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ANALYTICAL METHODS IN CRATER RIM FITTING AND
PATTERN RECOGNITION

Michael Krause*, Jonathan Price†, and John Christian‡

Upcoming lunar missions are expected to utilize optical measurements for naviga-
tion. View invariants enable “lost-in-space” terrain relative navigation about cratered
celestial bodies. Lunar crater rims form ellipses when imaged. Noisy measurements
of points lying along this rim will be obtained, and may be fit to an ellipse to cal-
culate the invariants. Hyper least squares (HLS) provides an attractive performance
benefit compared to traditional (or total) least squares for this task. An analytical
derivation of the covariance of these invariants in the presence of noise is presented,
and is used to analyze performance of the invariants in realistic situations.

INTRODUCTION

View invariants provide a mathematical framework1 for recognizing patterns of craters for “lost-
in-space” terrain relative navigation (TRN) around the Moon2 and other cratered celestial bodies.
It is well known that lunar craters have predominantly ellipse-shaped rims, due to the underlying
physical processes of the impacts that shape their creation.3, 4 Furthermore, when these craters are
imaged by a conventional camera (i.e., not a pushbroom-type camera), these elliptical rims will be
projected into ellipses in the resultant image.2 For a pattern of two or more nearly coplanar crater
rims, their mathematical representations as ellipses can be combined to form a series of invariant
values, which are independent of the pose of the imager. Figure 1 provides an illustration of this
concept using imagery of the lunar surface from Artemis I.

Utilizing these invariants, an autonomous optical navigation (OPNAV) pipeline for a spacecraft
operating about a cratered body may then be envisaged. To begin, the spacecraft would capture
multiple images of the surface (notably, without any constraints on pointing direction, except that
a desired quantity of craters are visible). Then, points lying on crater rims would be identified
via image processing techniques of choice, which likely would include a pixel-level rim detection
scheme coupled with a subpixel refinement routine.5 Following this, these points would be fit to an
ellipse, and these ellipses would be used to generate crater pattern invariants. Finally, assume that
the spacecraft is equipped with a database of known invariant values for selected crater patterns on
the target body’s surface, and their associated locations. By matching the observed crater patterns
to those in the database, known features are established across a set of images, and standard pose
estimation algorithms may be employed to obtain the state of the spacecraft.2 Note that this match-
ing and subsequent pose estimation does not necessitate any a priori knowledge of the state of the
spacecraft, justifying the classification of such a pipeline as a “lost-in-space” navigation tool.1
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Figure 1 An example of crater pattern invariants calculated using publicly available
imagery from Artemis I’s OPNAV camera. a) Image art001e002630 with area of in-
terest indicated. b) Image art001e002610 with area of interest indicated. Both areas
of interest capture the same three craters, but from different poses. c, d) Cropped and
zoomed versions of (a) and (b), respectively, overlaid with calculations of crater pat-
tern invariant values between all pairs of craters. Note that noise ensures these values
are not identical across images, and this work investigates the effect of this noise on
these invariant values. These images are publicly available through the NASA/JSC
Flickr page: https://www.flickr.com/photos/nasa2explore

This work addresses the effect of sensor noise on this pipeline in two aspects: ellipse fitting
algorithms and a covariance analysis of crater pattern invariants, illustrated via Figure 2c and 2d,
respectively.

When presented with a set of noisy data points that require an ellipse fit, it is common to simply
apply a Least-Squares (LS) approach. LS provides a straightforward path for constraining a conic
fitting problem to have elliptical solutions, and is relatively simple to implement.6 These reasons
have likely led to its popularity, however this approach for ellipse fitting is known to produce a
biased estimate.7 Techniques for producing unbiased ellipse fits have been discussed in mathemat-
ical and computer vision communities,8–10 but do not seem to have gained a significant foothold
amongst OPNAV practitioners—a point that this work aims to resolve. Specifically, Kanatani and
Rangarajan’s “hyper least squares” method provides an unbiased ellipse fit estimate up to second
order noise terms.11 This particular method is especially attractive given that it is non-iterative,
unlike other unbiased estimators such as the popular Approximate Maximum Likelihood (AML)
methods.12 A derivation of the HLS algorithm in terms more familiar to the OPNAV community is
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Figure 2 A cartoon representation of the envisioned autonomous OPNAV pipeline.
a) Crater rims will characteristically form ellipses, and two of these ellipses may be
combined to form a pair of crater pattern invariants. b) When imaging these craters,
a spacecraft will only have access to noisy measurements of points lying on the rims.
c) These noisy measurements are fit to ellipses, which will not generally match the
“truth” ellipses of the crater rims. d) Crater pattern invariants are computed from
these fitted ellipses, and will not generally match the “truth” pattern invariants.
e) These invariant features are matched against a database, enabling pose estimation
across multiple observations. This work primarily focuses on steps (c) and (d).

provided in this manuscript. As a component of this, there is discussion concerning the covariance
of these ellipse fits in terms of the noise present in the crater rim points.

This analysis is further extended with a discussion of the covariance of crater pattern invariants
in the presence of noise. An analytical derivation of this covariance is provided for a pattern of
two craters. Monte Carlo simulations are then conducted to numerically verify this covariance
formulation. From an application standpoint, this covariance can then be leveraged to produce a
statistic to assess the confidence that a crater pattern invariant is indeed a match across two images.
These techniques are then applied to real world imagery from Artemis I and the Dawn mission at
Ceres, and statistical results are discussed.

