
67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016.
Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved.

IAC-16- D1.IP.2x32540 Page 1 of 12

IAC-16-D1.IP.2x32540

Development of a Fault Protection Architecture Based Upon State Machines

Peter Z. Schultea*, David A. Spencerb, Neil G. Smithc, Matthew F. McCabed

a Graduate Research Assistant, Space Systems Design Laboratory, Georgia Institute of Technology, Atlanta, Georgia,
United States of America, pzschulte@gatech.edu
b Associate Professor, Space Flight Projects Laboratory, Purdue University, West Lafayette, Indiana, United States
of America, spencer@purdue.edu
c Research Scientist, Visual Computing Center, King Abdullah University of Science and Technology, Thuwal, Saudi
Arabia, neil.smith@kaust.edu.sa
d Associate Professor, Water Desalination and Reuse Center, King Abdullah University of Science and Technology,
Thuwal, Saudi Arabia, matthew.mccabe@kaust.edu.sa
* Corresponding Author

Abstract
This paper describes an advance in the state-of-the-art of aerospace vehicle fault protection through development

of an architecture that utilizes state machines for Fault Detection, Isolation, and Recovery. Through the application
of state machine logic, the architecture actively responds to hardware and software faults, allowing autonomous
recovery to a safe state. The study leverages a MATLAB/Simulink six degree-of-freedom simulation environment,
allowing the evaluation of the fault detection algorithms in flight-like mission scenarios. The modularity of the
simulation environment allows the investigator to define the sensor/actuator suite and software modules to test
various combinations of algorithms and hardware models.

Within Simulink, a tool called Stateflow is used to implement complex logical relationships by using state charts,
also known as state machines, to represent the current state of different spacecraft hardware or software components.
The fault protection architecture is developed as a Stateflow block that receives measurements of state variables from
spacecraft software and hardware components in Simulink to decide the current state of the system. Based on that
state, the fault protection algorithms determine if any faults are present (detection), determine the type of fault and
likely location (isolation), and command actions to contain or prevent further faults (recovery). Outputs from the
fault protection Stateflow charts issue commands back to the spacecraft software and hardware models, allowing an
automated response to spacecraft faults.

This fault protection architecture is designed to be generic, modular, and portable to flight software. The
simulation environment allows setting parameters such as physical dimensions and trajectory, is applicable to a
multitude of possible mission scenarios and allows alternate configurations, such as multiple cooperative or non-
cooperative vehicles. The visual block diagram environment offered by MATLAB/Simulink can be reconfigured to
test many combinations of software and hardware components. Finally, the capability to easily convert into flight
software code (i.e. autocoding) is available through the MATLAB/Simulink platform.

The study advances the state-of-the-art in fault protection and builds on previous work by bringing together
capabilities including Stateflow decision logic, autocoding to flight software, and model-based design into a single
generic, modular architecture that is portable to embedded systems. The resulting architecture is intended to be
broadly applicable for aerospace missions, advancing flight system capabilities for automated mission operations.

Keywords: fault protection, autonomous systems, state machines, decision logic, fault detection isolation & recovery

Acronyms/Abbreviations
6DOF Six-Degree-of-Freedom
ASCII American Standard Code for

Information Interchange
ESC Electronic Speed Control
FDIR Fault Detection, Isolation, & Recovery
FSW Flight Software
GN&C Guidance, Navigation, & Control
HALO Hydrology Agriculture

and Land Observation
HITL Hardware-in-the-Loop

KAUST King Abdullah University of Science

and Technology
KNN K-Nearest Neighbors
MATLAB Mathematics Laboratory
NASA National Aeronautics

& Space Administration
ProxOps Proximity Operations
TABS Technology Area

Breakdown Structure
UAV Unmanned Aerial Vehicle
V&V Verification and Validation

mailto:pzschulte@gatech.edu
mailto:david.spencer@aerospace.gatech.edu
mailto:neil.smith@kaust.edu.sa
mailto:matthew.mccabe@kaust.edu.sa

67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016.
Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved.

IAC-16- D1.IP.2x32540 Page 2 of 12

1. Introduction
The capability to recover gracefully from hardware

faults or algorithm convergence issues is critical for
many aerospace applications, particularly for missions
involving proximity operations (ProxOps), where
multiple vehicles are operating at close range. Previous
ProxOps missions have experienced faults that resulted
in a failure to meet mission objectives. For example,
NASA’s Demonstration of Autonomous Rendezvous
Technology experienced a complete mission failure
when it collided with its target spacecraft during
automated operations due to software errors that led to
an inaccurate range estimation [1].

