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The Mars Science Laboratory entry vehicle successfully landed the Curiosity rover on
the Martian surface on August 5, 2012. A phenolic impregnated carbon ablator heatshield
was used to protect the spacecraft against the severe aeroheating environments of atmo-
spheric entry. This heatshield was instrumented with a comprehensive set of pressure and
temperature sensors. The objective of this paper is to perform an inverse estimation of
the entry vehicle’s surface heating and heatshield material properties. The surface heat-
ing is estimated using the flight temperature data from the shallowest thermocouple. The
sensitivity of the estimated surface heating profile to estimation tuning parameters, mea-
surement errors, recession uncertainty and material property uncertainty is investigated.
A Monte Carlo analysis is conducted to quantify the uncertainty bounds associated with
the nominal estimated surface heating. Additionally, a thermocouple driver approach is
employed to estimate heatshield material properties using the flight data from the deeper
thermocouples while applying the shallowest thermocouple temperature as the surface
boundary condition.

Nomenclature

B′ Dimensionless surface blowing rate
CH Heat transfer coefficient = ρeueCh

Ch Stanton number for heat transfer
Cp Specific heat
h Enthalpy
Hr Total recovery enthalpy
ṁ Surface blowing rate
q Heat rate
t Time
T Temperature
α Surface absorptivity
ε Surface emissivity
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κ Thermal conductivity
ρ Density
σ Stefan-Boltzmann constant, standard deviation

Subscript and superscripts

c Char
cond Conduction
e Boundary layer edge
g Pyrolysis gas
rad Radiative
s Surface
v Virgin
w Wall
∞ Freestream

I. Introduction

Ablative materials are commonly used to protect atmospheric entry vehicles from the severe aerothermal
environment they experience during the entry’s hypersonic regime. There are significant uncertainties

associated with the computational models used to predict an entry vehicle’s surface heating in the Martian
atmosphere and ablative materials thermal response.1 These uncertainties have a significant effect on the
Thermal Protection System (TPS) material selection and total mass, and therefore limit our ability to
design more capable and robust Entry, Descent and Landing (EDL) systems. Flight data help with the
quantification and possible reduction of design uncertainties. Mars Viking landers and Mars Pathfinder were
the only Mars missions that were equipped with instruments that returned heatshield data during their
atmospheric entries. A few studies have been performed to analyze the data returned by these missions;
however, due to the limited nature of these datasets it is difficult to make any general conclusions about
Mars entry aerothermal modeling based on the data from these missions.2–6

The Mars Science Laboratory successfully landed the Curiosity rover on the Martian surface on August
5, 2012. The MSL aeroshell was a 4.5-meter diameter spherically-blunted 70-degree half-angle cone with a
triconic afterbody.7 MSL’s forebody heatshield was made of an ablative material called Phenolic Impregnated
Carbon Ablators (PICA).8 During the design phase, major uncertainties existed in the MSL’s aerothermal
environment due to the prediction of Boundary Layer Transition (BLT) early-on in the trajectory.9 This
resulted in the application of conservative assumptions for the design aerothermal environments including
fully turbulent flow, supercatalytic wall and roughness heating augmentation. Based on these analyses and
mission mass allocations, a uniform PICA thickness of 1.25 inch was used.10,11 In order to improve the
state-of-the-art aerothermal modeling tools, the MSL heatshield was instrumented with a comprehensive set
of pressure and temperature sensors called MSL Entry, Descent and Landing Instrumentation (MEDLI).12

The aeroheating subsystem, called MEDLI Integrated Sensor Plug (MISP), provided subsurface temperature
measurements of MSL’s PICA heatshield at different locations and depths. The MEDLI dataset provided
the first non-Earth entry aeroheating data since the Pathfinder mission, and more EDL data than all of the
previous Mars missions combined.

In previous studies, the authors performed a preliminary post-flight analysis of the MSL’s aerothermal
environment and TPS performance.13–15 Those studies included the presentation of the flight data, direct
comparison of temperature data and thermal response model predictions, preliminary inverse estimation of
surface heating and discussion of observed BLT from flight data. The current work advances the previous
study by providing updated surface heating and material property estimations in addition to performing
uncertainty and sensitivity analyses. Section II describes the MISP instrumentation and flight data. Section
III presents the estimated surface heating profiles and provides sensitivity and Monte Carlo analyses to
quantify the uncertainty associated with the estimated heating. Section IV discusses material property
estimation using a thermocouple (TC) driver approach. This paper will focus on the inverse analysis of the
flight data. References 16–18 discuss the forward comparison approach and ground testing efforts related to
MISP instrument and PICA material properties.
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II. MISP Instrumentation

MEDLI consists of seven pressure ports and seven PICA plugs at different locations on the MSL heat-
shield. The suite consists of three subsystems: MISP temperature/isotherm sensors, Mars Entry Atmospheric
Data System (MEADS) pressure sensors, and Sensor Support Electronics (SSE). MISP sensors are installed
into PICA plugs that are flush-mounted to the flight heatshield. The MISP plugs (Fig. 1a, T labels) are
strategically placed to cover a broad range of heat rate environments, while the MEADS locations (Fig. 1a,
P labels) are concentrated in the higher pressure and lower heat rate region near the stagnation point and
the nose region.

