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Abstract 

Because of their complexity and the unforgiving environment in which they operate, aerospace vehicles often 
require autonomous systems to respond to mission-critical failures. Fault Detection, Isolation, and Recovery (FDIR) 
systems are used to detect, identify the source of, and recover from faults. Typically, FDIR systems use a rule-based 
paradigm for fault detection, where telemetry values are monitored against specific logical statements such as static 
upper and lower limits. The model-based paradigm allows more complex decision logic to be used for FDIR. 

This study focuses on a state machine approach toward model-based FDIR. The state machine approach is 
increasingly utilized for FDIR of complex systems because it is intuitive, logic-based, and simple to interpret 
visually. In current practice, the detection of specific symptoms is directly mapped to the appropriate response for a 
pre-diagnosed fault, as determined by FDIR engineers at design time. This study advances the state-of-the-art in state 
machine fault protection by developing an on-board diagnostic system that will assess symptoms, isolate fault 
sources, and select corrective actions based on models of system behavior. 

This state machine architecture for FDIR is applicable for a broad range of aerospace vehicles and mission 
scenarios. To demonstrate the broad applicability of the FDIR approach, two case studies are evaluated for scenarios 
in very different domains. The first is a terrestrial application involving the use of multi-rotor unmanned aerial 
vehicles (UAVs). The second is a space-based scenario involving autonomous proximity operations for orbital 
capture of a Mars Sample Return capsule. The efficacy of the state machine FDIR system is demonstrated via flight 
testing for the UAV case study and through software-in-the-loop testing in a flight-like simulation environment for 
the Mars Sample Return case. In each case, the FDIR system is focused on the Guidance, Navigation and Control 
subsystem. 

This approach has been successfully shown to detect, diagnose, and respond to faults during testing. State 
machines allow the autonomous system to handle distinct faults with identical symptoms for initial detection. Each 
fault has a separate diagnosis and response procedure, and the proper procedure is selected by the state machine. This 
study demonstrates how a fault protection system may diagnose these faults on-board rather than relying upon a 
priori ground diagnosis. 

 
Keywords: fault protection; state machines; guidance, navigation, and control; proximity operations; on-board 
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Acronyms/Abbreviations 
APL  Applied Physics Laboratory 
ESC  Electronic Speed Control 
FOV  Field-of-view 
FDIR  Fault Detection, Isolation, & Recovery 
FSW  Flight Software 
GN&C  Guidance, Navigation, & Control 
JPL  Jet Propulsion Laboratory 
KAUST  King Abdullah University of Science 

and Technology 
KNN  K-nearest neighbors 
LVLH  Local vertical local horizontal 
MATLAB  Matrix Laboratory 
MAV  Mars Ascent Vehicle 
MSR  Mars Sample Return 

NASA    National Aeronautics  
& Space Administration 

OS  Orbiting Sample container 
ROCS  Rendezvous OS Capture System 
SRO  Sample Return Orbiter 
UAV  Unmanned Aerial Vehicle 
UML  Unified Modeling Language 
 
1. Introduction 

Aerospace vehicles are vulnerable to hardware and 
software faults that lead to mission-critical failures. 
Advances in on-board fault protection capability are 
necessary as both terrestrial and space vehicles increase 
in autonomy. In order to prevent failures, aerospace 
vehicles often employ Fault Detection, Isolation, and 
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Recovery (FDIR) or fault protection systems to sense, 
diagnose, and recover from faults. As more space 
missions travel to deep space destinations, autonomous 
operations will become more prevalent. There will be 
increased need for real-time prevention of failures 
through FDIR. These capabilities are especially vital for 
hazardous and time-critical activities such as 
rendezvous and proximity operations, which make 
extensive use of autonomous guidance, navigation, & 
control (GN&C). Deep space proximity operations 
applications require advanced autonomy and fault 
protection due to the significant round-trip light time 
from Earth. 

The NASA Fault Management Handbook defines a 
failure as “the unacceptable performance of an intended 
function,” while a fault is defined as “a physical or 
logical cause, which explains a failure” [1]. Fault 
protection systems aim to perform the three-step process 
of fault detection, isolation, and recovery in order to 
prevent failures. Fault detection determines that 
something unexpected has occurred. Fault isolation 
(also connected to diagnosis) determines the possible 
source of a fault. Fault recovery is an action taken to 
attempt to retain or regain control of the system state 
and mitigate the impact of the fault. Typically, 
aerospace systems use a rule-based paradigm for FDIR 
where telemetry values are monitored against specific 
logical statements such as static upper and lower limits. 
 