In the development of aerospace systems,
verification and validation (V&V) are often focused on
demonstrating that software algorithms and systems will
work under nominal conditions. The robustness of the
system to off-nominal scenarios is often not tested.
Even when system robustness is evaluated, it is difficult
to evaluate all possible failure modes. As more missions
undertake autonomous operations, there is an increased
need for real-time detection and correction of failures
through Fault Detection, Isolation, and Recovery
(FDIR). These capabilities are especially necessary for
time-critical operations such as rendezvous and
ProxOps.

1.1 Previous Work

Over the last few years, the development of FDIR
for space missions has advanced significantly. A typical
aerospace FDIR system is “a smart embedded system
that is able to react to some know[n] events and to select
a decision among a predefined set” [2]. Currently, the
state-of-the-art in spacecraft FDIR involves using a set
of rules or conditions that are checked against telemetry,
with preprogramed responses that are executed when
one of these rules is violated. For example, if a
parameter persistently exceeds its expected range, a
signal is sent to ground operators to warn them. Also,
space mission teams usually develop custom FDIR
systems from scratch for each new mission based upon
the specific needs and requirements of the mission.

The use of model-based fault protection has been
explored and implemented in some scenarios, but it has
not been widely adopted for various reasons. In recent
years, several space mission teams have made use of the
Stateflow toolbox within MATLAB/Simulink to
develop FDIR algorithms and autocode those algorithms
into Flight Software (FSW) including Deep Space 1 [3],
and Deep Impact [4]. Recently, NASA’s Johnson Space
Center has used MATLAB/Simulink, including
Stateflow, to develop algorithms for Guidance,
Navigation, and Control (GN&C), which are later
autocoded into FSW [5]. Stateflow has also been used to
evaluate errors in FDIR algorithms during spacecraft
system Verification & Validation (V&V) [6]. Another

FDIR architecture developed with Stateflow uses
model-based design techniques to bring in V&V earlier
in the design cycle by providing a link between
subsystem design and FDIR design [7].

One space systems engineering team at the Jet
Propulsion Laboratory has begun to analyze the FDIR
problem in depth using model-based systems
engineering approaches. This team has developed an
FDIR architecture using the SysML software [8]. This
architecture is used for identifying, evaluating, and
managing failure modes during the design and V&V
phases, though the implementation of FDIR for FSW
does not stem directly from the architecture.

1.2 Advances in State-of-the-Art

The study presented here advances the state-of-the-
art in FDIR and builds on previous work by bringing
together capabilities including Stateflow decision logic,
autocoding to FSW, and model-based design into a
single generic, modular FDIR architecture that is
portable to FSW. Most previous FDIR studies have
involved large, high-resource missions with custom-
built FDIR, while the proposed FDIR architecture is
designed with a focus on small aerospace vehicles and
will be applicable to a wide variety of missions.
Stateflow logic allows complex decisions to be made in
a hierarchical way where conditions and logical states in
individual spacecraft software components, FDIR
algorithms, and higher level “master” FSW mode logic
all influence one another. Also, various initial
conditions, environmental scenarios, and physical
vehicle properties can be re-defined simply and easily in
a MATLAB initialization script. The architecture also
allows alternate configurations that enable testing of
various scenarios.

Numeric software algorithms such as Kalman Filters
may or may not converge, depending on a variety of
factors. For autonomous systems, divergent algorithms
can lead to mission-critical failures if not detected and
corrected. Many FDIR methods have been developed
for software failures such as these, and the architecture
developed in this work enables these algorithms to be
rigorously tested and implemented. Numerous FDIR
algorithms developed in academic environments never
move from concept design to flight test implementation
[2]. The architecture developed in this study allows
these algorithms to be further developed in an integrated
environment that closely models the behavior of
aerospace vehicles in relevant environments. The
proposed software environment also features an
autocoding capability to convert integrated software
modules and FDIR algorithms directly to FSW for
further testing in hardware-in-the-loop (HITL) and
flight applications. This will greatly facilitate the
transition of new FDIR algorithms from concept design
to implementation.

67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016.
Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved.

IAC-16- D1.IP.2x32540 Page 3 of 12

The primary area of applicability of the proposed
study to the NASA Technology Area Breakdown
Structure (TABS) is element 4.5.1 System Health
Management under section 4.5 System Level Autonomy
within Technology Area 04: Robotics and Autonomous
Systems. System health management “monitors,
predicts, detects, and diagnoses faults and
accommodates or mitigates the effects either on-board
or through telemetry processing on the ground” [9]. The
proposed FDIR architecture results in on-board real-
time system health management software and will
address many of the desired technical capabilities of
TABS element 4.5.1. For example, the complex logic
enabled by Stateflow charts allows the FDIR
architecture to include prognostic and diagnostic
components as an integral part of the system. The logic
is also able to take complicated vehicle states into
account to avoid false positives when faults are not
present and false negatives when faults are present. It
may even be used to anticipate faults and adapt to new
situations that do not have pre-programmed responses.
Finally, this study advances paradigm-shifting state
machine-based approaches for FDIR that can be easily
transitioned to FSW and validated using HITL testing.

