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Motivated by the need for accurately computing low kinematic probabilities of collision
(KPC) in spacecraft collision risk analysis, this work introduces an algorithm for sampling from
non-degenerate, multidimensional normal random variables. In this algorithm, the analytical
relationship between certain probability density integrals of such random variables and the chi-
square distribution is leveraged in order to provide weights to sample points. In so doing, this
algorithm allows direct sampling from probability density “tails” without unduly penalizing
sample size, as would occur with Monte Carlo-based methods. The primary motivation for
the development of this algorithm is to help in the efficient computation of collision probability
measures for relative dynamic systems. Performance of this method in approximating KPC
waveforms is examined for a low-dimensionality dynamic example. However, this method
could also be applied to other dynamic systems and for probability density integrals other than
collision probabilitymeasures, allowing for efficient computation of such integrals for problems
where analytical results do not exist. Therefore, this new method is suggested as an alternative
to random sampling algorithms such as Monte Carlo methods or the Unscented Transform.

I. Nomenclature

B=A (¯
G) = ball of radius A ∈ (0,∞) centered at

¯
G ∈ R=

CARA = “Conjunction Analysis and Risk Assessment” group at NASA Goddard Space Flight Center
cdf- = cumulative distribution function (cdf) of random variable -
cdf- |. = conditional cdf of random variable - given outcome of random variable .
� = dimension of points in the unit (� − 1)-sphere
30

(
(̃ (#)

)
= minimum arc length between any pair of points in the unit hypersphere sample (̃ (#)

3max = cutoff Mahalanobis distance (MSS sample parameter)
3 ′max = “transition” cutoff Mahalanobis distance
3R = dimensionality of position states (1, 2 or 3)
�-

(
G
)

= Mahalanobis distance of instance G ∈ R= of random variable - ∈ R=
�- = “alternative”, Mahalanobis distance-based cdf for normal random variable - ∈ R=
KPC8, 9 (C |C0) = kinematic probability of collision between agents 8 and 9 at time C, given initial conditions at time C0
!3

(
-
)

= 3-Mahalanobis contour of normally distributed random variable - ∈ R=
;8, 9 = 8- 9 joint hard-body radius
N

(
¯
`,Σ

)
= normal distribution with mean

¯
` ∈ R= and covariance Σ ∈ R=×=, Σ > 0

MSS = Mahalanobis Shell Sampling algorithm
#shells = number of shells (MSS sample parameter)
#samples/shell = number of samples per shell (MSS sample parameter)
=X = dimensionality of dynamic state
pdf- = probability density function (pdf) of random variable -
pdf- |. = conditional pdf of random variable - given outcome of random variable .
q= = generalized golden ratio numbers of order = N
Φ8, 9 (C, C0) = 8- 9 relative state transition matrix (from time C0 to time C)
R8 = position of the center of mass of agent 8
R8, 9 = 8- 9 relative position
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(̃ (#) = sample of points on the unit hypersphere with size #
ΣR8, 9 = 8- 9 relative position covariance
ΣX8, 9 = 8- 9 relative state covariance
S
(=−1)
A

(
G
)

= (= − 1)-sphere of radius A ∈ (0,∞) centered at G ∈ R=
SVD = singular value decomposition
TPc = “total probability of collision”, as defined by NASA CARA
+3

(
-
)

= 3-Mahalanobis volume of normally distributed random variable - ∈ R=
+
32
31

(
-
)

= 31, 32-Mahalanobis shell of normally distributed random variable - ∈ R=
+8, 9 = 8- 9 intersection volume
G = instance (written in lower case) of random variable - (written in uppercase)
WPC = window probability of collision (equivalent in meaning to TPc)
X8 = dynamic state of agent 8
X8, 9 = 8- 9 relative dynamic state
j2
= = chi-square distribution with = ∈ N degrees of freedom

II. Introduction

Spacecraft formations are attractive from a space mission design perspective. In particular, spacecraft formation
flying (SFF) can enable missions with increased system robustness, as deterioration or failure of an agent in a

spacecraft formation may only cause performance degradation in the mission, rather than causing the end of the
mission.[1] SFF missions may also have performance improvements over their mission lifetimes due to the ability to
replace failed agents or add new ones. This adds a new layer to space mission architecture options beyond traditional,
monolithic spacecraft missions.[2] Additionally, missions that implement SFF have an opportunity for enhanced system
flexibility through improved “adaptability, scalability, evolvability, and maintainability”.[3] Spacecraft formations can
also enable high precision scientific missions by distributing a formation over regions larger than those spanned by large,
monolithic spacecraft and by using sensor fusion.[4] Doing so has a plethora of applications, such as gravimetry,[5]
weather forecasting and climate monitoring,[6] exoplanet detection,[7] gravitational wave detection,[8] and more.

A fundamental challenge to any spacecraft formation mission is avoiding collisions of two kinds: first, collisions
among agents within the formation; and second, collisions between external debris and members of the formation. Even
though agents in a spacecraft formation operate in close enough proximity to each other that their individual dynamics
can be modeled as small variations near a reference orbit, they must operate without ever colliding or coming dangerously
close together.[1, 9] Furthermore, several Earth-orbit regimes, such as Low Earth Orbit (LEO) and Geostationary Orbit
(GEO), have become hosts to surging populations of debris, whose presence in these orbits is hazardous to present and
future missions.[10] Space debris is a pervasive, “self-perpetuating” concern, since new objects are introduced to the
environment every time a new mission is made operational.[11] Collision avoidance maneuvers remain the “single most
important technique in managing the risk associated with space object collision”.[12] However, the paramount concern
of collision avoidance must be balanced with the reality of limited onboard resources. First, spacecraft in a formation
must not drift apart from one another without bound (i.e. formations must be stable). Second, it is desirable that
spacecraft in a formation have relative geometry that repeats in a way that enables certain observation properties.[13]
However, errors in state knowledge, in dynamics modeling, and in maneuver timing and pointing exist and cannot be
fully eliminated for any spacecraft mission. Consequently, for SFF missions, the combination of these facts imposes the
need for constant station-keeping, which implies that SFF mission lifetime is constrained by onboard propellant.[1]
Thus, accurate collision risk computations are needed in order to sufficiently safeguard spacecraft formations without
unduly compromising onboard propellant (and, consequently, mission lifetime) by overestimating collision risk.

The purpose of this work is twofold. One contribution of this work is to present an alternative way of computing,
between arbitrary agents, the kinematic probability of collision, abbreviated in this work as KPC, and referenced in
other work as Pc,[14] restricted to cases for which the relative dynamic states are normally distributed random variables.
In the specific context of spacecraft collision probability, this subject has been investigated extensively, mostly with
regards to how to compute KPC accurately and efficiently, either through direct numerical computation or through
pseudo-analytical approximations, either through planar approximations or using three-dimensional geometry, and/or
by attempting to include certain nuances of the dynamics.[9, 15–19] Sampling methods are attractive in this context
because they allow relaxing assumptions in KPC computation, namely, by allowing the propagation of individual
particles through arbitrary processes, which gives sampling methods general applicability.
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The second purpose of this work is to enable the efficient computation of a new collision likelihood measure that
could be more operationally useful than KPC: the probability of the event that two agents may collide “at any time
within an arbitrary, compact time window”. This “window probability of collision” (WPC) has been motivated and
referred to as “Total Probability of Collision (TPc),[20] and it has a simple, yet useful physical interpretation: it is
the overall risk of collision between two objects in proximity within a finite time horizon, given their initial relative
state statistics. By contrast, the kinematic probability of collision (KPC) at a given time is the probability of the event
that two agents are colliding “at that specific time”. However, the WPC measure cannot be computed directly from
instantaneous relative state distribution information, since a probability density function does not retain information
about which regions in its domain have been within the collision region at any one time, especially not after translation,
rotation or scaling transformations. Therefore, a sampling method must be used for TPc/WPC computation.

However, the practice of the Conjunction Assessment and Risk Analysis (CARA) group at NASA Goddard
Space Flight Center (GSFC) elucidates the difficulties with implementing sampling methods for collision probability
computation. At NASA CARA, when analyzing conjunction events between debris and individual spacecraft of interest,
potential conjunctions with KPCs as low as 4.4E-4 are deemed “Operational Red”, which are considered high-risk
events, and therefore prompt extensive analysis and briefings.[14, 21] Contemplated mitigation for such high risk events
includes intervening actions up to collision avoidance maneuver planning and execution.[14] In CARA’s practice, one
in 1000 potential conjunctions with KPC as low as 1E-7 could become a high-risk event at some point before closest
approach.[14] Further, should a collision avoidance maneuver be required, current CARA best practices recommend
that the maximum KPC after such maneuver be 1E-10 or less, in order to avoid the need for follow-up maneuvers.[22]
This approach demonstrates the need for high resolution when computing KPC. Performing KPC computations through
Monte Carlo methods is challenging if the debris CARA community requirement that KPC values above 1E-7 are
considered significant were to be adopted for SFF collision risk assessment.[14, 23] Since it is cost prohibitive to have
ground-based SFF control,[24] and with limited computational onboard resources, implementing Monte Carlo methods
for KPC computation in SFF missions would require a prohibitively high number of samples in order to obtain the
necessary accuracy, so it is imperative to avoid computationally costly, slow Monte Carlo methods. Schemes to compute
KPC using the Unscented Transform (UT) have also been proposed.[25] However, since the Unscented Transform was
created to reproduce moments of a probability distribution (which are integrals taken over the entire sample space
of a random variable),[26] as opposed to arbitrary integrals of the distribution (which the KPC is, as shown in this
work), the Unscented Transform is not ideal as a sampling method for KPC computation. The weighted sampling
method presented in this work aims to directly sample from “tails” (i.e. probabilistic outliers) of normal, nondegenerate
probability distributions by leveraging 1) samples in the unit hypersphere, and 2) analytical relationships between certain
integrals of normal probability distributions and the chi-square distribution. By doing so, samples can be designed to
reproduce low-valued integrals over arbitrary regions of the original distribution.

