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Abstract—Experimentally derived data was extrapolated to 
compare the lunar landing performance of human pilots to 
that of an automated landing system.12 The results of this 
investigation are presented.  Overall, the pilots performed 
equal to or better than the automated system in 18% of the 
relevant cases, but required more fuel.  Pilot site selections 
were further investigated as a function of the time to 
complete.  Each hypothetical case was compared to the 
automated system, across a range of performance criteria 
weighting distributions.  This performance criteria is 
threefold – proximity to point of interest, safety of the site, 
and fuel consumed.  In general, the pilots perform better 
than the automated system in terms of safety and proximity 
to points of interest criteria.  However, as the priority of fuel 
conservation increases, the tradeoff between using an 
autonomous landing system versus a human-in-command 
system favors the automation, especially if the pilot is not 
able to make the proper decision within a performance 
criteria specific threshold. 
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1. INTRODUCTION 
The great achievements of human space exploration have 
generally been attained with some degree of automated 
assistance.  This assistance, particularly in the areas of 
guidance, navigation and control has been manifested in 
advances in flight computers, control algorithms, and 
decision support systems.  The distribution of work between 
these systems and the crew is focused on maximizing 
mission success and accounting for crew safety.  The 
criteria for work allocation have been based on design 
heuristics, technical capability, crew preference and, in 
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some instances, previous mission data.  Extensive training 
prior to launch is used to further reinforce crew 
responsibilities and to test system capabilities.  The human 
strength of adaptation and creativity provides the ability to 
compensate for technological deficiencies both known and 
unknown [1].  However, as crewed missions grow 
increasingly complex in both objectives and constraints, the 
guidelines historically used to determine the work allocation 
between crew and automation may not provide the most 
robust or optimal combinations.  Instead a more 
sophisticated and quantifiable method is needed to 
determine the best allocation of work between human crews 
and automated systems.  This method must account for and 
quantify both the implications for performance and mission 
robustness.  Modeling and simulation of human-system 
interaction may be required to examine the overall design 
space and to make informed decisions.  

The recent effort to land on the surface of the Moon is a 
prime example of the need for focused analysis of the 
tradeoffs between human-system interaction and the gains 
of leveraging the strengths of each member in this 
relationship.  The return to the Moon will require the next 
generation lunar lander to touchdown in regions far more 
hazardous than that experienced during the Apollo missions.  
These regions are typically poorly lit with distinctive terrain 
features.  The crew will likely require some level of 
automated assistance in order to achieve a safe and precise 
landing [2].   

The landing task is comprised of multiple phases, such as a 
major vehicle braking burn, navigation sensor calibration, 
landing point redesignation (LPR), and a terminal vertical 
descent.  During the LPR task, the crew selects a final 
touchdown location that meets fuel consumption, safety, and 
proximity to points of interest criteria.  This task, and its 
inherent reliance on the crew to finalize the touchdown 
point, generally requires a non-fuel-optimal trajectory to 
orient the spacecraft appropriately to view the landing zone 
and to allow the crew time to make a decision.  Prolonged 
decision-making is costly as there is a high correspondence 
between time and fuel consumption.  Questions about the 
tradeoff between fully automating the LPR task versus 
allowing the crew to remain in-command are still 
unresolved.  

This paper presents a theoretical investigation into the 
tradeoffs between human and automated performance 
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during LPR across possible figures of merit for mission 
success.  The human performance data used here is based on 
the results of an experimental study that was conducted to 
determine the speed and performance of human-pilots 
during the LPR task [3].  Special attention was given to the 
task completion time and the quality of the site selection.  
This paper will summarize the experimental setup necessary 
to examine the LPR task, the experimental findings, and the 
comparison of human performance to analogous 
automation.  

2. BACKGROUND  
With the increased expectations for next generation lunar 
landers, recent studies related to crewed lunar landing have 
focused on the development of support systems (i.e., 
displays and landing algorithms).  One such effort is the 
development of an Autonomous Flight Manager (AFM) by 
NASA’s Autonomous Landing and Hazard Avoidance 
Technology (ALHAT) team, led by NASA Johnson Space 
Center.  The AFM is analogous to a flight management 
system – providing guidance, navigation, and control cues 
[4], monitoring system health [5], and interacting with the 
crew, including prompts for supervisory commands [6].  
With respect to the LPR task, the AFM serves two purposes: 
1) processing raw sensor data into a form comprehensible to 
the crew, and 2) from this sensor data, suggesting alternative 
landing sites to the a priori baseline site.  

