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Abstract—We recently introduced a new geometric trilateration 
(GT) method for GPS-style positioning.  Preliminary single-
point analysis using simplistic error assumptions indicates that 
the new scheme delivers almost indistinguishable localization 
accuracy as the traditional Newton-Raphson (NR) approach.  
Also, the same computation procedure can be used to perform 
high-accuracy relative positioning between a reference vehicle 
and an arbitrary number of target vehicles.  This scheme has the 
potential to enable a) new mission concepts in collaborative 
science, b) in-situ navigation services for human Mars missions, 
and c) lower cost and faster acquisition of GPS signals for 
consumer-grade GPS products.   
The new GT scheme differs from the NR scheme in the following 
ways: 

1. The new scheme is derived from Pythagoras 
Theorem, whereas the NR method is based on the 
principle of linear regression.   

2. The NR method uses the absolute locations (xi, yi, zi)’s 
of the GPS satellites as input to each step of the 
localization computation.  The GT method uses the 
Directional Cosines Ui’s from Earth’s center to the 
GPS satellite Si.   

3. Both the NR method and the GT method iterate to 
converge to a localized solution.  In each iteration 
step, multiple matrix operations are performed.  The 
NR method constructs a different matrix in each 
iterative step, thus requires performing a new set of 
matrix operations in each step.  The GT scheme uses 
the same matrix in each iteration, thus requiring 
computing the matrix operations only once for all 
subsequent iterations.   
 

In this paper, we perform an in-depth comparison between the 
GT scheme and the NR method in terms of a) GPS localization 
accuracy in the GPS operation environment, b) its sensitivity 
with respect to systematic errors and random errors, and c) 
computation load required to converge to a localization solution.   
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2 GPS satellites, and we assume Si’s are all time-synchronized.   

1. INTRODUCTION 
As of June 30, 2017, the United States’ Global Positioning 
System (GPS) infrastructure consisted of 31 operational 
satellites [1].  These satellites provide 24/7 global location 
and timing services for users on Earth’s surface and in low 
Earth orbit (LEO).  The cost of development and deployment 
of GPS is estimated to be about $33 billion, and the annual 
operation and maintenance cost is about $1 billion [2].  Yet 
the economic benefits of GPS are tremendous; it is estimated 
that the monetary benefits of GPS to the US economy in 2013 
alone is about $56 billion [3].   
 
In addition to economic benefits, GPS is changing the 
everyday life of people in the areas of technology, culture, 
and thinking.  There is no end in sight as to how GPS can be 
integrated with other technologies, and its infusion 
revolutionizes and enables many commercial, space, and 
military applications and services.   
 
GPS provides 3-dimensional (3-D) position estimates via 
trilateration, which refers to the general technique of 
computing position based on measurement of distances.  The 
standard GPS trilateration scheme is expressed in terms of 
distance measurements and positions in an Earth-centered 
Cartesian coordinate system.  The set of simultaneous 
equations is of the form 

𝒅𝒅𝒊𝒊 =  �(𝒙𝒙 − 𝒙𝒙𝒊𝒊)𝟐𝟐 + (𝒚𝒚 − 𝒚𝒚𝒊𝒊)𝟐𝟐 + (𝒛𝒛 − 𝒛𝒛𝒊𝒊)𝟐𝟐 + 𝒄𝒄∆𝒕𝒕   𝒊𝒊 = 𝟏𝟏,⋯ ,𝒏𝒏 (1) 
where (x, y, z) is the position of vehicle V to be estimated, (xi, 
yi, zi) are known positions of the GPS satellites Si  

2, and n is 
the number of satellites.  is the clock bias between V and 
the GPS time standard, which is maintained by the GPS 
operation segment.  c is the speed of light.  In the GPS 
trilateration computation, (x, y, z) and can be solved 
uniquely for n ≥ 4.  The standard approach to solve the system 
of equations in (1) is known as the Newton-Raphson method, 
which is a general iterative method that uses linear regression 
to find the root of a function [2].   
We recently introduced a new geometric trilateration (GT) 
method for GPS-style positioning [4].  Preliminary single-
point analysis using simplistic error assumptions indicates 
that the new scheme delivers almost indistinguishable 
localization accuracy as the traditional Newton-Raphson 
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(NR) approach.  Also, the same computation procedure can 
be used to perform high-accuracy relative positioning 
between a reference vehicle and an arbitrary number of target 
vehicles [5].  This scheme has the potential to enable a) new 
mission concepts in collaborative science, b) in-situ 
navigation services for human Mars missions, and c) lower 
cost and faster acquisition of GPS signals for consumer-grade 
GPS products.   
The new GT scheme differs from the NR scheme in the 
following ways: 

1. The new scheme is derived from Pythagoras 
Theorem, whereas the NR method is based on the 
principle of linear regression.   