2. Background  

This section presents background information on 
state machines and the current state-of-the-art in 
aerospace vehicle fault diagnosis. 
 
2.1 State Machine Logic and Applications 

Although the model-based paradigm for fault 
protection has been explored by industry, it has not yet 
been widely adopted. This study focuses on the state 
machine approach to model-based FDIR, which has 
been used in several flight projects and research studies 
because it is intuitive, logic-based, and simple to 
interpret visually. The “state” of a system includes any 
“aspects of the system that we care about for the 
purposes of control” [2]. Traditionally, state variables 
have included continuous physical parameters such as 
position, velocity, attitude, temperature, and pressure. 
However, state variables can also include discrete 
quantities such as operating modes, device health, and 
software filter convergence conditions. These discrete 
states can then be represented as state machines.  

A state machine, or state chart, is a model-based tool 
that can be used to describe system behavior, including 
fault protection behavior [2]. Each block represents a 
specific state or sub-state of the system, and arrows 
between blocks represent transitions between states. A 
logical condition is associated with each transition, and 

if the condition associated with the transition becomes 
true, then the active state of the diagram will move from 
one state to another. State machines can be very simple, 
representing only a few possibilities, or they can involve 
complicated nested sets of states. State machine 
representations may be significantly simpler than the 
actual physical or software processes they represent, 
which is why they are considered models. However, a 
state machine for FDIR purposes can be developed in a 
way that represents all possible states relevant to 
mission success. FDIR systems expressed in terms of 
system state will be better able to protect the system in 
question [3]. Within MATLAB/Simulink, the Stateflow 
toolbox provides a simple graphical interface for 
developing state machines.  

State machines offer several advantages over the 
rule-based FDIR paradigm. One significant advantage is 
the generation of a graphical product that is easier for 
designers, peer reviewers, and managers to understand 
and review. Other advantages include ease of 
accounting for subsystem interdependencies and 
implementing sequences with several decision points 
and/or path-dependent responses. The Johns Hopkins 
Applied Physics Laboratory (APL) conducted a formal 
trade study to determine whether their “ExecSpec” 
state-based fault protection system [4,5] or a more 
traditional rule-based system was more advantageous 
using the Solar Probe Plus mission as a case study [6]. 
They found that both methods were able to equivalently 
express all desired fault protection rules but that the 
state machine system is favored based on some of the 
advantages mentioned above. However, APL ultimately 
chose to continue using the rule-based system due to its 
extensive flight heritage. In addition to Stateflow and 
ExecSpec, another model-based software tool used for 
state machine design is MagicDraw, which uses the 
Unified Modeling Language (UML). 

 
2.2 On-Board Model-Based Fault Diagnosis 

In state-of-the-art fault protection practice, diagnosis 
is usually performed by FDIR engineers at design time, 
and the detection of a specific symptom is directly 
mapped to the appropriate response for the pre-
diagnosed fault. This study develops an on-board 
diagnostic system that assesses symptoms, isolates fault 
sources, and selects corrective actions based on models 
of system behavior. 

Though not typical for space missions, on-board 
fault diagnosis has been an area of research since the 
1990s. Model-based fault diagnosis is considered a 
structured and mature field of research and many 
methods have been proposed and discussed in the 
control community using mathematical estimation 
methods for aeronautical vehicles [7,8]. Remote Agent 
was deployed as a technology demonstration (not as the 
primary control software) on the Deep Space 1 mission 
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and featured model-based “mode identification” and 
“mode reconfiguration” for fault diagnosis, which 
identified components whose failures explained 
detected anomalies [9]. Cassini’s Attitude Control Fault 
Protection is one of the few examples of a system where 
on-board fault diagnosis was performed in-flight [10,11]. 
One method for on-board diagnosis that has been used 
in research studies is called constraint suspension. It has 
been used to diagnose which component of a system is 
faulty [12,13]. 
 
3. Theory: State-Based Fault Protection Architecture 

The FDIR architecture developed in this study 
collects data from the vehicle which is used to 
determine the likely fault state of the vehicle. This state 
can be classified as either “fault” or “no fault” based on 
how the decision logic is structured. The architecture 
isolates faults by performing diagnosis to determine 
their precise source and performs preventative actions to 
recover from faults before they become mission-critical 
failures. Outputs from the architecture can either send 
commands to the vehicle autonomously or notify 
ground operators to take corrective action. 
 
