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Mars entry, descent, and landing (EDL) trajectories are highly dependent on the ve-
hicle’s aerodynamics and the planet’s atmospheric properties during the day-of-ight. A
majority of previous EDL trajectory and atmosphere reconstruction analyses do not si-
multaneously estimate the ight trajectory and the uncertainties in the models. Adaptive
�ltering techniques, when combined with the traditional trajectory estimation methods, can
improve the knowledge of the aerodynamic coe�cients and atmospheric properties, while
also estimating a realistic con�dence interval for these parameters. Simulated datasets
with known truth data are used in this study to show the improvement in state and un-
certainty estimation by using adaptive �ltering techniques. Such a methodology can then
be implemented on existing and future EDL datasets to determine the aerodynamic and
atmospheric uncertainties and improve engineering design tools.

Nomenclature

A Process equation Jacobian matrix w.r.t. the state vector
B Process equation Jacobian matrix w.r.t. the noise vector
C Coe�cient (see subscripts)
F Force, N
f Process equation
g Gravity, m/s2

H Measurement sensitivity matrix
h Measurement equation
I Identity matrix
K Kalman gain
Kn Knudsen number
L Batch size for measurement noise covariance calculation
Mv;b Rotation matrix, vehicle-carried local horizontal to body frame
m Mass, kg
N Batch size for state noise covariance calculation
P State covariance matrix
p Pressure, Pa.
qi Quaternion between local horizontal and body frame, i = 0; :::; 3
Q State noise covariance matrix
R Measurement covariance matrix
r Planetary radius (planet-centric), m
t Time, s
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V Velocity (planet-relative), m/s
v Measurement noise vector
w State noise vector
x State vector
y Measurement vector
� Angle of attack, rad
� Sideslip angle, rad
 Flight path angle (planet-relative), rad
� Longitude, rad
� Bank angle, rad
� Atmospheric density, kg/m3

� Latitude (planet-centric), rad
 Heading angle (planet-relative), rad
! Rotation rate, rad/s

Subscript

0 Initial condition
A Axial force
i State index
j Increment for adaptive �lter
k Time increment
l Roll moment
m Pitch moment
N Normal force
n Yaw moment
T Tangential force
t Total condition
x; y; z Body frames
Y Side force
1 Freestream condition

Superscript
T Transpose
� Nominal estimate
^ Best estimate

I. Introduction

Mars entry, descent, and landing (EDL) trajectories and the Martian atmospheric properties have been
reconstructed from all past U.S. missions. All of these missions have had the same entry body geometry

(70 deg. sphere-cone) and have utilized the same supersonic parachute con�guration (Disk-gap-band), but
the aerodynamic coe�cients of these systems remain uncertain. Moreover, the Martian atmosphere is highly
variable, thus adding to the uncertainty.

Previous trajectory reconstructions have either largely ignored quantifying the uncertainties surrounding
the atmosphere and aerodynamic parameters or have assumed a known value of one of these parameters in
order to estimate the state and uncertainty of the other terms. Moreover, as trajectory propagation is highly
dependent on the vehicle aerodynamics and atmospheric properties, the uncertainties in these two properties
will increase the uncertainty in the trajectory.

Adaptive �ltering techniques, developed in the 1960’s, have been used in signal processing and inertial
guidance and navigation applications for situations where the a priori knowledge of the vehicle’s model
and sensor data uncertainties are unknown. Adaptive �lters used in conjunction with statistical �lters, like
the Extended Kalman �lter (EKF), can reconstruct the �lter state while also estimating the model and
sensor data uncertainties. Since the Mars EDL trajectory reconstruction process is an estimation process
using sensor data on-board the vehicles, this study proposes using adaptive �ltering to reconstruct the
vehicle’s trajectory, aerodynamic coe�cients, atmospheric parameters, and their uncertainties. A simulated
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dataset, where the truth is known, will be used to compare reconstruction process using non-adaptive noise
characterization, such as the EKF where the model and sensor errors are assumed to be known, to an
estimation process where such error statistics are calculated on-line by the �lter.

II. Motivation

A major objective for the reconstruction of Mars EDL ight data is to verify the performance of the
vehicle and quantify any o�-nominal behavior. It is also useful if the reconstruction methods can quantify
uncertainty in the estimated parameters that can be used in the design process. Pre-ight uncertainty
analysis has been performed for most past Mars EDL missions, and these show that among a long list of
design parameters, two major sources of uncertainties lie in the knowledge of the aerodynamic coe�cients
of the vehicle and the atmospheric pro�le the vehicle will encounter.1 For example, typical uncertainties
associated with a Mars EDL vehicle’s aerodynamics are summarized in Table 1; however, these uncertainties
have been quanti�ed based on Computational Fluid Dynamics (CFD) tools, wind tunnel and ballistic range
data, or engineering judgment not reconstruction of ight data.