This work is organized as follows. First, the Background section (Section III) expounds the notation used in this
work, defines collision events topologically, and defines the kinematic probability of collision (KPC). Second, the
Theory section (Section IV) relates certain integrals of normal distributions to the chi-square distribution, develops a
sampling method of non-degenerate normal distributions (called the Mahalanobis Shell Sampling algorithm, or MSS)
using this relationship, and applies this algorithm to develop a KPC computation method. Third, the Results and
Discussion section (Section V) applies the KPC computation method to a simple, one-dimensional relative position,
two-dimensional relative state example in order to examine the behavior of this method, and obtains insights about MSS
sample parameters. Fourth, the Conclusion (see Section VI) summarizes findings and makes recommendations for
further examination of this topic. Fifth, since sampling methods from the unit hypersphere are presupposed as an input
to the MSS sampling algorithm, the Appendix (Section VI) examines the performance of a set of such algorithms in
order to motivate the choice of algorithm when extending applications of these methods to higher dimensions.

III. Background
Before presenting the Mahalanobis Shell Sampling (MSS) method, it is appropriate to introduce some preliminaries.

This section begins by elaborating on the notation used in this work. Then, collision events are formally, topologically
defined. Finally, the kinematic probability of collision (KPC) is characterized and discussed.

A. Notation
Vectors are underlined, while matrices and functions are not. Although boldface is reserved for multidimensional

variables (i.e. vectors and matrices), sometimes boldfacing such variables may be avoided for clarity. Let X ∈ R=X
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and R ∈ R3R denote a dynamic state and position state, respectively. The dimensions of X and R are denoted by =X
and 3R, respectively. (Note: 3R ∈ {1, 2, 3}.) When used with the subscript 8, X8 and R8 denote the dynamic state and
position of agent 8, respectively. It is understood that R8 specifically refers to the position of the center of mass of agent
8. When used with a composite subscript such as “8- 9”, X8, 9 and R8, 9 denote the dynamic state and position of agent 8
and relative to agent 9 , respectively, i.e. X8, 9 � X8 − X 9 and R8, 9 � R8 − R 9 . When written in uppercase, X and R
denote an uncertain dynamic state and uncertain position, respectively, i.e. a dynamic state X (C) and position R (C)
are random variables for any time C. Conversely, when written in lowercase, x and r denote specific, deterministic
“instances” or values that X and R may take on, respectively. When overlaid by a bar, X̄ and R̄ denote the expected
(or “mean”) values of X and R, respectively, i.e. X̄ � E

[
X
]
and R̄ � E

[
R
]
. In this work, the variable Σ denotes a

covariance matrix. Thus, when in a subscript, ΣX and ΣR denote the covariance of X and R, respectively, i.e.

ΣX � E
[ (
X − X̄

) (
X − X̄

)) ]
(III.1)

and
ΣR � E

[ (
R − R̄

) (
R − R̄

)) ]
(III.2)

It is assumed that R is a linear combination of the components of X, i.e. that there exists a mapping 6 : R=X → R3R

defined by the rule R = 6
(
X
)
=MX for some matrixM ∈ R3R×=X . In particular, if X is partitioned as X) =

[
R) , U)

]
(where U ∈ R=X−3R is a vector whose components are the components of X different from those of R), then M is given
by M =

[
I3R , 03R×(=X−3R)

]
. Additionally, when referring to a matrix (e.g. the covariance matrix Σ), the notation “> 0”

implies that such is a symmetric, positive definite matrix.[27]
It is assumed that X (C) and R (C) have continuous distributions for any time C. In an obvious way, variables or

functions such as X (C) and its probability density function, pdfX |C (·|C), are dependent on their initial conditions. This
is highlighted by making such dependencies explicit, i.e. by denoting X (C) by X (C |C0), and denoting pdfX |C (·|C) by
pdfX |C ,C0 (·|C, C0). However, sometimes these dependencies are not expressed for the sake of simplicity. These comments
also apply to R (C) and its probability density function, pdfR |C (·|C), as well as to other relevant variables and functions.

If the dynamics of X are linear, its state transition matrix (STM) from an initial time C0 to a final time C is denoted by
ΦX (C, C0). For simplicity, the STM of the relative state X8, 9 is denoted by Φ8, 9 (C, C0).

B. Definition of a collision event
A collision event (between two agents) occurs whenever their respective physical, nonempty “volumes” in 3R-

dimensional space have a nonempty intersection. In other words, a collision event means that two agents may occupy
portions of the same “volume” of space at the same time. The notion of a hard-body radius (or characteristic length) is
used to simplify the definition of collision events, and consequently, the computation of the kinematic probability of
collision (KPC). (Note: in this work, norm operations refer to the Euclidean norm.[28])

Definition III.1 (=-ball and (= − 1)-sphere [28, 29]). The =-ball of radius A , centered at G ∈ R=, denoted by B=A
(
G
)
, is

defined as the set
B=A

(
G
)
�

{
¯
H ∈ R= :

G −
¯
H

 < A, A > 0
}

(III.3)

The (= − 1)-sphere of radius A, centered at G ∈ R=, denoted by S(=−1)
A

(
G
)
, is defined as the set

S
(=−1)
A

(
G
)
�

{
¯
H ∈ R= :

G −
¯
H

 = A, A > 0
}

(III.4)

Note: when the dimensionality of elements in B=A
(
G
)
is implicit, it will be referred to as BA

(
G
)
for simplicity. Also, the

symbol “S(=−1)” denotes S(=−1)
1 (0), i.e. the unit (= − 1)-sphere centered at the origin. ♦

Notation III.2 (Characteristic length). Let the “body of agent 8”, �8 , be defined as the set

�8 �
{
G ∈ R3R : G is in the body of agent 8

}
(III.5)

Then, the 8Cℎ characteristic length, ;8 , is defined as

;8 � sup
G∈�8

G − r8 (III.6)

Note: the body of agent 8 is circumscribed within B3R
;8

(
r8

)
, i.e. �8 ⊆ B

3R
;8

(
r8

)
. ♦
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Definition III.3 (Hard-body radius simplification). The body of agent 8, �8 , satisfies �8 = B
3R
;8

(
r8

)
by assumption. ♦

The hard-body radius (HBR) simplification presently described is illustrated in Figure 1.

 

 

 

 

 

 

 

 

  

𝒪𝒪𝑖𝑖  r𝑖𝑖 − r𝑗𝑗  

 

r𝑖𝑖 − r𝑗𝑗  

 

𝑙𝑙𝑖𝑖  

𝒪𝒪𝑖𝑖  

𝒪𝒪𝑗𝑗  

𝑙𝑙𝑗𝑗  

r𝑗𝑗  

 

r𝑖𝑖  

 

𝒪𝒪  

𝔹𝔹𝑙𝑙𝑖𝑖(r𝑖𝑖) ∩ 𝔹𝔹𝑙𝑙𝑗𝑗�r𝑗𝑗� ≠ ∅ 
⟺ �r𝑖𝑖 − r𝑗𝑗� < 𝑙𝑙𝑖𝑖 + 𝑙𝑙𝑗𝑗 

𝑎𝑎)  𝑏𝑏)  𝑙𝑙𝑖𝑖  

𝒪𝒪𝑗𝑗  

𝑙𝑙𝑗𝑗  

r𝑗𝑗  
r𝑖𝑖  

 

𝒪𝒪  

𝔹𝔹𝑙𝑙𝑖𝑖(r𝑖𝑖) ∩ 𝔹𝔹𝑙𝑙𝑗𝑗�r𝑗𝑗� = ∅ 
⟺ �r𝑖𝑖 − r𝑗𝑗� ≥ 𝑙𝑙𝑖𝑖 + 𝑙𝑙𝑗𝑗  

Fig. 1 Agents under the HBR simplification: a) not colliding, and b) colliding. Note: these circles represent
3R-balls that circumscribe agent bodies, not position pdf’s.

Suppose there exist two agents 8 and 9 in proximity. Through the HBR simplification, ;8 represents a no-contact zone,
i.e. agent 9 does not collide with any other agent 9 (8 ≠ 9) if no point belonging to the body of agent 9 becomes closer to
the 8Cℎ center of mass than a distance ;8 . Thus, in order to avoid a collision with agent 8, it is sufficient for agent 9 to be at
least a distance ;8 away from agent 8, and vice versa. Using this intuition, the 8- 9 collision event is now formally defined.

Definition III.4 (Collision event). Assume the HBR simplification holds (see Definition III.3). Then, a collision event
between agents 8 and 9 occurs when there is a nonempty intersection between the “volumes spanned” by agent 8 (B;8

(
r8

)
)

and agent 9 (B; 9
(
¯
r 9

)
), i.e. a collision occurs whenever

B;8
(
r8

)
∩ B; 9

(
¯
r 9

)
≠ ∅ ♦ (III.7)

A simpler way to infer that a collision is occurring is by observing that, whenever the 8Cℎ and 9 Cℎ (ball-) volumes
intersect, the distance between the respective centers of mass is less than the sum of their respective hard-body radii, as
seen in Figure 1.

Notation III.5 (Joint hard-body radii). The 8- 9 joint hard-body radius, denoted by ;8, 9 , is defined as

;8, 9 � ;8 + ; 9 ♦ (III.8)

Notation III.6 (Intersection volumes). The 8- 9 intersection volume, denoted by +8, 9 , is defined as the set

+8, 9 � B
3R
;8, 9

(
¯
03R×1

)
=

{
r ∈ R3R :

r < ;8, 9} ♦ (III.9)

Proposition III.7 (Collision condition under HBR simplification). Assume the HBR simplification holds (see Definition
III.3). Suppose a collision event between two agents 8 and 9 is occurring (see Definition III.4). Then, the following
statements are equivalent:

1) B;8
(
r8

)
∩ B; 9

(
¯
r 9

)
≠ ∅

2)
r8 − ¯

r 9
 < ;8, 9

3)
(
r8 − ¯

r 9
)
∈ +8, 9 ♦

C. Definition of Kinematic Probability of Collision (KPC)
In Subsection III.B, collision events are topologically defined without any notion of the positions of colliding agents

being random variables at the time of collision. Thus, if the relative positions of agents are known deterministically, the
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question of whether or not agents are colliding (in the sense that the conditions in Proposition III.7 are met, which may
or may not imply not a physical collision) can be answered as either true or false, but not both.