3.1 Fault Protection Architecture Characteristics 

This section focuses on three desired characteristics 
for the design of the architecture: generic, modular, and 
portable. The architecture itself is described in the 
following sections. 

A generic architecture is applicable to any type of 
aerospace vehicle or mission. The FDIR architecture is 
comprised primarily of several generic diagrams that are 
described in the following sections. The 
MATLAB/Simulink simulation environment in which 
the architecture is developed allows setting vehicle 
parameters including physical dimensions and 
trajectory. It is applicable to a multitude of possible 
mission scenarios and permits alternate configurations, 
such as individual vehicles or multiple cooperative or 
non-cooperative vehicles. The simulation environment 
also contains generic modules for commonly used 
components such as sensors and actuators. The 
simulation environment has previously been adapted for 
use with many scenarios, missions, and vehicles, 
including the Prox-1 small satellite mission [14,15], 
various proximity operations scenarios with hardware 
such as a modular attitude determination system 
CubeSat avionics board and a Mars communication 
relay CubeSat constellation [16]. Each of the diagrams 
described in the following sections are implemented 
without focusing on any particular application or 
vehicle. Section 4 demonstrates how the architecture 
can be adapted for two distinct and very different 

applications. While the generic architecture presented 
here is focused particularly on FDIR for faults related to 
the GN&C subsystem, the same principles and design 
can be applied to any other faults and subsystems on an 
aerospace vehicle. 

A modular architecture allows components to be 
easily added, removed, or rearranged. The visual block 
diagram environment offered by MATLAB/Simulink 
can be altered and reconfigured easily and allows for 
testing of many combinations of software modules and 
hardware components. For example, the investigator 
could replace the sensor/actuator suite and GN&C 
software modules. Also, various initial conditions, 
environmental scenarios, and physical vehicle properties 
can be easily redefined in a MATLAB initialization 
script and edited or rearranged in Simulink. These 
include spacecraft orbit and attitude dynamics, 
spacecraft properties such as mass and moment of 
inertia, relative dynamics for multiple spacecraft, sensor 
and actuator properties such as field of view and 
resolution, GN&C software components, and central 
body or environment properties. Parameters for FDIR 
algorithms can also be adjusted, such as fault injection 
times, wait times, and trigger thresholds. The diagrams 
described in the following sections can also be easily 
adjusted and rearranged to adapt them for various 
vehicles and missions. 

A portable architecture allows straightforward 
conversion of its design implementation for a particular 
mission to code that is used onboard the vehicle. The 
FDIR architecture allows rapid transition from 
development to flight. The computational requirements 
of the FDIR architecture match the capability generally 
available on flight processors. The architecture has the 
ability to make the kinds of complex decisions normally 
required for autonomous flight software (FSW) and is 
evaluated by testing its response to realistic conditions 
rather than “canned” scenarios. It is well-integrated with 
other hardware and software components, allowing new 
components to be quickly evaluated. Finally, the 
architecture features the capability to easily convert its 
logic into FSW code via autocoding, a process which 
has been used with the Prox-1 mission as described in 
[14]. In this process, algorithms developed in 
MATLAB/Simulink are converted to C code and 
integrated with other FSW code in C. Autocode 
performance is validated via a “day-in-the-life” test on 
flight hardware. Although the autocoding process is not 
demonstrated directly in this study, technical memos 
written by the Prox-1 team are included in Appendix A 
of [17] to provide guidance for future researchers or 
engineers desiring to reproduce it. 
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3.2 Generic Functional State Machine 
A functional state machine is a model that describes 

the behavior of a system by tracking the “mode state” of 
the system [18]. Mode states are high-level descriptions 
of the overall system behavior and are distinct from 
dynamic states (such as position & velocity) or vehicle 
component states (such as battery level or processor 
temperature). Each vehicle and mission will have a 
distinct state machine describing how these modes 
change and the logical conditions to switch between 
them. The generic functional state machine shown in 
Fig. 1 provides a template for constructing this diagram.  
It features generic modes that may be present in many 
different contexts. The initial state in the bottom left is 
“Standby,” which is a passively safe mode where the 
vehicle waits for further commands to proceed. 

