
Arunkumar 1 37th Annual Small Satellite Conference

SSC23-WP2-05

Design of the Hosted Software Application for the VISORS Mission

Ebenezer Arunkumar, Antoine Paletta, Glenn Lightsey
Georgia Institute of Technology

620 Cherry St NW, Atlanta, GA 30332
earunkumar3@gatech.edu

ABSTRACT
The VIrtual Super Optics Reconfigurable Swarm (VISORS) mission is a distributed space telescope consisting of two
6U CubeSats that utilize precision formation flying to detect and study the fundamental energy release regions of the
solar corona. The inherent complexities and risks associated with two spacecraft operating in close proximity, as well
as the unique restrictions of the spacecrafts’ design, make careful autonomous execution crucial to the success of the
mission. To address these challenges, this paper outlines the development of the Hosted Software Application (HSA)
flight software which manages the Guidance, Navigation, and Control (GNC) algorithms, the payload finite state
machine, and the spacecraft and formation level fault management system. An overview of the HSA provides context
for the motivation and requirements driving the design of the flight software system. The architecture of the HSA is
presented and shown to be derived from the Mission Events Timeline (MET) for each of the relevant phases of the
mission. Finally, this paper briefly discusses the software's implementation and test campaign.

INTRODUCTION
As the overall number of space launches increases, the
number of rideshare opportunities has also increased,
directly contributing to the increase in CubeSat launches
from under 100 cumulatively by 2013 to over 1800 by
2022.1 Increased access to space has enabled many
entities, such as higher education universities, to enter
the small satellite development space. However,
developing small satellites comes with many challenges,
especially at the university level. Even though launch
opportunities have decreased in cost, funding issues,
along with a lack of overall experience and a high
turnover rate of students, lead to projects that are rushed,
lack redundancy, and lack adequate testing. These issues
permeate to the subsystem level and affect their
reliability and robustness.

The lack of student experience and knowledge is
especially apparent in flight software (FSW)
development, as FSW is often considered a ‘black box’
due to how difficult it can be to develop. At the
university level, the tools and framework to start writing
FSW are often non-existent. This results in missions that
have to develop tools and infrastructure before they can
even begin development. This additional work further
exacerbates the issues many small satellite missions face
and leads to additional cost and schedule overruns. One
way to mitigate this issue is to use software frameworks
that provide much of the basic development tooling and
design the software to be as simple, yet robust, as
possible. Reducing the complexity of the design eases
the burden on software developers but also simplifies the
lives of mission operators who, more often than not,

were not involved with the development of the FSW. As
a result, spending a significant amount of time
meticulously planning out a software design can
decrease overall development time and help university-
level teams stick to their tight schedules.

However, designing a FSW system from scratch is
extremely difficult. For a formation flying mission, such
as the one presented in this paper, the flight software
architecture becomes even more complex as additional
subsystems pertinent to formation flying are introduced,
including formation level fault detection, inter-satellite
link, relative propulsion, and distributed science
instruments. The FSW must also handle any concurrency
issues that arise when controlling two independent
spacecraft that must work together, such as ensuring that
both spacecraft do not have different formation state
information. Instead of immediately diving into the
specifics of the flight software itself, this paper
highlights a design approach which first looks at the
concept of operations (CONOPS) and mission events
timeline (MET) for every phase of the mission. By first
determining what each spacecraft needs to do to
accomplish the goals of the formation, the specific tasks
that the FSW must complete can be more granularly
identified. This inherently leads to FSW requirements
that drive how the software should be architected to
complete those tasks.

The goal of this paper is to illustrate the design of the
Hosted Software Application (HSA) flight software on
the VISORS mission. By discussing the development
lifecycle of the HSA, this paper intends to serve as a

Arunkumar 2 37th Annual Small Satellite Conference

roadmap for students who may develop similar software
systems for other formation flying or single spacecraft
missions. First, an overview of the VISORS mission is
given, with an emphasis on the aspects of the mission
that the HSA manages. Next, an overview of the goals
and requirements of the HSA is discussed. The paper
then details how the design of the HSA was derived from
the MET for each phase of the mission. Finally, the
implementation and testing of the HSA are briefly
discussed.

VISORS MISSION OVERVIEW
The goal of the VISORS mission is to detect and study
the fundamental energy-release regions of the solar
corona. The mission achieves its science goals with a
distributed space telescope consisting of two 6U
CubeSats, the Detector Spacecraft (DSC) and the Optics
Spacecraft (OSC) as seen in Fig 1. The spacecraft buses
are nearly identical commercial off the shelf (COTS)
XB1 buses provided by Blue Canyon Technologies
(BCT). The XB1 provides the spacecraft chassis, the
main flight computer, the attitude determination and
control (ADCS) system, and the ultra-high frequency
(UHF) space-to-ground communication architecture.
The rest of the spacecraft is comprised of the payload,
including a cold-gas propulsion system (PROP), inter-
satellite communications hardware (XLINK), a payload
avionics interface board (PAIB), and science
instrumentation. Each of the payload subsystems was
designed and developed by one of the 11 different
institutions on the VISORS mission. VISORS is funded
by the National Science Foundation (NSF) and was
originally devised at the CubeSat Ideas Lab in 2019.

Figure 1. CAD of Detector Spacecraft (left) and
Optics Spacecraft (right)2

The VISORS mission is officially classified as a
technology demonstration mission, focusing on the
design and development of novel technologies such as
differential carrier-phase global navigation satellite
system (GNSS) navigation, inter-satellite
communications, and a cold gas propulsion system for
high precision relative maneuvering.3,4 These
technologies work together to enable the VISORS
spacecraft to maneuver to a relative separation of 40
meters during a science observation, the focal length
required to obtain images of the sun in the He II 304 Å
line, as shown in Fig 2. These novel technologies also
enable the mission to meet its minimum science success
goal of obtaining a single image of the sun in this He II
304 Å wavelength with a resolution of 0.2 arcseconds.2

The science instrumentation that enables these images
are distributed across the two spacecraft.2 The OSC
contains the extreme ultraviolet photon sieve optic which
focuses incoming light onto the detector instrument
located on the DSC. The OSC also contains a laser
rangefinder (LRF) that is used for different purposes by
the guidance, navigation, and control (GNC) algorithms
and the science team on the ground. During an
observation attempt, the GNC algorithms have the
ability to autonomously use the LRF data to help control
the formation into the observation alignment. After
downlinking the LRF telemetry, the science team uses
the timestamps on the ranging data to help inform their
decision on which images they want to downlink. On the
DSC, the detector instrument contains the Compact
Spectral Image Electronics (CSIE) which controls the
camera and processes the images before preparing them

Figure 2. VISORS formation alignment during observation5

Arunkumar 3 37th Annual Small Satellite Conference

for downlink. While the science instrumentation differs
between the two spacecraft, many of the payload
subsystems are nearly identical. This design decision
simplifies overall system development, as well as the
spacecraft integration and test campaign.6 The VISORS
mission is currently awaiting the delivery of flight
payload subsystems and the DSC bus, shown in Fig 3.
The integration and test campaign for both spacecraft
will begin in the fall of 2023, with a projected spacecraft
delivery date of July 2024.