However, the primary aim of this work is to examine collision events when the relative position between agents is
not deterministically known. In such cases, whether or not an object is colliding at any given time with another object is
a question that can only be strictly answered in a probabilistic sense.

Additionally, as can be seen in Definition III.4, the way that a collision event is defined implies that it is an
instantaneous event, since it is a function of the instantaneous relative position between agents. This motivates the
definition of a “kinematic probability of collision” to reflect this physical interpretation of the event of interest.
Definition III.8 (Kinematic probability of collision). The kinematic probability of collision of agents 8 and 9 at time
C, denoted by KPC8, 9 (C), is defined as the probability of the 8- 9 collision event, i.e. “the event that agents 8 and 9 are
colliding at time C”. Assuming the HBR simplification holds (see Definition III.3), then, KPC8, 9 can be expressed as

KPC8, 9 (C |C0) = ?
(R8, 9 (C |C0) < ;8, 9 ���C0) = ? (

R8, 9 (C |C0) ∈ +8, 9
���C0) (III.10)

Furthermore, suppose the relative position probability density function pdfR8, 9 |C ,C0 is known and is continuous (over the
relative position states and over time). Then, KPC8, 9 can be computed as

KPC8, 9 (C |C0) =
∫
r∈+8, 9

pdfR8, 9 |C ,C0
(
r
��C, C0) 3r ♦ (III.11)

Definition III.8 is illustrated with an example where the (one-dimensional) relative position is normally distributed,
as shown in Figure 2.

66 

 

 

 

 

  

𝑉𝑉𝑖𝑖,𝑗𝑗 

𝑙𝑙𝑖𝑖,𝑗𝑗 −𝑙𝑙𝑖𝑖,𝑗𝑗 r𝑖𝑖,𝑗𝑗 
R� 𝑖𝑖,𝑗𝑗(𝑡𝑡|𝑡𝑡0) 

2ΣR𝑖𝑖,𝑗𝑗
1/2(𝑡𝑡|𝑡𝑡0) 

pdfR𝑖𝑖,𝑗𝑗( ⋅ |𝑡𝑡, 𝑡𝑡0) 

Fig. 2 Conceptual KPC computation through integration of relative position pdf for a system with normally
distributed (one-dimensional) relative position.

Even though the 8- 9 collision event is defined as a condition in the relative position states R8, 9 at time C, these
relative position states (and their uncertainty descriptions) are, in general, dynamically coupled with other states.
Remark III.9 implies that, if the pdf of the complete relative state X8, 9 is known, KPC8, 9 (C |C0) can be computed
through marginalization. This is illustrated with an example where the relative position is one-dimensional and the
(two-dimensional) relative state is normally distributed, as shown in Figure 3, where U

8, 9
is the relative velocity ¤R8, 9 .

Remark III.9. Assume, without loss of generality, that the relative state X8, 9 is partitioned as X)8, 9 =
[
R)8, 9 , U

)
8, 9

]
(see

Subsection III.A), and that the pdf of the relative state (pdfX8, 9 |C ,C0 ) is known. Then, the pdf of the relative position
(pdfR8, 9 |C ,C0 ) can be found as the marginal pdf of X8, 9 integrated over the “other relative states” U

8, 9
as given by

pdfR8, 9 |C ,C0
(
r
��C, C0) = ∫

u∈R=X−3R
pdfX8, 9 |C ,C0

([
r
u

] �����C, C0
)
3u ♦ (III.12)
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𝑉𝑉𝑖𝑖,𝑗𝑗 

r𝑖𝑖,𝑗𝑗 R� 𝑖𝑖,𝑗𝑗(𝑡𝑡|𝑡𝑡0) 

pdfX𝑖𝑖,𝑗𝑗( ⋅ | 𝑡𝑡, 𝑡𝑡0) 

ṙ𝑖𝑖,𝑗𝑗 

R�̇ 𝑖𝑖,𝑗𝑗(𝑡𝑡|𝑡𝑡0) 

X𝑖𝑖,𝑗𝑗(𝑡𝑡|𝑡𝑡0) 

𝑙𝑙𝑖𝑖,𝑗𝑗 −𝑙𝑙𝑖𝑖,𝑗𝑗 

Fig. 3 ConceptualKPC computation through integration of relative state pdf for a systemwith one-dimensional
relative position and normally distributed (two-dimensional) relative state.

It is helpful to note that these other relative states U
8, 9

do not have to be (or include) velocity, but they must complete
the relative dynamic state (i.e. provide enough information for the relative state history to be propagated forward, given
inputs). For example, in Clohessy-Wiltshire (CW) relative orbital dynamics, U

8, 9
would be the relative position rate

state, which is different from a relative velocity state because the CW frame (or Hill frame) is not inertial.[30, 31]

IV. Theory
In this section, integrals of multi-dimensional, normally distributed random variables bounded by certain hyper-

surfaces are linked to the chi-square distribution. The relationship between these distributions is leveraged in order
to develop the Mahalanobis Shell Sampling (MSS) algorithm for weighted sampling from normal distributions. This
section ends with an application of the MSS algorithm to develop a sample-based method for computing the kinematic
probability of collision (KPC) between two agents in a relative dynamic system: first, individual sample points are
propagated using the same dynamics as the original process; then, particles are flagged when they enter the collision
region; finally, collision probabilities can be computed based on the weights of sample points in the collision region.

A. Relating the normal distribution to the chi-squared distribution
Definition IV.1 (Mahalanobis distance). Let - ∼ N

(
-̄ , Σ

)
, where -̄ ∈ R=, and Σ ∈ R=×=, Σ > 0. Let G ∈ R= be an

instance of - . Then, the mapping �2
-

: R= → [0,∞) transforms instances G of the random variable - by the rule

�2
-

(
G
)
�

[
G − -̄

])
Σ−1 [

G − -̄
]

(IV.1)

Thus, �-
(
G
)
�

√
�2
-

(
G
)
is the Mahalanobis distance of the point G.[32]

Note: use of the Mahalanobis distance in this work is restricted to continuous, normal distributions. ♦

Now, the notions of the 3-Mahalanobis contour and volume and of the 31, 32-Mahalanobis shell are introduced.

Notation IV.2 (Mahalanobis contour, volume and shell). Let - ∼ N
(
-̄ , Σ

)
, where -̄ ∈ R=, and Σ ∈ R=×=, Σ > 0. Let

the Mahalanobis distance function �- (·) be as defined in Definition IV.1. Then, the 3-Mahalanobis volume of - ,
denoted by +3

(
-
)
, is defined as the set

+3
(
-
)
�

{
G ∈ R= : �2

-

(
G
)
≤ 32

}
(IV.2)
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Similarly, the 3-Mahalanobis contour of - , denoted by !3
(
-
)
, is defined as the set

!3
(
-
)
�

{
G ∈ R= : �2

-

(
G
)
= 32

}
(IV.3)

Finally, the 31, 32-Mahalanobis shell of - , denoted by +32
31

(
-
)
, is defined as the set

+
32
31

(
-
)
�

{
G ∈ R= : 0 ≤ 31 ≤ �-

(
G
)
≤ 32

}
(IV.4)

Note: the 3-Mahalanobis contour is the boundary of the 3-Mahalanobis volume, i.e. !3
(
-
)
= m+3

(
-
)
. ♦

Figure 4 illustrates the notions of Mahalanobis contour and volume for a non-degenerate, normally distributed (finite-
dimensional) random variable - . The 3-Mahalanobis volumes +3

(
-
)
are hypervolumes (specifically, hyperellipsoids)

while the 3-Mahalanobis contours !3
(
-
)
are hypersurfaces (specifically, hyperellipses) in =-dimensions.mahalanobis_contour_volume_v4,v6 

 

  

𝑏𝑏)  𝑎𝑎)  

𝑋𝑋 ~𝒩𝒩�𝑋𝑋,Σ�, Σ > 0 ; 𝐷𝐷𝑋𝑋2�𝑥𝑥� = �𝑥𝑥 − 𝑋𝑋�
𝑇𝑇
Σ−1�𝑥𝑥 − 𝑋𝑋� 

𝐿𝐿𝑑𝑑�𝑋𝑋� = �𝑥𝑥 ∈ ℝ𝑛𝑛:𝐷𝐷𝑋𝑋2�𝑥𝑥� = 𝑑𝑑2� 

𝐷𝐷𝑋𝑋2(𝑥𝑥) = (𝑥𝑥 − 𝑋𝑋�)𝑇𝑇Σ−1(𝑥𝑥 − 𝑋𝑋�) 𝑋𝑋 ~𝒩𝒩(𝑋𝑋�, Σ)  ,  ,  Σ > 0 

𝑥𝑥2 

𝑥𝑥3 

𝟎𝟎𝑛𝑛×1 
𝑥𝑥1 

𝐷𝐷𝑋𝑋2�𝑥𝑥� = �𝑥𝑥 − 𝑋𝑋�
𝑇𝑇
Σ−1�𝑥𝑥 − 𝑋𝑋� 𝑋𝑋 ~𝒩𝒩�𝑋𝑋, Σ�, Σ > 0 

𝑉𝑉𝑑𝑑�𝑋𝑋� = �𝑥𝑥 ∈ ℝ𝑛𝑛:𝐷𝐷𝑋𝑋2�𝑥𝑥� ≤ 𝑑𝑑2� 

𝑥𝑥2 

𝑥𝑥3 

𝟎𝟎𝑛𝑛×1 
𝑥𝑥1 

𝑋𝑋 𝑋𝑋 

𝟎𝟎 𝟎𝟎 

𝑦𝑦′ 

𝑦𝑦  

𝜇𝜇  

𝑋𝑋 ~𝒩𝒩�𝜇𝜇, Σ� , Σ > 0 

𝐿𝐿𝑑𝑑�𝑋𝑋� 

Fig. 4 3-Mahalanobis volume and contour, a) +3 and b) !3 , respectively.