(a) Sensor Locations (b) MISP Plug

Figure 1. Location of MEDLI sensors on MSL heatshield and schematic of MISP plug.19

Each MISP plug is 33 mm in diameter with a total depth of 29 mm, and contains four type-K U-shaped
thermocouples. A schematic of a MISP plug is shown in Fig. 1b. The thermocouples are at nominal design
depths of 2.54, 5.08, 11.43, and 17.78 mm (0.10, 0.20, 0.45, 0.70 inch) from the surface of the plug (see
reference 13 for X-ray measured actual depths of each thermocouple). The top two thermocouples were
intended primarily for aerothermodynamic reconstruction and are sampled at 8 Hz, while the two deeper
thermocouples were primarily intended for material property reconstruction and are sampled at 1 or 2 Hz
depending on the location. Data from TC3 and TC4 thermocouples in plugs 5 and 7 are not recorded because
of data channel limitations. Each MISP plug also contains an isotherm sensor called Hollow aErothermal
Ablation and Temperature (HEAT).20,21 HEAT is an improved version of a similar sensor that was used
for the Galileo entry probe to determine surface recession.22 However, at the lower heat rates experienced
during Martian entry, it is not expected to provide any information on recession. The sensor elements are
conductive, so as the char layer-virgin material interface advances, these elements become shorter and the
voltage output decreases. The HEAT sensor voltage measurements can be correlated with the sensor length
which can then be correlated with char depth. The HEAT sensor is sampled at 8 Hz.

The MEDLI data were recorded and stored successfully during the atmospheric entry. A limited part of
the data was transmitted in real-time and the full dataset was received from the rover within a week after
landing. The thermocouples behaved as expected and the data contained a low amount of noise. The HEAT
sensor however did not behave as expected and the recorded transient data were very noisy. For this reason,
the analysis of HEAT data is not pursued in this work. The flight data are not shown in this paper for the
sake of brevity and the readers are suggested to consult references 13, 14 and 15 for the presentation of the
flight data and discussions of direct observations from the thermocouple temperature profiles. The current
study will focus on the inverse analysis of the data. In this paper, time zero is assumed to be the entry
interface time corresponding to a spacecraft time (SCLK) of 397501714.953125 seconds.
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III. Surface Heating Estimation

Aerothermal heating and ablative material response are naturally coupled physical phenomena; however,
they are often treated in an uncoupled fashion for design. Computational Fluid Dynamics (CFD) tools are
used to predict the aerothermal heating of an entry vehicle based on time-varying trajectory information
such as velocity, atmospheric density, angle of attack and sideslip angle. Langley Aerothermodynamic
Upwind Relaxation Algorithm (LAURA)23 and Data Parallel Line Relaxation (DPLR)24 are the state-of-
the-art NASA codes that were used for the calculation of MSL surface heating. These CFD tools predict
the aerothermal environment by typically assuming a radiative equilibrium wall and certain wall catalycity
and turbulence models. TPS material response including ablation, pyrolysis and heat conduction into the
material are often neglected at this analysis stage. Surface boundary conditions are derived from CFD
solutions and are then used as inputs to heatshield ablation and thermal response tools. Fully Implicit
Ablation and Thermal response (FIAT)25 program is the standard NASA code used today for ablative
material thermal response modeling. FIAT simulates 1-D heat conduction, material decomposition and
pyrolysis gas generation and surface ablation using equilibrium chemistry models. In this study, FIAT will
be used to simulate heatshield material in-depth temperature response and syrface energy balance.

MISP data include in-depth temperature measurements of the heatshield; therefore, the surface heating
cannot be derived directly from the flight data, meaning that the reconstruction of surface heating must
be posed as an inverse problem. Inverse heat transfer problems often involve the estimation of a boundary
condition such as surface heating or temperature, or the estimation of model parameters such as material
thermophysical properties.26–28 Estimation of time-dependent surface heating belongs to the class of function
estimation problems, as they require the identification of many points in time. Inverse methods attempt to
estimate the surface heating by minimizing an objective function of the difference between analytical model
predictions (FIAT temperature calculations) and measurements (MISP temperature data). A commonly
used function for this difference calculation is the sum of squared differences (ordinary least squares).

Two classes of methods are typically used for surface heating estimation: whole-time domain methods
and sequential methods. Whole-time domain methods iteratively estimate the entire heating profile using
the entire measurement range, while sequential methods estimate the surface heating at a given time using
a limited subset of the measurements and proceed sequentially in time. Sequential methods can be more
efficient if set up properly; however, whole-time domain methods are typically more stable and can be
more easily integrated with FIAT. Therefore in this study, an iterative whole-time domain method called
the Gauss-Newton method will be used. It is a modification of Newton’s minimization method applicable
to nonlinear least squares problems which does not require the knowledge of second derivatives; however,
it requires the time-consuming computation of the first-derivative Jacobian matrix. This finite difference
computation requires hundreds of FIAT simulations at each iteration.

Inverse problems are mathematically ill-posed, meaning that conditions of solution existence, uniqueness
and stability are not guaranteed. These problems can be unstable in the presence of data/model errors
or when large numbers of parameters are estimated. This can result in significant oscillations that lead to
inaccurate or non-physical estimation results. Regularization techniques can be used in conjunction with the
Gauss-Newton minimization scheme to make the problem better posed and more stable. Regularization has a
smoothing effect on the parameter estimates. Andrey Tikhonov devised a procedure for the regularization of
ill-posed problems.29 His technique involves the addition of a penalty function to the ordinary least-squares
objective function to alleviate oscillations in the solution. This penalty term is composed of a squared
difference function of the surface heating profile estimation points and can take various forms (0th,1st and
2nd order). For example, the zero-order function is equal to the sum of squares of estimation points while
the first-order function is equal to the sum of squared differences of consecutive estimation points. The
level of regularization can also be adjusted using a scaling parameter.28 A more detailed description of the
Gauss-Newton algorithm and Tikhonov regularization method can be found in reference 13.

