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A probabilistic treatment of the Pareto chart can provide benefits to the fields of quality

control, sensitivity analysis, and conceptual design. The probabilistic Pareto chart can

inform a decision-maker about the relative significance of distributed factors and highlight

anomalies in a dataset. This investigation provides a framework for creating a probabilistic

Pareto chart, as well as examples to enable a discussion of the information provided by

both the deterministic and probabilistic Pareto charts. The applications presented in this

investigation demonstrate the probabilistic Pareto chart’s ability to highlight anomalous

trends and to determine the significance of variables in non-linear functions.

Nomenclature

R Universal gas constant
C Coefficient
M Molar mass
T Temperature
V Velocity

Subscripts

1 Freestream
D Drag
N Normal
T Tangential
W Wall

Symbols

↵ Angle of attack
� Sideslip angle
� Accommodation coefficient

I. Introduction

The Pareto chart enables users to determine the relative contributions of factors to a whole and provides
quantitative insights in a wide variety of disciplines.1 The chart first appeared in 1951 in Juran’s Quality

Control Handbook as a technique for visualizing the Pareto principle.2 The Pareto principle, also known as
the 80/20 rule, states that 80% of the total contributions are generally due to 20% of the individual factors.
Its origin is in early-20th century, when Vilfredo Pareto analyzed the distribution of wealth in Italy and it
has since proliferated through the field of quality control and other industries as well.2,3 A generic example
of the Pareto chart is reproduced in Figure 1. As seen in Figure 1, the contribution of three of the defect
categories (G, C, and A) contribute to 90% of the response. Similarly, the Pareto plot can also be used to
show contributions to the variability in the response and the choice between examining the response or the
variability in the response is situational.
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Figure 1: A Pareto chart for nine defect categories.

While there have been a few modifications to the Pareto chart in the past, it has usually remained in
the same form since its inception.1 The chart is comprised of a bar chart, sorted by bar height, and a
line plot showing the cumulative total. Often there is a second, horizontal line indicating an acceptable
level for the total contribution of the “vital few,” a term coined by Juran.2 One implicit assumption in the
creation of a Pareto chart is that the contribution of each variable is deterministic, however in many cases
it is probabilistic. For example, a chart illustrating defects from one factory would not be the same as a
chart for another factory. Each of the factories could instead be considered a sample, so the bar heights
would be distributions instead of deterministic levels. The distributions associated with each defect could
be considered the error or the uncertainty in that defect’s contribution to the response or to the variability
in the response, depending on the application.

II. Motivation

Consider assessing relative significance of probabilistic or uncertain terms in an analytic equation. If
these terms are insignificant, fixing them to constant values can reduce the complexity of the equation. This
significance test is a sensitivity analysis and it is commonly performed using Monte Carlo simulation,4–6
though other methods, such as Bayesian analysis and complex step, exist to assess this data.7–10 Scatter
plots are used to show the trend in the output of the equation with a single variable and if that trend appears
to be non-random, then that variable is considered significant. Appropriate analysis of each individual scatter
plot can be a time-consuming process and it provides no information as to which variables are the “vital few”
and which are not. The probabilistic Pareto chart can be used to gain similar insights as the scatter plot
simultaneously for many distributed variables.

Whether the data is sampled from the same source at different times, from different sources at the same
time, or from different sources at different times is irrelevant to the process of generating a probabilistic
Pareto chart. In the example of the factories, consider that the data on defects is collected across several
factories and totaled on a monthly basis. If it is uncertain whether the relative contributions of each defect
are time-dependent, a probabilistic Pareto chart could provide that insight. The data across all the factories
could be summed for each month, and then each month would be considered a sample of the probabilistic
Pareto chart. If the variances of each distribution are small, then deterministic Pareto charts for each
month would vary only slightly and it could be concluded that the relative contributions of the defects are
time-invariant. The same process could be applied to the data to determine whether there is significant
variability between factories. Finally, if no summation across factories or across months is applied, then the
probabilistic Pareto chart could show that the relative contributions of each defect do not depend on either
factory or time.

