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An autonomous mission manager is being developed for use on small satellites, including
CubeSats, in proximity operations applications where one satellite is near another coop-
erating spacecraft. The mission manager performs mission event sequencing/resequencing
and coordination between the autonomous rendezvous and docking algorithm and the ma-
neuvering satellite while also providing guidance, navigation, and control automation, con-
tingency diagnosis and response, and abort condition determination and execution. In the
case of small satellites, limited sensing, actuation, and computing resources require special
consideration when creating a mission manager for these vehicles. A detailed simulation
tool was created that allows existing guidance, navigation, and control laws to be incor-
porated into an overall mission manager structure. A representative approach trajectory
for a spacecraft from 1 km to 1 m to a cooperating vehicle is used to demonstrate perfor-
mance. Spacecraft sensor and actuator hardware is simulated so that imperfect knowledge
and control may exercise the mission manager algorithms. The system is designed to run
in real-time on a standard low power microprocessor that could be used on a CubeSat or
similar small satellite.

Nomenclature

a Acceleration, m/s2

ε Random walk noise
η Gaussian zero-mean noise
σ Standard deviation
τ Gauss-Markov process time constant, s
t Time, s
r Satellite position vector, m
r Satellite position magnitude, m
b Accelerometer bias, m/s2

u Satellite control, m/s2

w Process noise
v Measurement noise
µ Gravitational constant, m3/s2

x State vector
P State covariance matrix
y Measurement vector
ω Orbit mean motion, s-1

I. Introduction

Within the past decade, CubeSats have progressed from Sputnik-like radio beacons to more fully featured
spacecraft which are capable of performing important science, commercial, and operations-related objectives.
A key aspect of this development has been the creation of integrated CubeSat pointing and translational
control systems which are now being demonstrated in orbit. Prior research, for example, has led to arc-minute
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capable attitude control systems and 3D-printed cold-gas thrusters which will be flown on 3U CubeSats within
the next year (2015).1

Of particular interest is the case of a CubeSat operating in proximity (within 1 km) of another vehicle,
including the challenging case of autonomous rendezvous & docking (AR&D) of two cooperating vehicles.
The goal of this research is to enable a maneuverable CubeSat to autonomously (i.e., without direct human
operator intervention) sense and control its orientation and position relative to another vehicle in a proximity
rendezvous and docking scenario.

The ability of small satellites to safely maneuver relative to other nearby vehicles is a critical enabling
capability that has been publicly recognized by the NASA Technology Roadmap (TA04 and TA05),2 the
Office of the Chief Technologist, the Space Technology Mission Directorate, and the Human Exploration and
Operations Directorate. Operational capabilities that would be enabled by CubeSat AR&D include on-orbit
satellite inspection, servicing, and repair, and eventually, assembly of structures in space using specialized
CubeSats as functional building blocks. Once safety considerations have been addressed, maneuverable
CubeSats could support human exploration activities by providing enhanced on-orbit situational awareness,
and performing tasks through teleoperation, potentially reducing the need for dangerous and costly human
Extra-Vehicular Activities (EVAs).

Scientifically, multi-vehicle formations have many applications. There are many cases of multi-point
physical measurements that could be used to improve our understanding of the Earth’s environment and the
Sun-Earth connection. Measuring the temporal and spatial response of the magnetosphere to solar forcing
activity is just one of many potential applications that are enabled by low cost multi-point measurements.
Performing such a mission with a formation of low cost CubeSats is encompassed within the capability of
autonomous maneuverability that is presented in this study.

While many of the pieces for such a mission are being developed separately, an integrated solution is
currently lacking. The goal of this research is to create a software defined onboard mission manager which
plans, executes, monitors, and updates the rotational and translational maneuvers and resulting trajectories
that are needed to accomplish the desired AR&D objectives. Such a process must incorporate the relative
dynamics of vehicles in Low Earth Orbit (LEO), ingest absolute and relative sensor measurements to estimate
a dynamic state vector, and manage limited actuation resources such as thruster propellant.