Lemma IV.3 gives an analytical expression for integrals of normal probability distributions that are bounded by
contours of constant Mahalanobis distance. This result has been shown by Bhattacharya et al. (see Theorem 12.3.2).[32]

Lemma IV.3 (Cumulative distributions bounded by contours of constant Mahalanobis distance). Let - ∼ N
(
-̄ , Σ

)
,

where -̄ ∈ R=, and Σ ∈ R=×=, Σ > 0. Then,

?

( [
- − -̄

])
Σ−1 [

- − -̄
]
≤ 32

)
= cdfj2

=

(
32

)
(IV.5)

Let the function �- : R→ [0, 1] be defined by the rule

�- (3) �

?

(
�2
-

(
-
)
≤ 32

)
if 3 ≥ 0

0 if 3 < 0
(IV.6)

Then, �- is a cumulative distribution function for - . ♦

It is trivial that �- (3) = 0 for every 3 < 0, so only 3 ≥ 0 are considered. Figure 5 illustrates the “alternative”
cumulative distribution of a normally distributed random variable - , �- , for representative dimensionalities of - .

Corollary IV.4 (Probability mass within Mahalanobis volume and shell). Let - ∼ N
(
-̄ , Σ

)
, where -̄ ∈ R=, and

Σ ∈ R=×=,Σ > 0. Let the 3-Mahalanobis volume of - , +3
(
-
)
, be as defined in Notation IV.2. Then,

?
(
- ∈ +3

(
-
) )
= cdfj2

=

(
32

)
(IV.7)

Let the 31, 32-Mahalanobis shell of - , +32
31

(
-
)
, be as defined in Notation IV.2. Then,

?

(
- ∈ +32

31

(
-
) )
= cdfj2

=

(
32

2

)
− cdfj2

=

(
32

1

)
♦ (IV.8)
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Fig. 5 “Alternative”, Mahalanobis distance-based cdf of normal random variables (and its connection to the
chi-square cdf), for representative dimensionalities.

The implications of Lemma IV.3 and Corollary IV.4 on nondegenerate, normal random variables are illustrated in
Figure 6. For such random variables, probability measures over =-hypervolumes that are bounded by =-hypersurfaces of
constant Mahalanobis distances (say, 31 and 32) can be found analytically as functions that depend only on 31 and 32
(through chi-square cdfs), regardless of the statistics and dimension of the random variable.

 

 

 

 

 

 

𝑋𝑋 

𝑥𝑥2 

𝑥𝑥3 

𝟎𝟎𝑛𝑛×1 
𝑥𝑥1 

𝐿𝐿𝑑𝑑1 
𝐿𝐿𝑑𝑑2 

𝐿𝐿𝑑𝑑3 

𝐿𝐿𝑑𝑑𝑛𝑛−1  
𝐿𝐿𝑑𝑑𝑛𝑛 

𝐿𝐿𝑑𝑑𝑛𝑛+1  
𝐿𝐿𝑑𝑑𝑛𝑛+2  

𝑝𝑝 �𝑋𝑋 ∈ 𝑉𝑉𝑑𝑑𝑛𝑛
𝑑𝑑𝑛𝑛+1�𝑋𝑋�� 

= cdf𝜒𝜒𝑛𝑛2(𝑑𝑑𝑛𝑛+12 )− cdf𝜒𝜒𝑛𝑛2(𝑑𝑑𝑛𝑛2) 

𝑝𝑝 �𝑋𝑋 ∈ 𝑉𝑉𝑑𝑑1�𝑋𝑋�� 
= cdf𝜒𝜒𝑛𝑛2(𝑑𝑑12) 

𝑉𝑉𝑑𝑑𝑛𝑛
𝑑𝑑𝑛𝑛+1�𝑋𝑋� = �𝑉𝑉𝑑𝑑𝑛𝑛+1�𝑋𝑋� \ 𝑉𝑉𝑑𝑑𝑛𝑛�𝑋𝑋�� ∪ 𝐿𝐿𝑑𝑑𝑛𝑛�𝑋𝑋� 

𝑋𝑋 ~𝒩𝒩�𝑋𝑋, Σ�, Σ > 0 

𝟎𝟎 

Fig. 6 Probability measures of normally distributed random variables over =-hypervolumes bounded by =-
hypersurfaces of constant 3-Mahalanobis distance).

B. Introducing the Mahalanobis Shell Sampling (MSS) method and applications to KPC computation
The sampling method presented in this work, Algorithm 1 is referred to as the “Mahalanobis Shell Sampling” (MSS)

algorithm, and it enables sampling from multidimensional, non-degenerate normal distributions.
The MSS algorithm aims to do the following. First, a sample is made along high-dimensional unit sphere surfaces,

and such unit hypersphere samples are uniformly distributed in a geometric sense. Second, the result from Corollary
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Input: #shells, #samples/shell, 3max (max. sample Mahalanobis distance), dimension of elements of the sequence
=X (=X ∈ N, =X ≥ 2)

Output: MSS sample
{
x̃: (C0)

}
:∈{1,...,#samples }, sample weights {F: }:∈{1,...,#samples }

Data: Initial conditions X̄8, 9 (C0), ΣX8, 9 (C0); prior state distribution X8, 9 (C0) ∼ N
(
X̄8, 9 (C0), ΣX8, 9 (C0)

)
1 #samples ← #shells#samples/shell
2 {

¯
z: }:∈{1,...,#samples } ← output of some unit

(
=X − 1

)
-sphere sampling algorithm

(
#sequence = #samples, � = =X

)
// see Appendix for a list of algorithms

3 X3 ← 3max/#shells
4 S1,Q, S2 ∈ R=X×=X ← such that ΣX8, 9 (C0) = S1QS)2 // output of SVD

5 Σ
1/2
X8, 9
(C0) ← S1Q1/2S)2

6 : ← 0
7 for ; ← 1 to #shells do
8 3; ← (; − 1)X3
9 ,; ← cdfj2

�

(
(3; + X3)2

)
− cdfj2

�

(
32
;

)
// probability mass in ;Cℎ (=X-dimensional) Mahalanobis shell

10 for ? ← 1 to #samples/shell do
11 : ← : + 1
12 D: ∼ * [0, 1]
13 x̃: (C0) ← X̄8, 9 (C0) + (3; + D:X3)

[
Σ

1/2
X8, 9
(C0)

]
¯
z: // point in ;Cℎ Mahalanobis shell

14 F: ← ,;/#samples/shell // same weight for pts in the same Mahalanobis shell

15 return
{
x̃: (C0)

}
:∈{1,...,#samples } , {F: }:∈{1,...,#samples }

Algorithm 1: Generation of MSS sample, general =X-dimensional state, normal prior state distribution.

IV.4 is leveraged in order to both create MSS sample points and to provide weights for such points. Specifically, the
original distribution is truncated until a maximum Mahalanobis distance 3max, and it is divided into a certain number
of Mahalanobis shells (#shells). Then, for every Mahalanobis shell in the sample, points on the unit hypersphere are
transformed to points in their respective Mahalanobis shells. Finally, each point in the MSS sample is given a weight
proportional to the probability mass in its respective shell and inversely proportional to the number of points in the shell.
In other words, the collective weight of points in each sample Mahalanobis shell is the probability mass in the shell, and
the collective weight of the shell is divided evenly among points in the shell.

Thus, through direct application of Corollary IV.4, the MSS algorithm generates samples of normal distributions by
transforming unit hypersphere points into points in Mahalanobis shells. The MSS sampling method could in principle be
applied to sample from arbitrary (non-degenerate) normal pdfs, regardless of their physical interpretation or application.
However, in accordance with the motivation of this work, a method is presented which applies MSS sampling to the
computation of collision probability between any two agents in proximity.

The MSS KPC and TPc/WPC computation method, listed as Algorithm 2, utilizes MSS samples for the computation
of kinematic probability of collision (KPC) and total/window probability of collision (TPc/WPC) waveforms. First,
an MSS sample is generated which replicates the initial distribution of a normally distributed relative dynamic state.
Then, individual particles in such sample are propagated using arbitrary dynamics (without requiring the propagated
distribution to retain normality). Finally, the weights of each particle in the sample are used to compute the probabilities
of collision. Thus, through application of the present sampling method to collision probability computation, numerical
integration is sidestepped by using weights that reflect integration over regions bounded by certain surfaces, and the
difficulties of Monte Carlo methods are avoided by directly sampling on probability distribution tails.