In the factory example previously described, the probabilistic Pareto chart can show whether the dis-
tribution of defects is common across all factories, or whether each factory is significantly different where
non-systematic causes should be investigated. If you consider Table 2 as a report of the defects from 30
factories, then generating a deterministic Pareto chart showing which defects are most frequent will show
what the overall trend is, but not whether this general trend is followed by each of the factories. This overall
trend can also lead to a false conclusion by way of Simpson’s Paradox, which occurs when the trends in
partitioned data differ from those in aggregated data.11 Historically, failure to understand or to identify
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instances of Simpson’s Paradox has lead to poor decision-making, which can be prevented by making both
the aggregated and the partitioned trends available to the decision-maker.12 One possible way of analyzing
the partitioned data would be to create a Pareto chart for each factory and compare them against each other.
This process has been investigated previously,13,14 however 30 factories can be grouped into 435 pairs, so a
pairwise comparison is not the ideal solution when there are many samples.

A probabilistic Pareto chart can eliminates the need for pairwise data comparison as it simultaneously
illustrates the relative contributions of each variable and the portion of the population for which a given
trend applies. Additionally, the chart does so in a manner that scales well with both the number of samples
and the number of variables. Furthermore, outliers in the data can be readily identified when it is organized
in a probabilistic Pareto chart.

III. Formulation

The data required to create a deterministic Pareto chart can take any form, so long as it can be tabulated.
The information in the table could be displayed in the form of a pie chart. However, the goal of a Pareto chart
is to distinguish the “vital few” from the “trivial many,” so the data is represented in a bar chart sorted by
bar height. Similarly the probabilistic Pareto chart requires data on the contributions of individual factors,
however the key distinction is that the contributions are sampled more than once.

With any table of data similar to Table 2, a probabilistic Pareto chart can be created. The chart has
a column for each possible factor and a row for each sample. There are ten steps required to visualize this
table of data in a probabilistic Pareto chart which are outlined below. The sum in Step 4 provides the metric
for sorting the columns in Step 5. To check that Steps 1-7 have been followed correctly, all the values in the
last column of the second table should be ones.

1. Create a table of data in the same form as Table 2

2. Sum across the columns

3. Normalize the rows with respect to the total

4. Sum down the rows

5. Sort the columns by their totals in descending order

6. Create a second table that is equal in size to the original

7. Populate the table by calculating the running total across each row

8. Calculate the desired quantiles of the columns of the new table

9. Generate the box and whisker plots from the data in the original table

10. Generate the percentile line plots from the second table

The user of the probabilistic Pareto chart has several options and ways to vary the chart shown in
Figure 2(b). For example, the percentiles to display on the probabilistic Pareto chart are the user’s choice. If
the goal is to determine whether the data depends on a specific variable then the user would be more likely
to choose the mean and a 95% confidence interval. Another attribute that can be changed is showing the
distributed data in box and whisker charts. Box and whisker charts are demonstrated in this investigation
because they do not assume a form of the distributions, make outliers apparent, and do not obfuscate trends
in the cumulative distribution lines. In other cases it may be more advantageous to display the distributions
in other ways such as histograms, point density plots, violin plots, or as parameter-estimated distributions
such as Beta distributions. Another aspect that can be varied is the color of the box and whisker charts. If
the factors are sources of uncertainty, for example, then the box and whisker charts associated with epistemic
uncertainties could be coded with one color and aleatory uncertainties can be coded with another color. In
the case that motivated this investigation, the charts were colored based on whether a term in the rarefied
aerodynamic coefficients of a cone had a closed-form or non-closed form solution.
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(a) Deterministic Pareto Chart
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(b) Probabilistic Pareto Chart

Figure 2: Comparison of deterministic and probabilistic Pareto charts for the same set of data.
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IV. Applications