In this analysis we will use the shallowest thermocouple data (TC1) for the purpose of surface heating
estimation as it is the most sensitive to surface heating and least affected by subsurface material property
uncertainty. Heating estimation is performed every 1 second (1 Hz) using flight data at a frequency of 2 Hz.
Two distinct approaches are used. The first approach reconstructs the surface heating by estimating heat
transfer coefficient at an ablating surface with surface recession. Due to the limitations of this approach for
MSL heating conditions, a second approach is also employed which directly estimates surface heating at a
non-receding surface.
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A. Heat Transfer Coefficient Estimation of an Ablating Surface

For an ablative material, surface heat rate is not a direct input to FIAT. Surface heating is modeled with a
surface energy balance equation which represents many physical phenomena that occur at the surface of an
ablative material. This equation (called “option 1” in FIAT) is:

CH(Hr − hw) + ṁghg + ṁchc − (ṁc + ṁg)hw + αwqrad − σεw(T 4
w − T 4

∞)− qcond = 0 (1)

The first term represents the sensible convective heat rate. The sum of the second, third and fourth
terms defines the total chemical energy at the surface due to the ablation products and pyrolysis gas. The
fifth and sixth terms are the incoming radiative heat rate absorbed by the material and the reradiation to
the environment. The last term in Eq. (1) represents the rate of heat conduction into the TPS material.
As mentioned before, surface heating is calculated by CFD tools assuming radiative equilibrium wall and
certain catalytic and turbulence models. Based on CFD solutions, the total recovery enthalpy, Hr, and wall
enthalpy, hw, can be determined. Knowing these values and the CFD-predicted convective heat flux, the
surface heat transfer coefficient, CH , is calculated. CH , Hr, surface pressure, and the blowing reduction
parameter are input to FIAT as functions of time. It should be noted that the CFD heat transfer coefficient
values are unblown, and FIAT corrects the input CH for heating reduction due to pyrolysis gas blowing.25

Pre-calculated equilibrium wall chemistry solutions (B′ tables) are input to FIAT for a given material and
the surface energy balance is solved iteratively using the boundary condition inputs from CFD and the B′

tables. In doing so, FIAT calculates its own wall enthalpy and temperature which are often not equal to the
CFD-calculated values due to the usage of different surface energy balance approaches.

Many of the parameters in Eq. (1) can affect the subsurface thermocouple temperature and the surface
heating estimate. Some of these parameters are inputs to FIAT while others are calculated internally by
FIAT. While it is desirable to have an accurate knowledge of all these terms, they are not all directly
observable from the flight data and any attempt to simultaneously estimate multiple parameters leads to
non-unique solutions. The authors have traditionally defined the inverse problem as the estimation of the
time-dependent heat transfer coefficient profile. This approach was used for the inverse analysis of simulated
MISP data30 and Mars Pathfinder data.6 Inverse methods are used to estimate heat transfer coefficient as
a function of time while keeping recovery enthalpy fixed to the CFD-calculated value and allowing FIAT
to internally calculate surface ablation chemistry and material decomposition. This approach was naturally
used in the preliminary inverse estimation of MSL surface heating.13
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Figure 2. Reconstructed surface heat rate profiles at MISP locations using the CH estimation approach.

Figure 2 shows the estimated surface heating profiles at all MISP locations using the heat transfer
coefficient approach. The heat rate in this figure is the summation of the convective and chemical energy
at the surface (the sum of the first four terms in Eq. (1)). Both unregularized and regularized solutions
are shown. While unregularized solution results in a better match with the in-depth temperature data, we
can clearly see that regularization reduces the oscillations and provides a more physically realistic heat rate
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profile. Comparison of the heat rate profiles for different plugs leads to the observation that MISP5 has the
highest heating up to about 65 seconds followed by plugs 1, 4 and 7, while the plugs close to the shoulder (2,
3, and 6) remain at a low level of heating. This trend matches the laminar heating predictions by CFD tools
at the apex region (plugs 5 and 7) and stagnation region (plug 1 and 4) which were expected to experience
the highest laminar heating. However, we can clearly observe the onset of BLT around the 63-65 second
period for plugs 3, 2, 6 and 7. BLT results in much higher turbulent heating levels for these plugs. Plugs 2, 3
and 6 match the trends predicted by CFD tools; however, plug 7 significantly exceeds CFD predictions. This
can be attributed to heating augmentation due to surface roughness or shock-layer radiation. Additional
analysis will be required to investigate this observation. The small spike in plug 5’s surface heating around
74 seconds may also be BLT. Similar to plug 7, surface heating at plug 5 also exceeded the CFD predictions
and can be attributed to the same reasons. Plugs 1 and 4 remained laminar throughout the trajectory,
but slightly exceeded the CFD predictions. Preliminary analysis shows that the observed difference can be
partially explained by radiative heating in the stagnation region, although more work is needed.18