DERIVATION OF HYPER LEAST SQUARES ELLIPSE FITTING

Kanatani and Rangarajan11 describe an algebraic conic fitting method that they refer to as “hyper
least squares” (HLS), which couples a least squares (LS) approach with a carefully selected nor-
malization term that yields an unbiased estimate up to second order noise terms. We now present an
expanded discussion the HLS derivation from Ref. [11] in order to familiarize spacecraft navigators

3



with its advantages.

The implicit equation for a conic is

Ax2i +Bxiyi + Cy2i +Dxi + Fyi +G = 0 (1)

A given conic is an ellipse if B2 − 4AC < 0. If we define

aT =
[
A B C D F G

]
(2)

ξTi =
[
x2i xiyi y2i xi yi 1

]
(3)

then we can compactly represent Eq. (1) as a linear system,

ξTi a = 0 (4)

Now, suppose we wish to fit an ellipse to a set of n two-dimensional (2-D) points {xi}ni=1 defined
as

xi =
[
xi
yi

]
(5)

The true points {xi}ni=1 are rarely available to us in practice. Instead, suppose that we only have
access to noisy observations of these points,

x̃i =
[
x̃i
ỹi

]
= xi + νi =

[
xi
yi

]
+

[
νxi

νyi

]
(6)

where νi ∼ N (0,Rxi). Assuming that the image processing errors are nearly isotropic, we may
approximate the point covariance as Rxi = E[νiν

T
i ] ≈ σ2

xiI2×2, where E[ · ] is the expected value
operator.

In turn, let us study how this addition of noise affects our ξi vector. We begin by defining its
noisy counterpart,

ξ̃i =



x̃2i
x̃iỹi
ỹ2i
x̃i
ỹi
1

 =



(xi + νxi)
2

(xi + νxi)(yi + νyi)

(yi + νyi)
2

(xi + νxi)
(yi + νyi)

1

 (7)

We can then expand this out and group by the order of the small noise terms due to νi

ξ̃i = ξi + δ1ξi + δ2ξi =



x2i
xiyi
y2i
xi
yi
1

+



2xiνxi

yiνxi + xiνyi
2yiνyi
νxi

νyi
0

+



ν2xi

νxiνyi
ν2yi
0
0
0

 (8)

At this point, we note that the first order term may be written as

δ1ξi =

(
∂ξi
∂xi

)
νi (9)
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where we’ve analytically computed the partial derivative as

∂ξi
∂xi

=



2xi 0
yi xi
0 2yi
1 0
0 1
0 0

 (10)

Utilizing this fact, we can then find the covariance of ξi, which is computed as

Rξi = E[δ1ξi δ1ξ
T
i ] ≈

(
∂ξi
∂xi

)
E[νiν

T
i ]

(
∂ξi
∂xi

)T

= σ2
xi

(
∂ξi
∂xi

)(
∂ξi
∂xi

)T

(11)

One may then compute

Rξi ≈ σ2
xi

(
∂ξi
∂xi

)(
∂ξi
∂xi

)T

= σ2
xiR0,ξi = σ2

xi



4x2i 2xiyi 0 2xi 0 0

2xiyi x2i + y2i 2xiyi yi xi 0

0 2xiyi 4y2i 0 2yi 0
2xi yi 0 1 0 0
0 xi 2yi 0 1 0
0 0 0 0 0 0

 (12)

which, as we expect, is rank deficient (6× 6 matrix of rank 5).

Returning our attention to the task of ellipse fitting, we note that when noisy measurements are
used in Eq. (4), we do not obtain an equality with zero. Instead,

ξ̃
T
i a = ϵi ̸= 0 (13)

It follows that we should solve for a from many noisy observations by minimizing the sum of the
squares of ϵi. This is captured mathematically by the cost function

min J(a) =
1

n

n∑
i=1

ϵTi ϵi =
1

n

n∑
i=1

aT ξ̃iξ̃
T
i a (14)

By defining the matrices M and M̃ as

M =
1

n

n∑
i=1

ξiξ
T
i and M̃ =

1

n

n∑
i=1

ξ̃iξ̃
T
i (15)

the cost function may be written as

min J(a) = aT M̃a (16)

Now, we observe that the scale of the vector a is arbitrary and a describes the same conic as ta for
t ∈ R ̸=0. It is well-known that different choices for constraining the length of a lead to different
error statistics—with some being more or less biased than others.7 Suppose that we describe this
normalization with a quadratic constraint of the form

aTNa = c (17)

5



where N is assumed to be symmetric. This constraint may be adjoined to our cost function with a
Lagrange multiplier to arrive at

min J(a) = aT M̃a + λ(c− aTNa) (18)

Applying the first differential condition, and noting that M and N are both symmetric,

2M̃a − 2λNa = 0 (19)

which leads to a generalized eigenvalue problem of the form

M̃a = λNa (20)

where our desired solution a will be the generalized eigenvector with the smallest magnitude.

Recall that our desired goal is to obtain an unbiased estimate of a. Selection of an appropriate
normalization N will yield such an estimate. Note that if N is simply chosen to be the identity
matrix, I, this results in a standard LS solution. Taubin’s method, another well-known normalization
scheme for ellipse fitting that tends to outperform LS (but is still statistically biased),11 chooses N
to be:

NT =
1

n

n∑
i=1

R0,ξi (21)

Since the matrix M̃ is noisy, the generalized eigenvectors produced by Eq. (20) are also noisy.
Thus, we proceed by conducting an analysis of the effect of noise on the matrix M (and thus, on
the resultant generalized eigenvector a) to help inform this choice of normalization and achieve an
unbiased estimate.