Until this point, the only source of terrain information 
available to the crew is an unaugmented window or camera 
view.  After AFM processing, the crew has the window or 
camera view and the results of the LIDAR scan as 
additional sources of terrain information.  The crew 
evaluates the alternative landing sites, finds a site that 
satisfies its specified criteria (e.g., safety, required fuel, or 
nearness to point of interest), and designates the final 
landing site, which concludes the LPR task.  The LPR task 
must be completed quickly, as the trajectory required to 
enable LPR is typically not fuel-optimal.  Currently, the 
LPR task is expected to occur during the Powered Descent 
Phase.  Just prior to LPR, the vehicle performs a pitch-up 
maneuver, placing the vehicle in an orientation suitable for 
LIght Detection and Ranging (LIDAR) sensor operation [4].   
This maneuver is expected to occur at approximately 1 km 
in altitude, at a velocity of 100 m/s (nominal trajectory) [7].  

As with the Apollo missions, the landing trajectory is 
designed in a way to provide the crew a visual of the 
landing area [8].  However, conditions at desired landing 
areas, such as the far side of the Moon, may impede the 
crew’s ability to acquire terrain information unaided.  
Preliminary analyses estimate 30s are needed for LPR task 
completion [9].  In this period of time, the astronauts must 
absorb information from the AFM and window or camera 
view; perform tradeoffs of safety, fuel consumption, and 
proximity to the Point Of Interest (POI), and select a final 
landing site.  Likewise, the crew must adapt to any 
unanticipated terrain features. 

3. EXPERIMENT DESIGN  
Sixteen lunar landing scenarios were developed from 
combinations of three independent variables: Points Of 
Interest (POI) which are one or two landing sites that reflect 
the purpose of the mission; terrain expectancy (ε) denoting 
whether the pre-launch lunar terrain training matches or 
does not match the actual lunar terrain; and identifiable 
terrain markers (ITM) which are one, two, three or four 
clusters or formations of hazards.  This experiment blocked 
the scenarios based on ITMs – participants saw a “high” and 
a “low” density of ITMs, creating two groups of ITM (1,3) 
and ITM (2,4).  Thus, of the full sixteen scenarios from a 2 
× 2 × 4 full factorial design of experiment, each individual 
participant experienced eight scenarios.  The order of the 
runs within and between subjects was balanced to reduce 
any potential bias in run order.  This experiment collected 
several dependent measures: time to complete, quality of 
landing site selection, task strategy, pilot workload, situation 
awareness, and display effectiveness.  

Twenty pilots participated in this experiment, representing a 
wide variety of flight experience and pilot training.  
Participation in the experiment was limited to individuals 
holding a Private Pilot License (PPL) and at least 80 hours 
of flying experience.  This stipulation ensured enough 
familiarity with standard aircraft landing procedures and the 
process of selecting a landing site without limiting the 
number of samples for statistical accuracy.  Twelve pilots 
were Visual Flight Rules (VFR) rated, seven were also 
Instrument Flight Rules (IFR) rated, and one pilot had an 
additional Commercial Pilot License (CPL).  The pilots 
have flown single- and multi-engine aircraft both for 
personal and commercial use.  The mean was 277 h for 
flying (σ = 307 h).  No military pilots participated and only 
one pilot had experience flying helicopters.  The majority of 
the participants were less than thirty years old.  The pilots, 
unknown to them, were randomly separated into two groups 
for ITM frequency blocking.  There were eight participants 
(six VFR, two IFR) in the ITM (2,4) group and twelve (six 
VFR, five IFR, one CPL) participants in the ITM (1,3) 
group.  Fig. 1 illustrates the distribution of the hours of 
flight experience.  The flight experience mean was 181 h in 
the (2,4) group (σ(2,4) = 140.5 h) and 340 h in the (1,3) group 
(σ(1,3) = 373.1 h).  The discrepancy in flight hours and 
inequality of VFR/IFR pilots was not determined until after 
the experiment and as such, flight hours and pilot 
certification are included as covariates in the data analysis.   

Figure 1 – Distribution of Flight Experience (h).  
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Likewise, the experiment setup was intended to have an 
equal distribution of pilots for both groups, but there were 
instances of inability to train to proficiency and a simulation 
failure, which led to exclusion of that data in the analysis.  
Each successful testing session lasted two hours.  The initial 
briefing introduced the LPR task and the simulator.  The 
pilots practiced the LPR task for 45 min in the simulator, 
where they received feedback on their performance. This 
exercise allowed the pilots to become comfortable with the 
simulator and to formulate strategies.  The testing session 
was comprised of eight runs of pre-selected specified 
landing scenarios.  