Table 1: Static Aerodynamic Coe�cient Uncertainty for Recent U.S. Mars EDL Vehicles.2,3

Phoenixy CA CN ; CY Cm Cn Cl

Kn � 0.1 �5% �0:01 �0:005;�20% �0:005;�20% N/A

Mach � 10* �3% �0:01 �0:002;�20% �0:002;�20% 1:24� 10�6

Mach � 5* �10% �0:01 �0:005;�20% �0:005;�20% 1:24� 10�6

MSLy CA CN ; CY Cm Cn Cl

Kn � 0.1 �5% �0:01;�10% �0:005;�20% �0:005;�20% 0:0005

Mach � 10* �3% �0:01;�10% �0:006;�20% �0:003;�20% 0:000219

Mach � 5* �10% �0:01;�10% �0:005;�20% �0:005;�20% 0:00023

*Uncertainty values are linearly blended between regimes.
yUncertainty model consists of an adder and then a multiplier (Ref. 2).

Gaussian distribution is assumed for the uncertainties listed above.

(a) Lift Force Coe�cient (b) Drag Force Coe�cient

Figure 1: Comparison of Viking lander 1 aerodynamic coe�cients based on ight data and CFD tools.4

Flight data from the two Viking landers provided in situ atmospheric pressure measurements over the
vehicle forebody during EDL and the reconstructed total angle of attack (�t), lift, and drag coe�cients
histories provide a benchmark for comparison to the aerodynamic database (shown in Fig. 1).4 Comparisons
of predicted aerodynamic coe�cients between state-of-the-art CFD codes and past ight data show that
signi�cant uncertainties still exist. These discrepancies underscore the need of using ight data and the
reconstructed uncertainties for model veri�cation and improvement.

Another signi�cant source of uncertainty in Mars EDL trajectories is the atmospheric properties of Mars
on the day of the ight (see Fig. 2). Large variations in the atmosphere due to the seasons, the amount
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of dust particles, and other weather-related events make the prediction of freestream density, pressure, and
temperature uncertain. For example, looking at Fig. 2a, one can see large variations in density from the
nominal prediction, while Fig. 2b shows how such uncertainty can e�ect the propagated trajectory. Similar
uncertainty in the atmospheric pro�le knowledge exists for other parameters in the Mars atmospheric models
like winds.5{9

(a) Possible density pro�les for MSL.8 (b) MSL footprints for di�erent atmospheres.9

Figure 2: Atmospheric uncertainty’s e�ect on EDL vehicle design.

Additionally, the data taken by Mars EDL vehicles often do not improve the observability of parame-
ters of interest, such as the vehicle aerodynamics and atmosphere. Table 2 summarizes the type of data
taken by the successful U.S. missions, and one can see that for most U.S. Mars missions, the on-board data
consist of inertial measurement unit (IMU) information, which by itself does not provide any way of esti-
mating aerodynamics and atmospheric properties independently.10 However, on-board pressure distribution
information from Flush Airdata Systems (FADS) like that on the Viking landers and the Mars Science Lab-
oratory (MSL) mission do provide another independent source of information to separate aerodynamic and
atmospheric uncertainties.11

Table 2: EDL-related measurements taken by U.S. Martian missions.

Measurements Vikingsa Path�nderb MERsc Phoenixd MSLe

Accelerometer X X X X X

Thee-axis gyroscope X X X X

Radar altimeterf X X X X X

Pressure (during EDL) Xf Xg X

Notes: aRef. 12,13 bRef. 14,15 c Mars Exploration Rovers16,17 dRef. 18,19 eRef. 11,20
f Viking pressure and temperature data were found to be inconsistent for conclusive analysis.
g Path�nder only took pressure measurements during subsonic parachute descent.

As discussed later, Adaptive Filters can estimate parameters of interest and their uncertainties while
automatically adjusting statistics needed to �lter noise in the dynamics. For Mars EDL reconstructions
where there is large uncertainty in the process dynamics, especially due to atmospheric and aerodynamic
properties, this adaptive estimation of the noise by adaptive �lters promises signi�cant improvement in
reconstruction applications.

III. Adaptive Filtering Background

The Kalman �lter has been a standard approach for trajectory reconstruction in support of experimental
ight vehicles and planetary entry performance analysis. A few examples are provided in Refs. 10, 13, 14,
21{32. The Kalman �lter allows one to estimate the state vector of interest along with statistics about the
estimated quantity, such as uncertainty in the estimate.

A key assumption inherent to the Kalman �lter is that the process and measurement noise covariance
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matrices are known. If these assumed parameters of the distribution di�er greatly from the true parameters,
then the �lter can exhibit large errors, inconsistency, and possibly divergence33 in nonlinear problems. Such
uncertainties in the covariance matrices are particularly problematic for planetary EDL reconstruction since
the atmospheric and aerodynamic uncertainties are not well known. This can be due to many reasons,
including limited measurement information for a highly variable atmosphere, aerodynamic data that are ac-
quired in Earth-based wind tunnels with atmospheric chemical compositions di�erent from ight conditions,
or the use of aerodynamic predictions that are based on CFD with potential modeling errors. Additionally,
trajectory measurement sensors go through launch loads and a long coast period with potentially drastic
thermal changes, which could introduce a shift in the assumed calibration.