We begin by looking at the perturbations in M to second order in νi,

M̃ =
n∑

i=1

ξ̃iξ̃
T
i =

n∑
i=1

(ξi+ δ1ξi+ δ2ξi)(ξi+ δ1ξi+ δ2ξi)
T = M + δ1M + δ2M +O(∥νi∥3) (22)

where one may explicitly compute the first and second order perturbations as

δ1M =
1

n

n∑
i=1

(
ξiδ1ξ

T
i + δ1ξiξ

T
i

)
(23)

δ2M =
1

n

n∑
i=1

(
ξiδ2ξ

T
i + δ1ξiδ1ξ

T
i + δ2ξiξ

T
i

)
(24)

Furthermore, we expand terms in Eq. (20) to second order:

(M+ δ1M+ δ2M+ . . .)(a+ δ1a+ δ2a+ . . .) = (λ+ δ1λ+ δ2λ+ . . .)N(a+ δ1a+ δ2a+ . . .) (25)

Note that N is not expanded since it is a normalization factor to be determined. From this expansion,
we can group terms by their order, which results in the following relationships:

Ma = λNa (26)

Mδ1a + δ1Ma = λNδ1a + δ1λNa (27)
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Mδ2a + δ1Mδ1a + δ2Ma = λNδ2a + δ1λNδ1a + δ2λNa (28)

Combining Eqs. (4) and (15), we see that in a noiseless case, Ma = 0. This directly implies from
Eq. (26) that λ = 0. We yet again employ Eq. (4) and combine it with Eq. (23), finding that
aT δ1Ma = 0 as well. Then, multiplying Eq. (27) by aT from the left and applying these conditions:

0 = aT δ1λNa → δ1λ = 0 (29)

Utilizing Eq. (27) once more and keeping in mind this new condition, when the pseudoinverse M+

is multiplied from the left, then we obtain

δ1a = −M+δ1Ma (30)

Plugging Eq. (30) into Eq. (28) and rearranging then yields

δ2λ =
aT δ2Ma − aT δ1MM+δ1Ma

aTNa
(31)

or, letting
T = δ2M − δ1MM+δ1M (32)

then,

δ2λ =
aTTa
aTNa

(33)

The next term of interest is δ2a, the second order error in the ellipse fit. It is important to note at
this point that the length of a will be constrained by Eq. (17). However, in order to find an unbiased
estimate to the generalized eigenvalue problem, we will further scale a to have unit norm. Thus,
since a is always a unit vector and will not have an error in magnitude as a result, we seek to find
the second order error orthogonal to a, i.e., δ⊥2 a. Further, we note that a is, by definition, the null
vector of M, and thus M+M is an orthogonal projection along a. Therefore,

δ⊥2 a = (M+M)δ2a (34)

Now, we multiply Eq. (28) from the left by M+ and substitute in Eq. (30). After rearranging, this
yields

δ⊥2 a = δ2λM+Na + M+δ1MM+δ1Ma − M+δ2Ma =
aTTa
aTNa

M+Na − M+Ta (35)

Ultimately, we seek an expression for N such that δ⊥2 a = 0. Therefore, we compute the expecta-
tion of δ⊥2 a with the goal of manipulating that accordingly,

E[δ⊥2 a] = M+

[
aTE[T]a

aTNa
Na − E[T]a

]
(36)

It is now elementary to see that if N = E[T], the result is that E[δ⊥2 a] = 0.

Computing the expectation of T may be done term-by-term. First, invoking Eq. (24),

E[δ2M] =
1

n

n∑
i=1

(
ξiE[δ2ξi]

T + E[δ1ξiδ1ξ
T
i ] + E[δ2ξi]ξ

T
i

)
(37)

7



where (recalling Eq. (8))
E[δ2ξi] = σ2

xie (38)

where
e =

[
1 0 1 0 0 0

]T (39)

As a final prerequisite, let

ξc =
1

n

n∑
i=1

ξi (40)

Then, combining with Eqs. (12) and (21), assuming that the noise will be characterized identically
for all sampled points, and introducing the symmetrization operator S[B] = (B +BT )/2, Eq. (37)
may be compactly written as

E[δ2M] = σ2(NT + 2S[ξce]) (41)

Next, the expectation of the second term of T may be found as:

E
[
δ1MM+δ1M

]
=

σ2

n2

n∑
i=1

(
tr
[
M+R0,ξi

]
ξiξ

T
i + ξTi M+ξiR0,ξi + 2S

[
R0,ξiM

+ξiξ
T
i

])
(42)

The interested reader is directed to Appendix B of Kanatani and Rangarajan’s derivation11 for com-
plete details concerning this derivation.

Taken collectively, then:

E[T] = E[δ2M]− E
[
δ1MM+δ1M

]
(43)

and noting that the σ2 term is allowed to drop out without loss of generality, this leads to the
selection of N as

N = NT + 2S[ξce]−
1

n2

n∑
i=1

(
tr
[
M+R0,ξi

]
ξiξ

T
i + ξTi M+ξiR0,ξi + 2S

[
R0,ξiM

+ξiξ
T
i

])
(44)

The magnitude of the final term is largely insignificant compared to the first two when the number
of sampled points, n, is high. Kanatani and Rangarajan propose that this final term may be dropped
in this regime, yielding an algoritm they term “Semi-hyper Least Squares”, or SHLS. We continue
the derivation of the full form of HLS, but note that SHLS provides a result that is oftentimes
indistinguishable when many sample points are available, and requires less computational effort.