In a specific example, the task must be capable of maneuvering the vehicle from an initial standoff distance
of 1 km to a relative separation of 1 m (for example) with matching velocities, at which point docking of
the vehicles may be accomplished. The software must be able to self-monitor the safety of the projected
trajectory throughout the maneuver with regard to collision risk and to put the vehicle in a safe holding
trajectory if there is an unacceptable deviation from the intended path. The process must accept high level
go/no-go commands and potentially be halted or re-started at any point by a human overseer monitoring the
AR&D process from afar. The software must be designed to operate in the presence of single event upsets
(SEU) and software resets. The software must execute in real-time in an onboard microprocessor that is
used in a commercial-off-the-shelf (COTS) implementation of a low cost CubeSat.

Fortunately, this task may be partitioned using an approach that is technically manageable, leverages
current activities, and takes advantage of previously developed resources. The University of Texas at Austin’s
(UT-Austin’s) Texas Spacecraft Lab (TSL) has partnered with NASA’s Johnson Space Center (JSC), incor-
porating their experience in vehicle proximity operations, rendezvous and docking.

This research is specifically tailored to the software mission manager portion of the AR&D task. A soft-
ware tool known as CubeSat Autonomous Rendezvous & Docking Software (CARDS) is being developed to
provide an on-board mission manager for autonomous spacecraft proximity operations. The design approach
is to select and implement, rather than re-invent, established algorithms that are suitable for the application.
Using separately available algorithms and code, an integrated executable software program is being created
and tested that meets the stated AR&D requirements and could run in real-time on a CubeSat embedded
microprocessor system. The software is modular and reusable, and will become part of the AR&DWarehouse
for future small satellite flight opportunities.3

II. System Description

II.A. Overview

CARDS consists of two parts, an environmental simulation and the mission manager software. The purpose
of the environmental simulation is to create an analytical setting for the mission manager to be tested. The
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mission manager can be considered the core of the CARDS project, as this is where the actual autonomy
and guidance portion of the system resides. Details of the environmental simulation and mission manager
designs are discussed in this paper.

II.B. Tools

Two software tools were used for creating the simulations for CARDS. This section provides a description of
these tools and how they were implemented to create the simulation.

II.B.1. Trick

All of the simulations for CARDS were created using a software package called Trick that was developed
at NASA’s Johnson Space Center (JSC) in Houston, Texas. Trick is a useful tool for creating and running
dynamic simulations, which is why it was chosen for use in this project. An advantage that Trick brings is its
ability to easily separate simulation and real-time execution for the user. Under the hood, Trick schedules the
simulation functions to run at the appropriate time intervals while also monitoring the real-time clock, and
will attempt to take action if it begins to fall behind schedule. Unfortunately, this may result in some skipped
simulation execution frames as it will attempt to start the new appropriate execution frame immediately to
catch up.

Functions and objects are written in C/C++ to be used by Trick. Simulation objects are defined in
a syntax similar to C++ in a file named the S_define file. The S_define file is how Trick knows what
objects should exist in the simulation as well as information about the functions that act on the objects.
The functions and their function specifications are declared inside the definition of the simulation object.
Function specifications are identifiers on functions that explain to Trick the purpose of that particular
function, and therefore where and how it should be called during execution. There are numerous types
of function specifications including initialization, default data, scheduled, derivative, and integration. The
initialization specification means that the function should be called as soon as the simulation is started. The
default data specification is typically responsible for setting any parameters that may have been included in a
written simulation; this occurs after initialization so that a user can change the parameters of the simulation
without worrying about a variable not being initialized. Unlike the initialization and default data functions
that are usually run only once per simulation, scheduled functions are run by Trick at a user specified interval.
A derivative function is used to calculate any derivatives needed for integration. Integration functions are
used to perform Trick’s integration. Both derivative and integration functions are called at every simulation
time step.