The experiment utilized a simulated lunar lander module, 
which included an LPR reference display incorporating an 
AFM guidance algorithm and an out the window view.  A 
full description of the simulation facility, illustrated in Fig. 
2, can be found in [9, 10], and illustrated in Fig. 2.  This 
display design was chosen based because it provided a 
publicly available symbology template for use in this 
investigation.  The software used in this study consists of 
two major components: dynamic elements used to enhance 
the lunar lander mockup hardware and a Pseudo-AFM LPR 
algorithM (PALM) that emulates the AFM algorithm of 
alternative landing site selection [11, 12].  An out-the-
window perspective was provided by using the 
EagleLander3D [13] software.  This perspective showed 
terrain as seen during vehicle pitch-up, approach, and 
terminal descent.  The pilots remarked the out-the-window 
display added to the realism of the simulation.  

As previously discussed, the lander is expected to be 
equipped with an AFM that offers alternative landing sites 
based on an objective function that is set by the crew. The 
PALM developed for this investigation takes an input 
package (lunar satellite photography map, hazard 
identification, POI location), scans the map for alternative 
landing sites, and outputs sites based on: safety, fuel 
efficiency, and proximity to POI.  Five objective functions 
are calculated – one for each of the three individual metrics, 
and two others in which an equally balanced or a priori 
weighting of these three metrics is computed.  This input 
package is read, and the landing area is converted to a 
matrix, with each cell containing a value from 0 to 255 
(grayscale).  The PALM treats this matrix as a LIDAR 
sensor scan, with each cell location corresponding to a 
geographical position and cell magnitude relating to an 
altitude.  LIDAR measurement error is not modeled.  The 
PALM measures a Euclidean vector difference between 
each non-hazardous cell, and the POI and examines the area 
within the landing footprint for terrain characteristics and 
fuel consumption requirements.  Information on the 
calculation of slope, roughness, and fuel consumption can 
be found in [3]. 
 
Once these terrain characteristics are computed, the PALM 
sorts the sites based on each of the five objective functions.  
Logic is included in the algorithm to ensure that unique sites 
are recommended - no landing site overlaps another within 

the same objective function.  The output map image for each 
objective function contains hazardous area highlights, the 
point(s) of interest, the baseline point and three alternative 
sites, and symbols for the relative goodness of slope and 
roughness of the expected landing area.  These maps are 
generated prior to the experiment, and the map display 
corresponds to the actions of the user simulating a real-time 
calculation of alternative landing sites without the 
computational cost or increased risk of simulation failure.  

The PALM also computes the pilot performance score 
(PPS) and rank (PPR).  The PPS is calculated using Eq. 1 
and the PPR is based on the rank of the selected landing site 
relative to the sites available.  Eq. 1 is based on Voltaire’s 
concept of “perfect is the enemy of good”.  Although the 
mission objective is to place the lander in an area free of 
major hazards and with preferable terrain characteristics 
(flat and level), there exists a region within each metric that 
constitutes sufficient performance.  This region must be 

(a) Full Mock Lunar Lander View. 

(b) Landing Point Redesignation Display. The 
objective function buttons are located in the lower right 
corner.   

Figure 2 – Lunar Lander Simulation Environment. 
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factored into the performance formula to account for more 
realistic figures of merit. 
 

3/)( hLALAsPOIpLAwfscore DRSwDwFfwP ++++=
  

 fw  = 1 - time to decision/total time for LPR    (1) 
  
where DPOI and Dh are the distances from the POI and 
hazards, FLA, SLA, RLA, are raw scores for fuel consumption, 
slope, and roughness of the landing site, and wf, wp, and ws 
are the weighting distributions for fuel consumption, 
proximity to POI, and safety.  The sum of these weights 
must be equal to 1.  The element of time is also introduced 
in this performance formula as a contributor to fuel 
consumed.  Eq. 1 was also modified to evaluate the static 
properties (safety, proximity to POI) of the landing site 
itself, Eq. 2, by eliminating fuel as a performance measure. 
   