When only noisy points are available, then these must be used to calculate N. Specifically, ξ̃
replaces ξ, ξ̃c replaces ξc, M̃ replaces M, and R0,ξ̃i

replaces R0,ξi . Note that, in general, this makes

M̃ nonsingular, though we desire it to be singular (recall that a lies in the null space of M). Thus,
prior to using M̃ to compute N, we replace the smallest eigenvalue of M̃ with zero by spectral
decomposition.

We see that the choice of N affects the bias, but not the standard deviation. In particular, we may
compute the covariance of a as Pa = E[δ1aδ1aT ]. By substitution from Eq. (30) this is

Pa = M+E
[
δ1MaaT δ1MT

]
M+T (45a)
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= M+E

( n∑
i=1

ξiδ1ξ
T
i + δ1ξiξ

T
i

)
aaT

 n∑
j=1

ξjδ1ξ
T
j + δ1ξjξ

T
j

T
M+T (45b)

= M+E

( n∑
i=1

ξiδ1ξ
T
i a

) n∑
j=1

ξjδ1ξ
T
j a

T
M+T (45c)

= M+E

( n∑
i=1

ξia
T δ1ξi

) n∑
j=1

ξja
T δ1ξj

T
M+T (45d)

= M+

 n∑
i=1

n∑
j=1

ξia
TE
[
δ1ξiδ1ξ

T
j

]
aξTj

M+T (45e)

= M+

(
n∑

i=1

ξia
TRξiaξ

T
i

)
M+T (45f)

= M+

(
n∑

i=1

(aTRξia)(ξiξ
T
i )

)
M+T (45g)

= M+

(
n∑

i=1

(aTRξia)(ξiξ
T
i )

)
M+ (45h)

SENSITIVITY OF CRATER PATTERN INVARIANTS

Obtaining an analytical covariance for crater pattern invariants is a critical step for enabling useful
application of this OPNAV framework with real world imagery. Specifically, this work focuses on
the covariance for a pair of crater pattern invariants. Once obtained, this covariance may then be
used to form a statistic to rigorously compare crater patterns across images. Knowledge of such
a covariance depends on the covariance of the ellipse fits used for generating the invariants – as
demonstrated, itself a function of the ellipse parameters and the noise inherent in the imaging and
image processing system.

Until this point, the ellipse fit coefficients have been treated as a 6 element vector, as defined in
Eq. (2). For the computations of the invariants (and thus, for the computation of their covariance),
it is necessary to place this into a symmetric matrix form instead, defined as

A =

 A B/2 D/2
B/2 C F/2
D/2 F/2 G

 (46)

The invariants for a pair of nearly co-planar craters are2

Iij =

(
det[Ai]

det[Aj ]

)1/3

Tr
[
A−1
i Aj

]
(47)

Iji =

(
det[Aj ]

det[Ai]

)1/3

Tr
[
A−1
j Ai

]
(48)
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Considering now the perturbations that this pair of invariants will experience in the presence of
noise, we construct

δyij =
[
δIij
δIji

]
=

[
∂Iij/∂ai ∂Iij/∂aj
∂Iji/∂ai ∂Iji/∂aj

] [
δai
δaj

]
(49)

where the covariance is, by definition,

Pyij = E[δyij δyTij ] (50)

To this end, we now seek closed-form expressions for the partial derivatives of each invariant with
respect to the ellipse fits, as introduced in Eq. (49).

Begin with the identities:13

∂

∂X
Tr[AXT ] = A (51)

∂

∂X
Tr[AX−1B] = −X−TATBTX−T (52)

∂

∂X
det[X] = det[X]X−T (53)

and that Ai = AT
i and Aj = AT

j , we obtain

∂Iij
∂Ai

= Tr[A−1
i Aj ]

∂

∂Ai

(
det[Ai]

det[Aj ]

)1/3

+

(
det[Ai]

det[Aj ]

)1/3 ∂

∂Ai
Tr[A−1

i Aj ] (54a)

=
1

3

(
det[Ai]

det[Aj ]

)1/3

Tr[A−1
i Aj ]A−T

i −
(

det[Ai]

det[Aj ]

)1/3

A−T
i AT

j A−T
i (54b)

=
1

3

(
det[Ai]

det[Aj ]

)1/3

Tr[A−1
i Aj ]A−1

i −
(

det[Ai]

det[Aj ]

)1/3

A−1
i AjA−1

i (54c)

=

(
det[Ai]

det[Aj ]

)1/3

A−1
i

(
1

3
Tr[A−1

i Aj ]I3×3 − AjA−1
i

)
(54d)

Furthermore,

∂Iij
∂Aj

= Tr[A−1
i Aj ]

∂

∂Aj

(
det[Ai]

det[Aj ]

)1/3

+

(
det[Ai]

det[Aj ]

)1/3 ∂

∂Aj
Tr[A−1

i Aj ] (55a)

= −1

3

(
det[Ai]

det[Aj ]

)1/3

Tr[A−1
i Aj ]A−T

j +

(
det[Ai]

det[Aj ]

)1/3

A−1
i (55b)

= −1

3

(
det[Ai]

det[Aj ]

)1/3

Tr[A−1
i Aj ]A−1

j +

(
det[Ai]

det[Aj ]