Some limitations and uncertainties exist in the heat transfer coefficient approach for MSL heating con-
ditions. This approach relies on equilibrium models for the calculation of surface chemistry terms. As long
as the material ablation model is accurate, the heat transfer coefficient estimation is accurate too. However,
the equilibrium chemistry model employed in FIAT for PICA is known to be inaccurate at the low heating
conditions experienced by MSL (< 100 W/cm2) and it tends to overpredict the recession.31 As a matter of
fact, the model’s recession prediction for the nominal MSL heating environment exceeds TC1 depth. This is
clearly not accurate because flight data suggest that recession was less than 0.10 inch as all thermocouples
survived.13 Figure 3 compares the nominal CFD-calculated recovery enthalpy and FIAT-calculated wall
enthalpy profiles at plugs 1 and 2. As mentioned before, this wall enthalpy is calculated by FIAT’s PICA
equilibrium model and does not match the CFD-calculated wall enthalpy. It can be clearly observed that
the two enthalpy profiles approach one another around 80-85 seconds. This leads to convective heat rate
(first term in Eq. (1)) approaching zero which results in the loss of in-depth temperature sensitivity to CH .
For this reason, in the heat transfer coefficient approach, estimation is ceased around 85 seconds as a close
match between the FIAT temperature predictions and TC1 flight data can not be achieved through CH

adjustment after this time.
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Figure 3. Recovery enthalpy and FIAT wall enthalpy compared at plugs 1 and 2.

B. Heat Rate Estimation of a Non-Receding Surface

No validated finite-rate models exist for PICA gas-surface chemistry in the Martian atmosphere. Conse-
quently, the observed lack of substantial recession in flight and the known overprediction by FIAT equilibrium
chemistry models motivate the application of another bounding approach where surface heating is estimated
without recession. Recession can not simply be turned off in Eq. (1) without regenerating the chemistry
solutions; therefore, CH estimation is not possible for this approach. An alternative surface energy balance
option is implemented in FIAT (called “option 3”) which can be reformulated into the following equation:
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qs + αwqrad − σεw(T 4
w − T 4

∞)− qcond = 0 (2)

The first term in this equation is analogous to the sum of the first four terms in Eq. (1) (reported as
the surface heat rate in the previous section) which includes the convective heat flux and chemical heating
contributions. This approach allows us to suppress surface recession, thus estimating a non-receding surface
heat rate using the inverse methods described earlier. Being independent of FIAT surface chemistry models,
this approach enables a more accurate estimation of the surface heating profile for the entire time period. The
estimation is not limited to 0-85 seconds as it was with the CH approach. Figure 4 shows the unregularized
and regularized surface heating estimates at all MISP plug locations. The estimation was performed as in the
previous section by using the Gauss-Newton method in conjunction with Tikhonov regularization technique,
and only TC1 data were used.
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Figure 4. Estimated non-receding surface heat rate profiles at MISP locations.

The same laminar and turbulent heating trends observed in the first approach (Fig. 2) can also be seen
here. In general, the estimated surface heating is higher for this approach. In the absence of recession, the
surface is farther away from TC1 and consequently higher incoming heating is required to achieve the same
in-depth temperature. We can also see that the regularized solutions provide smoother and more physically
realistic heating profiles than the unregularized solutions. Nonetheless, the unregularized solutions match
the data more accurately. Some uncertainties are associated with these estimates due to numerical issues,
measurement errors, recession uncertainty and material property variations. The next sections examine the
effect of these uncertainties on the estimated non-receding surface heat rate profile mainly at plug 2 (highest
heating case). Similar results are expected at other locations.

1. Numerical Sensitivity

Numerical sensitivity study allows us to show that the estimated heat rate profiles are stable and robust to
numerical parameters. Four parameters are examined here: regularization order, regularization parameter,
data frequency and heat rate estimation frequency. Figure 5 shows the effect of regularization order. As
mentioned before, regularization has a smoothing effect on the estimated heating profile. Minor differences
can only be observed in the peak region (67-74 seconds) in Fig. 5a. Lower order of regularization results
in higher level of damping. In Fig. 5b, we can see that the match between the data and FIAT predictions
is similar for all three cases. First-order regularization is typically used in literature for surface heating
estimation problems and will be applied in this analysis.

The plots in Fig. 6 show the effect of the regularization parameter, which is a scaling factor that controls
the level of smoothing. Estimation without regularization results in a very good match between FIAT TC1
temperature predictions and the flight TC1 data. The difference is within 1 K as shown in Fig. 6b. However,
Fig. 6a shows that the reconstructed heat rate profile includes some oscillations around the peak heating
time. As the regularization parameter is increased, the oscillations are reduced and the estimated heat
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Figure 5. Effect of regularization order on surface heating estimation results at plug 2.
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Figure 6. Effect of regularization parameter on surface heating estimation results at plug 2.

rate profile takes a shape which is more similar to CFD-generated profiles. However, we can see that the
regularization dissipates the sharp rise due to turbulent transition. We can also see in Fig. 6b that a higher
parameter value results in a worse match between FIAT temperature predictions and TC data. Consequently,
a baseline regularization parameter of 102 was selected in this work as a balance between smoothing and
data matching.

For most plugs, the TC1 temperature data are available at 8 Hz. However, selection of the data frequency
used in the inverse analysis should be approached carefully. Using the original 8 Hz data in the estimation
would require significant computer time as FIAT simulations have to be performed and saved at a high rate.
A lower data frequency is desirable because it lowers the computational cost in addition to providing an
inherent smoothing of the data through interpolation. However, one needs to ensure that the estimation
problem remains over-determined, meaning that there should be more measurement points than estimation
parameters. For example, if the surface heating is estimated at 1 Hz, the data frequency should be higher
than 1 Hz. Figure 7a illustrates the effect of data frequency on estimated surface heating profile. Data
frequency does not have a significant effect on the surface heating estimation results. However, a mild
smoothing effect is evident as the data frequency is reduced. This is related to the inherent smoothing of
the data that occurs when the original data are interpolated at a lower frequency.