 POIhLALAsite DDRSP +++= 3/)(  (2) 

4. ANALYSIS OF EXPERIMENT RESULTS  
This section summarizes the results of the experiment, 
including global participant performance and the effects of 
the independent variables.  Unless otherwise stated, the 
statistical analysis was performed using both parametric 
(repeated measures ANalysis Of VAriance) and non-
parametric (Spearman’s correlation (ρ), Kendall Tau 
correlation (τ), or Friedman’s test) tests as appropriate. 
Significance for all tests was set at α = 0.05.  For the full set 
of results and analysis readers are referred to Chua and 
Feigh [3]. 
 
Overall Results 

Twenty pilots participated in the evaluation.  Nineteen 
completed all eight runs, and the twentieth pilot completed 
five of the eight runs (due to a simulation failure), for a total 
of 157 cases across the full design of experiments.  All 
pilots completed the task within the 45s allotted; no pilot 
aborted a run.  On average, the LPR task was completed in 
20.39s (σ = 9.05s) [4.08, 41.53s].  In 54% of the cases, the 
pilot chose one of the top site selection rankings, whereas 
the pilot made a poor selection in 7% of the cases.  While 
these poorer site selections resulted in feasible landing 
locations, better sites were available at the selection time.  
Fig. 3 illustrates the distribution of top pilot certification 
(TPC) by final pilot performance ranking (PPR).  

In general, the pilots preferred sites which were affiliated 
with an objective function over those sites associated with 
the a priori set, as seen in Fig. 4.  The pre-launch designated 
baseline site, which could be selected at any time during the 
LPR task, was included under the a priori objective 
function, as the criterion dictated the location of the baseline 
site.  The pilots were told that the vehicle would default to 
landing at the baseline site.  The pilots were instructed to 
select an alternate or confirm the default.  Should a landing 

site not be selected within the LPR task time, the lunar 
mission would abort.  

Time to Complete 

The LPR task completion time, TC, is a critical value, 
impacting elements of lunar landing such as the fuel 
consumption and the design of the descent trajectory.  This 
modeling hypothesized that an increase in the number of 
factors would result in additional pilot information 
processing time.  In particular, the terrain expectancy factor, 
(ε), was expected to cause expert pilots to re-orient to the 
scenario, as described by Klein [14].  A repeated-measures 
ANOVA was utilized to test these hypotheses.  POI had no 
significant effect on TC for either the ITM (1,3) or the ITM 
(2,4) groups.  Similarly, ε did not significantly affect TC for 
either ITM (1,3) or ITM (2,4).  The number of ITMs does 
not significantly affect TC for ITM (1,3) or ITM (2,4).  The 
interaction between ε and ITMs had significant effect on TC 
for the ITM (2,4) group only, F(1; 3) = 10.349, p = 0.049.  
The pilots performed the LPR task faster as the number of 
ITMs increased in cases of unexpected terrain.  
 
Pilot Performance 

Pilot performance was calculated as both a continuous 
variable (pilot performance score, PPS) and as an ordinal 
variable (pilot performance ranking, PPR).  The pilot 
performance was calculated from a weighted sum 
(equivalent to PPS) as described in Section 3, Eq. 1.  This 
analysis uses both forms of the variable.  Analyses 
regarding PPS were performed using repeated-measures 
ANOVA, while the Kendall Tau correlation was 
implemented to examine the relationship between PPR and 
other factors. 

First, the PPR was hypothesized to become worse with the 
number of POIs and ITMs, and especially in instances 
where the terrain was unexpected.  The effect of POI was 
not significant on PPR for either ITM group.  Similarly, the 
effect of terrain expectancy was not significant for either 

Figure 3 – Distribution of Final Pilot Performance 
Ranking. 
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ITM group.  The effect of the number of ITMs on POI is 
marginally significant for the ITM (1,3) group, F(1; 6) = 
5.926, p = 0.051 but is not significant for the ITM (2,4) 
group.  Thus, none of the independent variables included in 
this investigation were found to have significant effects on 
PPR. 

Extrapolation of Results 

While this experiment was not designed to investigate or 
compare the effectiveness of human control versus 
automated control, given the framework of the simulated 
task, the experimental data can be extrapolated to provide 
initial insight on human capabilities.  Specifically, we have 
used the data collected in this experiment to speculate about 
the likely capabilities of an astronaut crew and their impact 
on system performance during LPR compared to an 
automatic landing system.  However, several assumptions 
and definitions must be introduced to perform this analysis.  