Figure 3. Detector Spacecraft during testing at BCT7

GNC Overview
At a high level, the GNC system on the VISORS mission
has two goals. First and foremost, since VISORS is a
formation flying mission, the GNC algorithms must
ensure that the spacecraft avoid collisions. This is done
passively through the design of the relative orbits and
actively through preemptive collision avoidance
maneuvers. The passive safety margin guarantees that
the spacecraft will not collide for at least 2 orbits in the
absence of maneuvers. The collision avoidance
maneuvers aim to increase the relative separation in the
radial-normal plane of the radial-tangential-normal
(RTN) frame while introducing relative drift in the
tangential frame. The second main goal of the GNC
algorithms is to control the formation to millimeter-level
position accuracy and micrometer per second-level
velocity accuracy to ensure that the science instruments
can take images that are in focus, on target, and have
acceptable smearing. These GNC goals are captured in
the VISORS mission objectives shown in Table 1 and
discussed in more detail in Ref 3.

Table 1. VISORS Mission Objectives (GNC-related
objectives in bold)

Identifier Objective

MO-001 Capture and downlink coronal imagery to determine
the existence of energy-release regions in the solar
corona

MO-002 Control formation to millimeter-level position
accuracy

MO-003 Inter-satellite communication link enabling
autonomous maneuver planning

MO-004 E/I-vector separation to enable passive collision
avoidance and maintain near-proximity relative
orbits

MO-005 Propulsion systems for formation-keeping and
reconfiguration

Staying in a 40-meter relative separation formation
configuration for the whole mission is risky and
expensive from an energy and delta-v standpoint. As a
result, the GNC algorithms have defined multiple orbit
configurations that will occur over the course of the
mission. These orbits are defined in Table 2. In addition
to these pre-defined relative orbits, the spacecraft may be
in a configuration with no relative orbit (for example
during commissioning or after an escape maneuver). The
design of the GNC algorithms is such that for all of these
relative orbits, only one spacecraft is maneuvering at a
time. The active spacecraft (the deputy) performs
relative maneuvers about the passive spacecraft (the
chief).

Table 2. Mission Defined Relative Orbits

Relative Orbit Description

Science Orbit Ellipse with nominal relative separation of 40
meters

Standby Orbit Minimum relative separation of 200 meters

Transfer Orbit Relative orbit trajectory to reconfigure the
formation between the science and standby orbit

CONOPS Overview
The design of the mission concept of operations
(CONOPS) was driven by the various mission-defined
relative orbits described in the previous section as well
as the constraints imposed by being a payload of the
COTS XB1 spacecraft. The CONOPS can be separated
into two main sections – the spacecraft state diagrams
and the mission events timeline. The spacecraft finite
state machines detail the logical conditions of the
spacecraft and formation and define the entry and exit
criteria of each state.8 On the other hand, the MET
outlines the specific spacecraft and formation-level
actions that occur during each phase of the mission. The
VISORS MET's are discussed in more detail in a latter

Arunkumar 4 37th Annual Small Satellite Conference

section. For clarity, nomenclature related to the VISORS
state machines is given in Table 3.

Table 3. VISORS CONOPS Nomenclature

Nomenclature Description

Spacecraft
Modes

BCT defined states for the COTS XB1
spacecraft

Mission Modes VISORS specific states of the formation

Subsystem
States

Individual ‘state’ of each payload subsystem
(ON or OFF)

Spacecraft Role Delineation of which spacecraft is the active,
maneuvering, spacecraft and which one is the
passive, non-maneuvering, spacecraft

The first set of states for the VISORS spacecraft, the
spacecraft modes, are shown in Fig 4. These modes are
defined by BCT and are standardized for the XB1
spacecraft. When the spacecraft is initially launched, it
will boot up in Launch Mode and then autonomously
transition into Sun Point Mode at the conclusion of a 30-
minute deployment timer. In Sun Point Mode, the
spacecraft slews to point its solar panels toward the sun
while only keeping BCT subsystems powered on. No
payload subsystems are turned on until a ground
command is given to put the spacecraft into Fine
Reference Point (FRP) mode. In the event that the battery
voltage drops below a critical threshold, the spacecraft
will go into Survival Mode from either Sun Point or FRP
modes for the sole purpose of charging its batteries. BCT
restricts the payload to be off in Sun Point and Survival
modes to prevent unnecessary power draws. This
restriction, along with the fact that the BCT state
machine cannot be modified, led to the creation of a
second, mission-specific, state machine.

Figure 4. BCT Defined Spacecraft Modes9

When the spacecraft is in FRP mode, the payload
operates within the constraints of the mode diagram
shown in Fig 5. During the early phases of the mission
while the ground operators are performing payload
commissioning, the payload will stay in its preliminary
operations mode. Once all preliminary operations have
been completed, the spacecraft will transition into the
first of three nominal mission modes, Standby. Since the
GNC algorithms have defined three main relative orbits
for nominal operations, it follows that each of these
orbits correlates one-to-one with a payload mission
mode. During a nominal science campaign, the payload

will transition from Standby mode to Science mode via
Transfer mode. The payload also contains two off-
nominal mission modes – Escape and Safe modes. If
there is a collision risk, hardware payload fault, or
software payload fault, the payload will transition into
either the Escape or Safe mode, depending on the nature
of the fault. If the payload first enters into the Escape off-
nominal mode, it will autonomously transition into Safe
mode after an escape maneuver is performed. On the
other hand, if the payload first enters Safe mode, it will
stay in Safe mode unless it has to perform an escape
maneuver (which would send it into Escape mode and
then back into Safe). Note that the payload is not allowed
to perform more than one escape maneuver in sequence
in order to prevent the spacecraft from triggering
maneuvers that could potentially further harm the safety
of the formation. Ground operator intervention can
restore the spacecraft’s ability to go into Escape mode as
well as allow the payload to return to its nominal mission
modes from Safe mode. This ensures that the spacecraft
only return to nominal operations after a thorough
analysis of what caused the spacecraft to enter Safe mode
in the first place.

Figure 5. Payload Defined Mission Modes
In each of the payload mission modes, there is a
parameterized configuration of payload subsystem
states. This configuration defines which payloads are
operational during each mission mode and ensures that
no subsystem state is set to ON unless it is required in
that mode. However, since VISORS is a formation flying
mission, all payload subsystems except the science
instrumentation are critical to maintaining the
formation's relative configuration. As a result, most of
the payloads will always be ON during every payload
mission mode unless there is an off-nominal condition.
In addition, if the spacecraft ever exits the FRP
spacecraft mode all payload subsystems are powered off
by BCT.