Figure 7 illustrates an application of the MSS method to compute KPC for a normally distributed relative dynamic
system in R2 (with one-dimensional relative position and one-dimensional relative velocity). Unlike direct KPC
computation from the relative position pdf (illustrated in Figure 2) or computation of KPC through marginalization of
the full state pdf into the relative position pdf (illustrated in Figure 3), when MSS is applied, the original distribution
is truncated until a maximum Mahalanobis distance 3max, divided into Mahalanobis Shells, and then each shell is
further subdivided, and one point from within each shell is added to the sample and given a weight proportional to the
probability mass in the shell and inversely proportional to the number of points in the shell.
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Input: Initial time C0, final time C 5 , #C
Output: Discrete time sample T ; kinematic PC KPC8, 9 (C |C0), sample kinematic PC �KPC8, 9 (C |C0), sample

window PC W̃PC8, 9 (C0, C), C ∈ T ; KPC error RMS
Data: Initial conditions X̄8, 9 (C0), ΣX8, 9 (C0); prior state distribution X8, 9 (C0) ∼ N

(
X̄8, 9 (C0), ΣX8, 9 (C0)

)
; MSS

sample
{
x̃: (C0)

}
:∈{1,...,#samples }, sample weights {F: }:∈{1,...,#samples } ; matrixM for mapping from

complete relative state to relative position (see subsection III.A)
1 XC ←

C 5 −C0
#C−1

2 a←
¯
0#samples×1

3 �2 ← 0
4 for < ← 1 to #C do
5 C< ← C0 +

C 5 −C0
#C−1 (< − 1)

6 X̄8, 9 (C<) ← Φ8, 9 (C<, C0) X̄8, 9 (C0)
7 ΣX8, 9 (C<) ← Φ8, 9 (C<, C0) ΣX8, 9 (C0)Φ

)
8, 9
(C<, C0)

8 R8, 9 (C< |C0) ∼ N
(
MX̄8, 9 (C<) ,MΣX8, 9 (C<)M

)
)

// M as defined in Subsection III.A

9 KPC8, 9 (C< |C0) ←
∫
r∈+8, 9

pdfR8, 9 |C ,C0
(
r
��C<, C0) 3r // KPC truth

10 �1 ← 0
11 for : ← 1 to #samples do
12 if < > 1 then
13 x̃: ← Φ8, 9 (C<, C< − XC ) x̃:
14 r̃: ←Mx̃:
15 if ‖r̃: ‖ ≤ ;8, 9 then // 8- 9 collision event at time C< (:

Cℎ particle)

16 �1 ← �1 + F:
17 if

[
a
]
:
= 0 then // 8- 9 collision (:Cℎ particle) had not yet occurred

18
[
a
]
:
← 1 // mark 8- 9 collision as having occurred (:Cℎ particle)

19 �2 ← �2 + F:
20 �KPC8, 9 (C< |C0) ← �1

21 W̃PC8, 9 (C0, C<) ← �2
22 T ← {C<}<∈{1,...,#C }

23 KPC error RMS←
√

1
#C

∑#C
<=1

(�KPC8, 9 (C< |C0) − KPC8, 9 (C< |C0)
)2

24 return T ; KPC8, 9 (C |C0) ,�KPC8, 9 (C |C0) , W̃PC8, 9 (C0, C) , C ∈ T ; KPC error RMS
Algorithm 2:Computation of KPC truth, KPC andWPCMSS estimates, assuming normal prior state distribution
and linear relative dynamics.

V. Results and discussion
In this section, the Mahalanobis Shell Sampling (MSS) algorithm (see Algorithm 1) is applied in the context

of a dynamic example to kinematic probability of collision (KPC) computation (see Algorithm 2). The current
example involves a set of two mass-spring-damper systems in R2 (specifically, by having one-dimensional position
and one-dimensional velocity). This pedagogical example is useful because an analytical solution can be found for
the KPC, which is presented in subsection V.A. Finally, the efficacy of the MSS application to KPC computation is
examined through the discrete time error RMS between the analytical and estimated KPC waveforms for two sets of
initial conditions and system parameters, as discussed in subsection V.B.

A variant of the general =X-dimensional MSS sampling algorithm (see Algorithm 1) for the case of a relative
dynamic state in R2 (relative position in R) is presented as Algorithm 3 and implemented for the examples of this section.

A. Relative mass-spring-damper system (rel. position in R1, rel. state in R2) - setting up dynamics
In this example, two “boxes” (labeled 8 and 9 , respectively) are modeled as individual mass-spring-damper systems.

It is assumed that these boxes experience no external forces, and the contact dynamics between these boxes are ignored.
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𝑉𝑉𝑖𝑖,𝑗𝑗 

𝑙𝑙𝑖𝑖,𝑗𝑗 −𝑙𝑙𝑖𝑖,𝑗𝑗 r𝑖𝑖,𝑗𝑗 R� 𝑖𝑖,𝑗𝑗(𝑡𝑡|𝑡𝑡0) 

ṙ𝑖𝑖,𝑗𝑗 

R�̇ 𝑖𝑖,𝑗𝑗(𝑡𝑡|𝑡𝑡0) 

X𝑖𝑖,𝑗𝑗(𝑡𝑡|𝑡𝑡0) 

𝐿𝐿𝑑𝑑max  

Fig. 7 Conceptual application of MSS to KPC computation for a system with one-dimensional relative position
and normally distributed (two-dimensional) relative state.

The state of agent 8, X8 ∈ R2, is defined in terms of the position of its center of mass '8 ∈ R (see subsection III.A)
and its corresponding velocity ¤'8 ∈ R as X)8 �

[
'8 , ¤'8

]
. Furthermore, it is assumed that the center of mass of box 9 is

stationary at the origin initially, while X8 (C0) is nontrivial. Therefore, X 9 (C) = ¯
02×1 for any time C, and the dynamics of

X8, 9 are the same as the dynamics of X8 . Denoting the 8Cℎ mass, damping coefficient and spring constant by <8 , 18 and
:8 , respectively, the dynamics of X8, 9 can be expressed as follows:

3X8, 9
3C

=
3

3C

[
'8, 9
¤'8, 9

]
=

[
0 1

−:8/<8 −18/<8

] [
'8, 9
¤'8, 9

]
(V.1)

The system parameters <8 , 18 and :8 (all positive-valued) are chosen in order to observe an underdamped (i.e. decaying
oscillatory) response; thus, :8 > 12

8
/4<8 . Since the present system exhibits linear, time-invariant (LTI) dynamics, the

mean relative state X̄8, 9 can be propagated as given by

X̄8, 9 (C) = Φ8, 9 (C, C0) X̄8, 9 (C0) = Φ8, 9 (C − C0, 0) X̄8, 9 (C0) (V.2)

where the relative state STM, Φ8, 9 , is given by

Φ8, 9 (C, 0) = exp (−Zl=C)

cos (l3C) + Z√

1−Z 2
sin (l3C) 1

l=

√
1−Z 2

sin (l3C)
l=√
1−Z 2

sin (l3C) cos (l3C) − Z√
1−Z 2

sin (l3C)

 C
[
q11 (C) q12 (C)
q21 (C) q22 (C)

]
(V.3)

where l= �
√
:8/<8 , Z � 18/

√
4:8<8 , and

l3 � l=

√
1 − Z2 =

√
:8/<8 − 0.25 (18/<8)2 (V.4)

Let the relative state covariance ΣX8, 9 > 0 be related to the variables f'8, 9 , f ¤'8, 9 and d('8, 9 , ¤'8, 9) as follows:

ΣX8, 9 =

[
[ΣX8, 9 ]1,1 [ΣX8, 9 ]1,2
[ΣX8, 9 ]1,2 [ΣX8, 9 ]2,2

]
C

[
f2
'8, 9

d('8, 9 , ¤'8, 9)f'8, 9f ¤'8, 9
d('8, 9 , ¤'8, 9)f'8, 9f ¤'8, 9 f2

¤'8, 9

]
(V.5)

12

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

Ja
nu

ar
y 

5,
 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
02

1-
18

55
 



Input: #shells, #samples/shell, 3max (max. sample Mahalanobis distance)
Output: MSS sample

{
x̃: (C0)

}
:∈{1,...,#samples }, sample weights {F: }:∈{1,...,#samples }

Data: Initial conditions X̄8, 9 (C0),ΣX8, 9 (C0); prior state distribution X8, 9 (C0) ∼ N
(
X̄8, 9 (C0), ΣX8, 9 (C0)

)
1 #samples ← #shells#samples/shell
2 X3 ← 3max/#shells
3 S1,Q, S2 ∈ R2×2 ← such that ΣX8, 9 (C0) = S1QS)2 // output of SVD

4 Σ
1/2
X8, 9
(C0) ← S1Q1/2S)2

5 : ← 0
6 for ; ← 1 to #shells do
7 3; ← (; − 1

2 )X3
8 ,; ← cdfj2

2

(
(3; + 1

2X3)
2
)
− cdfj2

2

(
(3; − 1

2X3)
2
)
// probability mass in ;Cℎ Mahalanobis shell (in R2)

9 A; ∼ * [0, 1]
10 \; ← 2cA;/#samples/shell
11 for ? ← 1 to #samples/shell do
12 : ← : + 1
13 \: = \; + 2c(? − 1)/#samples/shell

14
¯
z: ←

[
cos (\: ) sin (\: )

])
// point in 1-sphere (i.e. circle)

15 x̃: (C0) = X̄8, 9 (C0) + 3;
[
Σ

1/2
X8, 9
(C0)

]
¯
z: // point in ;Cℎ Mahalanobis shell

16 F: ← ,;/#samples/shell // same weight for pts in the same Mahalanobis shell

17 return
{
x̃: (C0)

}
:∈{1,...,#samples } , {F: }:∈{1,...,#samples }

Algorithm 3: MSS sample generation, relative state in R2 (relative position in R), normal prior distribution.

Suppose ΣX8, 9 (C0) > 0 is known. Additionally, suppose the initial relative state X8, 9 (C0) is normally distributed.
Because the dynamics of the relative state X8, 9 are linear and uncontrolled, its distribution remains normal, i.e.

X8, 9 (C) ∼ N
(
Φ8, 9 (C, C0) X̄8, 9 (C0), Φ8, 9 (C, C0) ΣX8, 9 (C0)Φ

)
8, 9 (C, C0)

)
∀C ≥ C0 (V.6)

Based on Definition III.8, the KPC between agents 8 and 9 , KPC8, 9 (C |C0), can be computed as

KPC8, 9 (C |C0) =
∫ ;8, 9

−;8, 9
pdfR8, 9 |C ,C0

(
r
��C, C0) 3r (V.7)

For this example, the KPC8, 9 (·|C0) waveform can be found analytically as

KPC8, 9 (C |C0) =
1
2

[
erf

(
;8, 9 − '̄8 9 (C)
f'8, 9 (C)

√
2

)
− erf

(
−;8, 9 − '̄8 9 (C)
f'8, 9 (C)

√
2

)]
(V.8)

where erf (·) is the error function,[33] where ΔC � C − C0, and where

'̄8 9 (C) = q11 (ΔC) '̄8, 9 (C0) + q12 (ΔC) ¤̄'8, 9 (C0) (V.9)

f2
'8, 9
(C) = q2

11 (ΔC) f
2
'8, 9
(C0) + q2

12 (ΔC) f
2
¤'8, 9
(C0) + 2q11 (ΔC) q12 (ΔC) d('8, 9 , ¤'8, 9) (C0) f'8, 9 (C0) f ¤'8, 9 (C0) (V.10)

B. Relative mass-spring-damper system - KPC and WPC through MSS application - results and discussion
Two sets of initial conditions and system parameters are considered for the example of the current section, and they

are listed in Table 1. In both cases, system parameters are chosen so that the relative system response is underdamped
(see subsection V.A), and since this implies that both cases have asymptotically stable dynamics, the mean relative state
converges to the origin asymptotically, and the relative covariance vanishes. Therefore, these system parameters imply
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Table 1 Simulation parameters for 1D mass-spring-damper system examples.