)1/3

A−1
i (55c)

=

(
det[Ai]

det[Aj ]

)1/3(
−1

3
Tr[A−1

i Aj ]A−1
j + A−1

i

)
(55d)

Following similar processes for Iji, we obtain,

∂Iji
∂Ai

=

(
det[Aj ]

det[Ai]

)1/3(
−1

3
Tr[A−1

j Ai]A−1
i + A−1

j

)
(56)

10



and
∂Iji
∂Aj

=

(
det[Aj ]

det[Ai]

)1/3

A−1
j

(
1

3
Tr[A−1

j Ai]I3×3 − AiA−1
j

)
(57)

Recall from Eq. (49) that we seek partial derivatives with respect to the vector of conic coeffi-
cients a, rather that with respect to the matrix of coefficients A. We move towards this by applying
the vector operator,

∂Iij
∂vec [Ai]

= vec

[(
det[Ai]

det[Aj ]

)1/3

A−1
i

(
1

3
Tr[A−1

i Aj ]I3×3 − AjA−1
i

)]T
(58)

∂Iij
∂vec [Aj ]

= vec

[(
det[Ai]

det[Aj ]

)1/3(
−1

3
Tr[A−1

i Aj ]A−1
j + A−1

i

)]T
(59)

∂Iji
∂vec [Ai]

= vec

[(
det[Aj ]

det[Ai]

)1/3(
−1

3
Tr[A−1

j Ai]A−1
i + A−1

j

)]T
(60)

∂Iji
∂vec [Aj ]

= vec

[(
det[Aj ]

det[Ai]

)1/3

A−1
j

(
1

3
Tr[A−1

j Ai]I3×3 − AiA−1
j

)]T
(61)

and recognizing that because vec[Ai] = Πai, we obtain

∂vec[Ai]

∂ai
= Π (62)

Using the conventions presented in this work, one may compute Π to be

Π =



1 0 0 0 0 0
0 1/2 0 0 0 0
0 0 0 1/2 0 0
0 1/2 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1/2 0
0 0 0 1/2 0 0
0 0 0 0 1/2 0
0 0 0 0 0 1


(63)

Now, directly applying the chain rule, we find our partial derivatives of interest

∂Iij
∂ai

= vec

[(
det[Ai]

det[Aj ]

)1/3

A−1
i

(
1

3
Tr[A−1

i Aj ]I3×3 − AjA−1
i

)]T
Π (64)

∂Iij
∂aj

= vec

[(
det[Ai]

det[Aj ]

)1/3(
−1

3
Tr[A−1

i Aj ]A−1
j + A−1

i

)]T
Π (65)

∂Iji
∂ai

= vec

[(
det[Aj ]

det[Ai]

)1/3(
−1

3
Tr[A−1

j Ai]A−1
i + A−1

j

)]T
Π (66)
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∂Iji
∂aj

= vec

[(
det[Aj ]

det[Ai]

)1/3

A−1
j

(
1

3
Tr[A−1

j Ai]I3×3 − AiA−1
j

)]T
Π (67)

Having found these expressions, we can return our attention to the Eq. (50), and compute the
expected values,

Pyij = E[δyij δyTij ] =
[
∂Iij/∂ai ∂Iij/∂aj
∂Iji/∂ai ∂Iji/∂aj

] [
Pai 06×6

06×6 Paj

] [
∂Iij/∂ai ∂Iij/∂aj
∂Iji/∂ai ∂Iji/∂aj

]T
(68a)

=

[
σ2
Iij

ρijσIijσIji
ρijσIjiσIij σ2

Iji

]
(68b)

where the four scalar entries in Pyij are

σ2
Iij = (∂Iij/∂ai)Pai(∂Iij/∂ai)T + (∂Iij/∂aj)Paj (∂Iij/∂aj)T (69)

ρijσIjiσIij = (∂Iji/∂ai)Pai(∂Iij/∂ai)T + (∂Iji/∂aj)Paj (∂Iij/∂aj)T (70)

ρijσIijσIji = (∂Iij/∂ai)Pai(∂Iji/∂ai)T + (∂Iij/∂aj)Paj (∂Iji/∂aj)T (71)

σ2
Iji = (∂Iji/∂ai)Pai(∂Iji/∂ai)T + (∂Iji/∂aj)Paj (∂Iji/∂aj)T (72)

and we further note that
ρijσIjiσIij = ρijσIijσIji (73)

Thus, the equations given in Eqs. (68 - 73) enable one to compute the covariance of a pair of crater
pattern invariants when the coefficients and covariances of the respective ellipse fits are known.

RESULTS

Two numerical experiments are conducted to verify the analytical results presented, and the pre-
sented techniques are then applied to a series of real-world datasets.

Comparison of Different Ellipse Fit Algorithms

First, we validate the superiority of HLS as compared to LS in the context of ellipse fitting by
constructing a simple scenario. While HLS generally provides an unbiased estimate of an ellipse fit,
its increased efficacy over LS is especially evident when only a fraction of the locus of points lying
on the ellipse are available for fitting. To this end, a simple “truth” ellipse is constructed centered
around zero with a semimajor axis length of 0.8, semiminor axis length of 0.6, and a clocking angle
of zero. Thirty points are sampled from a quarter of the perimeter, and Gaussian noise is added to
both the x- and y-coordinates. Figure 3a shows noise with σ = 0.001, while Figure 3b shows a
more extreme case, with σ = 0.005. In the nominal noise case, HLS is clearly superior to LS and
also demonstrably outperforms Taubin’s method.14 However, in the higher noise case, LS fails to
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find a reasonable approximation, and Taubin’s method yields an inaccurately large fit, while HLS is
able to fit the truth ellipse almost exactly.