First, we assume that there exists some automated landing 
system capable of autonomously guiding the lander to any 
point on the lunar surface.  Next, we assume for comparison 
that a vehicle equipped with such automation flies the same 
trajectory as that used in this experiment, which is 
notionally based on the ALHAT trajectory [7], thereby 
simplifying the comparison of fuel consumption to a 
dependence on task completion time.  We acknowledge that 
this assumption is not likely to hold, as a fully automated 
vehicle would likely fly a more fuel optimal trajectory. 
However, lunar fuel optimal trajectories do not generally 
permit crew viewing of the landing site.  Using this 
reference trajectory is useful for this level of comparison as 
the actual trajectory planned is still under development [16].  
There may also be situations where the crew is incapacitated 
and a fully automated landing sequence is required, or 
adaptable automation is employed on the same flight, 
alternating or limiting crew or system command.  We 
further assume that the choice of landing site is static for the 
automation and corresponds to the a priori site used in the 
experiment.  Automated control therefore implies selection 
of the baseline site, completed in zero seconds.  

The pilots’ site selections and times to complete are 
assumed to be a conservative representation of astronaut 
behavior, or human control, during lunar landing.  This 
definition is best analogized to a Monte Carlo analysis, 
where the pilots’ behaviors in the experiment are assumed to 
be the behavior of one astronaut; the differences in landing 
scenarios and pilot experience is similar to the uncertainties 
associated with the inputs to a system; and the landing site 
selection and completion time are the result of performing a 
lunar landing under the prescribed inputs.  As such, the 
actual site selection data is a sampling of the design space 
between the experiment independent variables and 
covariates (POI, ITM, ε, TPC, flight experience) and 
dependents (site selection, completion time).  For purposes 

of this analysis, these site selections are further assumed to 
be pilots’ best selections within the context of the landing 
scenario and the time to complete.  This assumption 
suggests a layer of time homogeneity – should the pilots 
repeat the experiment, then the site selection is constant and 
would not improve or worsen.  However, the site selection 
itself means little without assigning some definition of 
quality.  

As defined for this analysis, the human controlled site 
selection will require more time and thus, more fuel 
consumption.  Preliminary modeling shows that astronauts 
require 12-28 seconds to absorb the information and make 
the LPR decisions.  However, an astronaut can potentially 
make better decisions than the automated system as to 
where to land.  This ability is because of the potential for the 
astronauts to take advantage of more accurate information 
or information not available to the automation (i.e., 
algorithm failure).  To ensure a fair comparison, only data 
from scenarios where the a priori site was mid-ranked (5-
10th out of a possible 15) were used.  Fifty-six runs fall into 
this category.  Additionally, a definition of performance 
quality is used to compare human control and automated 
control.  This analysis uses Eq. 1, with arbitrarily set 
weights for the three metrics of interest, fuel consumption, 
proximity to POI, and safety, summing to 1.  A 10% 
uncertainty is applied to the comparison of PPS and 
Automated Performance Score (APS) – if the PPS is within 
10% of the APS score, then the PPS score is considered 
equivalent.  Under this weight distribution and the three 
prescribed definitions of the automated system, the 
reference human behavior, and performance quality, the 
experiment results show that the pilots performed better 
than or equal to the automated system in 18% and worse 
than a basic automatic landing system in 82% of the 
selected cases.  This percentage is heavily influenced by 
decision time because of the correlation with fuel burn.  
However, faster decisions do not necessarily imply better 
site selection.  

To further explore this tradeoff, the distribution of safety 
and proximity to POI scores (using Eq. 2) with respect to 
fuel consumption (equivalent to task completion time) was 
plotted.  As seen in Fig. 5, pilots’ time to complete varies 
over the 45s of allotted LPR task time.  Additionally, the 
pilots’ ability to select quality sites is varied across time to 
complete.  The Spearman correlation is non-significant at ρ 
= -0.112, indicating that as the pilots’ task completion time 
increases; the ability to select a safe site near the POI is 
diminished.  However, when the penalty for additional 
decision time is removed, the pilots consistently outperform 
the automated system with regard to selecting quality sites.  
In 63% of the cases, the pilots recognized and selected sites 
that were superior to the baseline site.  This trend implies 
that humans are capable of selecting landing sites that 
minimize landing risk while increasing mission efficiency.  
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However, this capability comes at a substantial cost to time 
and consequently fuel.  The question remains as to whether 
the gains in safety and POI proximity justify the additional 
fuel consumption.  Unfortunately, this decision must be 
made early in the design process, to account for lander fuel 
tank sizing.  The trends illustrated in Fig. 4, while useful in 
examining the experimental data against a simulated 
automatic landing system, do not convey the generalized 
design space.  An idealized definition of optimal LPR task 
performance is retention of human-decision making 
competency while reducing the required task completion 
time.  Applying this definition to the experimental data 
illustrates the theoretical human performance in comparison 
to an automated system.  The time to complete can be 
considered as an independent variable, if the pilots’ site 
selections are assumed to be time-independent and unbiased 
by time pressure perceptions.  This trend is seen in Fig. 5, 
which compares the relative quality of human control and 
automated control, allowing either the site selection decision 
or task completion time to vary for the pilots’, the 
automated system, or both.  