If no faults have been detected (FaultDetected 
Mode=0) then a command (BeginComplex 
Process=1) allows a “complex process” to begin. 
Complex processes could include either autonomous or 
piloted operations. An optional transition phase occurs 
before the complex process state begins. The complex 
process has several sub-states. First is “Standoff” 
(ArriveAt Standoff=1), which is a phase where 
the complex process is “armed” but not initiated and the 
vehicle is awaiting permission to proceed. Standoff is 
distinct from Standby because the vehicle may not 
necessarily be in a passively safe dynamic state during 
Standoff. If no faults are detected (FaultDetected 
Mode=0) the complex process begins when a command 
is provided (ReadyToGo=1). At this point the 
NominalZone state begins. This is a nominal region 

where faults are acceptable and can generally be 
detected and responded to safely while still continuing 
nominal operations.   
 At some point, based on the dynamic state of the 
system, safe operation under fault conditions may no 
longer be possible (EnterAbortZone=1). When this 
occurs, the AbortZone state begins, and at any time if a 
fault detection is triggered or a human operator decides 
conditions are unsafe, an Abort can be commanded 
(Abort=1). The abort stops the complex process and 
moves the vehicle to a safe dynamic state, eventually 
returning to the Standby state (ArriveAtStandby 
=1). Additionally, an “Interact” state allows the vehicle 
to interact with other vehicles, target objects, or the 
environment. A pre-interaction region called the 
InteractZone is entered from the AbortZone when 
(EnterInteractZone=1). The Interact state can be 
entered from either AbortZone or InteractZone when a 
command is received (BeginInteraction=1). The 
vehicle cannot enter the Interact state directly from 
NominalZone because interaction almost always 
involves hazardous conditions. If a fault or other hazard 
occurs during Interact, an abort can be triggered 
(Abort=1). If no anomalies occur, the vehicle will 
return to passively safe standby after the interaction is 
complete (ArriveAtStandby=1). 
 
3.3 Generic Diagnostic State Machine  
 To implement on-board model-based fault diagnosis, 
the generic diagnostic state machine shown in Fig. 2 has 
been developed. The diagnostic state machine consists 

 
 

Fig. 1. Generic functional state machine 
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of two primary states: NoFaultDetected and Fault 
Detected. During all nominal mission phases, 
NoFaultDetected is activated, but when a fault detection 
trigger is observed (FaultDetected=1), the Fault 
Detected state is activated. If the functional state 
machine is in any state other than AbortZone, then the 
diagnostic state machine enters “Diagnose” immediately 
when a fault is detected. If the functional state machine 
is in the Abort Region (AbortZone=1) when a fault is 
detected, the diagnostic state machine does not attempt 
to determine which fault has occurred. An abort 
maneuver is commanded immediately, returning the 
vehicle to a passively safe dynamic condition before 
entering the Diagnose state. 

The Diagnose state consists of sub-states for each 
possible fault. Each sub-state begins by running a 
diagnostic routine to determine if that particular fault 
has occurred. If the diagnostic routine returns Fault 
Confirmed=1, then the appropriate fault response 
routine is called and the diagnostic sub-state for the next 
fault is activated while the response runs in the 
background. If the diagnosis does not result in fault 
confirmation within a user-defined wait time, then the 
active sub-state moves to the next possible fault and the 
process repeats. Once all possible faults have been 
evaluated, the active sub-state returns to the first fault 
until the fault has been resolved by one of the corrective 
actions. 
 Note that fault diagnostic checks are distinct from 
fault detection checks. None of the diagnostic checks 
are performed unless they are called by the diagnostic 
state machine, which is only activated once the fault 
detection triggers are activated. Thus, a fault will not be 

detected if one of the fault diagnosis conditions is met 
but the fault detection conditions have not been met. 
Once a fault has been diagnosed, the diagnostic state 
machine calls the appropriate fault response routine. 
When the fault is resolved and a user-specified recovery 
time has passed, the active state returns to 
NoFaultDetected. 
 
3.4 Integration in MATLAB/Simulink 

The functional state machine and diagnostic state 
machine described in the previous two sections are 
designed to work together in the fault protection 
architecture along with several additional components in 
the MATLAB/Simulink environment. The fault & mode 
portions of the architecture are the main focus of this 
study, and these components are shown in the example 
Simulink diagram in Fig. 3, which illustrates how each 
of the components interacts with the others. 