Parameter at (C0) '̄8, 9
¤̄'8, 9 f'8, 9 f ¤'8, 9 d('8, 9 , ¤'8, 9) <8 18 :8 ;8, 9

(
C 5 − C0

)
Units m m/s m m/s - kg kg/s kg/s2 m s
Example #1D.001 1 0 1 1 0 4 1 1 0.5 20
Example #1D.002 1 4 1 1 0 4 0.25 2 0.5 45

that the kinematic probability of collision (KPC) asymptotically approaches the value 1, which implies a sure collision.
Additionally, the joint hard body radius ;8, 9 is chosen to be large in order to observe higher collision probabilities.

The first case, Example #1D.001, is discussed in subsubsection V.B.1, and it is chosen so that a “faster” convergence
to a sure collision scenario (within 1.25 oscillations) can be observed compared to that of Example #1D.002 (within
8.3 oscillations), which is discussed in subsubsection V.B.2. Discussion of results comprises the following: first,
qualitative comparison of KPC among analytically-, Monte Carlo- and MSS-generated waveforms; second, motivating
TPc/WPC as a collision risk indicator; and third, comparing the performance of changing MSS sample parameters by
directly comparing the analytically- and MSS-generated waveforms. The metric used to compare these waveforms is
the discrete-time Euclidean distance, i.e. the difference root-mean-square (RMS) between the waveforms (referred to
as “error” RMS for brevity), or simply referred to as KPC error RMS. Finally, because the MSS, Monte Carlo and
analytical KPC waveforms are in agreement, only MSS KPC waveforms are shown for brevity. In all examples, it is
assumed that #samples/shell = 120. (MSS KPC waveforms are generated with #shells = 141, and 3max = 7.05).

1. Kinematic probability of collision (KPC) results - Example #1D.001
Qualitatively, for Example #1D.001, the KPC waveforms generated analytically, through Monte Carlo sampling of

the initial state distribution, and through MSS (shown in Figure 8) are in agreement with one another, i.e. they start at a
local minimum (consistent with agent 8 starting at a location furthest from the origin (on its right) before moving towards
the origin), a local maximum is crossed at 1/4-oscillation (consistent with agent 8 crossing the origin) before another
local minimum at 1/2-oscillation (consistent with agent 8 being locally furthest from the origin on the left), before
another local maximum at 3/4-oscillation (consistent with agent 8 crossing the origin) before another local minimum at
1-oscillation (consistent with agent 8 being locally furthest from the origin on the right again). This behavior is intuitive
and consistent with two facts: 1) the expectation that the KPC waveform should asymptotically approach the value of 1,
implying that a collision is happening “almost surely” after a threshold, which for this case is after 1.25 oscillations; and
2) that the system response is decaying and sinusoidal, as previously described.

Fig. 8 Probability of collision waveform results, MSS-generated, Example #1D.001 (#shells = 141, 3max = 7.05).
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Interestingly, the “Total Probability of collision” (TPc, see Frigm et al.,[20] also labeled as WPC) waveforms
generated through Monte Carlo sampling of the initial state distribution and through MSS are also consistent, and
they show that (almost) every region of the initial relative state pdf has crossed the collision region +8, 9 (see Figure 3
for reference) by the 1/3-oscillation, which implies that a collision has “almost surely” occurred by this time. This
TPc/WPC behavior does not contradict KPC behavior; in fact, their insights are distinct but complementary: while a
collision is “almost surely” occurring at the 1.25-oscillation (and any time after that), a collision has “almost surely”
occurred sometime between the simulation start time and the 1/3-oscillation.

This example shows that, from a collision risk analysis perspective, the question that the TPc/WPC is trying to
answer (the probability of collision anytime within a compact time window) has the potential of being an important
collision risk indicator. Furthermore, in some cases, the TPc/WPC datum might be more appropriate as a collision
risk indicator than the maximum kinematic probability of collision (KPC) at any given time within the same time
window. For reference, by the 0.44-oscillation, the TPc/WPC value was exactly 1 for the Monte Carlo case (i.e. 100%
of all 50 million Monte Carlo particles had collided by then), while the TPc/WPC value for the MSS case was exactly
1 − 1.6075� − 11, which is very close to the total sample weight cdfj2

2

(
7.052) = 1 − 1.6115� − 11.

As noted previously, a sampling-based method is required for TPc/WPC computation; therefore, it is helpful to
compare such methods. Through MSS, samples were made of points within 3max = 7.05 (colloquially, to within 7.05-
“f”) utilizing only 16920 points. The probability mass outside 3max = 7.05 is equal to 1−cdfj2

2

(
7.052) ≈ 1.6115� −11,

i.e. the chance of that a point is Monte Carlo-sampled at or beyond 7.05-“f” is about 1 in 6.205E10, which is more than
three orders of magnitude larger than the Monte Carlo sample size (5E7). In fact, the chance of a Monte Carlo sample
point to be at or beyond 5.9544-“f” is is equal to 1 − cdfj2

2

(
5.95442) ≈ 2� − 8, or about 1 in 5E7; therefore, only one

point in the entire Monte Carlo sample is expected to cross this threshold with the number of points in the sample (5E7).
In turn, there are 22 MSS shells (i.e. 2640 points total) with points in that same range (i.e. at or beyond 5.9544-“f”).

Thus, the MSS sample method accounts for probabilistic outliers without unduly penalizing sample size. Thus, the
MSS algorithm might enable achieving comparable accuracy (for low-valued probabilities of collision) when compared
to Monte Carlo (at the very least in a qualitative sense) at a fraction of the effort. For Example #1D.001, waveform
computation using MSS method took 0.5942 sec, while Monte Carlo took 453.7546 sec (in both methods, execution
time in MATLAB was averaged over 10 runs, with 0.02 sec timestep and accounting for sample generation).

As can be seen in Algorithm 1, there are three primary inputs to perform an MSS sample: the number of shells
#shells, the number of samples per shell #samples/shell, and the cutoff Mahalanobis distance 3max. Figures 9, 10 and 11
show how accurately the MSS KPC waveform approximates the analytical KPC waveform, specifically, when changing
#shells and 3max (with fixed #samples/shell). (The results of Figures 9, 10 and 11 are averaged over 16 simulations.)

Fig. 9 Error RMS between analytical and MSS KPC waveforms; changing #shells and 3max (with fixed
#samples/shell) in MSS sample; Example #1D.001 (after 16 simulations).
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Fig. 10 Error RMS between analytical andMSS KPC waveforms; changing #shells while holding 3max constant
(with fixed #samples/shell) in MSS sample; Example #1D.001 (after 16 simulations).

Fig. 11 Error RMS between analytical andMSS KPC waveforms; changing 3max while holding #shells constant
(with fixed #samples/shell) in MSS sample; Example #1D.001 (after 16 simulations).

Upon examining the trade of changing #shells versus changing 3max (as seen in Figure 9), it is seen that the MSS KPC
method is insensitive to #shells, while increasing 3max results in a monotonic increase in error RMS accuracy. However,
this observation only holds for “low” cutoff Mahalanobis distances 3max. This behavior can be explained by noting that
the MSS sample algorithm does not implement sample weight normalization, i.e. the sum of the weights of the elements
of the sample is not equal to 1, but is equal to cdfj2

(=X)
(
32

max
)
, so a high enough 3max is needed for a valid sample.

Next, Figure 10 is examined, where representative 3max ∈ {4, . . . , 10} are held constant, while changing #shells. It
is clear that, for constant 3max, increasing #shells improves RMS residuals. Additionally, after 3max = 4, better RMS
residuals are obtained with lower 3max. It can be seen that, after 3max = 4, equal accuracy can be achieved with higher
3max by increasing #shells; conversely, after 3max = 4, increasing 3max while holding #shells constant decreases RMS
accuracy. This trend is opposite to that observed in Figure 9, where for low 3max and while holding #shells constant,
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increasing 3max increases RMS accuracy. Combined, these trends suggest that, when holding #shells constant, increasing
3max improves RMS accuracy up to a point, after which continuing to increase 3max worsens RMS accuracy.

In Figure 11, representative #shells ∈ [20, 210] are held constant, while changing 3max. It is seen that, in every case,
RMS residuals improve up to a certain “transition” cutoff Mahalanobis distance 3 ′max (which depends on #shells), and the
RMS residuals deteriorate with 3max > 3

′
max. Furthermore the, “transition” cutoff Mahalanobis distance 3 ′max increases

with increased number of shells #shells. For #shells ∈ [20, 210], the “transition” cutoff Mahalanobis distance 3 ′max is
between 4 and 5, which is consistent with observations from Figure 10.

These observations imply that there exists an underlying requirement for Mahalanobis shell resolution; in other
words, in order to maintain or improve error RMS performance while increasing 3max, it is necessary to increase the
number of shells #shells. Thus, MSS KPC error RMS accuracy is not insensitive to the number of shells #shells. In fact,
for constant KPC error RMS, increasing 3max requires an increase in #shells; conversely, for constant KPC error RMS,
increasing #shells allows sampling from increasingly greater cutoff Mahalanobis distances 3max.