Figure 8 shows the effect of estimation frequency. Higher estimation frequency results in the reconstruc-
tion of surface heating at a higher time resolution; however, it requires more computational resources. We
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Figure 7. Effect of data frequency on surface heating estimation results at plug 2.
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Figure 8. Effect of estimation frequency on surface heating estimation results at plug 2.

can see that for higher estimation frequency, turbulent transition is captured only slightly more accurately
than for the lower estimation frequency case. The temperature residual with respect to flight data is smaller;
however, the overall effect is still minimal.

This numerical sensitivity analysis showed that the estimated heat rate profiles are robust with respect
to numerical parameters. Therefore, for the rest of the analysis in this paper we will use the first order
regularization with a parameter of 102, data frequency of 2 Hz and estimation frequency of 1 Hz. This will
allow us to obtain numerically accurate smooth solutions while lowering the computational cost.

2. Measurement Error Sensitivity

Two types of measurement errors are examined here: TC depth uncertainty and thermal lag. Accurate flight
heatshield TC depths using X-ray measurement are available; however, this measurement technique can have
an uncertainty up to ±0.003 inch. Figure 9a shows the effect of this uncertainty on the estimated heating
profile at plug 2. The deviation resulting from this uncertainty is bounded by ±4 W/cm2 at the peak.

Additionally, the TC temperature readings may contain a thermal lag bias error. Thermal lag is caused
by the thermal mass of the thermocouple and is defined as the difference between the material temperature
and the thermocouple reading. Figure 9b shows the surface heating profile estimated from temperature data
corrected for a constant 1-second lag (partially based on ground testing of MISP instrumentation). We can
see that the thermal lag correction results in a 1-second shift in the estimated heating profile.
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Figure 9. Effect of measurement errors on surface heating estimation results at plug 2.

3. Recession Sensitivity

The heat rate estimation approach used in this section assumes zero surface recession because the nominal
PICA ablation model significantly overpredicts recession for MSL conditions. The only information obtained
from flight data regarding recession is that it was less than 0.10 inch (TC1 depth) as the shallowest thermo-
couples did not burn out. Therefore, it is desirable to examine the effect of surface recession on the estimated
heating profile.

Once the non-receding surface heat rate profile is estimated, the complete in-depth material response is
known. The temperature and heat conduction are known as functions of time at any depth between the
original surface and the TC1 location. If we assume that the surface is at a specific depth at a given time,
we can calculate the required surface heat rate which would maintain the same in-depth thermal response.
In equation 2, all the parameters in the second, third and fourth terms are known at any location and time;
therefore, the first term can be readily calculated for the entire time and depth domain, thus creating an
estimated surface heat rate map for varying surface locations (Fig. 10a). The surface heat rate can then
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(b) Surface heat rate profile for pre-defined recession profiles

Figure 10. Effect of surface recession uncertainty on heating estimation results at plug 2.

be estimated for a pre-defined recession profile using this map. A reasonable approach for choosing such
a recession profile is to scale the recession profile calculated by the nominal PICA ablation model for the
nominal heating environments. Recession profiles scaled to 25% and 50% are overlayed on the surface heat
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rate map shown in the same figure. Figure 10b shows the estimated surface heat rate for these pre-defined
recession profiles. We can see that increased surface recession results in a lower estimated surface heating
because the surface becomes closer to TC1, requiring a lower surface heating to maintain the same in-depth
temperature response. It can also be observed that the recession sensitivity is not significant in the first 65
seconds when surface recession is small.

4. Material Property Sensitivity

Figure 11 shows the sensitivity of the estimated surface heating profile at plug 2 to perturbations in different
PICA material properties. For this sensitivity analysis, a fixed ±10% perturbation is applied to both virgin
and char properties. In Fig. 11a, we can see that an increase in material density results in higher estimated
surface heating for the entire time period. Higher density means a higher material thermal mass and
consequently a higher surface heating is required to maintain the same temperature response. The effect is
most visible around the peak region. Pre-flight density measurement of the MISP plugs indicated only a
±1.5% variation in virgin density; therefore, the effect of density uncertainty on estimated surface heating is
expected to be small. Figure 11b shows the effect of thermal conductivity perturbation. It can be observed
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Figure 11. Effect of material property perturbations on heating estimation results at plug 2.

that a higher thermal conductivity leads to higher heat conduction into the material, resulting in a lower
surface heating required to maintain the same temperature response. Figure 11c shows the effect of specific
heat perturbation. Similar to density, higher specific heat leads to a higher thermal mass which results in
a higher estimated surface heating. However, the sensitivity to specific heat is far less than sensitivity to
density. Finally, Fig. 11d shows the effect of surface emissivity perturbation. Higher surface emissivity leads
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to higher reradiation and lower heat conduction into the material. Consequently, higher incoming heating is
required to maintain the same in-depth response. It can also be observed that the estimation sensitivity to
emissivity is significant only during the peak and post-peak regions when significant reradiation is expected
due to higher wall temperature.