The two primary components are the functional state 
machine and the diagnostic state machine. These are 
Stateflow blocks which have been described in the 
previous two sections. Most of the inputs to the 
functional state machine are produced by the generic 
mode management block, a MATLAB function which 
takes in vehicle state information and ground commands 
and calculates the logical variables that are evaluated in 
functional state machine transitions. AbortZone is 
output from the functional state machine to the 
diagnostic state machine and describes whether the 
AbortZone state is active. FaultDetectedMode and 
Abort are generated by the diagnostic state machine. 

The inputs to the diagnostic state machine come 
from several sources. ArriveAtStandby is 

 
 

Fig. 2. Generic diagnostic state machine (only a portion of this diagram is shown for readability) 
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generated by the mode management MATLAB function 
block. AbortZone is generated by the functional state 
machine. Fault detection checks are performed by a 
MATLAB function block and result in Fault 
Detected and FaultResolved. Two variables are 
input as constants (WaitTime and RecoverTime), 
and a set of variables indicating fault confirmation 
(FaultConfirmed1,2,3, etc.) are input from the 
fault diagnosis/resolution MATLAB function block for 
each fault. Two output commands for each fault 
(Diagnose1,2,3, etc. and Corrective 
Action1,2,3, etc.) are fed into the respective fault 
diagnosis/resolution function blocks. Note that only one 
diagnosis/resolution function is shown for clarity but 
most systems will consider more than one fault and will 
have a diagnosis/resolution function for each fault 
 
4. Results: Evaluation in Simulation  

Each of the generic architecture diagrams described 
in the preceding section can be adapted for particular 
applications. This section provides examples for two 
very different scenarios. It is important to note that the 
generic diagrams usually provide more or less detail 
than necessary, depending on the application. Detail can 
be added or removed in each diagram as needed. 

  
 

4.1 UAV Nervous System Example 
One application of the state machine FDIR 

architecture has been developed for a multirotor UAV 
system. This “UAV Nervous System,” serves as a 
proof-of-concept of the state machine FDIR architecture 
and has been developed in collaboration with 
FalconViz, a startup company based at the King 
Abdullah University of Science and Technology 
(KAUST). FalconViz uses multi-rotor and fixed-wing 
UAVs for scanning and 3D mapping, among other 
applications. The FalconViz team recognized a need for 
fault protection because small problems with their UAV 
hardware or software would often cause mission critical 
failures. 
 The primary goal of the UAV nervous system is to 
detect, diagnose, and respond to excess vibration in 
flight. An accelerometer is placed on the arm of the 
copter below the propeller and electrical tape is added to 
the propeller to simulate unbalance. The K-nearest 
neighbors (KNN) supervised machine learning 
algorithm is trained and used for fault detection [19]. 
The output of the KNN algorithm is sent into the 
diagnostic state machine for fault diagnosis and 
confirmation. When the fault has been diagnosed as 
“confirmed,” an audio signal is sent to the pilot via the 
radio controller. The pilot can then land the copter to 
investigate the fault. The complete system involves a 
suite of sensors on two arms of the copter. In addition to 

 

Fig. 3. Generic diagnostic state machine (only a portion of this diagram is shown for readability) 



69th International Astronautical Congress (IAC), Bremen, Germany, 1-5 October 2018.  
Copyright ©2018 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-18-C1.5.11x45016                                     Page 7 of 15 

an accelerometer on the second arm, temperature 
sensors are installed at the base of the motors and 
current/voltage sensors are installed between the lithium 
polymer battery and the Electronic Speed Controls 
(ESCs). The nervous system is able to detect and 
respond to faults from all eight sensors simultaneously. 
For all faults, the response is to send a signal to the pilot 
to land. Several flight tests demonstrating successful 
detection of faults have been completed. The results of 
one set of flight tests were published at the 67th 
International Astronautical Congress [19]. 