In this particular example, the noise levels and set of sampled points are selected in a somewhat
arbitrary manner to demonstrate the available performance of HLS. However, subsequent numerical
analyses utilize noise values grounded in anticipated sensor characteristics and take advantage of as
much of the ellipse perimeter as possible, in order to best match potential operational conditions.

Figure 3 Two examples of ellipse fitting algorithm comparisons. a) 30 points are sam-
pled from a quarter of the truth ellipse perimeter with Gaussian noise of σ = 0.001
added to both x- and y-coordinates. Three ellipse fitting methods are used to re-
construct the ellipse. b) The same scenario is present, but with Gaussian noise of
σ = 0.005. LS tends to break down in this regime, while HLS is successful in recreat-
ing the truth ellipse.

Validation of Analytic Covariance Results

Next, to verify the analytically derived covariance of the invariants, we construct a simulation.
The simulation is such that a hypothetical spacecraft “images” two craters of configurable size from
a configurable pose.

In order to anchor the simulation in reality, the simulated imager is chosen to have similar camera
parameters to the Apollo Metric Camera.15 These parameters are shown in Table 1. The simulation
assumes two craters are visible to the camera, with physical parameters shown in Table 2.

Table 1 Simulated Camera Parameters

Parameter Value Unit

Width 1024 pixels
Height 1024 pixels

Pixel Pitch (X and Y) 9.0 µm/pixel
Focal Length 6.0 mm
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Table 2 Simulated Scene Parameters

Crater Semimajor
Axis [km]

Semiminor
Axis [km]

Clocking
Angle
[deg]

X-Distance
From

Camera
[km]

Y-Distance
From

Camera
[km]

Z-Distance
From

Camera
[km]

Crater 1 10 7 45 -20.0 28.3 100
Crater 2 8 7 120 -17.3 28.3 100

A Monte Carlo analysis is conducted with 10,000 trials. During each trial, the “truth” crater rim
ellipse is projected into the camera frame and 30 random sample points are picked out from around
the entire rim. Noise is added to both the x- and y-coordinates of each sampled point with a standard
deviation of one pixel,5 in line with expected crater detection algorithm noise levels when coupled
with subpixel refinement routines. These sampled points are then fit to an ellipse via HLS. Figure
4a shows an overlaid view of the simulated captured images, with Figure 4b providing a detailed
view of a single crater, illustrating the envelope of sampled and fitted ellipse rims.

Figure 4 An overlay of Monte Carlo simulated image captures for verifying the
analytical covariance formulation for a pair of pattern invariants. a) Full overlaid
images captured by the simulation. The nominal crater rims are in black, while each
Monte Carlo sampled crater rim is in red. b) A zoomed in view of Crater 2, better
illustrating the distribution of crater rims captured in comparison with the nominal
(black) rim.

Using these fitted ellipses, crater invariants pairs are calculated, as is their collective simulated
covariance. Simultaneously, the parameters of the truth ellipses and the noise parameters of the
simulation are used to generate the analytical covariance. An overplot of the resultant 3-sigma error
ellipses shown in Figure 5 illustrates that the analytical covariance closely matches the simulation-
based covariance.

Note that during the numerical experimentation process, trials with higher noise were explored. In
some scenarios, this higher noise excites higher order nonlinearities in HLS, and tends to cause bias
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in the measurements. However, within the regime explored in this particular numerical experiment,
HLS performs as desired.

Figure 5 Scatterplot of invariant value error from truth from 10000 Monte Carlo
trials, with frequency encoded by color. Overplotted are analytically and experimen-
tally derived 3-σ ellipses.

With the analytical covariance information now available, we can construct a statistical frame-
work to evaluate estimations of the crater invariant pair. The Mahalanobis distance lends itself well
to such an application. Let us first represent the difference between these invariant pairs across
images as

δy =

[
Iij,1
Iji,1

]
−
[
Iij,2
Iji,2

]
(74)

Recalling the calculated invariant covariance formulation from Eq. (68), we may calculate Pyij ,1

and Pyij ,2. The Mahalanobis distance between these invariant pairs is

d =
√
δyT (Pyij ,1 + Pyij ,2)

−1δy (75)

The Mahalanobis distance represents a measure of how many standard deviations away the values
lie from the mean of their distribution, and its square (that is, d2) follows a χ2 distribution.16 This is
verified by overplotting a histogram of d2 values (relative to truth) from the Monte Carlo simulation
with the correspondingly scaled χ2 distribution, as shown in Figure 6. The inherent relationship
between d and a statistical distribution allows for the formulation of a rigorous set of statistical
criteria to determine whether the same invariant pair is being viewed across two or more images
– a critical step for pose estimation. Discussion of appropriate statistical thresholds is left to the
OPNAV practitioner to tune for their specific application.
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Figure 6 Plot of the square of Mahalanobis distance of each Monte Carlo trial from
truth (histogram bars), overlaid against an appropriately scaled χ2 distribution (red).