The dash-dotted line in Fig. 5 describes the instance where 
the pilots’ site selection in the 56 cases is held constant, but 
the time to complete the selection for both the automated 
system and the pilot is matched.  This trend represents the 
situation where an automated system is designed to take 
over decision authority should the need arise.  At zero time 
to complete, the human performance is equal to or superior 
to the automated in 79% of the cases.  This value indicates 
that even in the ideal situation, there are still instances in 
which the pilot has chosen a worse site than the a priori 

selection.  However, this percentage of superior or 
equivalent PPS proportionally increases with the task time, 
connoting that while the fuel penalty aggravates the PPS and 

Figure 5 – Comparison of Theoretical, Actual Pilot 
and Automated System Performance.  

Figure 4 –Human and Automated Site Selection Quality over Time. The percentage of cases where human site 
selection is equal to or greater than the automated selection score is determined by selecting all the points within a 2.5 s 
increment and calculating the percentage with respect to those variables.  
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APS, the APS score suffers because of the substandard 
nature of the baseline landing point.  Therefore, in order for 
an automatic landing system to act as a fail-safe option 
(should the human be unable to make a decision within 
20s), the automatic system should possess the capability to 
select alternative landing sites.  Otherwise, an exchange in 
decision-authority from human to automation after 20s 
should not be approved, as the quality of the automated 
decision may not be sufficient to overcome the incurred fuel 
consumption penalty.  

The dashed line in Fig. 5 represents a comparison between 
the actual pilot data (including true task completion times) 
and a time-varying automated system.  This trend does not 
physically represent a realistic system, but emphasizes the 
significance of the fuel consumption penalty.  As mentioned 
previously, at zero time to complete, the human 
underperforms compared to the automation.  However, as 
the automated system takes more time to complete, perhaps 
due to sensor and algorithm processing, the APS decreases.  
At about ten seconds, the experiment PPS begins to score 
higher relative to the APS.  Therefore, if the automated 
system requires more than ten seconds, the human may be 
more reliable in choosing an appropriate site.  

The last trend observed in Fig. 5 is most representative of a 
realistic automated system.  In this comparison, the 
automated system requires zero time to complete while the 
pilots’ site selections are held constant while the time to 
complete for all 56 cases is varied.  This solid black line 
clearly indicates the importance of time/fuel on the overall 
score.  This line, concurrently with the dash-dot line, 
assumes that all the pilots’ can be trained to retain the same 
level of decision-making integrity in a specified amount of 
time.  At zero time to complete, the human is superior to the 
automated system in 79% of the cases.  The fuel penalty 
affects the PPS at a generally constant rate until about 12s 
(the time at which the fastest pilots in this study began to 
return decisions).  At this point, the automated system 
begins to outperform the human and the likelihood of 
gaining mission and safety advantages is significantly 
decreased.  The trend demonstrates distinctive curvature due 
to the coupling of fuel consumption and divert maneuvers to 
reach sites located on the extremes of the landing area.  At 
33s, the percentage has dropped to 4%, rendering the human 
system ineffective relative to the automated system.  
Therefore, with respect to the reference automated system 
used in this analysis, the pilots would need to be trained to 
complete the LPR task in less than 12s in order to provide a 
decision-making advantage over an automated system.  

The observations noted in Fig. 5 are valid only for one 
specific weighting criterion, where safety, proximity to POI 
and fuel consumption are equally important.  To account for 
the variability in weighting distribution on the measures of 
interest, the solid black line in Fig. 5 was re-examined over 
the full design space of mission criteria.  The PPS for the 56 
cases was determined using Eq. 1.  As illustrated in Fig. 6, 
one weight (wi) was incremented by 0.1 while the other two 

Figure 6 – Comparison of Automated and Human 
Performance Scores under Variable Definitions of 
Mission Success.   
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weights were equivalent and equal to 0.5(1-wi).  Similarly to 
Fig. 5, the pilots are assumed to retain the same level of 
decision-making capability while performing the LPR at 
some arbitrary time period and the automated system always 
selects the baseline point in zero seconds.  