It should be noted that increasing 3max by itself does not affect sample size. Therefore, increasing 3max while
keeping #shells constant effectively creates a grid that, while including more probabilistic outliers, becomes increasingly
more coarse. However, while correctly increasing #shells in tandem, increasing 3max should always improve RMS
accuracy (at the cost of additional computation and longer time to converge).

2. Kinematic probability of collision (KPC) results - Example #1D.002
For Example #1D.002, most insights obtained are similar to those obtained through examination of Example #1D.001

(see Subsubsection V.B.1). Qualitatively, for Example #1D.002, the KPC waveforms generated analytically, through
Monte Carlo sampling of the initial state distribution, and through MSS (shown in Figure 12) are in agreement with one
another. Namely, during every oscillation, there is one KPC local minimum followed (1/4-oscillation after) by one
KPC local maximum, before repeating the sequence after another 1/4-oscillations. Unlike Example #1D.001, the KPC
waveforms do not start at a local minimum because agent 8 is initially moving further away from the origin.

Fig. 12 Probability of collision waveform results, MSS-generated, Example #1D.002 (#shells = 141, 3max = 7.05).

Example #1D.002 further illustrates how TPc/WPC is an important collision risk indicator. The TPc/WPCwaveforms
generated through Monte Carlo sampling of the initial state distribution and through MSS are also consistent, and they
show that (almost) every region of the initial relative state pdf has crossed the collision volume+8, 9 by the 1/2-oscillation,
which implies that a collision has “almost surely” occurred by this time. In contrast, the KPC waveform indicates
that the first time a collision is “almost surely” occurring is at the 7.933-oscillation, and a collision is “almost surely”
occurring at the 8.789-oscillation and every time after that. The contrast between the information that can be gleaned
from the KPC and TPc/WPC waveforms is especially noteworthy between the simulation start time and the end of the 2nd
oscillation. On one hand, in that interval, four times the KPC waveform indicates that a collision either is not occurring
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or has low probability of occurring; on the other hand, at those same four times, the TPc/WPC shows that a collision has
occurred by said times with probability of over 30% (the first time), and almost 100% (the other three times). Regardless
of the dynamics of convergence of the KPC waveform to an “almost sure” collision, in an operational context, such
concerns would be irrelevant when considering that a collision might be imminently expected much sooner.

For reference, by the 0.48-oscillation, the TPc/WPC value was exactly 1 for the Monte Carlo case (i.e. 100% of
all 50 million Monte Carlo particles had collided by then), while the TPc/WPC value for the MSS case was exactly
1 − 1.6105� − 11, which is very close to the total sample weight cdfj2

2

(
7.052) = 1 − 1.6115� − 11. Additionally, it is

worth noting that, for Example #1D.002, waveform computation using MSS method took 1.2808 sec, while Monte
Carlo took 1007.1877 sec (in both methods, execution time in MATLAB was averaged over 10 runs, with 0.02 sec
timestep and accounting for sample generation). MSS execution time for Example #1D.001 was 2.16 times faster than
for Example #1D.002, while the former had a propagation horizon 2.25 times shorter than the latter.

In a similar fashion to Example #1D.001, in Example #1D.002, upon examining the trade of changing the number of
shells #shells versus changing cutoff Mahalanobis distance 3max (see Figure 13) , it is observed that, for “low” cutoff
Mahalanobis distances 3max, the MSS KPC method is insensitive to the number of shells #shells, and that increasing the
cutoff Mahalanobis distance 3max results in a monotonic increase in error RMS accuracy.

Fig. 13 Error RMS between analytical and MSS KPC waveforms; changing #shells and 3max (with fixed
#samples/shell) in MSS sample; Example #1D.002 (after 1 simulation).

For Example #1D.002, when examining the trade of changing #shells while holding constant 3max ∈ {4, . . . , 10} (see
Figure 14), two observations can be made. First, for constant 3max, increasing #shells improves RMS residuals. Second,
after 3max = 4, better RMS residuals are obtained with lower 3max. In the next trade (see Figure 15), for constant #shells,
increasing 3max starts improving RMS residuals before stagnating at a “transition” cutoff Mahalanobis distance 3 ′max,
after which continuing to increase 3max degrades RMS residuals.

To examine the reproducibility of these trends, the same simulation is averaged over 23 simulations. Interestingly,
after averaging, the trends appear to smooth out, which show that for the one-dimensional position, 2D state MSS
sampling method, rotating each unit shell by a random angle, and thus adding an element of randomness to the specific
location of each shell point (within its respective cell), gives the algorithm probabilistic consistency (see Algorithm 3,
line 9), at least within each dynamic system example. When extending the algorithm to higher dimensions, it is worth
examining whether it might be beneficial to rotate unit shells through random rotations as well, which would entail
modifying the main MSS sampling algorithm (see Algorithm 1) slightly in order to reflect this change.
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Fig. 14 Error RMS between analytical andMSS KPC waveforms; changing #shells while holding 3max constant
(with fixed #samples/shell) in MSS sample; Example #1D.002 (after 1 simulation).

Fig. 15 Error RMS between analytical andMSS KPC waveforms; changing 3max while holding #shells constant
(with fixed #samples/shell) in MSS sample; Example #1D.002 (after 1 simulation).

VI. Conclusion
In this work, the notions of collision events and the kinematic probability of collision (KPC) are reintroduced and

formalized. Then, for the specific case of normal probability distribution functions (pdfs), certain pdf integrals (namely,
those bounded by contours of constant Mahalanobis distance, or integrals over Mahalanobis shells) are analytically linked
to the chi-square distribution. Upon the basis of this relationship, a sampling method, referred to as the Mahalanobis
Shell Sampling (MSS) algorithm, is established. Using the statistics of normal, nondegenerate distributions, the MSS
algorithm transforms a sample from the unit hypersphere into a sample of the original distribution. The MSS algorithm
accomplishes this by giving weights to each sample point that are proportional to the probability mass in the target shell
and inversely proportional to the number of points in such shell.

The MSS algorithm is developed with the motivation of having an alternative method of KPC computation in an
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operational context where the KPC values might be low (for orders of magnitude between 1E-10 to 1E-3 in the context
of spacecraft collision risk analysis), which motivates the need for sampling from “tails” of probability distributions.
The performance of MSS samples for KPC computation is examined through a simple, intuitive example, where the
relative position between agents is one-dimensional and the relative state is two-dimensional, and an analytical KPC
solution is found for this example. Further, the system parameters and initial conditions are chosen so as to guarantee a
sure collision. The performance of the MSS KPC method is measured through the Euclidean distance (or difference
root-mean-square (RMS), or simply, error RMS) between the analytically and MSS generated waveforms.

The results obtained give insight into application of the MSS method to KPC computation. From inspection of
KPC error RMS results, continuing to increase cutoff Mahalanobis distances 3max (which means increasing, in a
normalized sense, the maximum distance of sample points from the sadmple mean, which implies having more extreme
probabilistic outliers), without also increasing the number of shells #shells, is ultimately detrimental to KPC accuracy.
However, increasing #shells (without also increasing 3max), always results in KPC accuracy improvements. Further
examination of applications of MSS to KPC computation should quantify the required increment in #shells in order to
obtain non-deteriorating KPC error RMS properties for incremental 3max. Additionally, in future work, requirements
on MSS sample parameters for desired convergence rate and error properties should be characterized. Conversely,
for certain families of dynamic systems and sets of initial conditions, appropriate KPC error RMS values should be
identified in order to obtain desired KPC accuracy. In accordance with the motivation of this work, spacecraft formations
should be among the dynamic systems explored in this effort.

Results were also examined for waveforms of the “Total Probability of collision” (TPc), also labeled as the window
probability of collision (WPC). From the perspective of collision risk analysis, results indicate that TPc/WPC information
has the potential of being an important collision risk indicator; specifically, in the few sets of initial conditions examined
in this work, the TPc/WPC indicates that a collision would have “almost surely” occurred much earlier than the KPC
indicates that a collision would be “almost surely” occurring. It appears that, even though TPc/WPC information is
distinct from KPC information, the former is complementary to the latter. This suggests that TPc/WPC information
would be especially useful in two cases: 1) where the TPc/WPC indicates an intolerably high or imminent risk of
collision while the KPC indicates little to no risk, and 2) where high risk is indicated much earlier by the TPc/WPC
than by the KPC. Specifically, the TPc/WPC indicator can be used to indicate whether a collision is likely to occur
within a future time window. Since a sampling method is required to compute the TPc/WPC, as an algorithm that can
sample from “tails” of normal probability distributions efficiently (provided enough shells are added to the sample), the
MSS algorithm is a candidate for TPc/WPC computation. It is expected that the MSS algorithm would have better
computational efficiency and predictive accuracy than Monte Carlo in most cases, but this also should be quantified, and
other algorithms should be considered as well.

In future work, it would be appropriate to formally define the TPc/WPC collision risk indicator, similarly to how
KPC is defined in this work. Additionally, it would be appropriate to examine properties of the TPc/WPC waveform
such as its relationship to the KPC waveform. Furthermore, application of the TPc/WPC indicator as an actionable
collision risk indicator (i.e. as information that is usable to trigger a process of collision avoidance) should be explored.

In summary, this work creates a framework for evaluating collision risk in a precise manner. First, by allowing
to sample directly from “tails” of normal probability distributions, the Mahalanobis Shell Sampling (MSS) method
allows for efficient sample-based KPC computation, restricted to cases where relative dynamic states have normal
prior distribution. Second, being validated through the reproducibility of KPC waveforms, the MSS method allows
the computation of a recently proposed collision risk indicator, the “Total Probability of Collision” (TPc). The TPc
figure is motivated in this work as an indicator whose information is both consistent with and complementary to KPC
information, and examples shown demonstrate that TPc insights can be more relevant than KPC insights. Efficient,
accurate and quick computation of collision risk indicators is enabled through this work, which is a necessary step
before triggering any collision avoidance process.