Another advantage of Trick is that it utilizes user-made input files which define the parameters inside a
simulation that are read into the simulation at runtime. This allows simulations with differing parameters
to run without the need to recompile the whole simulation; only the input file needs to change. These input
files are scripts written in the Python language that are processed at execution.4

II.B.2. JEOD

A module extension of Trick, known as the JSC Engineering Orbital Dynamics (JEOD) module, is also
used. This module “is a collection of computational mathematical models that provide vehicle or vehicles
trajectory generation by the solution of a set of dynamics models represented as differential equations.”5 It
contains models that are useful for simulating planets and their gravitation, as well as orbit perturbations
including atmospheric drag. The planet models have the option to be spherical or non-spherical bodies with
spherical harmonics. The atmospheric drag effects are easily able to be turned on or off before running the
simulation. JEOD also has the built-in capability for coordinate transformations, utilizing planet-centered
inertial, planet-fixed, and local-vertical local-horizontal (LVLH) frames. It also includes relative frames that
can be defined in relation to a specified target frame, such as the target satellite. This makes it easier to
obtain relative navigation data for the chaser satellite. JEOD splits all of its models into four categories:
Dynamics, Environment, Interactions, and Utilities. Fig. 1 shows a diagram for the JEOD classes that are
used within Trick. More information regarding JEOD can be found in the JEOD User’s Guide provided by
NASA JSC.

3 of 13

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 G

E
O

R
G

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

D
ec

em
be

r 
20

, 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

03
18

 



DynamicsSimObject

-DynManager

-TimeManager*

TimeSimObject

-TimeManager

-TimeUTC

VehicleSimObject

-Simple6DofBody

PlanetSimObject

-Planet

-SphericalHarmonicsGravityBody

EnvironmentSimObject

-GravityModel

-De4xxEphemeris

-DynManager*

-TimeManager*

DynManager

TimeManager

Planet GravityModel TimeUTC

SphericalHarmonicsGravityBody

Simple6DofBody

Figure 1. Environmental simulation class diagram showing basic JEOD class implementation

II.C. Sensor Models

As previously mentioned, the vehicle simulation objects possess child objects that model the various onboard
sensors. The currently modeled sensors are accelerometers and a Global Positioning System (GPS) receiver.
This sensor list is preliminary and will be updated as more aspects of the CubeSat hardware are included
in the analysis. This section describes the models used to simulate these onboard sensors.

II.C.1. Accelerometer

The model for each accelerometer sensor measurement is given by

ã = a+ εa + ηw,a (1)
ε̇a = −εa/τa + ηd,a (2)

where tilde represents a measured sensor value. In other words, the measured acceleration is the truth with
an added Gauss-Markov noise term, εa, and white noise measurement error, ηw,a, with standard deviation,
σw,a. Eq. (2) represents a first-order Gauss-Markov noise model for the random walk measurement error.
The values for the error correlation time constant, τa, and the standard deviation, σd,a, for the zero-mean
Gaussian distribution terms are parameters associated with a physical accelerometer. A manufacturer may
give the accelerometer random walk noise, σr,a, in units of m/s2

/
√
Hz. This is related to the standard

deviation for the Gauss-Markov white noise error, σd,a, by6

σd,a = σr,a
√

2/τa (3)

A C++ class to model an accelerometer was defined for use with Trick. The accelerometer class has
variables pertaining to the white noise standard deviation, σw,a, the time constant, τa, and the drift bias, σr,a.
At every simulation time step interval, the time-correlated noise term εa is integrated. The accelerometer
class has an update function that calculates new measurement values. The rate for the update function to
be called is set in the S_define file. At every time step where the update function is called, the accelerometer
class object obtains the true acceleration for the vehicle body to which it is attached and adds in the current
value for the noise, εa, as well as a value from the distribution, ηw,a; the result is stored in a variable for the
current acceleration measurement.
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The parameters for each accelerometer (σw,a, τa, σr,a) are set in the simulations input file. It should
be noted that the user inputs σr,a and the model uses Eq. (3) to calculate the value for σd,a. Thus, it is
easy to perform simulations for modeling different accelerometer devices. The accelerometer noise can also
be turned off in the input file by setting the standard deviations for the noise terms to zero and a flag can
be set so that the integration of εa does not occur. This allows for testing using true acceleration values if
desired.