2. The NR method uses the absolute locations (xi, yi, 
zi)’s of the GPS satellites as input to each step of 
the localization computation.  The GT method uses 
the Directional Cosines Ui’s from Earth’s center to 
the GPS satellites Si.   

3. Both the NR method and the GT method iterate to 
converge to a localized solution.  In each iteration 
step, multiple matrix operations are performed.  
The NR method constructs a different matrix in 
each iterative step, thus requires performing a new 
set of matrix operations in each step.  The GT 
scheme uses the same matrix in each iteration, and 
thus requires computing the matrix operations only 
once for all subsequent iterations.   

 
The rest of the paper is organized as follows:  Section 2 
reviews the NR method and the GT scheme for trilateration.  
Section 3 introduces a notional navigation satellite system 
architecture for the Human Mars Exploration Missions.  The 
detailed system concept is described in [6].  Using the Human 
Mars landing site scenario, we compare the accuracy 
performances between the NR and the GT schemes in Section 
4, and the computation performances are compared in Section 
5.  Section 6 provides concluding remarks and discusses 
future work.   
 

2. REVIEW OF NEWTON-RAPHSON (NR) 
SCHEME AND GEOMETRIC TRILATERATION 
(GT) SCHEME 

2.1 REVIEW OF NEWTON-RAPHSON SCHEME 
Newton-Raphson’s iterative method and its convergence are 
based on the approach of linear regression.  Let =  
be the estimated location for a given iteration.  A residual 
location  = (Δx, Δy, Δz), and an estimated clock offset Δ 
= cΔt are computed by solving the following equation:   

 = (GTG)-1GT  

where  = , and 

 

 for .   

The matrix G is of the form 
 

 

 
The estimated location  is then updated as  
+ (Δx, Δy, Δz) → .  Note that: 

1. The matrix G is constructed using the GPS satellite 
locations (xi, yi, zi) as well as the estimated location 

 of P for a given iteration.   
2. The first three entries of row i in G correspond to 

the unit vector from the intermediate location
 of each iterative step to the GPS satellite 

Si.    
3. The estimated location  is different in 

each iterative step, thus the matrix G is different, 
and the complicated computation of (GTG)-1GT has 
to be performed in each step.  
 

The details of this method can be found in many GPS books, 
e.g. [2].  

2.2 REVIEW OF GEOMETRIC TRILATERATION 
SCHEME 

The Geometric Trilateration method iterates and provides 
coverage to a localization solution based on alternating 
applications of Pythagoras Theorem in its iteration process.  
We formulated the problem as follows: Let E denote the 
center of the planetary body with coordinate (0, 0, 0).  
Consider three points V, E, and S1 that form a triangle Λ1 in 
the Euclidean space as shown in Figure 1. Let r1 be range 
between E and S1, and r1’ be the pseudo-range measurements 
between V and S1.  We consider the presence of the clock bias 
Δt between the vehicle V and the GPS satellites Si’s, 1 ≤ i ≤ 
n.  We assume that the clocks of the GPS satellites are 
perfectly synchronized.  We express the unknown clock bias 
of the vehicle V with respect to S1 as an unknown correction 
factor = cΔt in the pseudo-range measurements r1’.  The 
same correction factor Δ occurs in all other pseudo-range 
measurements ri’, 1 ≤ i ≤ n.  
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The detailed derivation is derived in [5], and the computation 
procedures are summarized in Figure 1.   