After the generic FDIR architecture described in 
Section 3 was created, the UAV Nervous System case 
study was revisited and adjusted to match the generic 
architecture. First, the generic functional state machine 
was adapted for the FalconViz UAV test flight, as 
shown in Fig. 4. Many of the states from the generic 
diagram were unnecessary because of the relative 
simplicity of the UAV test flight. The Standby state at 
the bottom is the starting state and represents the copter 
sitting stationary on the lab bench at the beginning of 
the test flight when the system is activated and data 
recording begins. When the copter is being carried 
outside (CarryingCopter=1), the Transfer state 
begins. The Transfer state ends when the copter is set 
down on the ground outside (ArriveAt 
Standoff=1), which begins the Piloted phase. During 
Standoff, the first sub-state of the Piloted phase, the 
copter is sitting on the ground, waiting for the pilot’s 
command to proceed. When the pilot begins throttling 

up the motors to launch the copter (Liftoff=1), the 
NominalZone sub-state begins, indicating that the 
copter is flying. When the copter lands and the motors 
are powered down (Landed=1), the active state returns 
to Standoff. Note that no additional abort states are 
included in this functional state machine because the 
standard abort procedure when a fault is detected is for 
the pilot to land the copter. 

Next, the generic diagnostic state machine was 
adapted for the UAV Nervous System as shown in Fig. 
5. In this case, the trigger for fault detection 
(FaultDetected=1) is set to the output of the 
machine learning algorithm for vibration detection. This 
is done without regard to persistence, so whenever the 
machine learning algorithm indicates a fault detection, 
the FaultDetected state and Diagnose sub-state become 
active. Because only one fault could cause this 
particular detection, only one fault diagnosis sub-state is 
present in the diagnostic state machine. The “Propeller 
Unbalanced” fault is diagnosed if the fault detection 
trigger remains active for the “Time to Detect” of 0.025 
sec, and if the current state of the functional state 
machine is NominalZone (indicating the copter is 
flying). If the fault detection is only intermittent, fault 
diagnosis will be inconclusive. In either case, when the 
fault detection flag from the machine learning algorithm 
is set to zero for the “Time to Resolve” length of 0.03 
sec, the state machine returns its active state to 
NoFaultDetected. 

 

 

Fig. 4 Functional state machine for FalconViz UAV 
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To demonstrate the FDIR architecture, recorded 
flight test data was loaded from a data file and replayed 
in Simulink. The functional and diagnostic state 
machines described above were added to a Simulink 
model, and MATLAB functions were written to 
calculate mode management inputs to the functional 
state machine and fault diagnostic inputs to the 
diagnostic state machine. The recorded flight test data 
and FDIR output are shown in Fig. 6. Note that this 
flight test data is similar but not exactly the same as the 
data shown in [29]; the flights were performed on 
different dates and at different stages of development of 
the UAV Nervous System. The top three plots show 
accelerometer data in three axes and the bottom plot 
shows the FaultConfirmed1 signal output by the 
diagnostic function.  

The data begins with the copter on the lab bench in 
segment A, and tape is placed on the propeller to 
unbalance it. The copter is carried outside from the lab 
during segment B. The copter takes off and flies with an 
unbalanced propeller in segment C. The FDIR 
architecture quickly detects the imbalance and outputs a 
FaultConfirmed status of 1 at around 3 sec, shortly 
after segment C begins. At the end of segment C the 
copter lands, and the FDIR architecture immediately 
resets the FaultConfirmed status to 0. During 

segment D the copter is on the ground, and the tape is 
removed to restore the propeller balance. Segment E 
shows balanced flight, and the copter lands again at the 
end of segment E. During segment F, tape is added 
again while the copter is on the ground. Unbalanced 
flight resumes during segment G, and between 11 and 
12 sec the FDIR architecture quickly detects the 
imbalance and outputs a FaultConfirmed status of 
1. The copter lands at the end of segment G, and the 
FDIR architecture immediately resets the Fault 
Confirmed status to 0. 

The UAV Nervous System has been developed and 
tested for a terrestrial rotary wing UAV. The system 
proof-of-concept has been shown through flight testing. 
The generic FDIR architecture has been successfully 
adapted for use with the UAV Nervous System and has 
been demonstrated in MATLAB/Simulink using 
recorded flight test data. Since the new system is 
operating on similar flight data to the previous system, 
improved performance is attributable to the addition of a 
state machine monitoring the state of the UAV from 
telemetry. For example, by monitoring ESC current 
measurements, the updated architecture is able to 
determine whether the UAV is flying and takes this into 
account when diagnosing whether a fault is present. 