II.C.2. GPS

The GPS sensor model uses the same measurement and noise format as the accelerometer sensor model.

r̃ = r + εp + ηw,p (4)
ε̇p = −εp/τp + ηd,p (5)

Similar to the accelerometer model, the GPS sensor was written as a C++ class. The GPS class has
variables that store the current measured GPS position in the Earth-Centered Inertial reference frame (ECI),
as that is the default reference frame for the Trick simulation. However, the reference frame for the GPS
measurements can be easily changed to store the Earth-Centered Earth-Fixed (ECEF) position using the
built in JEOD reference frame transformations for a more realistic simulation. Like the accelerometer model,
the GPS class has an update function that is set to be called at a regular time interval in the S_define file.
When the simulation calls a GPS object’s update function, the measurement for the current position is
calculated. First, the GPS object obtains from JEOD the actual satellite position in the simulation (in the
default ECI frame). Then, the value for the drift and random walk noise, εp, at the current simulation time
is added to the actual position, as well as a generated random white noise value from the ηw,p distribution.
The drift and random walk noise is integrated at the simulation’s set integration rate and occurs before the
GPS update function is called so that the most up-to-date noise value is used in the measurement calculation.
In addition, it is assumed that the GPS receiver is also estimating a solution for the spacecraft velocity. The
model for the velocity is comparable to the position model, with different values for the noise and time
constant variables.

II.D. Kalman Filter

A Kalman filter class was created to perform an extended Kalman filter (EKF) technique to estimate a
satellite’s position, velocity, and accelerometer bias using the accelerometer and GPS position and velocity
measurements. Additionally, the covariance of the state is estimated. First, the standard procedure for
finding the estimate of a state and covariance from a process is shown. Then, the model for the chaser and
target vehicle state estimation is described.

A standard process has the form shown by Eq. (6) where X represents the n × 1 state vector with n
states, u is the q × 1 control vector, and f is an n × 1 vector-valued function representing the dynamics of
the system.7 The second term, Gw(t), represents uncertainty in the process model, where w is an n × 1
vector of white noise whose standard deviation is a result of the process model and must be tuned.

Ẋ(t) = f(X,u, t) + Gw(t) (6)
Y (t) = g(X, t) + v(t) (7)

Equation (7) is the measurement model, where Y (t) is an m × 1 measurement vector and v(t) is an
m × 1 white noise vector. The process and measurement noise terms, w and v, have zero correlation with
covariances Q and R, respectively.

E[wvT ] = 0 (8)
E[wwT ] = Q (9)
E[vvT ] = R (10)
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It is assumed that there is no cross-correlation between the elements in each noise vector and as a result Q
and R are diagonal matrices. This model can be linearized by taking the first-order Taylor series expansion
of Eq. (6) about the current state estimate x̂ with X(t) = x̂(t) + x(t) and Y (t) = g(x̂, t) + y(t).

ẋ(t) = Ax(t) + Bu(x, t) (11)
y(t) = Hx(t) (12)

where the matrices A, B, and H have sizes n× n, n× q, m× n, respectively, and are defined as

A ≡ ∂f/∂x|x=x̂ (13)
B ≡ ∂f/∂u|x=x̂ (14)
H ≡ ∂g/∂x|x=x̂ (15)

The covariance propagation is performed with the following model.

P(t) = E[x(t)x(t)T ] (16)
Ṗ(t) = AP + PAT −PHTR−1HP + GQGT (17)

Assuming an a priori estimate for the state estimate and covariance, it is now possible to update these
estimates using the models above at each measurement epoch. If there is no a priori estimate, x̄(0) = 0
and P̄(0) = In×n are used. The procedure for updating the state estimate is to first propagate the a priori
estimate and covariance to the next measurement epoch. Then, the measurement model is calculated at
the current state estimate. The Kalman gain is then found and used to find the new estimated state x̂ and
covariance P. This procedure is outlined below.