3 A NOTIONAL MARS NAVIGATION SATELLITE 
SYSTEM ARCHITECTURE 

We consider the scenario of the Human Mars landing site at 
Utopia Planitia on Mars, and propose a navigation satellite 
constellation that provides navigation and timing services in 
the surrounding region of the landing site.  The navigation 
satellite constellation leverages on the two planned 
areostationary relay orbiters and the Deep Space Habitat in a 
circular 48-hour inclined orbit, and augmented it with a 
navigation satellite in an areosynchronous orbit that traces 
around a figure-8 path.  The Mars orbiters’ orbital parameters 
are given as follows:   
− Aerostationary orbiter 1 (Areo45): 162.5° due East 
− Aerostationary orbiter 2 (Areo90): 207.5° due East 
− Aerosynchronous orbiter (Areo68):180° due East, 20° 

inclined 
− Deep Space Habitat (Mars48hr): 180° due East, 149.5° 

inclined 
 
 

 
 

 
The orbits of the Mars navigation nodes are shown in Figure 
2 (3-D view), and the projections of these orbits onto the 
Mars surface are shown in Figure 3 (2-D view).   Note that 
in Figure 3, the Mars navigation nodes cluster together, and 
Utopia Planitia is north of the cluster.  The satellite-receiver 
geometry appears to be weak and the geometric dilution of 
precision (GDOP) is high.  In other words, the localization 
solution can be very sensitive to the errors in the raw-range 
measurements.  We describe a system concept that uses the 
same trilateration scheme to perform both absolute 
positioning and relative positioning in [6], and we show the 
simulation results and detailed error analysis in [7]. 
  

Figure 1. Iterative Procedure of the GT Scheme 
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4. ACCURACY PERFORMANCE COMPARISON 
The traditional Newton-Raphson and new Geometric 
Trilateration methods were compared using the Martian 
navigation scenario that was presented in the previous 
section. 
 
In this analysis, both navigation node errors and receiver 
range estimation errors are considered. These errors serve as 
proxies to model the most common error types in modern 

satellite navigation systems. For example, random navigation 
node errors model imperfect knowledge in the transmitting 
satellite locations and clock offsets. Receiver range 
estimation errors model uncorrected environmental effects 
such as transmission medium delays, multipath, and receiver 
noise. 
 
Each navigation node has a true distance di which is known 
within an error given by 𝑑𝑑𝑖𝑖′ = 𝑑𝑑𝑖𝑖 + 𝑣𝑣𝑖𝑖  where each 𝑣𝑣𝑖𝑖  is an 
independent normally distributed random variable with mean 

Figure 2. Orbits of the Notional Mars Navigation Nodes (3-D View) 

Figure 3. Orbits of the Notional Mars Navigation Nodes (2-D View) 
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µ and standard deviation σv, i.e., 𝑣𝑣𝑖𝑖~𝑁𝑁(𝜇𝜇,𝜎𝜎𝑣𝑣2).  In 
actuality 𝑣𝑣𝑖𝑖 is the norm of a random vector perturbation in the 
coordinates of transmission node (xi, yi, zi): 
 

𝑑𝑑𝑖𝑖′ =  �(𝑥𝑥𝑖𝑖 + 𝑣𝑣𝑥𝑥𝑖𝑖)2 + �𝑦𝑦𝑖𝑖 + 𝑣𝑣𝑦𝑦𝑖𝑖�
2 + (𝑧𝑧𝑖𝑖 + 𝑣𝑣𝑧𝑧𝑖𝑖)2    

 𝑖𝑖 = 1,⋯ ,𝑛𝑛 
(2) 

 
With  

𝑣𝑣𝑖𝑖 = �𝑣𝑣𝑥𝑥𝑖𝑖2 + 𝑣𝑣𝑦𝑦𝑖𝑖2 + 𝑣𝑣𝑧𝑧𝑖𝑖2             𝑖𝑖 = 1,⋯ ,𝑛𝑛 

 
(3) 

 
And each 𝑣𝑣𝑥𝑥𝑖𝑖 , 𝑣𝑣𝑦𝑦𝑖𝑖 , 𝑣𝑣𝑧𝑧𝑖𝑖  ~𝑁𝑁(0,𝜎𝜎𝑣𝑣2/3). 
 
Each receiver pseudo-range measurement is assumed to have 
a statistically independent random measurement error due to 
receiver noise, with a normal standard deviation σr that is 
simulated at a specified value. In other words, each pseudo-
range estimation is given by: 
 

𝑟𝑟𝑖𝑖′ =  𝑑𝑑𝑖𝑖′ + 𝜀𝜀𝑖𝑖              𝑖𝑖 = 1,⋯ ,𝑛𝑛 
 (4) 

 
With 𝜀𝜀𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑟𝑟2). 
 