HOSTED SOFTWARE APP REQUIREMENTS
Each of the subsystems onboard the two spacecraft have
hardware specific software systems to manage

Arunkumar 5 37th Annual Small Satellite Conference

subsystem level tasks. This simplifies the overall
software system of the spacecraft as there are now
discrete software packages for each subsystem instead of
one large software package for all subsystems. For
example, the propulsion software is solely responsible
for the command and telemetry interface for the
propulsion hardware and firing thruster valves.
Similarly, the CSIE subsystem is solely responsible for
taking science observations. However, during the initial
design of the VISORS mission, it was apparent that
additional higher-level on-board software was needed
for four reasons:

1) To host the GNC algorithms
2) To manage the payload finite state machine
3) To monitor and respond to payload faults
4) To communicate with all payload subsystems

To meet the four goals shown above, the software system
needed to interface with all payload subsystems.
However, the only hardware subsystem that had data
interfaces with all subsystems was the XB1 flight
computer. Thus, it was decided that the additional
software – the Hosted Software Application - would be
hosted on an independent partition of the flight
computer. The following sections detail the background
for each of the four goals of the HSA and outline the
level two requirements that are derived from those goals.
These requirements help identify the various modules of
software that are required for the HSA to perform its
tasks.10 Aside from the requirements that come from
these four goals, additional requirements are also
outlined that stem from the HSA being a software
payload on the BCT XB1 flight computer.

HSA-GNC Interaction
Due to the complex nature of the GNC software, it was
determined from an early stage that the GNC algorithms
should be a separate module of software from any other
software system on the spacecraft. However, due to the
computational and memory constraints of the
microcontrollers on payload subsystems, the GNC
algorithms needed to execute on a more capable
processor. To avoid changing the design of any of the
payload subsystems to include a more powerful
processor, the BCT XB1 flight computer was chosen to
run the GNC algorithms since it met the computational
requirements. Since the XB1 can only support one
payload software subsystem, the Stanford team delivered
the GNC algorithm as a C++ library that can be compiled
into the HSA executable. To enable this architecture, the
HSA includes a module of software called the GNC
Controller that provides any inputs that the GNC library
needs and accurately responds to the outputs from the
GNC library. The GNC Controller also enables the GNC
algorithms to run on its own thread so that the tasks of

the rest of the HSA never interfere with the run-time of
the GNC algorithms. The requirements outlining the
GNC interaction with the HSA are documented in Table
4.

Table 4. HSA Requirements related to the GNC
Subsystem

ID Requirement

HSA-002 The HSA shall include the GNC library in the
compiled executable.

HSA-003 The HSA shall interface with the GNC library in
accordance with the GNC ICD

HSA-010 The GNC Library within the HSA shall run on its own
thread.

HSA-011

All checksum validated data received by the HSA
from the ISL shall be immediately forwarded to the
GNC library.

HSA-021 The HSA shall parse the information contained in the
time at tone packet received from the BCT Bus and
deliver it to the GNC Software library.

VISORS Finite State Machine
To manage the payload mission modes, spacecraft
formation role, and subsystem states, the HSA includes
a software module called the Payload State Machine
(PSM). Since the mission mode and subsystem states are
inherently tied together, only one software module was
needed to control both items instead of separating control
into distinct modules. For conciseness and simplicity, the
spacecraft role – active or passive – is also managed by
the PSM even though it is not directly tied to a mission
mode or subsystem state (since either spacecraft can be
active or passive at any point).

The PSM can manipulate the modes, states, and roles of
the spacecraft and formation in three different ways – via
ground command, via predetermined nominal operations
configurations, and via off-nominal fault response
operations. Firstly, the PSM can always be commanded
to change any modes, states, or roles via ground
command. Regardless of what is occurring internally on
the spacecraft, commands from the ground always take
precedence over any autonomous actions. This decision
was made so that ground operators could retain full
manual control in case on-board autonomy did not
behave as expected. Secondly, during nominal
operations the PSM changes its modes based on
interactions with the GNC Controller; once the GNC
algorithms have transitioned between the various
mission-defined relative orbits, the PSM will be alerted
to change into the corresponding mode. During each of
the nominal modes, the subsystem states are toggled
based on the parameterized configuration that
corresponds to each mission mode. During nominal
operations, the spacecraft’s role does not change and is
set to whatever the ground operators designated at the

Arunkumar 6 37th Annual Small Satellite Conference

beginning of the mission. Finally, the PSM can change
any mode, state, or role via recommendations from the
fault management system. Depending on the type of fault
– collision risk, hardware fault, software fault – the PSM
will change the mission mode, subsystem states, or
spacecraft role.

State machines on formation flying missions have
another layer of complexity as the mission must decide
how they want to address congruency in the states
between the spacecraft. For the VISORS mission,
congruency is achieved by ensuring that both spacecraft
must always attempt to be in the same payload mission
mode as the other spacecraft. This means that the
spacecraft must always be interchanging their mission
modes over the XLINK system. However, while
symmetry in states between spacecraft is preferred, there
are a few operational scenarios where the spacecraft are
not in the same mission mode. For example, if the active
(maneuvering) spacecraft goes into Escape mode the
passive (non-maneuvering) spacecraft will automatically
transition into Safe mode since it is not performing a
maneuver. This ensures that both spacecraft do not
perform escape maneuvers at the same time. The HSA
requirements surrounding the PSM are found in Table 5.

Table 5. HSA Requirements related to the Payload
State Machine

ID Requirement

HSA-004 The HSA shall include a state machine to actuate
mission modes and subsystem states in accordance
with the Subsystem States Document.

HSA-018 The HSA shall send commands to the PAIB to toggle
power to payload subsystems.

VISORS Fault Management Overview
On most spacecraft, fault management systems are
autonomous systems that strive to detect, isolate, and
recover from any situations that upset nominal
operations.11 These systems are often the products of
failure modes and effects analysis that attempt to
understand the different failure modes and what the
resulting fallout would be for each scenario.12 For
formation flying missions such as VISORS, additional
failure modes must be considered such as the risk of
collision between spacecraft. This additional failure
mode results in a contingency operations architecture
that must manage subsystem and formation-level
faults.13 Since many of the subsystems on a formation
flying mission are dedicated solely to enabling safe
formation flight, subsystem level and formation level
faults are often coupled, potentially complicating the
autonomous fault response.