1.3 Paper Organization

The paper is organized in the following manner.
Section 1 introduces background for the topic, Section 2
presents the overall concept of the FDIR Architecture,
Section 3 presents a proof-of-concept of the FDIR
Architecture, and Section 4 presents future work.

2. FDIR Architecture Concept

The concept discussed here leverages the
development of a Six-Degree-of-Freedom (6DOF)
simulation environment for the Prox-1 small satellite
mission at Georgia Tech. The original purpose of this
MATLAB/Simulink platform was for Guidance,
Navigation, and Control (GN&C) algorithm integration
and testing [10,11], but it can be adapted for the
development of a more general FDIR system.
Functionality is added to the simulation environment
that can be applied generally to aerospace mission
scenarios to test a variety of fault detection algorithms
and mission architectures. For example, modularity of
the simulation environment allows the investigator to
replace the current sensor/actuator suite and software
modules to test various combinations of state-of-the-art
algorithms and hardware models.

2.1 Development Environment

Within MATLAB/Simulink, the Stateflow toolbox
can be used to implement complex logical relationships.
Stateflow is a simple graphical tool using state charts,
also known as state machines, to represent the current
state of different vehicle hardware or software

components [12]. These charts can be integrated with
larger simulations in Simulink using a Stateflow block,
with variables being input to the block to influence the
current state of the chart and variables being output
from the block to influence the behavior of other blocks
based on that state. These charts can be very simple,
representing only a few possibilities, or they can involve
complicated nested sets of states. Stateflow animates the
status of the state charts during simulation so that the
developer can monitor the simulation in real time for
debugging and confirmation that the chart is properly
constructed. An example Stateflow chart representing a
thruster controller [10] is shown in Figure 1. This chart
simply contains three states (Startup, ThrustOff,
ThrustOn), transition conditions between the states, and
an embedded function written in MATLAB syntax. The
chart determines whether the thruster should be on or
off based on whether the controller has received a
command to fire (“ready”), the amount of time
commanded, and the fuel margin (determined by the
output of the MATLAB function). The Stateflow chart
is integrated within a Simulink simulation as a Stateflow
block with inputs and outputs, as shown in Figure 1.

Fig. 1. Sample Stateflow chart representing a thruster
controller (top); Demonstration of Stateflow block
integration in Simulink (bottom) [10]

The FDIR architecture takes data from the vehicle

which is used to determine the likely state of the
vehicle. This state can be classified as either “fault” or
“no fault” based on how the decision logic is structured.
Future versions of the architecture may also be able to
isolate a fault from an unknown source and perform
preventative actions to recover from the failure before it

67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016.
Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved.

IAC-16- D1.IP.2x32540 Page 4 of 12

becomes mission-critical. Outputs from the architecture
can either send commands to the vehicle autonomously
or notify ground operators to take corrective action.

2.2 FDIR Architecture Requirements

High-level requirements have been identified to
guide the development of this FDIR architecture: it
should be generic, modular, and portable to FSW. A
generic architecture is not limited to any specific
mission. The simulation environment should allow
setting vehicle parameters such as physical dimensions
and trajectory. It should be applicable to a multitude of
possible mission scenarios and allow alternate
configurations, such as individual vehicles, or multiple
cooperative or non-cooperative vehicles. The
architecture should also contain generic modules for
commonly used components such as sensors and
actuators. A modular FDIR architecture allows
components to be easily rearranged. The visual block
diagram environment offered by MATLAB/Simulink
can be altered and reconfigured easily and allows for
testing of many combinations of software modules and
hardware components.

The FDIR architecture should allow rapid transition
from development to flight. A flight-like FDIR
architecture should accurately model in-flight
conditions of actual vehicles and missions. It should
contain environment and hardware models with
configurable settings. In addition, the computational
requirements of the architecture should match the
capability available on flight processors. The
architecture should also have the ability to make the
kinds of complex decisions normally required for
autonomous FSW and should be evaluated by testing its
response to realistic stochastic conditions rather than
“canned” scenarios. It should be well integrated with
other hardware and software components, allowing new
components to be quickly evaluated. Finally, the
capability to easily convert the architecture into FSW
code (i.e. autocoding) is highly desirable.

V&V of the FDIR architecture will assess the
capability to meet the following key requirements. First,
it should detect and possibly correct in real-time
component, subsystem, and system-level software and
hardware failures. These failures include sensor/actuator
failures, errors, or degradation, improper controller gain
settings, non-convergence of GN&C algorithms, and
software or hosting hardware (i.e. processor) failures.

