow is enabled by the 
continuous stream of incoming packets from each of the 
payload subsystems. Since each packet is different, the 
TLM Parser component must identify the packet by its 
APID and correspondingly unpack the message. Once 
the packet is unpacked into its respective telemetry 
fields, the TLM Parser component will write the values 
into the Poly Database. From here, the fault detection 
component queries items in the database and diagnoses 
the fault, if any. Regardless of if there is a fault 
occurring, the fault detection component will exchange 
diagnosis information with the other spacecraft. 
However, if there is a fault, the FD component sends the 
diagnosis to the FR component which determines the 
appropriate fault response for the specific scenario.14 
Finally, the FR component sends its response 
recommendation to the PSM which actuates the 
response. If autonomy is enabled by the ground, the PSM 
will update its internal variables (mission mode, 
subsystem states, formation role) according to the 
response recommendation and alert the GNC Controller 
and/or the PSM on the other spacecraft of any changes 
as necessary. The port connections to enable these 
interactions is shown in Table 14. 

Table 14. HSA Port connections required for off-
nominal scenarios 

Off-Nominal 
Scenarios Step 

HSA Action Related HSA 
Port Connection 

Receive Payload 
Telemetry 

Poly DB updates the 
database with the 
received subsystem 
telemetry 

IPC Driver → 
CCSDS 
Deframer → 
TLM Parser → 
Poly Database 
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Read Telemetry for 
Fault Detection 

Fault Detection polls 
the telemetry database 
to retrieve the 
telemetry values it is 
interested in  

Fault Detection 
→ Poly Database 

Determine Fault 
Diagnosis 

Fault Detection passes 
diagnosis information 
to the Fault Response 
component  

Fault Detection 
→ Fault 
Response 

Fault Response 
Recommendation 

Fault Response passes 
the PSM its 
recommendation for 
corrective action 

Fault Response 
→ Payload State 
Machine 

Payload State 
Machine actuates 
fault response 

PSM alerts other 
spacecraft of mode or 
role switch change 

Payload State 
Machine → 
CCSDS Framer 
→ IPC Driver 

Payload State 
Machine actuates 
fault response 

PSM receives an alert 
from other spacecraft 
of mode or role switch 
change  

IPC Driver → 
CCSDS 
Deframer → 
Payload State 
Machine  

Payload State 
Machine actuates 
fault response 

PSM alerts the GNC 
Controller of mode or 
role switch change 

Payload State 
Machine → GNC 
Controller 

HSA IMPLEMENTATION AND TESTING 
With the HSA topology defined, the next step is to begin 
the implementation phase of the flight software. A high 
level overview of this phase is given in Fig 14. The 
Fprime framework uses a domain specific modeling 
language called FPP (F Prime Prime) to configure the 
interfaces of a component and topology. The first step to 
defining a component starts with defining the data types 
of each of its input and output ports in FPP. These ports 
can then be used in the FPP file of the component itself. 
After all custom and built-in ports are defined, other 
commands, telemetry, and parameters can be included in 
the component FPP file. Once the component definition 
is complete, the initial boilerplate C++ code is 
autogenerated through Fprime based on the FPP 
definitions.22 This gives users a starting point for 
developing the logic of their Fprime component.  

After all the work to define the scope of the components, 
write requirements, and generate the template C++ 

structure, the logic of the component can finally be 
written. At this point, with all the scaffolding in place, 
actually developing the software is less cumbersome as 
the developer only has to be worried about the 
functionality of one component at a time. However, 
software development is an iterative process, so the 
implementation of the component will be continuously 
updated as it goes through its test campaign. Just as with 
any other software system, modules of code in Fprime 
must undergo both unit testing and integration testing. 
To complete these tests, Fprime provides a large suite of 
development tools. 