1. Propagate a priori estimates x̄ and P̄ using eqs. (18) and (17) to next measurement epoch to obtain
x̂ and P.

2. Calculate the measurement residual, y(t) = Y (t)− g(x̂, t)

3. Find the Kalman gain K = (PH)−1(HPHT + R−1)

4. Calculate new best estimate x̂new = Ky

5. Calculate new covariance Pnew = (In×n −KH)P

6. Update a priori estimate x̄ = x̂new, P̄ = Pnew

The state for a satellite in orbit around Earth is given in terms of position and velocity of the satellite in the
ECI reference frame, as well as the accelerometer bias. The vehicle has some 3 degree-of-freedom acceleration
control (through thrusters or another actuator). Therefore, the number of states in this case is n = 9 with
q = 3 controls. The resulting state space model is

ẋ(t) =

 ṙ
r̈
b

 =

 ṙ
−µr/r3 + u

0

 (18)

A =

 03×3 I3×3 03×3

J 03×3 03×3

03×3 03×3 03×3

 (19)

B =

 03×3 03×3 03×3

03×3 I3×3 03×3

03×3 03×3 03×3

 (20)

G = I9×9 (21)
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Where

J ≡ ∂r̈
∂r = − µ

r3 I3×3 + 3µ
r5 rrT (22)

The measurements being made are the position, velocity, and acceleration of the satellite. In order to
account for the bias in the accelerometer measurement the accelerometer bias term is added into the model
for the acceleration.

y(t) =

 r
ṙ

−µr/r3 + b

 (23)

H =

 I3×3 03×3 03×3

03×3 I3×3 03×3

J 03×3 I3×3

 (24)

II.E. Vehicle Models

VehicleSimObject 

GPS 

Accelerometer 

Kalman Filter Controller 

Position 

Velocity 

Acceleration 

State Estimate 

Simple6DofBody LvlhDerivedState OrbitalDerivedState RelativeDerivedState 

TrueState 

Figure 2. Vehicle simulation block diagram

The CARDS environment is specified for a ren-
dezvous guidance situation. Therefore, there
are two vehicles that need to be simulated,
the target and the chaser. For preliminary re-
sults, the target and chaser have been assumed
to be identical in mass and instrumentation.
Each vehicle is a separate object of a vehicle
simulation class defined in the S_define file.
The vehicle simulation class contains instances
of JEOD classes that model the mass proper-
ties as well as the translational and rotational
state of the vehicle. The vehicle class also has
objects of the accelerometer and GPS sensor
classes. An object of the Kalman filter class is
also defined in the vehicle object. The Kalman
filter object’s update function is called at a reg-
ularly scheduled interval to estimate the state
of the vehicle object.

II.F. Controller

A simple guidance law was implemented to control the chaser satellite to a 1 meter distance from the target
satellite. The law implemented is described in a paper by D’Souza8 using Hill’s equations for satellites in
near-circular orbits.

Ẋ(t) = AX(t) +Bu(t) (25)
X(t) = [x y z ẋ ẏ ż] (26)

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2ω
0 −ω2 0 0 0 0
0 0 3ω2 −2ω 0 0


(27)

B =
[

03×3 I3×3

]T
(28)

u(t) = −BTR(t)Q−1(t)
[
ψ −RT (t)X(t)

]
(29)
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In Eq. (29) the variable ψ = [xf yf zf ẋf ẏf żf ]T is the desired state of the controlled vehicle
at the given final time, tf . It can easily be seen that the y direction can be decoupled from the x and z,
and as such the control can be split into two different problems to be solved separately. The matrices R
and Q are the guidance and controllability matrices whose elements will be defined for each problem. The
controllability matrix, Q, has the property of symmetry, Q = QT .