Examples with Flight Data

Figure 1 provided an example of these techniques on real-world Artemis I imagery, examining
crater pattern invariants between three pairs of craters. This investigation of real-world data is con-
tinued through four subsequent examples—an additional case from Artemis I, and three from Dawn
at Ceres—in Figure 7. In each case, craters rim points were manually identified and ellipses were
fit using HLS. The inclusion of data from Ceres demonstrates that these techniques are effective
beyond lunar applications. Imagery of any body with characteristically elliptical crater rims may be
utilized for calculating crater pattern invariants, provided a conventional camera is used, as is the
case with the Dawn Framing Camera.17 Recall that neither the parameters of the cameras used to
capture these images nor the current state of the vehicle is necessary to calculate these invariants.
Indeed, imagery for the Artemis I examples is obtained from the public NASA/JSC Flickr page,18

and such metadata is not made available alongside this imagery. In the case of the Ceres examples,
the data is gathered from NASA PDS,19 where pose and camera metadata is available, but is not
employed for this analysis.

The example shown in Figure 7a is especially indicative of the invariant nature of this technique
with respect to pose. Image FC21B0041334 15236174318F2G was captured during the High Al-
titude Mapping Orbit (HAMO) phase of the Dawn mission at Ceres, with the craters of interest
almost directly nadir from the spacecraft. Image FC21B0043185 15267083218F1E was captured
during the same HAMO phase, but at a later cycle, from a much more oblique perspective. Despite
these differing camera poses, statistically similar (see Table 3) crater pattern invariants emerge.

The examples in Figures 7b and 7c serve to show that this technique is flexible regarding the scale
of the craters being examined. In Figure 7b, images FC21B0059418 16070142115F1B and
FC21B0063155 16114021252F1B were captured during different cycles of the Low Altitude Map-
ping Orbit (LAMO) phase of the Dawn mission at Ceres. Despite the significantly smaller crater
size (the resolution of LAMO imagery being roughly three times higher compared to HAMO), these

16



Figure 7 Four real-world examples of crater pattern invariants. Each example con-
tains four images: two raw images showing an area of interest (boxed in red), and the
corresponding images directly below showing a zoomed view of these respective ar-
eas. In each case, these zoomed views show the same crater rims from different poses.
Each crater rim is fitted and crater pattern invariants are calculated. Dawn images
are obtained via NASA PDS, while Artemis I images are obtained via the publicly
available NASA/JSC Flickr page: https://www.flickr.com/photos/nasa2explore. a)
Images FC21B0041334 15236174318F2G (left) and FC21B0043185 15267083218F1E
(right) captured during the High Altitude Mapping Orbit phase of Dawn’s
mission at Ceres. b) Images FC21B0059418 16070142115F1B (left) and
FC21B0063155 16114021252F1B (right) captured during the Low Altitude Map-
ping Orbit phase Dawn. c) Images FC21B0101372 18245071933F1E (left) and
FC21B0101370 18245064733F1E (right) captured during the Extended Mission Orbit
7 phase of Dawn. d) Images art001e002596 (left) and art001e002595 (right) captured
during Flight Day 20 of the Artemis I mission.
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techniques are still effective at producing statistically similar cratern pattern invariants. The images
in Figure 7c were captured during the Extended Mission Orbit 7, in which Dawn was placed in a
highly elliptical orbit about Ceres. While these images were captured from a higher altitude com-
pared to the HAMO and LAMO images, they demonstrate that—given appropriate crater geometry
and visibility, both of which are satisfied in this image pair—these techniques are still applicable.

The Artemis I examples, which span three pairs of craters from a pair of images in Figure 1
and an additional pair of craters from another pair of images in Figure 7d, provide context for the
application of crater pattern invariants in a lunar environment. These images demonstrate clearly
distinguishable patterns of elliptical craters evident from a typical operational lunar altitude. Crater
2 in Figures 1c and 1d does not contain a full rim of sampled points due to an intersecting crater, a
feature common on the lunar surface—however, HLS still yields a good fit, and invariants between
this and the other two craters are still able to be calculated.

In all cases, ground truth analytical ellipse rims are strictly unavailable. However, the Maha-
lanobis distance between invariant pairs calculated from two images targeting the same set of craters
still provides a meaningful statistic (χ2 distributed) for the correctness of these crater invariant cal-
culations. Furthermore, the analytically derived covariance formulation for these invariants directly
enables the calculation of such a metric. These distances are recorded in Table 3, and generally in-
dicate that most invariant pairs lie within a single standard deviation of their “expected” values. We
note that interpretation of these distances during application of crater pattern invariants in a future
mission will largely be a function of the mission and intended application.

Table 3 Real World Crater Pattern Distances

Case Figure 1,
Craters
1 & 2

Figure 1,
Craters
1 & 3

Figure 1,
Craters
2 & 3

Figure
7a

Figure
7b

Figure
7c

Figure
7d

Body Moon Ceres Moon

Mahalanobis
Distance, d

1.066 0.776 0.988 1.318 0.686 0.824 1.188

CONCLUSION

Patterns of craters with elliptically shaped rims, when imaged by a conventional camera, result in
imaged patterns of ellipses. The mathematical parameters of these ellipses may be combined into
values that are invariant to the pose of the imager. Such invariant values may be matched against a
precompiled database of invariants corresponding to known crater patterns. This, in turn, may be a
valuable tool in a navigation pipeline—as these invariants necessitate no a priori knowledge of state,
they are ideal for “lost-in-space” scenarios. However, determining the mathematical parameters of
the ellipse characterizing a crater rim will necessarily require points of the rim to be sampled and an
ellipse fitting algorithm to be executed. This work demonstrated that Hyper Least Squares (HLS) is
an attractive ellipse fitting algorithm for this scenario. It produces unbiased estimates of the ellipse
fit to the second order (in contrast to traditional Least Squares, an estimator known to be biased
for ellipse fitting), while requiring no iteration. Numerically, HLS was shown to produce accurate
ellipse fits even in environments where large portions of the ellipse rim points were unavailable,
outperforming other non-iterative algorithms. A derivation of HLS was provided, as well as an
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analytical formulation of the covariance of resultant ellipse fit. A tradeoff with HLS is slightly
increased computational time, though if a large enough sample of points is collected, a simplification
may be made, resulting in Semi-hyper Least Squares (SHLS), a similar (yet less computationally
intensive) algorithm yielding almost identical results in many cases.