To correctly diagnose and respond to faults on VISORS,
the fault management system is split into two distinct
software modules - Fault Detection (FD) and Fault
Response (FR).14 The FD module on each spacecraft is
responsible for monitoring the telemetry points from all
subsystems on both satellites and determining if any of
them have crossed their nominal thresholds. By
monitoring which telemetry fields go out of bounds, the
FD module can diagnose the problem and understand
what caused it. The key to the diagnosis is the fact that
the FD modules have full state knowledge on the health
of each spacecraft and thereby the health of the
formation. The main challenge for the fault detection
module is that monitoring one telemetry point alone is
often not enough information to deduce the health of a
subsystem or the formation. Telemetry points from
multiple different sources must be analyzed to
understand whether the spacecraft is experiencing a fault
and to determine the source of that fault.

Once the fault has been diagnosed, the FR module must
decide the appropriate action to take to mitigate the fault.
On the VISORS mission, fault responses consist of
combinations of a mission mode switch, a subsystem
power cycle or shut down, or a spacecraft role switch.
Role switches are included as a fault response to take
advantage of the fact that both spacecraft have
maneuvering capability. Thus, in the event of a failure of
the propulsion system on one spacecraft, the formation
has redundancy and can continue its operation by
allowing the other spacecraft to assume the active role.
Regardless of the fault diagnosis passed into the fault
response module, the response is always chosen to be as
conservative as possible. This keeps the logic simple and
ensures that the spacecraft can make any required
autonomous decisions to keep the formation safe, while
also waiting for ground operators to handle more
complex formation-level responses.14

To support the fault management system, a few
additional software modules are required. For example,
since the telemetry packets from other subsystems come
in as serialized data, a parser component – the Telemetry
(TLM) Parser - is necessary to unpack each of the
subsystem data packets. Since the parsing of packets is
only necessary for the fault management system, the
TLM Parser only deserializes the specific telemetry
fields necessary for fault detection. After all desired data
is received and unpacked, it must be stored in a database
for later retrieval by the FD module. This database
software module is named the Polymorphic (Poly)
Database as it stores telemetry fields in their native type
instead of in serialized form. The HSA requirements
related to the fault management system are found in
Table 6.

Arunkumar 7 37th Annual Small Satellite Conference

Table 6. HSA Requirements related to the Fault
Management System

ID Requirement

HSA-005 The HSA shall include a Fault Detection and
Response Block to monitor all fault scenarios
specified in the Fault Analysis Matrix.

VISORS HSA Communication Overview
Since the HSA is hosted on the XB1 flight computer, its
interface must comply with the specifications of the XB1
spacecraft. The XB1 requires that all payload
subsystems, including the HSA, communicate using the
Consultative Committee for Space Data Systems
(CCSDS) Space Packet Protocol. This protocol specifies
that every software data packet contains at least a 6-byte
header that contains packet version numbers, packet
identification, packet sequence number, and packet data
length.15 As a result, the HSA must have the
functionality to frame any outgoing data packets and
deframe any incoming data packets per the CCSDS
protocol. This functionality is encapsulated in two
different software modules – the CCSDS Framer and
CCSDS Deframer.

To route the data to the correct location during the
framing and deframing step, each packet contains a
unique packet identification number, often called the
APID. To communicate digitally with the BCT Bus
FSW, as shown in Fig 6, the HSA contains a software
module - IPC Driver - that uses the inter-process
communication protocol.16 The HSA requirements that
relate to the software interfaces with the rest of the
payload are listed in Table 7.

Table 7. HSA Requirements Related to SW
Interfaces

ID Requirement

HSA-008 The HSA shall send all generated telemetry to the
BCT Bus radio downlink buffer using the interface
specified in the BCT SW API.

HSA-015 The HSA shall interface with the BCT FSW using the
ports specified in the BCT SW API.

HSA-016 The HSA shall adhere to the CCSDS Protocol
Specifications specified in the BCT XB1 ICD when
communicating with the spacecraft bus.

HSA-017 The HSA shall adhere to the APID ranges specified in
the BCT XB1 ICD (BUS-EC-001) for communication
with other subsystems.

Additional HSA Requirements
In addition to the modules discussed above, several
additional modules are necessary to provide basic
embedded systems functionality. For the HSA to
interface with ground operators, software modules to
receive commands (CMD Dispatcher), send distinct
fixed-size telemetry packets (Downlink Packetizer),
configure parameters for the HSA software (Parameter
Database), and log software event verification records
(EVRs) (Event Logger) are included within the software
executable. Additionally, the HSA includes software
modules that enable a robust implementation and
execution of logic such as modules for continuous
execution loops of rate groups (Linux Timer, Rate
Group Driver, Active Rate Group), data buffer
managers (Buffer Manager & Static Memory), assert
handling (Fatal Adapter & Fatal Handler) and time
correlation based off of the XB1 system clock (Linux
Time). Finally, the HSA contains a module - System
Resources - to characterize the resource utilization of the
HSA to ensure it stays under requirements HSA-012 and
HSA-013 found in Table 8.

Figure 6. Payload Subsystem Interface Diagram

Arunkumar 8 37th Annual Small Satellite Conference

Table 8. Miscellaneous HSA Requirements

ID Requirement

HSA-001 The hosted software application (HSA) shall compile
into a single executable in accordance with the BCT
SW API.

HSA-007 The HSA shall generate a telemetry packet at a rate
specified in the data budget.

HSA-012 The HSA shall not take up more than 4 MB of
program memory per BCT XB1 ICD (BUS-EC-001).

HSA-013 The HSA shall not take up more than 60 MB of RAM
per the BCT XB1 ICD

HSA-014 The HSA shall have a method to determine which
spacecraft it is running on.

The complete list of the software modules found in the
HSA is shown in Table 9. The breakup of scope between
modules could have been done in multiple different
ways, depending on the system architect. However, the
guiding principle for this specific delineation of software
modules was the separation of concerns philosophy.
Separation of concerns states that the software system
should be decomposed into modules that each discretely
solve the different aspects of the problem.17 This
principle lends itself well to the component-based
architecture of the Fprime software framework,
discussed in the next section.18 Additionally, as shown in
Table 9, many of the modules were provided and built
into the Fprime framework, reducing overall
development time.