As shown by D’Souza, the coupled control for x and z can be solved using

R11 = 1 (30)
R12 = 0 (31)
R13 = 0 (32)
R14 = 0 (33)
R21 = 6(ωtgo − sinωtgo) (34)
R22 = 4− 3 cosωtgo (35)
R23 = 6ω(1− cosωtgo) (36)
R24 = 3ω sinωtgo (37)
R31 = (4 sinωtgo − 3ωtgo)/ω (38)
R32 = 2(cosωtgo − 1)/ω (39)
R33 = 4 cosωtgo − 3 (40)
R34 = −2 sinωtgo (41)
R41 = 2(1− cosωtgo)/ω (42)
R42 = sinωtgo/ω (43)
R43 = 2 sinωtgo (44)
R44 = cosωtgo (45)

Q11 = (3 sin 2ωtgo + 32 sinωtgo − 24ωtgo cosωtgo − 3(ωtgo)3 − 14ωtgo)/ω3 (46)
Q12 = −3(sinωtgo − ωtgo)2/ω3 (47)
Q13 = (6 cos 2ωtgo + 8 cosωtgo + 24ωtgo sinωtgo − 9(ωtgo)2 − 14)/2ω2 (48)
Q14 = −(3 sin 2ωtgo + 16 sinωtgo − 12ωtgo sinωtgo − 10ωtgo)/2ω2 (49)
Q22 = −(3 sin 2ωtgo − 32 sinωtgo + 26ωtgo)/4ω3 (50)
Q23 = −(3 sin 2ωtgo − 28 sinωtgo + 22ωtgo)/2ω2 (51)
Q24 = −(3 cos 2ωtgo − 16 cosωtgo + 13)/4ω2 (52)
Q33 = −(3 sin 2ωtgo − 24 sinωtgo − 19ωtgo)/ω (53)

Q34 = −(12 sin ωtgo2 )4/ω (54)

Q44 = (3 sin 2ωtgo − 10ωtgo)/4ω (55)

tgo ≡ tf − t (56)

Similarly, for the decoupled y coordinate control:

R =
[

cosωtgo −ω sinωtgo
sinωtgo

ω cosωtgo

]
(57)

Q11 = (sin 2ωtgo − 2ωtgo)/4ω3 (58)
Q12 = (cos 2ωtgo − 1)/4ω2 (59)
Q22 = −(sin 2ωtgo + 2ωtgo)/4ω (60)
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II.G. Mission Manager

The primary purpose of the mission manager is to provide a CubeSat with an autonomous guidance system.
The system must be capable of monitoring the vehicle’s rendezvous path and taking any necessary corrective
action in case of maneuver deviation or failed hardware. Although execution of the mission manager is
autonomous, human interaction is intended for higher level instructions such as go/no-go commands. The
design of the mission manager software is intended to have a few modes to provide nominal functionality with
guidance (path) and sensor health monitoring, failure correction, and standby for human input if necessary.
The highest level of the mission manager software is a mode switcher that allows for easy transition from each
mode to the next depending on events that trigger the mode switch. All of the mission manager software is
written in the C++ programming language in preparation for porting to a spacecraft computer.

A base Mode class exists to provide a baseline for the more specific mode classes which inherit from the
base Mode. Each mode class has a central function to perform the nominal processes for that mode. The
ModeManager has a pointer to a base Mode object which keeps track of the current mode of the mission
manager. A main loop performs the current mode’s nominal processes indefinitely or until a transition event
occurs. In the central function for each mode, checks exist for possible transition events. When an event is
triggered, the ModeManager’s main loop ends the functions of the current mode and enters the appropriate
mode after the transition, beginning the processes for the next mode (which is now the current mode after
transition). For instance, a sensor failure is a transition event that would exit the nominal guidance mode
and enter standby for human input.