5. Uncertainty Quantification

A Monte Carlo analysis is performed on the inverse estimation procedure to quantify the uncertainty asso-
ciated with the estimated surface heating profiles at plugs 1, 2 and 5. These plugs represent cases of low,
high and medium heating levels. Each Monte Carlo iteration performs a surface heating estimation for a
set of input parameters. Eight input parameters are varied in the simulation using Gaussian distributions.
Table 1 provides the standard deviation for these parameters. These values are derived based on engineering
judgment and material property characterization experiments conducted on material samples from the same
PICA billets that the MISP flight plugs originated from. For example, the virgin density of the flight MISP
plugs is measured to be within ±1.5% of the nominal PICA density. Assuming that this interval represents
±2σ bounds, the standard deviation is estimated to be 0.75% of the nominal value. The standard deviations
for other parameters are estimated in a similar manner. Char density is correlated to virgin density by using
a fixed char yield value (with a 1% standard deviation) to derive the char density from virgin density. Virgin
and char thermal conductivity are also correlated.

Table 1. Standard deviation for Monte Carlo simulation parameters

Parameter Std. Dev. (% of nominal) Parameter Std. Dev. (% of nominal)

ρv 0.75% Char yield 1% (corr.)

Cpv 4% Cpc 1%

κv 7.5% κc 10% (corr.)

εv,c 1.5% TC1 depth error 0.0015 inch

The Monte Carlo analysis is conducted for 2000 iterations. Then, the standard deviations are calculated
as functions of time for the estimated surface heat rate profiles obtained from the Monte Carlo results. After
about 1000 iterations, the peak heat rate standard deviation stabilized and did not change significantly,
affirming the analysis convergence. Figures 12a-12c show the 95% confidence intervals (±1.96σ) for the
estimated heat rate profiles at plugs 1, 2 and 5. Figure 12d presents the estimated heat rate standard
deviation as a function of time for all these three plugs.

The maximum heat rate standard deviation for plug 2 happens around the peak heating time and is about
7 W/cm2 which is almost 10% of the nominal surface heating value. The peak heat rate standard deviation
for plug 1 is about 2 W/cm2 which is less than 6% of its peak heating value. It should be noted that this
Monte Carlo analysis does not include the effect of recession uncertainty because the recession sensitivity is
determined based on post-estimation computations and relies on an arbitrarily predefined recession profile.
The recession sensitivity analysis perfomed earlier in the paper provides an indication of the expected level
of uncertainty due to recession.

IV. Material Property Estimation

Simultaneous estimation of material properties and surface heating is a challenging problem because
the surface energy balance and the in-depth material response problems are tightly coupled. Therefore in
this study, we use a thermocouple (TC) driver approach to estimate PICA material properties from MISP
flight data. The TC driver approach has traditionally been used with arcjet data in cases where the surface
boundary conditions were not characterized well. In this approach, the data from the thermocouple closest
to the surface (TC1) is used as the temperature boundary condition at that thermocouple location and the
in-depth heat transfer and pyrolysis problem is solved for the material stack beneath that thermocouple.
This approach effectively decouples the in-depth heat transfer and surface heating problems, thus allowing
the application of inverse methods to estimate material properties without the knowledge of surface heating
conditions. Inverse methods estimate material properties by matching the deeper thermocouple data (TC2-4)
and their corresponding FIAT predictions.
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(a) MISP1 estimated heat rate 95% confidence intervals
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(b) MISP2 estimated heat rate 95% confidence intervals
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(c) MISP5 estimated heat rate 95% confidence intervals
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Figure 12. Heat rate estimation uncertainty at plugs 1, 2 and 5 derived from the Monte Carlo analysis.

Unlike surface heating estimation, which is a function estimation problem, material property estimation
is a parameter estimation problem which faces certain unique challenges. These problems typically involve
the estimation of multiple correlated parameters which could lead to non-uniqueness issues. PICA mate-
rial response is characterized by multiple model parameters including decomposition, thermophysical and
pyrolysis parameters such as virgin and char density, specific heat, thermal conductivity, emissivity and
pyrolysis gas enthalpy. Not all these parameters are simultaneously observable from the data and therefore
it is impossible to estimate all of them. For complex problems where different parameters contribute to
the uncertainty, a comprehensive methodology is required to yield an accurate multi-parameter estimation.
The results of an inverse estimation depend strongly on the range of measurements used in the analysis
and input parameters being estimated. It is crucial that the measurement and parameter selections are
performed intelligently prior to the inverse estimation. The authors previously developed a multi-parameter
estimation methodology with the goal of identifying model parameters and measurement ranges that should
be used in these inverse problems.32 This methodology proposes guidelines on how to conduct the parameter
estimation via four steps: nominal analysis, uncertainty analysis, sensitivity analysis, and inverse analysis.

The first three steps provide the prerequisite information to set up a successful inverse estimation. Nom-
inal analysis examines the quality of the data and provides a direct comparison between the flight data and
the model predictions (FIAT temperature predictions). The ranges of measurements that are reliable for
inverse analysis is identified. Uncertainty analysis narrows down the list of material parameters to a subset
representing the top contributors to the overall uncertainty. Sensitivity analysis investigates potential linear
dependencies among the parameters which could cause them not to be simultaneously observable from the
data. These steps provide a list of parameters to be estimated and the ranges of data that must be used in
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the estimation process. In the last step, inverse methods are used to estimate the selected parameters from
the data. This paper focuses on the material property estimation results at plug 2. Similar analyses can be
performed for other plugs.