Secondly, the noise inherent in this crater selection and ellipse fitting routine was propagated
to a measure of covariance for a pair of crater pattern invariants. An analytic expression for the
invariant covariance allows for the direct computation of uncertainty in the crater pair invariants.
This enables a statistical framework (via a χ2 test) for rigorously comparing the measured invariants
between two images or between an image and a catalog. Real-world applications of these techniques
were provided using lunar imagery (from Artemis I) and images of Ceres (from Dawn). Given a
lack of ground-truth data in both cases, these examples consisted of two views of the same crater
pattern from different poses. A Mahalanobis distance was then calculated between each pair. These
applications showed promise, with these distances routinely lying near or below 1.

Any crater pattern invariant scheme will face the effects of noise in real-world applications. Uti-
lizing HLS for the calculation of the crater rim ellipses inherent to the problem and coupling this
with a rigorous statistical framework will provide an avenue to handle these effects on potential
missions to the Moon and beyond.

ACKNOWLEDGMENT

This work was made possible by NASA under award 80NSSC22M0151. The authors thank
Christopher D’Souza, Jorge Chong, Vaishnavi Ramanan, and Liam Smego for valuable discussions
on the problem of crater-based lunar navigation.

REFERENCES
[1] J. Christian and H. Derksen, “Invariant Theory as a Tool for Spacecraft Navigation,” AAS/AIAA Astrodynamics

Specialist Conference, Paper AAS 22-746, Charlotte, NC, 8 2022.
[2] J. A. Christian, H. Derksen, and R. Watkins, “Lunar Crater Identification in Digital Images,” The Journal of the

Astronautical Sciences, Vol. 68, 12 2021, pp. 1056–1144.
[3] W. F. Bottke, S. G. Love, D. Tytell, and T. Glotch, “Interpreting the Elliptical Crater Populations on Mars, Venus,

and the Moon,” Icarus, Vol. 145, 5 2000, pp. 108–121.
[4] R. R. Herrick, P. M. Schenk, and S. J. Robbins, “Surveys of elliptical crater populations on the saturnian satellites,

Mercury, and Mars,” Icarus, Vol. 220, 8 2012, pp. 297–304.
[5] D. T. Renshaw and J. A. Christian, “Subpixel Localization of Isolated Edges and Streaks in Digital Images,” Journal

of Imaging, Vol. 6, 5 2020, p. 33.
[6] A. Fitzgibbon, M. Pilu, and R. B. Fisher, “Direct least square fitting of ellipses,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 21, No. 5, 1999, pp. 476–480.
[7] K. Kanatani, “Statistical bias of conic fitting and renormalization,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 16, 3 1994, pp. 320–326.
[8] A. Al-Sharadqah and N. Chernov, “Error analysis for circle fitting algorithms,” Electronic Journal of Statistics,

Vol. 3, 2009.
[9] Z. L. Szpak, W. Chojnacki, and A. v. d. Hengel, “Guaranteed Ellipse Fitting with a Confidence Region and an

Uncertainty Measure for Centre, Axes, and Orientation,” Journal of Mathematical Imaging and Vision, Vol. 52, 6
2015, pp. 173–199.

[10] W. Chojnacki, M. J. Brooks, and A. Vanel, “On the fitting of surfaces to data with covariances,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, Vol. 22, 11 2000, pp. 1294–1303.

[11] K. Kanatani and P. Rangarajan, “Hyper least squares fitting of circles and ellipses,” Computational Statistics &
Data Analysis, Vol. 55, 6 2011, pp. 2197–2208.

[12] Z. L. Szpak, W. Chojnacki, and A. v. d. Hengel, “A Comparison of Ellipse Fitting Methods and Implications for
Multiple-View Geometry Estimation,” 2012 International Conference on Digital Image Computing Techniques and
Applications (DICTA), IEEE, 12 2012, pp. 1–8.

19



[13] K. B. Petersen and M. S. Pedersen, Matrix Cookbook. 11 2012.
[14] G. Taubin, “Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with

applications to edge and range image segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. 13, 1991, pp. 1115–1138.

[15] K. L. Edmundson, O. Alexandrov, B. A. Archinal, K. J. Becker, T. L. Becker, R. L. Kirk, Z. M. Moratto, A. V. Ne-
fian, J. O. Richie, and M. S. Robinson, “Photogrammetric processing of Apollo 15 metric camera oblique images,”
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XLI-B4,
6 2016, pp. 375–381.

[16] R. G. Brereton, “The chi squared and multinormal distributions,” Journal of Chemometrics, Vol. 29, 1 2015, pp. 9–
12.

[17] H. Sierks, H. U. Keller, R. Jaumann, H. Michalik, T. Behnke, F. Bubenhagen, I. Büttner, U. Carsenty, U. Chris-
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