Another design of the mode classes is that each class is a singleton. Only one object of each mode may
exist in the software. This is enforced by having a static pointer of each mode’s own class type inside of
its own definition. The constructor for each mode class is also private so that the mode cannot be created
accidentally; a function belonging to each mode class must be called to create an instance of that mode.
In addition, this creation function checks if an instance of the object exists by checking the static pointer
member. If the static pointer is null, no instance of that mode has yet been created and the constructor is
called and the static pointer is set to point to the newly created mode object. Furthermore, static variables
such as these mode pointers must be defined at compile-time of the software, meaning that these mode class
objects will always exist from start to finish.

A block diagram of the mission manager software is shown in Fig. 3. Classes and threads inside the
mission manager software are represented by light blue and orange boxes, respectively. The green box shows
human interaction with the mission manager software.

Mission Manager

Command Thread

Human Input

ModeManager

GNC Automation Mode

Path Monitoring 
Thread

Sensor Health 
Monitoring Thread

Failure Mode

Standby Thread

Figure 3. Mission manager block diagram

As stated, an important component of
the mission manager software is to determine
the guidance maneuvers for the CubeSat. It
should be able to control the vehicle from 1 km
to a 1 m distance to the target. The chaser
satellite is assumed to be in communication
with the target satellite and is receiving pe-
riodic state updates from the target. The con-
trol law in section II.F was implemented for
testing, but this controller is intended as an
example only in order to demonstrate the op-
eration of the mission manger. The mission
manager has a thread that is responsible for
monitoring the current and planned path for
the vehicle as part of the guidance, naviga-
tion, and control (GNC) mode. The monitor-
ing thread constantly checks the chaser vehi-
cle’s trajectory for a possible maneuver devia-
tion and will autonomously trigger a corrective

action maneuver transition if needed. The mission manager calculates the nominal trajectory by propagating
the equations of motion from the maneuver’s starting state to the desired final state using the current state
estimate as initial conditions. At each measurement epoch, the thread compares the updated state estimate
to the calculated nominal state. A performance index is used to determine if the estimated satellite position
is too far off from the intended trajectory and a corrective maneuver is needed.
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Separately, another thread runs alongside the navigation thread to monitor sensor health. If a sensor
stops reporting data, the mission manager will take note and take an appropriate action, which may include
standing by for human input if a reboot is desired. Currently, there are plans to also check the case where a
sensor is reporting data which is incorrect or “false positive.” This is a much harder case to diagnose than if
the sensor is no longer responding and more research into determining the validity of sensor data is needed
for this part of the mission manager.

Another thread in the mission manager constantly listens for human input. The human input may be
override or exit commands. When an instruction is received by the command thread, the message is parsed
and the appropriate action is taken. For instance, if the user enters an override command to enter standby,
the transition to standby event is triggered as it would have if a real failure had occurred.

The standby thread exists in case of system failure. While the standby thread is running, the mission
manager waits until a continue command is received from the user. When the continue command is received
by the command thread, the standby thread’s exit event is triggered and the mission manager will proceed
with its next function.

The mission manager software is currently in development. Thorough testing is planned to ensure all
parts of the mission manager software perform as intended. The ModeManager and Mode classes will all
undergo unit testing to validate the functionality of each class individually. After each class has been unit
tested, full functional testing will be performed on the mission manager software by testing predetermined
scenarios to simulate failures.

The sensor health thread will be tested and validated by changing the value of a variable acting as a flag
in each sensor object mid-simulation. If a flag that controls whether or not the sensor object is collecting
data is set to false, that object’s update function does not obtain new values for the sensor’s measurement
variable. The data collection flag is controlled with a button on a Trick created graphical user interface
(GUI). When the button is pressed by the user, the value of the data collection flag toggles between off
and on values. Similarly, another flag variable owned by each sensor object is responsible for the false
positive data case. When this flag is set to true, the sensor’s update function will provide incorrect data
measurements. Alternately, scheduled simulation events such as sensor failures can be scripted to occur at
designated times through a user defined input file.

A similar testing scheme will be used for the GNC mode thread. Using the same GUI method, the mission
manager may receive false state estimates or erroneous measurement data, simulating that the vehicle is on
a path different than the nominal. The corrective action taken by the mission manager software is then fed
back into the testing GUI, affecting the true vehicle state.