A. Nominal Analysis

In the TC driver approach the temperature data from the shallowest thermocouple (TC1) is used as the
true boundary condition and the thermal response for the underlying material is calculated using FIAT and
nominal PICA properties. It should be noted that while TC1 data can be deemed as the true material
temperature at TC1 depth, there is a ±0.003 inch uncertainty in the location of thermocouples. In this
analysis two bounding scenarios are considered in addition to the nominal TC depths to account for their
location uncertainty. In one scenario, TC1 depth is offset by +0.003 inch while TC2-4 depths are offset by
−0.003 inch. This will lead to the farthest possible separation between the driver thermocouple and the
underlying ones, thus resulting in a lower bound for temperature predictions. In another scenario, TC1
depth is offset by −0.003 inch while TC2-4 depths are offset by +0.003 inch leading to the closest distance
between TC1 and TC2-4 and thus a higher bound for temperature predictions. In this paper, results from
these scenarios are respectively labeled as “lower” and “upper” bounds.
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Figure 13. FIAT predictions compared to flight temperature data using a TC1 driver approach at plug 2.

Figure 13 shows the comparison between the FIAT predictions and TC2-4 flight temperature data using
a TC1 driver approach at plug 2. The lower and upper-bound FIAT predictions are presented in addition
to the nominal predictions. It can be observed that the nominal FIAT solutions slightly overpredict the
flight data at TC2 location; however, the flight temperatures are very close to the lower bound of the FIAT
temperature predictions. At TC3-4 locations, all three FIAT solutions significantly overpredict the flight
data. Considering the fact that TC3-4 are mainly in the virgin material, this overprediction is indicative of
inaccuracies in virgin material properties. We can also see that there is an unexpected slope change (“hump”)
in the TC3-4 temperature profiles. The hump happens in the 200-400 K temperature range. This trend is
observed consistently for all plug locations. Similar behavior has also been seen in the MISP qualification
arcjet dataset, in arcjet testing for some materials other than PICA, and also for Mars Pathfinder bondline
thermocouple data. This phenomenon is not well understood at present, but is believed to be associated
with some type of material or instrument-related process. Current analysis tools are not able to model this
behavior; therefore, we should not expect a match between the data and model predictions for this part of
the data. For this reason, the TC3-4 data range used here in inverse analysis is limited to the time after the
clearance of the slope change. This corresponds to the time period after about 92 and 195 seconds for TC3
and TC4 respectively.
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B. Uncertainty and Sensitivity Analysis

The goal of uncertainty analysis is to define the material properties that contribute the most to the uncer-
tainty in the heatshield material in-depth thermal response. The approach employed to accomplish this goal
is probabilistic, and is accomplished with Monte Carlo simulations. We start with a complete list of material
parameters and down-select to a smaller subset containing parameters of most importance that should be
estimated by inverse methods. This analysis should not be confused with the Monte Carlo analysis presented
in the previous section which was performed around the inverse analysis procedure to determine uncertainties
in the estimated surface heating. Unlike that analysis, this Monte Carlo simulation is performed around the
forward analysis by varying material properties and recording the material in-depth temperature response.
The input probability distributions shown in Table 1 for material properties are also used here with the
addition of pyrolysis gas enthalpy, hg. A Gaussian distribution with a standard deviation of 7.5% of the
nominal value is applied for this parameter.33 To ensure statistical accuracy, 10,000 runs are performed.
Upon the completion of the Monte Carlo simulations, a linear regression analysis of the results is performed
to calculate the uncertainty contribution of the material properties to in-depth temperature response. Fig-
ure 14 shows the uncertainty contribution of different properties to TC2 and TC3 temperature as a function
of time. The results for TC4 are not shown here because they are very similar to TC3 results. We can
clearly see that the virgin and char thermal conductivity are the top contributors to both TC2 and TC3
temperature uncertainty followed by the virgin and char specific heat.
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(a) Temperature uncertainty contribution at TC2
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Figure 14. Material property contribution to in-depth temperature uncertainty at plug 2.

Before any attempt to estimate these parameters, a sensitivity analysis must be performed to examine
the level of linear dependency among them. In inverse parameter estimation problems, it is challenging
to estimate highly dependent input parameters simultaneously because that leads to non-unique solutions
and inaccurate estimates of the parameters. Therefore, in such multi-parameter estimation problems it
is imperative to conduct a sensitivity analysis beforehand. In this analysis, each parameter is perturbed
independently by a small amount (±0.5%) and the change in in-depth temperature is recorded. Figure 15
shows the results of this sensitivity analysis for TC2 and TC3 locations at plug 2. Only the parameters that
have been identified as the top uncertainty contributors are included in this step. Examination of the shape
and magnitude of these plots gives an indication of the level of correlation between these parameters. There is
a strong correlation between specific heat and thermal conductivity. The reason for this behavior is that the
heat transfer through the material is mainly driven by thermal diffusivity which is directly proportional to
the thermal conductivity and inversely proportional to the specific heat. Therefore increasing one or reducing
the other one will have the same effect on the in-depth temperature response. These strong correlations mean
that in the presence of measurement errors these parameters cannot be estimated simultaneously as they
are not independently observable from the flight temperature data.
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Figure 15. Plug 2 in-depth temperature sensitivity to one-by-one perturbations in material properties.