The notation of the MSS sampling and KPC computation methods assume that the normal random variable to be
sampled is a relative dynamic state (specifically, the initial conditions of such state). The reason for this notation choice
is that the primary motivation for the development of this algorithm is to help in the efficient computation of KPC and
TPc/WPC for relative dynamic systems. However, it is helpful to note at this point that, in principle, the MSS sampling
algorithm could be used to directly sample from an arbitrary multidimensional, normally distributed random variable,
whether or not it has any physical interpretation. Similarly, in principle, the MSS KPC computation method could be
adapted to include nonlinear dynamics, and its end goal could be to obtain other time-integrals of the distribution, or
even to just propagate the distribution itself. Thus, the MSS sampling method is a potential choice for other applications,
such as filtering, as an alternative to the Unscented Transform or other particle-based sampling methods.
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Appendix

A. Algorithms for sampling from the unit (� − 1)-sphere (� ∈ {3, 4, 6}).
This subsection presents algorithms for uniform sampling on the unit sphere in high-dimensions. The Marsaglia

(subsubsection VI.A.1) and the Roberts and Brauchart (subsubsection VI.A.3) sampling algorithms are presented.
Additionally, the performance of these algorithms is quantified in terms of the 30 metric, which represents the

minimum great circle distance between any two distinct points in a sample, as given by Definition VI.1.

Definition VI.1 (30 performance metric). The function 30 : (̃ (#) → [0,∞) is defined by the rule

30
(
(̃ (#)

)
= min

{
arccos

(
¯
z)8 ¯

z 9
)

: 8, 9 ∈ {1, · · · , #} , 8 ≠ 9 ,
¯
z8 ∈ (̃ (#) ∀8 ∈ {1, · · · , #}

}
(VI.1)

where (̃ (#) is a sample of points in the unit (� − 1)-sphere with # distinct elements in the sample. ♦

The goal of these sampling algorithms is to maximize 30
(
(̃

(
#sequence

) )
for any given sample (̃

(
#sequence

)
, and

to have the slowest possible decrease in 30 with increased #sequence. This is a traditional method for ensuring that
sequences produced by these algorithms are “evenly” distributed on the unit (� − 1)-sphere.[34]

Table 2 Performance results for unit sphere sampling algorithms.

2-sphere 3-sphere 5-sphere
Algorithm L.B. U.B. L.B. U.B. L.B. U.B.
Marsaglia O

(
1
#

)
O

(
1
#

)
O

(
1
#

)
O

(
1√
#

)
O

(
1√
#

)
O

(
1

3√
#

)
Roberts O

(
1
#

)
O

(
1√
#

)
O

(
1
#

)
O

(
1√
#

)
O

(
1
#

)
O

(
1√
#

)
Brauchart O

(
1
#

)
O

(
1√
#

)
O

(
1√
#

)
O

(
1

3√
#

)
O

(
1

3√
#

)
O

(
1

4√
#

)
1. Marsaglia algorithm for uniform sampling on the unit (� − 1)-sphere.

The Marsaglia algorithm for generation of sequences of points that are uniformly distributed on the unit (� − 1)-
sphere, presented as Algorithm 4, is a simple algorithm in which, for each point in the sequence, each component is
drawn from the standard normal distribution, and then the point is normalized so that it lies on the unit sphere. Unlike
the other methods presented in subsubsection VI.A.3, which attempt to have an uniform distribution in the unit sphere in
a geometric sense, the Marsaglia algorithm distributes points on the surface uniformly in a probabilistic sense. This
algorithm was first presented by M. Muller, and it was popularized by G. Marsaglia.[35, 36]

Input: Number of elements in sequence #sequence; dimension of elements of the sequence � (� ∈ N, � ≥ 2)
Output: Sequence of points on the unit (� − 1)-sphere

{
¯
zB

}
B∈{1,...,#sequence }

1 for B← 1 to #sequence do
2 for =← 1 to � do
3

[
¯
yB

]
=
∼ N (0, 1)

4
¯
zB ←

¯
yB/‖

¯
yB ‖ // point on the unit (� − 1)-sphere

5 return {
¯
zB}B∈{1,...,#sequence }

Algorithm 4: Sample of points uniformly spread over the surface of the unit (� − 1)-sphere, Marsaglia method.

2. Roberts algorithm for quasi-uniform sampling from the unit =-hypercube.
The Roberts qrns generation algorithm is a low-discrepancy qrns generation algorithm for uniform sampling within

the unit =-hypercube, and is listed in Algorithm 5. This algorithm is based on a generalization of Fibonacci sequences’
“golden ratio” number to higher dimensions, and it was presented by Roberts as an alternative to known low-discrepancy
quasi-random number sequence (qrns) generation methods such as Sobol and Niederreiter.[37, 38]
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Input: Number of elements in sequence #sequence; dimension of elements of the sequence = (= ∈ N, = ≥ 2)
Output: Sequence of quasi-random numbers

{
¯
y=
B

}
B∈{1,...,#sequence }

1 q= : (q=)=+1 = q= + 1 // generalized golden ratio numbers

2 U←
¯
0=×1

3 for 9 ← 1 to = do
4 [U] 9 ←

(
1
q=

) 9
5 for B← 1 to #sequence do
6 for 9 ← 1 to = do
7

[
¯
y=B

]
9
←

(
B [U] 9

)
mod 1

8 return
{
¯
y=
B

}
B∈{1,...,#sequence }

Algorithm 5: Quasi-random number (low-discrepancy) sequence generation, quasi-uniformly distributed in unit
=-hypercube [0, 1]=, Roberts method.

3. Algorithms for quasi-random, quasi-uniform sampling on the unit (� − 1)-sphere
The following algorithms show how to make samples from the unit (� − 1)-sphere (see Definition III.1). These

algorithms rely on the Roberts quasi-random number sequence on the (� − 1) unit hypercube (see Algorithm 5),
although in principle any other such algorithm could be used for this purpose as well.[37]

The Roberts algorithm for generation of quasi-uniformly distributed sequences of points on the unit (� − 1)-sphere
is presented as Algorithm 6. This algorithm was presented in three-dimensions (3D) for the 2-sphere by Brannon, and it
was implemented by Roberts.[37, 39] The algorithm was slightly modified in order to use a latitude angle instead of an
inclination angle, and a naive extension of this method to high-dimensional spherical coordinates is presented in this
work using a procedure similar to the one shown by Blumenson.[40, 41]

Input: #samples/shell; dimension of elements of the sequence � (� ∈ N, � ≥ 3)
Output: Sequence of points on the unit (� − 1)-sphere

{
¯
z?

}
?∈{1,...,#samples/shell }

1
{
¯
y(�−1)
?

}
?∈{1,...,#samples/shell }

← output of Algorithm 5,
(
#sequence = #samples/shell, = = � − 1

)
// collection of

quasi-uniformly distributed points in the [0, 1] (�−1) unit hypercube

2 for ? ← 1 to #samples/shell do
3 x←

¯
y(�−1)
?

4 \ ← 2c
[
x
]

1
5 for 9 ← 2 to � − 1 do
6 _ ( 9−1) : sin

(
_ ( 9−1)

)
= 2

[
x
]
9
− 1

7
¯
z←

¯
0�×1

8 [
¯
z]1 ← cos (\)∏�−2

:=1 cos (_: )
9 [

¯
z]2 ← sin (\)∏�−2

:=1 cos (_: )
10 if � > 3 then
11 for 9 ← 3 to � − 1 do
12 [

¯
z] 9 ← sin

(
_ ( 9−2)

) ∏�−2
:= 9−1 cos (_: )

13 [
¯
z]� ← sin

(
_ (�−2)

)
14

¯
z? ← ¯

z
15 return

{
¯
z?

}
?∈{1,...,#samples/shell }

Algorithm 6: Sample of points quasi-uniformly spread over the surface of the unit (� − 1)-sphere, extension of
Roberts method (based on high-dimensional spherical coordinates).

The Brauchart algorithm for generation of quasi-uniformly distributed sequences of points on the unit (� −1)-sphere
is presented as Algorithm 7. This algorithm was developed by Brauchart et al. as an extension of the area preserving
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Lambert transform (from points in unit hypercubes to surfaces of hyperspheres) for higher dimensions, and their work
includes a proof of the area preserving property of the proposed transform.[42] This method utilizes the regularized
incomplete beta (ℎ<) function, shown in Definition VI.2.[42]

Definition VI.2 (Regularized incomplete beta (ℎ<) function). The function ℎ< : [0, 1] → [0, 1] is defined by the rule

ℎ< (G) =
� (G;</2, </2)
� (1;</2, </2) (VI.2)

where < ∈ [3,∞), and where � (I; 0, 1) is the incomplete beta function, given by

� (I; 0, 1) =
∫ I

0
D0−1 (1 − D)1−1 3D ♦ (VI.3)

Input: #samples/shell; dimension of elements of the sequence � (� ∈ N, � ≥ 3)
Output: Sequence of points on the unit (� − 1)-sphere

{
¯
z?

}
?∈{1, · · · ,#samples/shell }

1
{
¯
y(�−1)
?

}
?∈{1, · · · ,#samples/shell }

← output of Algorithm 5,
(
#sequence = #samples/shell, = = � − 1

)
// collection of

quasi-uniformly distributed points in the [0, 1] (�−1) unit hypercube

2 for ? ← 1 to #samples/shell do
3 x←

¯
y(�−1)
?

4
¯
z←

[
cos

(
2c

[
x
]

1

)
sin

(
2c

[
x
]

1

)])
5

¯
z←

[(√
1 −

(
1 − 2

[
x
]

2

)2
)

¯
z) 1 − 2

[
x
]

2

])
6 if � > 3 then
7 for 9 ← 3 to � − 1 do

8
¯
z←

[(√
1 −

(
1 − 2ℎ−1

9

( [
x
]
9

))2
)

¯
z) 1 − 2ℎ−1

9

( [
x
]
9

)])
9

¯
z? ← ¯

z
10 return

{
¯
z?

}
?∈{1,...,#samples/shell }

Algorithm 7: Sample of points quasi-uniformly spread over the surface of the unit (� − 1)-sphere, Brauchart
method
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