Table 9. List of all modules in the HSA

Component
Name

Description Development
Type

CMD
Dispatcher

Distributes commands to all
components

Built-In

Parameter
Database

Store non-volatile parameters
used by any component

Built-In

TLM
Database

Stores telemetry generated by any
component

Built-In

Event
Logger

Log flight software ‘events’ for
greater insight into the FSW
execution

Built-In

Linux Timer Output a constant tick to the RG
components at a specified time
interval based off of the system
clock

Built-In

Rate Group
Divider

Divide constant tick from linux
timer into ticks for each rate
group

Built-In

Rate Group
Component

Distribute rate group calls to other
components at correct rate

Built-In

Linux Time Correlate software timestamps to
system time

Built-In

Buffer
Manager

Manage memory allocation for
components using dynamic buffer
sizes

Built-In

Static
Memory

Manage memory allocation for
components using fixed buffer
sizes

Built-In

Fatal
Adapter

Intercept assert calls and log
corresponding fatal events

Built-In

Fatal
Handler

Handle fatal events by delaying
segmentation fault by one second
to allow for fatal events to
propagate to the ground system

Built-In

System
Resources

Track resource utilization of CPU
and RAM

Built-In

Poly
Database

Store telemetry values from
subsystems that pertain to fault
detection

Built-In

CCSDS
Framer

Pack outgoing data packets into
the CCSDS Format

Custom

CCSDS
Deframer

Unpack incoming CCSDS data
packets to retrieve desired data

Custom

IPC Driver Communicate with the BCT Bus
FSW using IPC protocol

Custom

TLM Parser Unpacks desired telemetry fields
from subsystem telemetry packets

Custom

Downlink
Packetizer

Forms fixed size data packets
containing HSA telemetry

Custom

Fault
Detection

Detect and diagnose payload level
fault conditions

Custom

Fault
Response

Choose appropriate payload
response based off fault diagnosis

Custom

Payload
State
Machine

Control mission mode, subsystem
state, and formation role

Custom

GNC
Controller

Provide wrapper for the GNC
algorithm library

Custom

HOSTED SOFTWARE APP FRAMEWORK
With all required software modules defined, the design
of the HSA can be developed. The first step to starting
development is to choose the flight software architecture.
The main driver for choosing the software architecture
for the HSA was picking a framework that would best
enable fast and robust development, while also providing
tools for developers and operators for testing and
operations. The most common choices for software
frameworks for CubeSat-level missions are either cFS
(core flight software) developed at NASA Goddard,
Fprime developed by NASA JPL, or a custom built-
from-scratch framework.19, 20 For the VISORS mission,
all GT software was written within the Fprime
framework (v3.1.1) due to prior experience among the
members in the lab as well as existing development tools
that were developed for previous missions.

Fprime is an open-source C++ framework that was
initially released to the public in 2018. It is a component-
based point-to-point architecture that enables modularity
and reuse of software.20 Fprime ships with several ready-
to-use components that are found on most embedded

Arunkumar 9 37th Annual Small Satellite Conference

systems projects such as a Command Dispatcher,
Parameter Database, and Telemetry Database, among
others. Table 9 shows that about 60% of the components
were already available within the Fprime framework
while about 40% were custom designed for the VISORS
mission. Fprime also provides supporting tools to speed
up development, testing, and operations, such as a
custom ground data segment (GDS) as well as several
all-inclusive autocoders that autogenerate large swaths
of code based on simply the input and output interfaces
to each component.21

The Fprime architecture consists of three main parts –
Ports, Components, and Topologies. Each software
module, or component, consists of input and output ports
that define the data structure. The component has handler
functions for each of the input and output ports that
define the logic that must be executed to send or receive
data. Additional functions can also be defined in the
component C++ code. Components are then hooked up
to other components within the topology. The topology,
such as the one shown in in Fig 7, ultimately provides an
overarching view of the design of the software
executable, called a deployment.

Figure 7. F' Component-Based Architectural

Pattern18

The one obvious drawback to having so many discrete
components in a deployment is that connecting them
together in the topology can be confusing for large
deployments that require numerous port connections.
However, another huge benefit to using Fprime is that
for many of the built-in components, Fprime either
connects them in the topology automatically or provides
clear documentation on how they should be connected to
other components. Thus, the more complicated aspect of
the topology becomes defining the specific data types
that need to be exchanged between components. By
looking at the MET for each phase of the mission, the
software architect can outline exactly what data must be
transferred between components. This definition of the
input and output interfaces of each component then

corresponds directly to the set of Fprime ports on each
component.

HOSTED SOFTWARE APP OPERATIONAL
USAGE
To provide context for how the software modules
interact with each other, the HSA-related CONOPS and
mission events timelines for every phase of the mission
must be defined. The entire VISORS mission can be split
into distinct phases, as seen in Table 10, each of which
can be further characterized with a MET to describe the
specific actions the HSA takes during each of the phases.
Many of the FSW actions require the use of multiple
components since the scope of each component is
limited. Thus, outlining each of the FSW actions will
directly derive how the components should be
connected.

Table 10. HSA status in each phase of the mission

Phase Description HSA
Status

Launch + Solar
Array Deployment

The Spacecraft wait for 30
minutes before deploying solar
arrays and turning on all of the
BCT subsystems

OFF

Initial Bus
Commissioning

Ground-based commissioning
campaign to verify the
functionality of the BCT
subsystems

OFF

Payload
Commissioning

Ground-based commissioning
campaign to verify the
functionality of the payload
subsystems

ON

Formation
Acquisition

Manually command the
spacecraft into the standby
formation configuration

ON

Standby Wait in standby formation
configuration for the command to
start a science campaign

ON

Science Campaign Go from the standby to science
orbits and take science
observations

ON

Off Nominal Any time a spacecraft detects a
fault and must respond

ON

The following subsections detail the HSA-oriented MET
for all phases of the mission for which the HSA will be
ON. Each subsection will then outline the port
connections necessary to achieve each step of the MET.
These port connections between the components can be

Arunkumar 10 37th Annual Small Satellite Conference

seen in the simplified topology diagram shown in Fig 8.
This diagram includes most of the custom components
within the deployment but leaves out many of the built-
in components for brevity.

Payload Commissioning
After the BCT Bus hardware subsystems have been
commissioned, the next step is to commission the
payload subsystems. The HSA portion of the payload
commissioning is distributed among the rest of the
payload commissioning steps. Since the HSA
communicates with all payload subsystems, the HSA
interfaces must be checked after turning on any
subsystem. This will consist of verifying that commands
can be sent to the subsystem and that telemetry is
received back from the subsystem. The sequence for this
preliminary operations campaign is illustrated in Fig 9.
The HSA to BCT Bus FSW interactions must be
validated first since all communication with the ground
go through BCT FSW.

Figure 9. Payload Commissioning Sequence

The HSA to BCT FSW verification step validates the
mission operator’s ability to send commands to and
receive telemetry from the HSA. This step consists of
sending the HSA a no operation (NO-OP) command and
verifying that it sends out an EVR upon the completion
of that command. The NO-OP command is used since it
is a simple command that does nothing but acknowledge
receipt of the command. The HSA interface verification
steps for each of the subsystems are similar to the
previous step but delegate the HSA to send the NO-OP
command instead of the ground. After the HSA sends out
the command it will, depending on the subsystem, either
wait for a direct response from the subsystem or parse its
telemetry to see if the subsystem processed the
command. The HSA will also verify that it receives
telemetry from every payload subsystem.

During the calibration section of commissioning, most of
the ground-based commands are routed directly to the
desired payload subsystem and do not go through the
HSA, the only calibration related to the HSA deployment
is during the GNC and Prop calibration steps. During
GNC calibration, the ground sends several commands to
the GNC Controller which simply passes those
commands to the GNC algorithms. Receipt of these
commands is captured via EVRs and telemetry packets.
The port connections required between HSA
components for this phase of the mission are outlined
below in Table 11.