Secondly, the architecture should detect and avoid
mission-level failure modes, such as vehicle collision or
uncontrolled behavior that renders the mission
objectives unattainable. Thirdly, it should utilize
complex decision logic in Stateflow to select the best
course of action when multiple options exist. Finally, it
should demonstrate fault protection logic that allows the

system to avoid aborts by responding to correctible
errors in real-time and still meet mission objectives.

3. Proof-of-Concept: UAV Nervous System

FalconViz is a start-up company based out of the
King Abdullah University of Science and Technology
(KAUST) in Saudi Arabia. It was founded in 2015 by
two research faculty and a PhD student at KAUST: Dr.
Neil Smith, Dr. Mohamad Shalaby, and Luca Passone.
FalconViz designs and flies custom unmanned aerial
vehicles (UAVs) for a variety of applications such as
aerial surveying & mapping, inspection & monitoring,
and surveillance. The company also collaborates with
other research groups at KAUST such as the Hydrology,
Agriculture and Land Observation (HALO) group led
by Dr. Matthew McCabe. The HALO group uses
modelling, remote sensing, and in-situ measurements to
better understand elements such as water usage, crop
health, and regional climate conditions. One effort of
the HALO group involves the use of UAVs to capture
thermal and hyperspectral imagery of desert agricultural
plots.

At KAUST during Summer 2016, a FalconViz
hexacopter (six propellers) shown in Figure 2 was used
as a proof-of-concept testbed for the FDIR software
architecture described here. Two specific failures were
addressed as a starting point: unbalanced propellers
(leading to excess vibration) and overheating
components. Detecting these failures provides a more
reliable vehicle for performing aerial surveys and other
tasks with FalconViz UAVs.

Fig. 2. FalconViz hexacopter in flight

3.1 Vibration Detection Hardware

Unbalanced propellers cause excess vibration and
can lead to screws coming loose and potential crashes.

67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016.
Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved.

IAC-16- D1.IP.2x32540 Page 5 of 12

Vibration detection is accomplished by evaluating
accelerometer data measured from the arms of the UAV
that house the propellers. A machine-learning algorithm
determines the health of the system from the data. If the
propellers are unbalanced, then there will be much more
vibration in the system. Once it is trained and validated
on the ground, the machine-learning model then
identifies the health of the system from live data
onboard the UAV. These outputs are sent into the state-
based FDIR architecture in Stateflow.

A SparkFun Triple Axis Accelerometer and Gyro
Breakout – MPU-6050 [13], shown in Figure 3a, is
installed on one arm of the hexacopter. Data is collected
via a microcontroller programmed with Arduino
protocols called the Teensy 3.2 [14], shown in Figure
3b. The Teensy is then connected to a MeegoPad T02
compute stick [15], shown in Figure 3c, via USB.

Fig. 3. (a) SparkFun Triple Axis Accelerometer & Gyro
Breakout – MPU-6050 [13]; (b) Teensy 3.2 [14];
(c) MeegoPad compute stick [15]

The shrink-wrapped MPU-6050 breakout board is

mounted just below the propeller motor, as shown in
Figure 4. The Teensy is installed on a SparkFun Teensy
Arduino Shield Adapter [16] and connected to the
MPU-6050 and other components via jumper cables and
custom harnesses, as shown in Figure 5. A Simulink
model run in Windows on the MeegoPad records data
from the accelerometer and feeds it through a MATLAB
supervised machine-learning classification algorithm
called K-nearest neighbors (KNN) [17] to determine if
the propeller is “balanced” or not. The propeller is
unbalanced by adding a few pieces of electrical tape on
one side, as shown in Figure 6.

Fig. 4. Shrink-wrapped accelerometer breakout board
(MPU-6050) installed on hexacopter arm, with sensor
coordinate axes indicated.

Fig. 5: Teensy installed on Arduino Shield Adapter [16]
with USB and jumper cable connections

Fig. 6. Hexacopter propeller unbalanced by adding
electrical tape.

3.2 Vibration Detection Software

Flight test data is captured for both an unbalanced
propeller (with tape) and a balanced propeller (without
tape) and is used to train the KNN classification model
in MATLAB on the ground. The raw data used to train
the KNN model is shown in Figure 7. Data recording
begins when the Simulink model is started on the lab
bench. The copter then must be carried outside before
flight, so the data is cropped in post-processing to start
at the beginning of the flight.

a.) b.)

c.)

Z X

Y

67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016.
Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved.