Unit testing in Fprime begins in a similar fashion to 
component development – the boilerplate template for 
tester code is generated based on the definitions of the 
component FPP. The autogenerated tester code provides 
a harness to easily test the input and output functions of 
each component. The tester component has complete 
access to the states and variables of the component C++ 
code and as a result, can be written to completely 
validate all functionalities of the component.21 This 
allows for black-box and white-box testing, depending 
on the flight software's testing requirements. By setting 
up the framework in this manner, every Fprime 
component can be unit tested in isolation without any 
other components. The extent to which a unit test verifies 
the functionality of the component can often be 
characterized by the code coverage of the unit test. Code 
coverage gives qualitative results on how many lines and 
logical branches of the components C++ code were 
tested via the unit tests. For the VISORS mission, the 
goal for each component’s unit test code coverage was 
80%. Note that a high code coverage metric does not 
always mean that the component is working nominally. 
There are often cases where a component cannot be fully 
tested unless it is interfaced with other components in the 
topology. This leads to the next phase of the software 
testing framework – Integration Tests.  

For the VISORS mission, integration testing was 
completed in two main ways. First, multiple related 
components were tested together through an exerciser 
deployment. This test deployment is different from the 

Figure 14. Fprime Component Level Implementation and Testing Flowgraph 
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flight deployment in that it is specifically tailored to 
exercise a small subset of components working together. 
By separating the flight deployment into smaller sub-
deployments, the functionality and operation of the 
components can be more easily debugged and verified 
since fewer overall tasks are happening in the sub-
deployment. Almost all the custom components written 
for the VISORS mission are included in at least one 
exerciser deployment. Exerciser deployments are almost 
exclusively run on a desktop computer instead of the 
flight hardware and may use the Fprime Ground Data 
Segment (GDS) instead of the ground software used 
during flight. This allows for faster and more iterative 
development. Tests using the Fprime GDS can be 
manually implemented or scripted in Python using the 
GDS Application Programming Interface (API), giving 
users the option to completely automate their integration 
tests.  

However, to verify that the component also works while 
running on a hardware platform, hardware integration 
tests are developed. The Fprime deployments used for 
these tests are unique in that they require the components 
that enable communication between the hardware device 
and the test computer. For VISORS, hardware 
integration tests must be compatible with the COSMOS 
ground operations software. Users can use the Command 
and Telemetry Server in Cosmos to manually send 
commands to any subsystem or automate the sending of 
commands with scripts. It is important to note that scripts 
in COSMOS are written using the Ruby programming 
language, not Python.23 Thus, any scripts written in 
Python for integration testing with the Fprime GDS must 
be adapted to work with COSMOS instead.  

After each of the custom Fprime components for 
VISORS go through this implementation and testing 
phase, the components are integrated into flight 
deployments. Once the deployment includes the 
components planned for that specific flight software 
release, the flight deployment undergoes system-level 
integration testing where it runs on the testbed or flight 
hardware and interfaces with all payload subsystems. 
This helps verify the data interfaces between subsystems 
and ensures that the entire spacecraft system operates 
nominally. Due to the fact that not all payload 
functionality (such as propulsive maneuvering) can be 
tested on the ground, the system level integration tests 
may need to incorporate spoofed or simulated data from 
subsystems.6  

CONCLUSION 
As formation flying missions become more abundant, 
multi-functional software systems like the HSA will 
become more common. As the complexity of these 
software systems increase, it is vital to carefully consider 

how these systems should be architected so that time can 
be saved on the development of the system. The contents 
of this paper aimed to show this in action by providing a 
concise look at the design and development process of 
the HSA flight software deployment for the VISORS 
mission. By thinking critically about what drives the 
design of the HSA, a robust, modular architecture was 
developed. The choice of the Fprime software 
framework facilitated the design of the software system 
and enabled fast, concurrent development among all 
team members. This concurrency allowed for more time 
for testing and provided a higher level of confidence that 
this ambitious mission could be successful regardless of 
schedule, cost, and staffing constraints. As the 
development of the HSA continues into the future, 
developers should work with mission operators to further 
iterate the design within the confines of the mission 
requirements. Further iteration will result in a system 
that is even more user-friendly while also increasing 
reliability and robustness for ground based testing and on 
orbit operations. 
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