A. Identify Simpson’s Paradox

The phenomenon of Simpson’s Paradox arises when trends in partitioned data disappear when the data are
combined.11 Cases of Simpson’s Paradox are often found in the social sciences, such as the 1973 investiga-
tion of gender bias in graduate admissions to the University of California, Berkeley. When admission was
compared at the university-level, a greater portion of male applicants were admitted compared to female
applicants; however, at the department-level there was no significant bias against female applications. In
studying the data and comparing trends at the department- and university-level, it was concluded that men
generally applied to less-competitive departments and women to more-competitive departments.15 Though
the original intention of the investigation was to determine gender discrimination, the conclusions from the
data offered deeper insight into gender and graduate admissions because both the trends at the partition-level
and aggregate-level were studied and reconciled.

Appendix B contains a table of data that demonstrates Simpson’s Paradox as it applies to Pareto analysis.
If the data from each trial is aggregated, then the deterministic Pareto chart in Figure 3(a) is generated.
Partitioning the data for each trial results in Figure 3(b), which shows the distributions of each factor’s
significance. The vital few factors in the deterministic chart are {4, 5, 14, 15, 16}, while in the probabilistic
chart the vital few are {13, 14, 15, 16, 17}. Re-partitioning the data and examining trials 1-27 separately from
trials 28-30 shows that there are two separate trends. The frequency of defects is greater for trials 28-30 than
for the other trials and in separate categories, indicating that these three trials should be analyzed separately
from trials 1-27. The differences in the vital few between the deterministic and probabilistic Pareto charts
indicates further investigation of datasets demonstrating Simpson’s Paradox.

B. Significance of Variables in Nonlinear Functions

Another application for the probabilistic Pareto chart is in determining the significance of input variables in
a non-linear function. The significance of variables in a linear equation can be determined from the gradient
and the ranking of the variables will remain constant no matter which combination of variables is input to
the function. For a non-linear equation the terms in the gradient are functions of the inputs, so the ranking
of the input variables can change from one set of inputs to the next. For most problems, the individual input
variables are bounded in magnitude, and within that hypercube domain of inputs there may be variables
that show consistent membership in the “trivial many”.
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The drag coefficient of a flat plate in rarefied flow is one example of a multivariable nonlinear function.
The equation for the drag coefficient, given by Eq. 1 is derived from gas kinetic theory and is highly nonlinear
in eight independent variables.16 Not all of these variables may be known in application. For instance, an
object in a low Earth orbit (LEO) may be large enough to determine its attitude, but it might not be possible
to know the freestream temperature about that object. To determine which variables are significant over
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Figure 3: An example of Simpson’s Paradox as applied to Pareto analysis.
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the hypercube domain of input variables, the inputs were normalized and a Monte Carlo simulation was
performed on the partial derivatives of CD. The ranges on these variables are provided in Table 1.

Table 1: Upper and lower bounds for variables in Eq. 1.

Input Variable
Bound ↵ (deg) � (deg) V1 (m/s) T1 (K) M (g/mol) �N �T TW (K)
Lower -90 -90 5500 200 2 0 0 100
Upper 90 90 9500 2000 46 1 1 500

In both of the Pareto charts shown in Figure 4, it is clear that the angle of attack and sideslip angle
dominate the variability in the response. The next two terms are the accomodation coefficients, after that
none of the variables significantly contribute to the variability in CD. This indicates that fixing M , T1, TW ,
and V1 would not significantly change the resulting CD value. This is evident in both charts by examination
of the bar/box heights and the cumulative lines. Since ↵ and � have the same trigonometric effect on drag,
the wide spread in their relative significance in Figure 4(b) can be attributed to the two angles trading off
between each other. The accommodation coefficients are also related to each other, trading off the remainder
of the variability.
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Figure 4: Relative significance of inputs to flat plate drag in rarefied flow.
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V. Summary

This investigation shows how a probabilistic Pareto chart can be created from data that are aggregated
into deterministic Pareto charts. The primary advantages demonstrated are the identification of anomalous
data and illustration of the relative significance of variables in nonlinear functions. In order to provide insight
into whether a global trend is consistent with the individual trends and to improve the outcomes of decisions
made when Simpson’s Paradox may apply, both the deterministic and the probabilistic Pareto charts are
necessary to the analyst.