IAC-16- D1.IP.2x32540 Page 6 of 12

Fig. 7. Training data for KNN classification model

Fig. 8. Combined and labelled data for KNN classification model training; note that at this point there is no detection
being done by the algorithm because the labels are set manually by the user to seed the KNN classification process

20 25 30 35

Simulink Model Time (sec)

-6000
-4000
-2000

0
2000
4000
6000

Ac
ce

l (
m

g)

X "Normal" Flight

20 25 30 35

Simulink Model Time (sec)

-6000
-4000
-2000

0
2000
4000
6000

Ac
ce

l (
m

g)

Y "Normal" Flight

20 25 30 35

Simulink Model Time (sec)

-6000
-4000
-2000

0
2000
4000
6000

Ac
ce

l (
m

g)

Z "Normal" Flight

20 25 30 35

Simulink Model Time (sec)

-6000
-4000
-2000

0
2000
4000
6000

Ac
ce

l (
m

g)

X "Unbalanced" Flight

20 25 30 35

Simulink Model Time (sec)

-6000
-4000
-2000

0
2000
4000
6000

Ac
ce

l (
m

g)

Y "Unbalanced" Flight

20 25 30 35

Simulink Model Time (sec)

-6000
-4000
-2000

0
2000
4000
6000

Ac
ce

l (
m

g)

Z "Unbalanced" Flight

67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016.
Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved.

IAC-16- D1.IP.2x32540 Page 7 of 12

Fig. 9. Validation Data for KNN Classification Model

Fig. 10. Detected activity levels from KNN classification model validation data

20 30 40 50 60 70

Simulink Model Time (sec)

-8000

-4000

0

4000

8000
Ac

ce
l (

m
g)

X "Normal" Flight

20 30 40 50 60 70

Simulink Model Time (sec)

-8000

-4000

0

4000

8000

Ac
ce

l (
m

g)

Y "Normal" Flight

20 30 40 50 60 70

Simulink Model Time (sec)

-8000

-4000

0

4000

8000

Ac
ce

l (
m

g)

Z "Normal" Flight

20 30 40 50 60

Simulink Model Time (sec)

-8000

-4000

0

4000

8000

Ac
ce

l (
m

g)

X "Unbalanced" Flight

20 30 40 50 60

Simulink Model Time (sec)

-8000

-4000

0

4000

8000

Ac
ce

l (
m

g)

Y "Unbalanced" Flight

20 30 40 50 60

Simulink Model Time (sec)

-8000

-4000

0

4000

8000
Ac

ce
l (

m
g)

Z "Unbalanced" Flight

67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016.
Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved.

IAC-16- D1.IP.2x32540 Page 8 of 12

Fig. 11. Simulink diagram for UAV nervous system

Note that the timescale is based on the Simulink
model’s internal time, which is not synchronized with
real time. Actual flights lasted around two minutes,
while in Simulink model time they lasted 40 sec. The
timescale difference occurs because Simulink is not set
up for “real time” operation. This does not impact
system performance because input data are immediately
processed in Simulink as they are received based on
number of samples, not time duration. Figure 7 shows
the unbalanced flight has a higher magnitude in y and z
and y shifts to the negative region. However, this
information is not provided to the KNN training
algorithm. Instead, the raw data from the two flights is
combined and manually labelled by the user as shown in
Figure 8. Combined raw data for each axis (x,y,z) and
assigned labels are fed into the KNN training algorithm
in MATLAB. After training, the static KNN model is
stored for use in flight and is not adapted during flight.

The detection accuracy of the static model is verified
with independent flight test validation data. This data is
shown in Figure 9, and is captured in the same method
as the training data, except that the validation flights
were twice as long (about 4 minutes each). The KNN
classification detection algorithm then uses the trained
KNN model to select the labels for each data point. The
validation results, shown in Figure 10, have a detection
accuracy of 86.8%.

Once model training and validation is complete, the
system is ready for in-flight detection. Data collected by
the Teensy real-time is fed into the Simulink model
shown in Figure 11 via a serial connection over USB.
The Teensy and serial connections run at 115,200 baud
(bits per second). The data is converted from ASCII
characters to numerical values by a custom MATLAB
function and is saved to memory. It is then fed into the
KNN fault detection algorithm, which uses the trained
static model to determine if the propeller is balanced or
not. The detection is run on 100 samples at a time, and
if 50 or more of these samples are classified as
“unbalanced” by KNN, then the vibration FaultDetected

flag is set to 1; otherwise the flag is set to 0, indicating
the propeller is “balanced”.