A position solution was obtained using both algorithms for 
10,000 simulations of the Martian position described in the 
previous section with the statistical receiver noise errors for 
pseudo-range and each navigation node location. A range of 
different error conditions is shown for pseudo-range 
measurement error σr  from 0 to 5.0 cm and navigation node 
position error σv from 0 m to 35 m. A receiver clock offset 
of Δt = 10 microseconds was included in every simulation.  
 
The results for the traditional NR algorithm are shown in 
Table 1. It is instructive to consider the traditional NR 
algorithm localization error performance for several of the 
cases that are listed in Table 1. In the upper left corner, it is 
seen that when both the navigation node error and the pseudo-
range error are zero, the algorithm determines the correct 
position as expected. In the leftmost column of the Table 1, 
when the pseudo-range position error is given by σr = 1.0 cm, 

the standard deviation of the 3D localization error is σ3D  
=112.74 cm. This value is very close to the theoretically 
predicted localization accuracy by the position dilution of 
precision (PDOP) geometry figure of merit which is given by 
the square root of the trace of the first three elements of the 
geometry matrix product inverse, (GTG)-1. For the geometry 
given in this problem, PDOP = 113.17, which predicts a 3D 
localization error of σ3D  =113.17 cm in the simulated case 
given by σr  = 1.0 cm. This result agrees with the simulated 
result to within 0.4%. Finally it is noted that for navigation 
node position errors as small as σv = 0.5 m, this effect 
dominates the overall error statistics such that all the entries 
in each column of Table 1 are approximately the same 
regardless of the value of pseudo-range measurement error. 
This result suggests that for the range of values studied, it is 
more beneficial to minimize the navigation node position 
error to improve the overall localization performance. In the 
case given with navigation node error σv = 1 m and pseudo-
range error σr = 5.0 cm, the 3D position localization error 
standard deviation is σ3D = 65.64 m. For the range of error 
values considered in this study, σ3D performance scales 
approximately linearly with navigation node error standard 
deviation σv. 
 
The geometric trilateration (GT) algorithm described in 
Section II was compared to the traditional NR algorithm 
under identical error conditions. The results of the 3D 
position localization error for the GT algorithm are shown in 
Table 2. For each case simulated with the NR algorithm in 
Table 1, an identical simulation was performed using the 
same statistical sequences as measurement inputs to the GT 
algorithm. In other words, the ensemble statistics of each cell 
in Table 2 are identical to those used in the corresponding cell 
in Table 1. This allows a fair comparison of the two 
algorithms and removes any effects that may be attributed to 
variations in the statistics between the two cases. 
 
  

Traditional NR 
Algorithm 

Navigation Node Error, σv 

0 m 0.5 m 1 m 2 m 5 m 10 m 30 m 35 m 
0 cm 0.00 3273.85 6547.69 13095.39 32738.48 65476.99 196431.3 229169.9 

0.10 cm 11.27 3273.70 6547.54 13095.23 32738.32 65476.82 196431.1 229169.7 
0.25 cm 28.19 3273.56 6547.35 13095.01 32738.08 65476.58 196430.9 229169.5 
0.50 cm 56.37 3273.51 6547.12 13094.69 32737.71 65476.19 196430.5 229169.1 
1.00 cm 112.74 3274.15 6547.03 13094.24 32737.04 65475.45 196429.7 229168.3 
2.00 cm 225.48 3278.35 6548.30 13094.06 32735.98 65474.10 196428.1 229166.7 
5.00 cm 563.71 3313.95 6563.76 13099.34 32735.15 65471.23 196423.9 229162.4 
Table 1. σ3D Localization Error standard deviation (cm) of the Traditional NR Scheme. PDOP=113.17. 
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As is seen by comparing Tables 1 and 2, the navigation 
performance of the alternate GT algorithm is exactly the same 
as that which was obtained using the traditional NR 
algorithm. When both algorithms are presented with the same  
navigation node errors and receiver noise errors, they 
converge to the same position solution. This conclusion is 
intuitively satisfying–both algorithms are working with 
exactly the same information, so they ought to achieve the 
same numerical solution. The results of Tables 1 and 2 
validate the GT algorithm against the NR algorithm as an 
alternate method for obtaining a navigation solution based on 
trilateration. 