C. Inverse Analysis

Uncertainty and sensitivity analyses helped us determine that virgin and char thermal conductivity are not
linearly dependent and contribute the most to in-depth temperature uncertainty. Through nominal analysis,
we also identified the range of TC2-4 measurements that should be used in the inverse analysis. Now, we
apply inverse parameter estimation methods to the TC driver problem to estimate these two parameters
by matching FIAT temperature predictions and TC2-4 flight data. Similar to heating reconstruction, the
estimation is done by minimizing an objective function comprised of the sum of squared differences between
FIAT predictions and flight data. The minimization is performed using the Levenberg-Marquardt method.
This method is commonly used in literature for parameter estimation problems. It was originally derived
by Levenberg34 and later modified by Marquardt.35 This technique was derived as an iterative method
that would tend to the Gauss-Newton method in the neighborhood of the minimum and would tend to the
steepest descent method in the neighborhood of the initial guess. This is done using a damping parameter
which reduces oscillations and instabilities due to the ill-conditioned nature of inverse heat transfer problems
in the region around the initial guess. The detailed algorithm for this method can be found in reference 32.

The inverse analysis is performed for the lower and upper bound scenarios in addition to the nominal TC
depths. This will allow us to capture the expected range of the parameter estimates due to the TC depth
uncertainty. Table 2 shows the estimates for PICA virgin and char conductivity at plug 2. The estimates
given here are scaling factors multiplied by the entire temperature-dependent thermal conductivity curve.
For example, a value of 0.9 would mean a 10% reduction in the thermal conductivity nominal value at all
temperatures.

Table 2. Material property estimation results for plug 2

Parameter Estimate Lower-Bound Estimate Upper-Bound Estimate

Virgin Conductivity 0.7902 0.8079 0.7749

Char Conductivity 0.7878 0.8714 0.7051

The inverse estimation requires about 20% reduction in both virgin and char thermal conductivity to
provide a better match the flight data. We can see that the sensitivity of char conductivity estimate to TC
depth uncertainty is much greater than virgin conductivity. Figure 16 shows the comparison of TC2-4 flight
temperature data with the nominal and post-estimation FIAT predictions. These plots are generated for the
nominal TC depth scenario. We can clearly see that a better match between FIAT predictions and flight
data is achieved after inverse estimation of virgin and char thermal conductivity. The root mean square of
errors is reduced by a factor of almost four.

It should be noted that the material property estimation analysis presented here can easily be extended
to other plugs and other thermocouple driver possibilities. For example, one can conduct this analysis
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Figure 16. Flight temperature data compared with the nominal and post-estimation FIAT prediction for plug 2 TC1
driver.

for a TC2 or TC3 driver at plug 1 to focus mainly on virgin properties. In each one of these cases, a
separate uncertainty and sensitivity analysis can be performed to identify the properties that should be
estimated. Unfortunately, all these possibilities currently can not be explored due to the observed slope
change (“hump”) in the TC3-4 data which significantly reduces the confidence in the inverse estimates.
Further material property estimation work should be pursued once this behavior is understood and modeled
in the analytical tools. Furthermore, the current analysis estimated the virgin and char conductivity by
uniformly scaling their temperature-dependent curve. In future, temperature-dependent estimation of these
properties can also be pursued to obtain more accurate conductivity curves.

V. Conclusions

An inverse analysis of the MSL entry vehicle aeroheating environment and thermal protection system
response was performed in this paper based on heatshield flight temperature data. The time-dependent
surface heating at MISP plug locations was reconstructed from the shallowest thermocouple flight data
using two different approaches. The first approach estimated the heat transfer coefficient profile while
relying on PICA equilibrium chemistry models to calculate surface ablation terms. A disadvantage of this
approach is the fact that equilibrium chemistry models are known to overpredict surface recession at MSL
heating conditions. Consequently, another bounding approach was considered where the surface heating
was directly estimated assuming a non-receding material surface. This work also investigated the effect of
numerical parameters, measurement errors, recession uncertainty, and material property perturbations on
the estimated surface heating profiles. Finally, a Monte Carlo analysis was performed for three plug locations
to determine the uncertainty bounds associated with the estimated surface heating.

Additionally, certain material properties were inversely estimated using a TC driver approach. In this
approach, the data from the shallowest thermocouple were used for the true boundary condition and material
properties were estimated to match FIAT predictions with the underlying thermocouple flight data. A four-
step methodology was utilized to determine which material properties should be estimated and what range
of temperature data should be used in the estimation. A Monte Carlo analysis was performed to determine
the most important material properties based on their contribution to in-depth temperature uncertainty. A
sensitivity analysis was conducted to investigate the level of linear dependency among the material properties
to determine which parameters are simultaneously observable from the data. Finally, virgin and char thermal
conductivity were estimated by using inverse methods to match FIAT predictions with flight data. This
analysis was performed for plug 2 only but can easily be extended to other plugs.
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The estimated heating profiles for the leeside plugs (2, 3, and 6) match the CFD predictions although
the turbulent heating augmentation is slightly lower than predictions. Plugs 5 and 7, which are located
around the apex region, experienced significantly higher heating than CFD predictions. The proximity of
these plugs to the location of turbulent transition and possible shock-layer radiative heating could explain
this phenomenon, although a more detailed investigation is required. The estimated heat rate profile at the
stagnation region plugs (1 and 4) are slightly higher than CFD predictions which can be explained partially
by radiative heating. A more detailed radiative heating analysis is suggested for future work. The estimated
surface heating profiles were shown to be sensitive to surface recession. A more accurate PICA recession
model for MSL heating conditions can significantly reduce estimation uncertainties.

The TC driver approach showed that the nominal PICA model overpredicts the temperature profile at
TC3 and TC4 location consistently for all the plugs which is indicative of inaccuracy of virgin properties.
Furthermore, a slope change was observed in the 200-400 K range in the temperature profiles of TC3 and
TC4. This behavior has been seen in other ground and flight datasets. Further analysis is needed to
understand the source of this behavior and develop relavent modeling capabilities.
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