This FaultDetected flag is fed into the Stateflow
diagram shown in Figure 12. The Stateflow toolbox
within MATLAB/Simulink [18] allows for tracking of
nested flowchart states, with transitions indicated by
blue arrows with Boolean conditions. If a condition
registers as true, the transition will be activated to move
from one state (or substate) to another. Default
transitions specify the initial conditions of the diagram
and are indicated by an arrow beginning at a dot and
ending at the initial state or substate. The Stateflow
diagram for vibration fault detection in Figure 12 begins
with an initial state of “Normal” at the bottom right and
an initial substate of “Standby”. If FaultDetected is set
to 1, the substate within “Normal” transitions to
“PotentialFault.” If the condition FaultDetected==1
persists for a length of time specified by
FaultPersistence, then the state transitions from
“Normal” to “Fault”. However, if FaultDetected does
not remain at 1 for long enough, then the state will
remain “Normal” and the substate will return to
“Standby”. Very similar logic applies for transitioning
from “Fault” back to “Normal”: the condition
FaultDetected==0 must persist for a length of time
specified by ResolutionPersistence. The FaultStatus flag
is the output signal from the current state of the
Stateflow chart, with 0 indicating “Normal” and 1
indicating “Fault”. Note that these time durations are
tuned to account for the difference between real time
and Simulink model time.

Simulink sends the FaultStatus signal back to the
Teensy and then on to the FrSky X8R telemetry receiver
[19] shown in Figure 13a. The pilot can view the value
of FaultStatus on their handheld Taranis X9D radio
controller [20], shown in Figure 13b, to indicate
whether the propeller is balanced or not (0 or 1). If the
variable is set to 1, the controller is programmed to
begin beeping. When the variable is set to 0, the
controller stops beeping.

67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016.
Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved.

IAC-16- D1.IP.2x32540 Page 9 of 12

Fig. 12. Stateflow diagram for vibration fault detection

Fig. 13. (a) FrSky X8R telemetry receiver [19] installed
on the hexacopter (b) Taranis X9D Plus radio [20]

3.3 Vibration Detection Flight Test Results

 The UAV Nervous System has been flight-tested
and successfully indicates the state of vibrations during
flight. Figure 14 shows data recorded during a final test
flight. The top plot shows acceleration from the MPU-
6050 and the bottom plot shows the FaultStatus signal
output by the Stateflow diagram. The flight begins with
the copter on the ground in segment A, and tape is
placed on the propeller to unbalance it. The copter takes
off and flies with an unbalanced propeller in segment B.
The nervous system quickly detects the imbalance and
outputs a FaultStatus of 1 at around 10 sec, shortly after
segment B begins. During segment C, the copter lands,
and the tape is removed to restore the propeller balance.
Segment D shows balanced flight, and at around 25 sec,
the nervous system detects that balance has been
restored and sets FaultStatus to 0. The copter lands
again in segment E and tape is added again. During
segment E near 35 sec, a FaultStatus of 1 occurs, and
since there is no persistent “normal flight” data entering
the system, FaultStatus does not return to 0. Unbalanced
flight resumes during segment F, and FaultStatus
remains at 1. The tape is not well adhered to the
propeller and it comes loose and flies off at 40 sec. The
copter transitions to balanced flight in segment G,

a.)

b.)

67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016.
Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved.

IAC-16- D1.IP.2x32540 Page 10 of 12

Fig. 14. Flight test data demonstrating successful vibration fault detection

which the nervous system detects around 45 sec,
returning FaultStatus to 0. The delays in FaultStatus
transitions are expected, as the system is tuned to avoid
constant flipping between 0 and 1.

3.4 Overheating Detection
In addition to the vibration sensor, a One Wire

Digital Temperature Sensor DS18B20 [21] is used to
monitor heating of the motors and electronic speed

controls (ESCs). It is important to detect when ESCs
overheat because they shut down and can lead to
complete hardware failure. Figure 15a shows the
DS18B20 sensor by itself and Figure 15b shows it
installed on an ESC. The temperature reading in deg C
is collected by the Teensy, then downlinked to the
Taranis radio via the telemetry receiver. This value is
displayed on the radio for the pilot, and the radio is

A B C H D E F G

67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016.
Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved.

IAC-16- D1.IP.2x32540 Page 11 of 12

programmed to give a verbal warning (“too high”) when
the temperature exceeds a predetermined threshold. This
threshold is set by the pilot on the radio itself. An
example plot of saved temperature values from the
DS18B20 is shown in Figure 16.

Fig 15. (a) One Wire Digital Temperature Sensor
DS18B20 [21] (b) Temperature sensor installed on an
electronic speed control (ESC)

Fig. 16. Example plot of DS18B20 temperature data

 4. Future Work
The basic UAV nervous system architecture has

been developed and tested with a single acceleration
sensor and a single temperature sensor. A next step to
expand the nervous system would be to expand the
number of sensors. One accelerometer could be placed
on each arm of the copter, and vibration fault detection
can be performed on all arms independently. Then, if an
imbalance is detected, the nervous system can indicate
which propeller needs to be balanced. Similarly,
temperature sensors can be placed on each ESC and
motor and the nervous system can record all
temperatures as a function of time and indicate to the
pilot which components tend to overheat first.