One aspect of the probabilistic Pareto chart that can be explored in the future is the representation of the
distributed data. The charts presented above use box-and-whisker plots to show this distribution, however
other representations may be more revealing. Options for displaying this data include mixed Gaussians
or violin charts, histograms, and beta distributions. The mixed Gaussians and histograms would reveal
modality in the data, though beta distributions and mixed Gaussians assume a distribution a priori. Another
related investigation would be to determine which cumulative percentile lines to include on the chart. The
probabilistic charts shown above have three cumulative percentile lines drawn, though which three are drawn
varies. It may be more useful to draw lines at 0%, 80%, and 100% to show the range of the data and a
relevant cutoff. The usefulness of the probabilistic Pareto chart has been shown above, though how it should
be integrated with existing quality control tools should be investigated.
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Appendix A: Data from Figure 2

Table 2: Number of defects associated with nine unique categories

Trial A B C D E F G H I
1 3 1 10 0 1 0 72 0 1
2 99 17 114 0 30 1 201 1 3
3 71 12 183 0 56 1 216 7 8
4 1 1 59 0 1 0 60 0 0
5 72 10 85 0 51 0 203 5 8
6 36 8 96 0 20 3 332 4 5
7 4 0 5 0 0 0 63 0 0
8 12 2 24 0 2 0 192 0 0
9 7 1 16 0 2 0 61 0 0
10 29 26 39 0 27 0 112 1 1
11 19 2 20 0 7 0 58 0 1
12 23 11 47 0 17 0 55 0 9
13 67 5 83 0 11 1 107 3 4
14 23 11 29 0 19 0 46 5 10
15 19 2 19 0 2 0 68 0 0
16 60 10 100 0 10 0 261 0 0
17 24 2 26 0 2 0 120 0 0
18 15 2 29 0 3 0 567 0 0
19 40 1 90 0 16 0 315 0 0
20 19 10 26 0 16 0 75 2 6
21 4 3 18 0 3 0 23 0 0
22 18 2 29 0 13 0 54 0 0
23 19 3 43 0 4 0 99 0 1
24 8 1 22 0 3 0 55 0 1
25 85 7 138 0 15 0 199 0 1
26 6 4 6 0 5 0 46 0 4
27 10 2 13 0 9 0 131 0 0
28 126 67 296 0 87 0 309 1 33
29 96 25 221 0 41 1 320 10 11
30 34 11 106 0 17 0 245 0 7
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Appendix B: Data from Figure 3

Table 3: Number of defects associated with twenty unique categories

Factor
Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0 0 0 0 0 0 0 0 0 26 283 520 161 8 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 20 255 528 184 10 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 9 167 522 276 24 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 6 134 504 319 34 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 13 202 531 234 17 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 38 335 496 124 5 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 1 46 362 479 107 4 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 15 222 531 214 14 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 3 90 457 391 56 1 0 0
10 0 0 0 0 0 0 0 0 0 0 0 2 80 442 408 63 1 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 15 218 531 218 15 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 2 79 439 411 65 1 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 2 88 454 394 57 1 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 15 222 531 215 14 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 1 47 365 477 105 3 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 39 338 494 121 5 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 13 203 531 233 17 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 5 132 503 322 34 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 8 164 521 279 25 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 20 253 528 186 11 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 26 285 519 159 8 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 15 222 531 215 14 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 8 162 520 281 25 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 10 183 527 256 21 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 23 272 523 170 9 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 33 317 505 136 6 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 17 235 531 202 12 0 0
28 0 0 27 632 2491 1658 186 3 0 0 0 0 0 0 0 0 0 0 0 0
29 0 20 543 2405 1798 227 4 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 72 1070 2659 1116 79 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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