Figure 8. HSA Topology without most of the Fprime built-in components

Arunkumar 11 37th Annual Small Satellite Conference

Table 11. HSA Port Connections Required for the
Commissioning Phase

Payload
Commissioning

Step

HSA Action Related HSA Port
Connection

HSA ←→ BCT
Interface
Verification

HSA receives
NO-OP command
from the ground

IPC Driver → CCSDS
Deframer → CMD
Dispatcher

HSA ←→ BCT
Interface
Verification

HSA responds to
NO-OP command

Downlink Packetizer
→ CCSDS Framer →
IPC Driver

HSA ←→
Subsystem Interface
Verification

HSA sends out
NO-OP command

Payload State Machine
→ CCSDS Framer →
IPC Driver

HSA ←→
Subsystem Interface
Verification

HSA receives
confirmation of
NO-OP command

IPC Driver → CCSDS
Deframer → Payload
State Machine
OR
IPC Driver → CCSDS
Deframer → TLM
Parser → Poly
Database → Payload
State Machine

HSA ←→
Subsystem Interface
Verification

HSA verifies
reception of
telemetry from
subsystem

IPC Driver → CCSDS
Deframer → TLM
Parser

GNC Calibration HSA receives
ground commands
for GNC
Controller

IPC Driver → CCSDS
Deframer → CMD
Dispatcher → GNC
Controller

GNC Calibration GNC Controller
responds to
commands with
events

Downlink Packetizer
→ CCSDS Framer →
IPC Driver

GNC Calibration GNC algorithm
initiates a
propulsive
maneuver

GNC Controller →
CCSDS Framer

Formation Acquisition
Once commissioning is finished, operators will
transition into the formation acquisition phase of the
mission. In this phase, the main goal is not only to put
the spacecraft into the Standby mode formation
configuration but also to verify the performance of
subsystems that depend on the spacecraft being in
formation. The order of steps in this phase, as seen in Fig
10, is important as the XLINK subsystem needs to be
performance tested first since this will enable the testing
that follows on the GNC and fault management systems.
The final step after the formation is acquired must be to
enable autonomy so that the spacecraft can take

corrective action in the event of a fault, since the relative
dynamics occur faster than a ground response is possible.
The duration of this phase must be kept short since the
spacecraft will be in standby formation without an
autonomous way to escape until autonomy is enabled by
the mission operators at the end of the phase.

The main new port connections found in this mission
phase are related to the fault management system. The
design of the fault management system lends itself to a
linear data flow between its components. The fault
detection component passes its diagnosis to the fault
response component which passes recommended actions
to the payload state machine. Autonomous fault
responses are actuated through the payload state
machine. This segmented approach, seen in the port
connections outlined in Table 12, fulfills the separation
of concerns guideline.

Table 12. HSA Port Connections required for the
Formation Acquisition Phase

Formation
Acquisition

Step

HSA Action Related HSA Port
Connection

GNC
Performance
Tests

GNC exchanges state
information with other
spacecraft

GNC Controller →
CCSDS Framer →
IPC Driver

GNC
Performance
Tests

GNC executes
propulsive maneuvers

GNC Controller →
CCSDS Framer

GNC
Performance
Tests

GNC Controller reads in
temperature and
pressure fields from
PROP telemetry

GNC Controller →
Poly Database

Fault
Management
Performance
Tests

Fault Detection reads in
telemetry from payload
subsystems

IPC Driver →
CCSDS Deframer →
TLM Parser → Poly
Database → Fault
Detection

Fault
Management
Performance
Tests

Fault Response receives
fault diagnosis and
chooses the most
suitable response

Fault Detection →
Fault Response

Fault
Management
Performance
Tests

Payload State Machine
receives the
recommended response
and acts on it if allowed
to do so

Fault Response →
Payload State
Machine

Enable
Autonomy

Payload State Machine
receives a ground
command to enable
autonomous actions

IPC Driver →
CCSDS Deframer →
CMD Dispatcher →
Payload State
Machine

Figure 10. Formation Acquisition Sequence

Arunkumar 12 37th Annual Small Satellite Conference

Science Campaign
The science campaign phase of the mission is the most
complicated portion of the mission due to the number of
coupled actions between the GNC, ADCS, and science
instruments. The timeline of tasks that the HSA
accomplishes during this phase is shown in Fig 11 and
Fig 12. These figures are adapted from the work first
done in Ref 2. First, the ground verifies the feasibility of
the science campaign by assessing the health of the
payload subsystems on both spacecraft as well as
characterizing the amount of delta-v and science data
storage that is available on board. After confirming that
a science campaign is possible, ground operators
configure relevant science parameters such as the
observation target on the sun, number of observation
frames, exposure time, and parameters for image
compression algorithms. The last ground-based
command that is sent is a command to the PSM to set the
current mode to Transfer mode.

At this point, the ground-based setup of the science
campaign is complete, and the spacecraft takes over to
autonomously complete the science campaign. The first
task the PSM does is switch the primary spacecraft
pointing constraint to be GPS-to-Zenith so that the GNC

algorithms can receive quality navigation data for the
initialization of its navigation algorithm.2 After the
navigation algorithm finishes its initialization sequence,
the algorithm plans a set of maneuvers that will take the
formation from the standby configuration to the science
configuration.

Once the spacecraft is in the correct relative orbit
configuration for Science mode, the PSM switches its
internal mission mode to Science. Once this occurs, the
CSIE gets turned ON and is passed the aforementioned
science parameters. The GNC algorithms plan and
execute additional propulsive maneuvers to drive the
formation to the observation configuration when the
spacecraft are over either of the Earth’s poles.
Immediately before the science observation, the HSA
executes a series of commands to point the spacecraft in
the correct target direction, turn OFF the magnetorquers
and UHF downlink, and turn ON the Laser Range
Finder. The magnetorquers and UHF downlink are
turned OFF to ensure that there is no electromagnetic
interference with the science instrumentation during a
science observation. The port connections required for
this phase of the mission are documented in Table 13.