Further sensors can also be added to expand the set
of detectable failures. For example, many times when
there is a problem with a UAV the first indication to the
operators is an unusual sound. Thus, microphones
collecting audio data near each propeller may be able to
provide additional warning of faults. Data from
microphones could be processed through a machine

learning algorithm similarly to the acceleration data.
Also, current/voltage sensors can be placed on the ESCs
to detect electrical issues before they become mission
critical. Examples of other issues/failures on the UAVs
that could be addressed by future work include
monitoring the magnetic compass (which can
malfunction in flight, leading to the regularly reported
problem of “fly-aways”) and ensuring healthy
navigation filters (i.e. GPS position/velocity and attitude
determination for roll/pitch/yaw angles and rates).
Monitoring navigation variables would require
communication with the flight controller, and redundant
navigation systems could also aid in detecting
navigation errors.

Another necessary update to the nervous system is
smoothing out the startup process. Although quite
convenient for prototyping and rapid development and
testing, running Simulink in Windows onboard the
copter is not the most elegant solution. It requires
manually starting up Windows and initiating the
Simulink model in the lab while connected to a monitor,
then carrying the copter outside to begin flying. An
intermediate step is to set up an HD video downlink to
interact with Simulink in the field, but ultimately it
would be desirable to remove the Windows/Simulink
component from the system and perform all fault
detection and data recording directly on the Teensy
(with an SD card shield attached). The Teensy can be
fully customized by programming in C, and Simulink
has the capability to generate C code via autocoding. If
a simple KNN classification detection algorithm is
implemented in C, it can be integrated with autocode
from Simulink and sensor interface code directly on the
Teensy. This would streamline the process for using the
nervous system and make it much easier to seamlessly
integrate it with a copter for any mission.

In addition to upgrading the UAV Nervous System,
the FDIR architecture needs to be generalized and
modularized in order to meet the requirements defined
in Section 2.2. The Simulink model, especially the
Stateflow chart, can easily be reconfigured for a general
system that is applicable to UAV, satellite, and many
other aerospace vehicle applications.

Another proposed method for V&V of the FDIR
architecture for space environments is through a HITL
test platform designed to simulate a small satellite
during ProxOps. This test platform will contain typical
small satellite sensor and actuator hardware as well as
flight processors and can be attached to the Simulink
simulation using the Simulink Real Time toolbox from
MATLAB. Simulink Real Time allows a simulation to
be run on a desktop computer while accepting inputs
from sensor hardware and sending outputs to actuator
hardware, with both inputs and outputs passing through
the flight processor. The FDIR algorithms can also be
autocoded from MATLAB/Simulink into C and

a.) b.)

67th International Astronautical Congress (IAC), Guadalajara, Mexico, 26-30 September 2016.
Copyright ©2016 by the International Astronautical Federation (IAF). All rights reserved.

IAC-16- D1.IP.2x32540 Page 12 of 12

integrated with FSW code to run directly on the flight
processor during testing. This platform will be used
verify that the FDIR architecture is properly designed
for space applications and validate that it works as
intended through testing in various scenarios with
flight-like hardware and software.

Acknowledgements

This material is based upon work supported by the
National Science Foundation Graduate Research
Fellowship Program under Grant No. DGE-1148903.
Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of
the National Science Foundation. FalconViz and King
Abdullah University of Science and Technology
(KAUST) provided funding support and technical
guidance for development of the UAV Nervous System.

References
[1] N. Dennehy, J.R. Carpenter, NESC Review of

Demonstration of Autonomous Rendezvous
Technology (DART) Mission Mishap Investigation
Board Review (MIB), NASA Engineering and
Safety Center Report, RP-06-119, Dec. 2006,
http://www.nasa.gov/pdf/167813main_RP-06-119_
05-020-E_DART_Report_Final_Dec_27.pdf,
(accessed 10/9/15).

[2] A. Zolghadri, The Challenge of Advanced Model-
Based FDIR Techniques for Aerospace Systems:
The 2011 Situation, Progress in Flight Dynamics,
Guidance, Navigation, Control, Fault Detection, and
Avionics. 6 (Dec. 2013) 231-248.

[3] N.F. Rouquette, T. Neilson, G. Chen, The 13th
Technology of Deep Space One, IEEE Aerospace
Conference, Aspen, CO, Mar. 1999.

[4] P.J. Pingree, et. al., Validation of Mission Critical
Software Design and Implementation Using Model
Checking, IEEE Digital Avionics Systems
Conference, Oct. 2002.

[5] M.C. Jackson, J.R. Henry, Orion GN&C Model
Based Development: Experience and Lessons
Learned, AIAA-2012-5036, AIAA Guidance,
Navigation, and Control Conference, Minneapolis,
Minnesota, August 2012.