 

 

Fig. 5 Diagnostic state machine for UAV 
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Fig. 6 Results of test flight replay with UAV Nervous System FDIR Architecture 
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4.2 Mars Sample Return Rendezvous Example 
 A second use of the state machine FDIR 

architecture has been developed for an automated 
relative proximity operations application. This work 
supports development of a Mars Sample Return (MSR) 
mission. The process for development of fault 
protection requirements was published at the 68th 
International Astronautical Congress [20] and a detailed 
concept of operations, trajectory control strategy, and 
complete simulation results have been submitted in an 
article to the Journal of Spacecraft and Rockets [21]. 

 One key feature of the Mars Sample Return 
concepts currently under consideration is that they 
require autonomous rendezvous and capture. Samples 
collected by the Mars 2020 rover will be placed into an 
Orbiting Sample container (OS), launched into orbit 
around Mars, and intercepted by a Sample Return 
Orbiter (SRO). The SRO performs ground-directed 
rendezvous until it is about 100 meters away from the 
OS. Finally, terminal rendezvous and capture of the OS 
are performed autonomously. 

A nominal approach trajectory is shown in Fig. 7 in 
the Local Vertical Local Horizontal (LVLH) frame and 
involves the following phases. First, out-of-plane 
natural motion occurs in the passively safe standby 

trajectory before any control is activated; this is the blue 
portion of the trajectory. Once trajectory control is 
activated (at the start of the black portion of the 
trajectory), the controller allows the SRO to continue in 
natural motion. When the xy-plane is reached, a planar 
hop maneuver is commanded to remove all out-of-plane 
motion and the red portion of the trajectory begins. The 
controller allows the SRO to continue coasting until the 
along-track axis is reached and a hold position 
maneuver is commanded to hold the SRO at a fixed 
relative position. A small maneuver is commanded to 
begin the v-bar approach (light blue portion of the 
trajectory), and subsequent hops are performed until the 
SRO is near to the OS. In the final v-bar hop, the green 
portion of the trajectory begins and the controller allows 
the SRO to coast until it reaches the point of closest 
approach (the red x) at a range of 1.08 m, where another 
hold position maneuver is performed to represent OS 
capture.  

During the v-bar approach, three “zones of 
criticality” are defined to alter fault protection behavior 
based on distance to the target, as shown in Fig. 7. Note 
that durations and distances shown here are dependent 
on the rendezvous approach strategy, so the transition 
conditions between these zones may change, but the 
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Fig. 7 Relative orbit three dimensional view (LVLH) for nominal trajectory 
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criticality (and thus impact on FDIR behavior) of the 
zones will endure regardless of the implementation 
selected. In order to capture how this behavior fits into 
the overall terminal approach, a functional state 
machine was created, shown in Fig. 9. This model 
represents both nominal and off-nominal processes for 
rendezvous and capture and is referenced by the 
diagnostic state machine. 

At the end of ground-in-the-loop rendezvous, the 
system begins in a passively safe trajectory that will not 
impact the OS even if it drifts. A ground command 
initiates the autonomous sequence, and a Final Hop 
moves the spacecraft from the passively safe trajectory 
to the v-bar approach plane. The Final Hop ends at a  
“standoff” position (no longer passively safe) at the start 
of the v-bar approach. When proper conditions are 
achieved, the “closed-loop” v-bar approach begins. 

The system then enters the “Passive Miss Region,” 
which requires the SRO to perform regular maneuvers 
in order to remain on an intercept course. If a fault is 
detected at any point in this region, the SRO stops 
maneuvers and enters Passive Abort, passing by the OS 
harmlessly and returning to Passive Standby. If no faults 
occur, the system enters the “Active Abort Region” 
when the dynamic boundary is crossed. This zone ends 
in an intercept unless an Abort maneuver is commanded 
to return to Passive Standby via the Active Abort mode. 
The final zone, called the “Unavoidable Intercept 
Region” occurs at the very end of the rendezvous 
sequence, when the SRO can no longer avoid an 
intercept; it must either capture the OS or collide with it.  

If capture is unsuccessful and the OS does not enter 
the capture volume, the system enters the LocateOS 
state. It attempts to determine where the OS is located 

   
Fig. 8 Notional “zones of criticality” 

 

Fig. 9 State machine for terminal rendezvous and capture process 
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before performing any slew or thrust maneuvers. Once 
the OS is found, an abort maneuver is commanded. If 
the OS enters the capture volume successfully, the 
capture process begins. The OS passes by a sensor such 
as a laser curtain and the door is closed. If the OS 
cannot be confirmed inside the capture volume after the 
door has closed, the system also enters the FindOS state 
and commands an Abort unless the OS is found inside. 