5. COMPUTATION PERFORMANCE COMPARISON 
Although both the GT and NR algorithms achieve identical 
navigation solutions when provided with the same 
information as seen in the previous section, the computational 
method by which they obtain these results is different. 
Therefore, the computational performance of the two 
algorithms was compared. As was stated in Section 1, both 
methods perform matrix inversions and both use iterate 
procedures to converge to a solution. However, the NR 
method computes its matrix inversion inside its iterative loop, 
requiring an inversion operation to be performed at every 
iteration.  

The root mean squared (RMS) execution time of each 
position solution was recorded for each of the test cases over 
the 10,000 navigation simulations listed in the previous 
section. Tables 3 and 4 show that the NR algorithm 
consistently converged within to its solution within 0.01 cm 
repeatability in 6 iterations and approximately 330 
microseconds on a standard laptop computer. The 
computational cost of the NR algorithm on the test computer 
is about 55 microseconds per iteration. The execution times 
were obtained using the tic and toc functions in Matlab on a 
laptop computer. These values are machine-dependent and 
are intended for comparison purposes only between the 
methods. 
  

Traditional NR 
Algorithm 

Navigation Node Error, σv 
0 m 0.5 m 1 m 2 m 5 m 10 m 30 m 35 m 

0 cm 6 6 6 6 6 6 6 6 
0.10 cm 6 6 6 6 6 6 6 6 
0.25 cm 6 6 6 6 6 6 6 6 
0.50 cm 6 6 6 6 6 6 6 6 
1.00 cm 6 6 6 6 6 6 6 6 
2.00 cm 6 6 6 6 6 6 6 6 
5.00 cm 6 6 6 6 6 6 6 6 

Table 3. RMS Iteration Count of the NR Algorithm. 
Traditional NR 

Algorithm 
Navigation Node Error, σv 

0 m 0.5 m 1 m 2 m 5 m 10 m 30 m 35 m 
0 cm 330.18 336.21 329.02 331.08 331.37 331.25 330.67 331.43 

0.10 cm 331.16 329.47 331.22 333.19 331.12 330.13 330.95 334.07 
0.25 cm 330.38 332.01 338.44 331.06 331.34 330.84 331.60 332.16 
0.50 cm 330.48 331.30 334.67 332.06 332.54 332.67 334.23 330.85 
1.00 cm 329.04 331.25 331.45 330.46 332.39 332.33 330.82 332.53 
2.00 cm 331.49 330.84 332.67 334.54 335.20 330.39 337.95 331.21 
5.00 cm 337.32 329.75 331.37 331.63 331.33 330.23 333.06 336.86 

Table 4. RMS Execution Time (microsec) of the NR Algorithm. 

Alternate GT 
Algorithm 

Navigation Node Error, σv 

0 m 0.5 m 1 m 2 m 5 m 10 m 30 m 35 m 
0 cm 0.00 3273.85 6547.69 13095.39 32738.48 65476.99 196431.3 229169.9 

0.10 cm 11.27 3273.70 6547.54 13095.23 32738.32 65476.82 196431.1 229169.7 
0.25 cm 28.19 3273.56 6547.35 13095.01 32738.08 65476.58 196430.9 229169.5 
0.50 cm 56.37 3273.51 6547.12 13094.69 32737.71 65476.19 196430.5 229169.1 
1.00 cm 112.74 3274.15 6547.03 13094.24 32737.04 65475.45 196429.7 229168.3 
2.00 cm 225.48 3278.35 6548.30 13094.06 32735.98 65474.10 196428.1 229166.7 
5.00 cm 563.71 3313.95 6563.76 13099.34 32735.15 65471.23 196423.9 229162.4 

Table 2. σ3D Localization Error standard deviation (cm) of the New GT Scheme. PDOP=113.17. 
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By comparison, the GT method performs its inversion of the 
matrix (ATA)-1 only once, because the product is a function 
of the initial conditions of the guess only and does not have 
to be updated inside the iterative loop. However, the total GT 
computation time is longer, owing to the slower convergence 
rate of the algorithm.  