[6] M. Aguilar, Fault Management Using Model Based
System Engineering (MBSE) Tools and Techniques,
NASA Spacecraft Fault Management Workshop,
Sept. 2011, http://www.nasa.gov/pdf/637605main_
day_1-michael_aguilar.pdf. (accessed 10/8/15).

[7] A.M. Homar, AOCS Fault Detection, Isolation and
Recovery: A Model-Based Dynamic Verification
and Validation Approach, Master’s Thesis,
Department of Computer Science, Electrical and
Space Engineering, Lulea University of Technology,

Sept. 2014.
[8] J. Day, A. Murray, P. Meakin, Toward a Model-

Based Approach to Flight System Fault Protection,
IEEE International Conference for Aerospace, Big
Sky, MT, Mar. 2012.

[9] “2015 NASA Technology Roadmaps - TA 4:
Robotics and Autonomous Systems,” National

 Aeronautics and Space Administration, July 2015.
[http://www.nasa.gov/sites/default/files/atoms/files/2
015_nasa_technology_roadmaps_ta_4_robotics_and
_autonomous_systems_final.pdf. Accessed 10/9/15.]

[10] P.Z. Schulte, D.A. Spencer, Development of an
Integrated Spacecraft Guidance, Navigation, &
Control Subsystem for Automated Proximity
Operations, Acta Astronautica, 118 (Jan-Feb 2016),
168-186, doi:10.1016/j.actaastro.2015.10.010.

[11] D.A. Spencer, S.B. Chait, P.Z. Schulte, K.J.
Okseniuk, M. Veto, Automated Trajectory Control
for On-Orbit Inspection in the Prox-1 Mission,
Journal of Spacecraft and Rockets, accepted May
2016.

[12] M.D. Ingham, R.D. Rasmussen, M.B. Bennett, and
A.C. Moncada, Engineering Complex Embedded
Systems with State Analysis and the Mission Data
System, Journal of Aerospace Computing,
Information, and Communication, 2 (Dec. 2005).

[13] SparkFun Triple Axis Accelerometer and Gyro
Breakout - MPU-6050, SparkFun Electronics,
https://www.sparkfun.com/products/11028,
(accessed 7/6/16).

[14] Teensy 3.2, SparkFun Electronics,
https://www.sparkfun.com/products/13736,
(accessed 7/6/16).

[15] MeegoPad T02 Second Generation Intel Windows
TV Stick, http://www.x86pad.com/t02.html,
(accessed 7/6/16).

[16] Teensy Arduino Shield Adapter, SparkFun
Electronics, https://www.sparkfun.com/
products/13288, (accessed 7/6/16).

[17] Predict k-nearest neighbor classification –
MATLAB, The Mathworks, Inc.,
http://www.mathworks.com/help/stats/
classificationknn.predict.html, (accessed 7/6/16).

[18] Stateflow Documentation, The Mathworks, Inc.,
http://www.mathworks.com/
help/stateflow/index.html, (accessed 7/6/16).

[19] X8R-products, FrSky Electronic Co., Ltd.,
http://www.frsky-rc.com/product/
pro.php?pro_id=105, (accessed 7/6/16).

[20] Taranis X9D Plus, FrSky Electronic Co., Ltd.,
http://www.frsky-rc.com/product/
pro.php?pro_id=137, (accessed 7/6/16).

[21] One Wire Digital Temperature Sensor - DS18B20,
SparkFun Electronics, https://www.sparkfun.com/
products/245, (accessed 7/6/16).

http://www.nasa.gov/pdf/167813main_RP-06-119_%2005-020-E_DART_Report_Final_Dec_27.pdf
http://www.nasa.gov/pdf/167813main_RP-06-119_%2005-020-E_DART_Report_Final_Dec_27.pdf
http://www.nasa.gov/pdf/637605main_%20day_1-michael_aguilar.pdf
http://www.nasa.gov/pdf/637605main_%20day_1-michael_aguilar.pdf
https://www.sparkfun.com/products/11028
https://www.sparkfun.com/products/13736
http://www.x86pad.com/t02.html
https://www.sparkfun.com/products/13288
https://www.sparkfun.com/products/13288
http://www.mathworks.com/help/stats/classificationknn.predict.html
http://www.mathworks.com/help/stats/classificationknn.predict.html
http://www.mathworks.com/help/stateflow/index.html
http://www.mathworks.com/help/stateflow/index.html
http://www.frsky-rc.com/product/pro.php?pro_id=105
http://www.frsky-rc.com/product/pro.php?pro_id=105
http://www.frsky-rc.com/product/pro.php?pro_id=137
http://www.frsky-rc.com/product/pro.php?pro_id=137
https://www.sparkfun.com/products/245
https://www.sparkfun.com/products/245