Four faults were selected for simulation based on the 
scenario where the OS is no longer visible in the imager 
field of view (FOV), but further information is 
necessary to determine which fault occurred. This 
scenario provides a suitable case study to demonstrate 
the diagnostic capability of the FDIR architecture. The 
diagnostic state machine shown in Fig. 11 is used to 
perform on-board model-based fault diagnosis. It 
behaves exactly the same as the generic diagnostic state 
machine, except that an abort is commanded upon fault 
detection if the SRO is in either the Passive Miss 
Region or the Active Abort Region. In all other regions, 
the Diagnose state calls diagnostic and response 
functions for each candidate fault. Only two diagnose 
sub-states are shown for clarity, but there is one sub-
state for each possible fault. 

Six simulation cases have been evaluated to 
demonstrate the capabilities of the FDIR architecture for 
Mars Sample Return autonomous rendezvous and 
capture [21]. A summary of three representative 
scenarios is presented here. In the first case, shown in 
Fig. 11, an angular rate fault results in the loss of the OS 
from the imager FOV; a fault is injected at 1,050 sec 
during the planar hop by turning off the attitude tracking 

 
Fig. 11 Simulation results for angular rate fault recovery 

 

Fig. 10 Diagnostic state machine for MSR fault protection architecture  
(Only a portion of this diagram is shown for readability) 

Sky search 
slew 
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controller. The OS slowly drifts out of the imager FOV 
until it is no longer visible, triggering a fault detection. 
 The fault protection system then initiates a sky 
search slew, which scans the sky and quickly finds and 
tracks the OS again. After reacquiring the OS in the 
imager the SRO continues to capture at 20,534 sec and a 
minimum range of 1 m. Similar responses have been 
demonstrated for cases with the OS in eclipse and an 
unconverged relative orbit filter prior to the beginning 
of the v-bar approach. 
 In the next case, shown in Fig. 12, a fault is injected 
at 6,000 sec indicating that the relative orbit 
determination filter is unconverged. Unlike the previous 
scenario, in this scenario the planar hop has already 

 
Fig. 12 Simulation results for unconverged relative  

orbit filter resulting in passive abort 

been completed and the v-bar approach has begun 
before the fault is injected. The fault protection system 
detects this fault and immediately commands a passive 
abort because the SRO is in the Passive Miss Region 
(Zone 1) of the v-bar approach. The SRO then stops 
maneuvers and begins drifting; it passes through a 
minimum range of 24.23 m at 8,706 sec (about 30 
minutes after the fault time). After this minimum range, 
the SRO drifts away from the OS in the negative along-

track direction. Once the along-track distance reaches 
50 m, the SRO injects cross-track motion and returns to 
a passively safe standby. 

In the final case, shown in Fig. 13, a fault is injected 
at 19,000 sec at a range of 4.32 m, indicating that the 
camera has lost power. The FDIR system detects this 
fault and immediately commands an active abort 
because the SRO is in the Active Abort Region (Zone 2) 
of the v-bar approach. The SRO then injects out-of-
plane motion and moves away from the OS. After 
entering an out-of-plane ellipse, the SRO drifts away 
from the OS in the negative along-track direction. Once 
the along-track distance reaches 50 m, the SRO freezes 
the drift and returns to a passively safe standby. 

 

Fig. 13 Simulation results for camera power  
fault resulting in active abort 

Each of the tasks described above has been 
completed successfully for an initial treatment of 
defining fault protection behavior for autonomous 
rendezvous and capture of the OS. A detailed 
rendezvous and capture process concept of operations 
has been created, accounting for safety concerns. The 
architecture has been demonstrated in simulation for 
several fault cases with fault responses dependent on the 
mode state of the system.  

Passive 
Abort 

Active 
Abort 
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5. Conclusion  
As aerospace vehicles become more complex and 

require increased automation, the design of FDIR 
systems must evolve to keep pace with vehicle 
advancements. A generic, modular, and portable 
architecture has been developed for aerospace vehicle 
fault protection. The architecture has been adapted to 
two distinct scenarios and has demonstrated the ability 
to successfully detect, diagnose, and respond to a 
variety of faults in real time using a state-based on-
board system. Flight testing and detailed simulation 
have been used to thoroughly develop, verify, and 
validate this capability for two distinct case studies in 
very different regimes. 
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