Figure 11. Initiation of Science Campaign

Figure 12. Science Orbit and Observation Timeline

Arunkumar 13 37th Annual Small Satellite Conference

Table 13. HSA Port Connections required for the
Science Campaign Phase

Science Campaign
Step

HSA Action Related HSA Port
Connection

Configure science
parameters

HSA accepts a
command to set
desired target
observation location

IPC Driver →
CCSDS Deframer
→ CMD
Dispatcher →
Payload State
Machine

Configure science
parameters

HSA sends desired
observation location
to GNC Controller for
their use in algorithms

Payload State
Machine → GNC
Controller

Command Transfer
Mode

PSM accepts a
command to switch
mission modes

IPC Driver →
CCSDS Deframer
→ CMD
Dispatcher →
Payload State
Machine

Switch Pointing
Constraint

PSM autonomously
commands BCT to
perform a switch in
the pointing constraint

Payload State
Machine →
CCSDS Framer →
IPC Driver

Execute Propulsive
Maneuvers

GNC Controller
commands propulsive
maneuvers

GNC Controller →
CCSDS Framer

Disable/Enable
Subsystems

PSM enables or
disables subsystems
based off of the

Payload State
Machine →
CCSDS Framer →
IPC Driver

Command an
Observation

GNC Controller will
alert the HSA when
an observation needs
to occur

GNC Controller →
Payload State
Machine →
CCSDS Framer →
IPC Driver

Off-Nominal Scenarios

The final mission phase relevant to the HSA is unique in
that it does not have a predetermined linear timeline of
events. Instead, this phase has multiple different entry
criteria that each illicit a different response from the
spacecraft formation. However, from a software
perspective, complexity is minimized by having the
same set of Fprime components handle all fault
conditions. This ensures that the data flow between
components is the same regardless of what the actual
mission scenario is. The fault management system must
ensure that the fault diagnosis between the spacecraft is
identical. As a result, the fault detection component must
be continuously exchanging its diagnosis information as
shown in Fig 13.

Figure 13. Distributed Fault Management System
Data Flow

The fault detection data flow is enabled by the
continuous stream of incoming packets from each of the
payload subsystems. Since each packet is different, the
TLM Parser component must identify the packet by its
APID and correspondingly unpack the message. Once
the packet is unpacked into its respective telemetry
fields, the TLM Parser component will write the values
into the Poly Database. From here, the fault detection
component queries items in the database and diagnoses
the fault, if any. Regardless of if there is a fault
occurring, the fault detection component will exchange
diagnosis information with the other spacecraft.
However, if there is a fault, the FD component sends the
diagnosis to the FR component which determines the
appropriate fault response for the specific scenario.14
Finally, the FR component sends its response
recommendation to the PSM which actuates the
response. If autonomy is enabled by the ground, the PSM
will update its internal variables (mission mode,
subsystem states, formation role) according to the
response recommendation and alert the GNC Controller
and/or the PSM on the other spacecraft of any changes
as necessary. The port connections to enable these
interactions is shown in Table 14.

Table 14. HSA Port connections required for off-
nominal scenarios

Off-Nominal
Scenarios Step

HSA Action Related HSA
Port Connection

Receive Payload
Telemetry

Poly DB updates the
database with the
received subsystem
telemetry

IPC Driver →
CCSDS
Deframer →
TLM Parser →
Poly Database

Arunkumar 14 37th Annual Small Satellite Conference

Read Telemetry for
Fault Detection

Fault Detection polls
the telemetry database
to retrieve the
telemetry values it is
interested in

Fault Detection
→ Poly Database

Determine Fault
Diagnosis

Fault Detection passes
diagnosis information
to the Fault Response
component

Fault Detection
→ Fault
Response

Fault Response
Recommendation

Fault Response passes
the PSM its
recommendation for
corrective action

Fault Response
→ Payload State
Machine

Payload State
Machine actuates
fault response

PSM alerts other
spacecraft of mode or
role switch change

Payload State
Machine →
CCSDS Framer
→ IPC Driver

Payload State
Machine actuates
fault response

PSM receives an alert
from other spacecraft
of mode or role switch
change

IPC Driver →
CCSDS
Deframer →
Payload State
Machine

Payload State
Machine actuates
fault response

PSM alerts the GNC
Controller of mode or
role switch change

Payload State
Machine → GNC
Controller

HSA IMPLEMENTATION AND TESTING
With the HSA topology defined, the next step is to begin
the implementation phase of the flight software. A high
level overview of this phase is given in Fig 14. The
Fprime framework uses a domain specific modeling
language called FPP (F Prime Prime) to configure the
interfaces of a component and topology. The first step to
defining a component starts with defining the data types
of each of its input and output ports in FPP. These ports
can then be used in the FPP file of the component itself.
After all custom and built-in ports are defined, other
commands, telemetry, and parameters can be included in
the component FPP file. Once the component definition
is complete, the initial boilerplate C++ code is
autogenerated through Fprime based on the FPP
definitions.22 This gives users a starting point for
developing the logic of their Fprime component.

After all the work to define the scope of the components,
write requirements, and generate the template C++

structure, the logic of the component can finally be
written. At this point, with all the scaffolding in place,
actually developing the software is less cumbersome as
the developer only has to be worried about the
functionality of one component at a time. However,
software development is an iterative process, so the
implementation of the component will be continuously
updated as it goes through its test campaign. Just as with
any other software system, modules of code in Fprime
must undergo both unit testing and integration testing.
To complete these tests, Fprime provides a large suite of
development tools.

Unit testing in Fprime begins in a similar fashion to
component development – the boilerplate template for
tester code is generated based on the definitions of the
component FPP. The autogenerated tester code provides
a harness to easily test the input and output functions of
each component. The tester component has complete
access to the states and variables of the component C++
code and as a result, can be written to completely
validate all functionalities of the component.21 This
allows for black-box and white-box testing, depending
on the flight software's testing requirements. By setting
up the framework in this manner, every Fprime
component can be unit tested in isolation without any
other components. The extent to which a unit test verifies
the functionality of the component can often be
characterized by the code coverage of the unit test. Code
coverage gives qualitative results on how many lines and
logical branches of the components C++ code were
tested via the unit tests. For the VISORS mission, the
goal for each component’s unit test code coverage was
80%. Note that a high code coverage metric does not
always mean that the component is working nominally.
There are often cases where a component cannot be fully
tested unless it is interfaced with other components in the
topology. This leads to the next phase of the software
testing framework – Integration Tests.

For the VISORS mission, integration testing was
completed in two main ways. First, multiple related
components were tested together through an exerciser
deployment. This test deployment is different from the

Figure 14. Fprime Component Level Implementation and Testing Flowgraph

Arunkumar 15 37th Annual Small Satellite Conference

flight deployment in that it is specifically tailored to
exercise a small subset of components working together.
By separating the flight deployment into smaller sub-
deployments, the functionality and operation of the
components can be more easily debugged and verified
since fewer overall tasks are happening in the sub-
deployment. Almost all the custom components written
for the VISORS mission are included in at least one
exerciser deployment. Exerciser deployments are almost
exclusively run on a desktop computer instead of the
flight hardware and may use the Fprime Ground Data
Segment (GDS) instead of the ground software used
during flight. This allows for faster and more iterative
development. Tests using the Fprime GDS can be
manually implemented or scripted in Python using the
GDS Application Programming Interface (API), giving
users the option to completely automate their integration
tests.