The convergence rates of the NR and GT methods are 
compared for noise-free measurements in Figure 4. Each 
algorithm’s convergence is shown with the solution residual 
on the vertical axis and the iterate number on the x-axis. 
Starting with the same initial position residual, the NR 
algorithm is seen to converge at a faster than an exponential 
rate, such that it has met the cutoff convergence criteria 
within only 4 iterations. Whereas the GT convergence rate is 
exponential, and requires 14 iterations to achieve the same 
cutoff convergence criteria. This difference in the rates of 
convergence of the two algorithms explains the longer total 
execution time of the GT algorithm when compared to the 
NR algorithm.   

Tables 5 and 6 show that the NR algorithm consistently 
converged within to its solution within 0.01 cm repeatability 
in 36 iterations and approximately 1260 microseconds.  The 
computational cost of the GT algorithm is about 35 
microseconds per iteration. 

  

Alternate GT 
Algorithm 

Navigation Node Error, σv 
0 m 0.5 m 1 m 2 m 5 m 10 m 30 m 35 m 

0 cm 36 36 36 36 36 36 36 36 
0.10 cm 36 36 36 36 36 36 36 36 
0.25 cm 36 36 36 36 36 36 36 36 
0.50 cm 36 36 36 36 36 36 36 36 
1.00 cm 36 36 36 36 36 36 36 36 
2.00 cm 36 36 36 36 36 36 36 36 
5.00 cm 36 36 36 36 36 36 36 36 

Table 5. RMS Iteration Count of the GT Algorithm. 

Alternate GT 
Algorithm 

Navigation Node Error, σv 
0 m 0.5 m 1 m 2 m 5 m 10 m 30 m 35 m 

0 cm 1260.52 1299.69 1268.90 1271.10 1269.04 1268.33 1269.61 1264.37 
0.10 cm 1272.40 1298.85 1262.08 1281.08 1271.93 1269.91 1264.77 1266.85 
0.25 cm 1270.05 1268.28 1261.68 1277.05 1270.06 1273.51 1262.43 1278.33 
0.50 cm 1265.67 1266.82 1270.54 1273.19 1266.38 1270.74 1272.08 1276.25 
1.00 cm 1271.30 1261.87 1262.61 1273.36 1270.47 1269.68 1284.95 1270.61 
2.00 cm 1285.71 1262.21 1273.69 1263.89 1266.73 1270.55 1267.84 1275.50 
5.00 cm 1288.90 1266.10 1266.49 1266.28 1276.33 1265.72 1269.76 1271.35 

Table 6. RMS Execution Time (microsec) of the GT Algorithm. 

Figure 4. Convergence rate of NR algorithm (left) and GT algorithm (right) under noise free measurement 
conditions 
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6. CONCLUSION 
In this paper, we perform an in-depth comparison between 
the GT scheme and the NR method in terms of GPS 
localization accuracy in the GPS operation environment, its 
sensitivity with respect to systematic errors and random 
errors, and computation load required to converge to a 
localization solution.   
 
While the NR algorithm was shown to have a higher 
convergence rate than the GT algorithm, the two algorithms 
operate differently in the information that they require and in 
the manner in which the solutions are obtained. For example, 
the computational cost per iteration is greater for the NR 
algorithm because of the need to invert a matrix at each step 
of the iteration. In contrast, the GT algorithm requires only 
one matrix inversion regardless of the number of iterations. 
When starting with an initial guess which is nearly converged 
to the final solution, for example from a recent prior position 
solution, the GT algorithm execution speed is comparable the 
NR algorithm. 
 
Most spacecraft navigation applications such as the Mars 
navigation scenario that was considered do not have severe 
execution speed requirements. For example, many 
spaceborne GPS receivers have 1 hz position updates which 
is sufficient for most orbital scenarios. As a result, 
considerations such as the required navigation infrastructure 
and error tolerance may be more significant than execution 
speed. The geometric trilateration algorithm may be seen to 
be favorable in these other considerations for a navigation 
scenario at Mars which has limited radionavigation 
infrastructure. 
 
More fundamentally, the two algorithms process their 
information in different ways. As was shown in [4], the 
geometric algorithm may be readily applied to the relative 
navigation problem using the same measurement processing 
flow. This may be the most beneficial application of the new 
algorithm. The Mars navigation application considered in this 
paper may be recast as a relative navigation algorithm. There 
are also atmospheric entry, descent, and landing applications 
which are well-suited to the geometric trilateration problem 
formulation at Mars. 
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