An issue to be resolved is how to determine if the vehicle’s sensors have failed due to bad calibration
(or other failure) or if the vehicle is off the nominal trajectory when the estimated vehicle state differs from
the calculated nominal state. If only one sensor is providing measurements that are not within a to be
determined tolerance as the other sensors, then there is a greater chance that a sensor failure has occurred
rather than the vehicle being off the calculated path. However, if an unlikely situation presents itself where
all sensors have failed in a similar bias, it is a possibility that the mission manager decides the vehicle is
deviating from the nominal path yielding an undesired result. The likelihood of this scenario and possible
solutions will be researched examined in future work.

III. Results

The environmental simulation was run for approximately 5 orbits (8 hours) with the chaser satellite in
orbit around Earth at an altitude of 400 km in cases with and without the controller providing actuation. In
this simulation, Earth was modeled as a spherical body and there were no atmospheric drag effects. Typical
results from the simulation are presented.

III.A. Sensor Measurements

Values for the sensor noise parameters were chosen to demonstrate simulation functionality. Noise parameters
may change depending on further research into acceptable real-world trends and capabilities. In the following
sections, the error due to drift for each sensor is shown.
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III.A.1. Accelerometer

The following parameters were used for the accelerometer sensor:
σw,a = 3.162 cm/s2

σr,a = 3.162 cm/s2
/
√
Hz

τa = 10 min

III.A.2. GPS

The parameters for the simulated GPS sensor are given below. A subscript v refers to the GPS velocity.
σw,p = 1 m
σr,p = 3.162 m/

√
Hz

τp = 10 min

σw,v = 1 km/hr
σr,v = 2.24 m/s/

√
Hz

τv = 10 min
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Figure 4. Accelerometer drift using
σr,a = 3.162 cm/s2/

√
Hz and τa = 10 min
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Figure 5. GPS position drift using σr,p = 3.162 m/
√

Hz
and τp = 10 min

III.B. Kalman Filter

The GPS and accelerometer sensors were modeled as measurements with the parameters described in the
previous sections. The measurements were input into the Kalman filter object’s update function to perform
the state estimation. At each estimate epoch, the difference between the estimated and true states was
calculated. A constant 2 m/s2 bias was added into the accelerometer measurements to demonstrate that the
filter correctly estimates and removes the accelerometer bias.

It can be seen that the estimated state has an error that stays near 2 m, which is due to the noise in the
GPS position measurements shown in Fig. 5. In Fig. 7 the bias estimation is centered around 2 m/s2 as
expected.
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Figure 6. Estimated position error
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Figure 7. Estimated accelerometer bias
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III.C. Controller

The second example by D’Souza was recreated to confirm the implementation of the controller. The chaser
satellite was initially at a position of 2 km ahead of the target satellite with a desired final distance of 200
m. The transfer time was defined as 2400 seconds. The results of the maneuver can be seen in Figs. 8-10. It
can be seen in Fig. 8 that the vehicle state starts at an initial distance of 2 km in the X-axis and successfully
reaches the target distance within the 2400 second transfer time. The measurements given in the testing
of the controller were true measurements without noise. This was done to show that the controller was
implemented correctly. The controller will operate on noisy measurements when being used in conjunction
with the mission manager.
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Figure 8. Chaser position
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Figure 9. Chaser velocity

IV. Conclusion
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Figure 10. Chaser in-plane trajectory

A simulation for satellites performing an autonomous
rendezvous maneuver was developed using the Trick sim-
ulation software with JEOD package. Satellite vehicles
were simulated in orbit around Earth with GPS and ac-
celerometer sensor models with noise error. A Kalman
filter and control law were implemented for these vehicle
objects for a baseline simulation.

A mission manager is currently in development to
be used as an autonomous guidance manager for Cube-
Sats. The mission manager software is intended to iden-
tify guidance and sensor failures and perform corrective
action without human input. The preliminary design for
this software was discussed.
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