Each line in Fig. 6 represents one definition of mission 
success, i.e., one combination of metric weights.  The most 
distinctive feature of these contours is that no definition 
exists where the human always outperforms the automated 
system.  The maximum level (91%) of human performance 
occurs when safety is the only objective of concern.  A 
similar situation occurs when proximity to POI is the 
primary objective function.  At this definition, the human 
pilot has selected a site closer to the POI in 88% of the 
cases.  The human pilot fares well when both POI proximity 
and safety are equally critical and fuel consumption is of no 
importance, selecting better sites than the automated landing 
system in 91% of all cases.  

The same general pattern and relationship with fuel 
consumption is seen in all three graphs of Fig. 6.  As task 
completion time increases, the fuel penalty grows 
proportionally until a point where the human pilot cannot 
perform with the same quality as the automated system.  
This critical point, at the extremes, occurs at 7s, 11s, and 
21s for the fuel consumption, proximity to POI, and safety 
plots, respectively.  Referring to the task completion time 
distribution in Fig. 4, the contours in Fig. 6 illustrate that an 
automated system is a more suitable choice for missions 
where fuel consumption is weighed heavily (wf > 0.5), as the 
human pilot cannot generally make better decisions than the 
automated landing system.  

In many ways, these contours are analogous to cumulative 
distribution functions (CDF).  If the 56 cases performed in 
this experiment are representative of typical site selection 
choices during LPR, then these contours can assist in 
determining the conditions for human control.  For example, 
if the lunar vehicle was constrained to hold enough fuel for 
20s of LPR, then the mission designer can compare human 
and automated performance for different combinations of 
weighting distributions.  These contours show that if the 
primary driving factors are safety, proximity to POI, or 
both, at weighting distributions of at least ≥ 0.7, 0.6, or 0.45 
each, respectively, then the human will choose a better 
landing site than one chosen a priori in at least 60% of the 
cases.  While these contours are useful in providing initial 
estimations to the LPR task, one should note that the 
modeled human performance may not be accurately 
representative of actual astronaut behavior and that an 
automated lander would most likely not operate under the 
same conditions as a crewed lander.  Additionally, the 
automatic landing system was assumed to have 100% 
reliability.  In the future, true CDF plots produced using 
trained astronauts and accurate unmanned trajectories 
should be used.  

The analysis thus far has focused on an automated system 
that was incapable of selecting the best landing site.  The 
experimental results provide sufficient data to analyze the 
instantiation of an ideal automated system.  The scenarios 
involving the a priori sites as the top ranked site were 
examined, to determine the likelihood of pilots’ not 
recognizing the best site (or an equivalent) and selecting 
poorer touchdown points.  Fifty-seven cases were used in 
this analysis.  Under the equalized weighting distribution 
used for this experiment, the pilots were able to correctly 
identify the a priori site as the top site in 62.5% of the 
cases.  This percentage of identification shifted with respect 
to the changes in weighting distribution.  Similar to the case 
of the non-ideal automated system, the human performs best 
compared to the automation in 85.7% of the cases when the 
mission singularly emphasizes safety.  Additionally, the 
human is unable to reproduce the same level of performance 
as the automation due to fuel consumption.  This critical 
point occurs at 5s, 9s, and 10s for the fuel consumption, 
proximity to POI, and safety plots, respectively. 

5. DISCUSSION  
The experimental data collected in this study was used to 
examine several theoretical situations in order to begin 
quantifying the advantages and disadvantages in human 
control during LPR given the limited set of human 
performance information available.  Mission designers may 
find the results of this study useful during conceptual 
design, for determining the human pilots’ role during LPR.  
From this analysis, it is clear that the human pilot is capable 
of finding landing sites that are congenial to vehicle safety 
and mission success.  However, given any realistic mission 
scenario, this landing site decision-making process must 
occur quickly, otherwise an extensive fuel consumption 
penalty is invoked.  

There are several possible strategies mission designers can 
employ to reach maximized LPR task performance.  First, 
the reference automated system used in this analysis 
assumed the system that did not receive any real-time data.  
The baseline point is formulated on a priori, pre-launch 
mission data.  Therefore, the trends presented would shift 
significantly if a real-time automated decision-making 
algorithm was used.  Implementing an improved algorithm, 
however, may introduce complexity and additional costs, 
such a processing time and memory capability.  