However, to verify that the component also works while
running on a hardware platform, hardware integration
tests are developed. The Fprime deployments used for
these tests are unique in that they require the components
that enable communication between the hardware device
and the test computer. For VISORS, hardware
integration tests must be compatible with the COSMOS
ground operations software. Users can use the Command
and Telemetry Server in Cosmos to manually send
commands to any subsystem or automate the sending of
commands with scripts. It is important to note that scripts
in COSMOS are written using the Ruby programming
language, not Python.23 Thus, any scripts written in
Python for integration testing with the Fprime GDS must
be adapted to work with COSMOS instead.

After each of the custom Fprime components for
VISORS go through this implementation and testing
phase, the components are integrated into flight
deployments. Once the deployment includes the
components planned for that specific flight software
release, the flight deployment undergoes system-level
integration testing where it runs on the testbed or flight
hardware and interfaces with all payload subsystems.
This helps verify the data interfaces between subsystems
and ensures that the entire spacecraft system operates
nominally. Due to the fact that not all payload
functionality (such as propulsive maneuvering) can be
tested on the ground, the system level integration tests
may need to incorporate spoofed or simulated data from
subsystems.6

CONCLUSION
As formation flying missions become more abundant,
multi-functional software systems like the HSA will
become more common. As the complexity of these
software systems increase, it is vital to carefully consider

how these systems should be architected so that time can
be saved on the development of the system. The contents
of this paper aimed to show this in action by providing a
concise look at the design and development process of
the HSA flight software deployment for the VISORS
mission. By thinking critically about what drives the
design of the HSA, a robust, modular architecture was
developed. The choice of the Fprime software
framework facilitated the design of the software system
and enabled fast, concurrent development among all
team members. This concurrency allowed for more time
for testing and provided a higher level of confidence that
this ambitious mission could be successful regardless of
schedule, cost, and staffing constraints. As the
development of the HSA continues into the future,
developers should work with mission operators to further
iterate the design within the confines of the mission
requirements. Further iteration will result in a system
that is even more user-friendly while also increasing
reliability and robustness for ground based testing and on
orbit operations.

ACKNOWLEDGMENTS
The work to develop the HSA for the VISORS mission
is funded by the National Science Foundation under
grant No. 1936576. Any opinions, findings, conclusions,
or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

REFERENCES
1. Kulu, “E. Nanosatellite Launch Forecasts 2022 -

Track Record and Latest Prediction.” Small
Satellite Conference 2022.

2. Lightsey, E. G., Arunkumar, E., Kimmel, E.,
Kolhof, M., Paletta, A., Rawson, W.,
Selvamurugan, S., Sample, J., Guffanti, T., Bell,
T., Koenig, A., Amico, S. D. ’, Park, H., Rabin,
D., Daw, A., Chamberlin, P., and Kamalabadi, F.
“Concept of Operations for the VISORS Mission:
A Two Satellite CubeSat Formation Flying
Telescope”. 44th Annual AAS Guidance,
Navigation & Control Conference, Breckenridge,
CO, 4-9 February 2022.

3. Koenig, A. W., D’amico, S., and Lightsey, E. G.
“Formation Flying Orbit and Control Concept for
the Visors Mission”. AIAA SciTech 2021 Forum,
Virtual Event, 11-15 & 19-21 January 2021.

4. Hart, S. T., Daniel, N. L., Hartigan, M. C., and
Glenn Lightsey, E. “Design of the 3-D Printed
Cold Gas Propulsion Systems for the VISORS
Mission”. 44th Annual AAS Guidance,
Navigation & Control Conference, Breckenridge,
CO, 4-9 February 2022.

Arunkumar 16 37th Annual Small Satellite Conference

5. Stanford University. “Formation Alignment
During Observation, VISORS Systems
Integration Review”. 2023.

6. Kimmel, E., Paletta, A., Arunkumar, E., Krahn,
G., and Glenn Lightsey, E. “Testing methodology
for Spacecraft Precision Formation Flying
Missions”. 45th Annual AAS Guidance,
Navigation & Control Conference, Breckenridge,
CO, 4-8 February 2023.

7. Baron, D. “Image of DSC During Testing at
BCT.” 2023.

8. Schulte, P. Z. “A State Machine Architecture for
Aerospace Vehicle Fault Protection”. 2018.

9. Payne, J. “VISORS XB1 Spacecraft Bus Interface
Control Document”. 2022.

10. R. K. Kandt, "Experiences in Improving Flight
Software Development Processes". IEEE
Software, vol. 26, no. 3, pp. 58-64, May-June 2009

11. Jones, M., Fretz, K., Kubota, S., and Smith, C. A.
“The Use of the Expanded FMEA in Spacecraft
Fault Management.” Annual Reliability and
Maintainability Symposium (RAMS, 2018.

12. McDonald, D., and Ligthtsey, E. G. “Fault
Management in Small Satellites Lessons Learned
from the Lunar Flashlight and ARMADILLO
Missions.”

13. Paletta, A., Lightsey, G., Rawson, W.,
Arunkumar, E., Kimmel, E., Selvamurugan, S.,
Hauge, M., and Guffanti, T. “Development of a
Contingency Operations Architecture for the
VISORS Formation Flying Space Telescope.”
2022.

14. Paletta, A., and Lightsey, G. “Development of an
Autonomous Distributed Fault Management
Architecture for the VISORS Mission.” 2023.

15. “Recommendation for Space Data System
Standards BLUE BOOK RECOMMENDED
STANDARD SPACE PACKET PROTOCOL.”
2020.

16. Krishnaveni, M. S., and Ruby, M. D. “Comparing
and Evaluating the Performance of Inter Process
Communication Models in Linux Environment.”
2016.

17. Tarr, P., Ossher, H., Harrison, W., and Sutton, S.
M. N Degrees of Separation: Multi-Dimensional
Separation of Concerns. 1999.

18. The F´ Framework Team. F´: A Flight-Proven,
Multi-Platform, Open-Source Flight Software
Framework.

19. Mccomas, D., Wilmot, J., and Cudmore, A. “The
Core Flight System (CFS) Community: Providing
Low Cost Solutions for Small Spacecraft.” 2016.

20. Bocchino, R. L., Canham, T., Watney, G. J.,
Reder, L. J., and Levison, J. “FPrime: An Open-
Source Framework for Small-Scale Flight
Software Systems.” Small Satellite Conference
2018.

21. Rizvi, A., Ortega, K. F., and He, Y. “Developing
Lunar Flashlight and Near-Earth Asteroid Scout
Flight Software Concurrently Using Open-Source
F Prime Flight Software Framework.” Small
Satellite Conference 2022.

22. Bocchino, R. L., Levison, J. W., and Starch, M. D.
“FPP: A Modeling Language for F Prime”. IEEE
Aerospace Conference 2022.

23. Melton, R. “Ball Aerospace COSMOS Open
Source Command and Control System.”