Second, astronauts could be trained to complete the LPR 
task in a fixed period of time.  This method has been used 
successfully during the Apollo missions and will most likely 
be employed on future missions.  This study illustrated no 
significant correlation between time to complete and site 
selection (with respect to safety and proximity to POI only).  
Consequently, the possibility exists that through training 
and personnel selection, better performance could be 
achieved in shorter time periods.  Thus, a more useful 
solution is to determine the time period necessary for well-
trained individuals to make an LPR decision and to train 
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astronauts under those time constraints to determine their 
likely performance.  This study indicates that even relatively 
untrained individuals can make diagnoses in 12-28s and that 
substantial fuel induced penalties are likely to become 
critical as early as 7s, depending on the metric weighting 
combination.  

Lastly, the specific role of the astronaut may need to be 
adjusted.  This experiment scenario was designed such that 
the pilot would be responsible for evaluating a number of 
automation-suggested landing sites and making a final 
decision.  The pilot was also told there was no “fail-safe” 
mode – the absence of a decision would result in a mission 
abort.  A different level of responsibility may result in 
improved decision-making capability.  For example, 
improved pilot performance may occur if multiple 
redesignation opportunities are available. 

6. FUTURE WORK  
Although the experiment results shed insight to human 
performance during the LPR task, additional studies are 
required to improve the fidelity of existing LPR human-
system interaction models.  These additional studies should 
focus on deriving a more explicit relationship between 
mission and environment inputs and pilot responses, as 
manifested by interactions with a reference lunar landing 
system.  Employing astronauts in lieu of recreational pilots 
in future studies would minimize the discrepancy and 
ambiguity regarding a standard definition of representative 
astronaut behavior.  However, running human-in-the-loop 
experiments with astronauts is impractical for performing 
comparative trade studies between humans and automated 
flight systems.  A probabilistic computational human 
performance model (CHPM) is needed, to examine the full 
discourse of astronaut behavior in a wide array of landing 
scenarios within the time constraints.  A significant 
experimental effort is necessary to validate such a 
probabilistic model, but to rely strictly on human subject 
testing would prove to be an expensive and time-consuming 
task.  Furthermore, a CHPM may be adapted to examine 
lunar landing operation during underperforming or impaired 
pilot performance, scenarios that are difficult to emulate 
under laboratory conditions.  The CHPM is not intended to 
replace astronauts and cannot be guaranteed to emulate their 
behavior in every scenario, but should provide an accurate 
approximation on the performance of crewed lunar landing 
and provide insight as to when the use of more in-depth 
human-in-the-loop study is merited.  These approximations 
should be of use to mission designers during systems 
architecture studies.  

7. CONCLUSION  
The landing point redesignation task permits onboard crew 
to evaluate and select alternative sites prior to terminal 
descent and touchdown.  During this opportunity, the crew 
must balance the safety of the vehicle and the goals of the 
mission without violating fuel constraints.  Given the 

complexity of this task, it is likely that the responsibilities 
during this task will be shared by an automated system.  
However, quantifiable methods are needed to appropriately 
partition work to achieve robust or optimal combinations of 
human-system interaction.  One of these methods consists 
of comparing human and automated performance with 
respect to task completion time.  Based on the results of this 
experiment, humans tend to select better landing sites than 
the reference automated system when safety and proximity 
to points of interest are the most critical criteria.  However, 
the decision-making time required for humans incurs 
significant fuel consumption costs.  Thus, in landing 
scenarios when reserving fuel is of greater priority, mission 
designers may opt to limit human control during landing site 
selection.  Human pilots were also able to match the 
performance of a perfect automated system for more than 
half of the examined cases, but were also prone to diverting 
to worse landing sites.  Adjustments to astronaut training or 
improvements to onboard decision-making aids would 
enhance the synthesized site-selection performance. 

The experiment results indicate a need to improve human-
system interaction modeling with increased correlation 
between mission scenario and human performance.  A 
probabilistic computational human performance model 
would be more conducive to generating the quantity of data 
necessary to observe quantified approximations on crewed 
lunar landing performance.  The observations gleaned from 
this analysis lay the foundation for future investigations into 
the specific region of optimal human control.  Designing the 
human role to account for the prime behavior should reduce 
the risk for violating system capabilities while allowing 
astronaut input.  
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