Adaptive �ltering techniques have been frequently used in cases where the noise statistics are estimated
along with the state in order to reduce the possibility of divergence of the �lter and to improve the estimation
performance in the presence of unknown statistics of the underlying noise distributions. These situations
are summarized below and are classi�ed according to the four basic techniques suggested in an early review
article by Mehra:34 Bayesian, maximum likelihood, correlation matching, and covariance matching methods.

A. Bayesian, Maximum Likelihood, and Correlation Matching

The Bayesian technique of adaptive �ltering involves estimating a set of unknown parameters of interest,
which include the state vector, the state covariance matrix, and elements of the process and measurement
noise matrices, from a given state of data by attempting to recreate the a posteriori distribution. The
maximum likelihood technique is similar to the Bayesian technique, since it too attempts to estimate a
similar set of unknown parameters of interest using the a posteriori distribution, albeit by attempting to
maximize the likelihood of this distribution for certain select conditions. The similarities between the two
techniques mean that often the underlying equations are the same. Additionally, the Bayesian and maximum
likelihood techniques become extremely complicated as the dimension of the measurement noise and process
noise covariances matrices increase, since they both involve the calculation of multiple di�erence equations
that increase rapidly in number with the number of elements being estimated.34 In practice, the Bayesian
and maximum likelihood approaches are both simpli�ed into a problem of estimating the Kalman gain
matrix directly, which reduces the problem’s computational complexity but does not directly permit the
evaluation of the sensor performance or the model uncertainty, which are parameters of interest for Mars
EDL reconstruction.

A subset of the Bayesian approach introduced by Magill35 has become known as Multiple Model Adaptive
Estimation (MMAE). MMAE utilizes a bank of �lters, each with a di�erent hypothesis of the system’s model.
The outputs of these �lters are blended together via a weighted average or some other logic to produce the
state estimate. If one of the �lters implemented has a closer match to the true statistics, then its weight will
tend towards unity. However, this approach has a high computational cost associated with implementing
the �lter bank, and the implicit assumption is that the true statistics are within the range of the hypotheses.
Also, Mehra34 implies that this approach can sometimes be problematic for identi�cation of the process noise
covariance.

The correlation matching technique operates by attempting to correlate the observed output of a system
to the unknown noise covariances. These methods can be developed using either the autocorrelation of the
output or that of the residuals. The approach using the output is generally more restrictive, so in practice
usually the residuals-based approach is preferred. In both cases, the estimates of the process noise covariance
are not unique and, moreover, they can only be computed in steady state conditions. Thus, this technique
is not useful for the reconstruction of a time-varying signal from a vehicle performing EDL.

B. Covariance Matching

The covariance matching technique is an appealing approach in which the measurement noise and process
noise covariances are determined in such a way that the true residual covariance matches the theoretically
predicted covariance. The true residual covariance is approximated in real time using the sample covariance,
over some �nite window of stored residuals. The solution provided by Mehra34 leads to a non-unique estimate
of the process noise covariance, as with the correlation matching method. For this reason, Mehra states that
this approach has exhibited best success when the process noise covariance is known and one only wishes to
solve for the measurement noise covariance. An example of this approach is given in Ref. 36.
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The covariance matching technique is expanded by Myers and Tapley in Ref. 37. In this approach,
the authors are able to determine explicit solutions for both the process noise and the measurement noise
covariances by using empirical estimators based on the sample covariance for a �nite window of stored
observations. Myers and Tapley also introduce a fading memory weighting parameter in which more recent
observations receive more weight than the older observations. The estimators are derived in batch form,
but are manipulated into a recursive form suitable for real-time implementation. The approach is not
computationally intensive, requiring only 12% more cost than the standard EKF in one sample problem.

Special cases of the Myers-Tapley method appear in the literature. For example, Maybeck et al.38 and
Whitmore and Leondes39 propose a covariance matching method to estimate only the process noise covariance
matrix, assuming the measurement noise covariance is known. In contrast, Hull et al.40 devise a special
case of the Myers-Tapley method in which the process noise covariance is known and the measurement noise
covariance is estimated in real time.

C. Use in Reconstruction Applications

Few authors have considered the use of adaptive �ltering techniques for trajectory reconstruction. Chu et
al.41 develop a recursive maximum likelihood adaptive �lter and Mendonca et al.42 implement a covariance
matching approach for estimation of both the process and measurement noise covariance matrices for aircraft
ight path reconstruction. In both approaches, IMU measurements are used to replace the detailed system
models based on the vehicle aerodynamics, thus the process noise model uncertainty estimation amounts to
estimating the uncertainties of the accelerometer and gyroscope measurements. The vehicle aerodynamic
uncertainties are not addressed in these formulations.

Marschke et al.43 make use of a MMAE approach for Mars entry navigation. In this approach, three �lters
are implemented with di�erent state dimensions associated with the estimation of various IMU systematic
error parameters. This work is geared toward real-time on-board navigation and so the authors propose
a small number of �lters. The work does not consider the case of unknown process or measurement noise
statistics and thus is unsuitable for the problem of uncertainty quanti�cation.

Adaptive �ltering, especially the covariance matching technique, shows great promise for EDL reconstruc-
tion, for which often both the process noise and measurement noise statistics are unknown. Additionally,
to the best knowledge of the authors, no example in the literature has applied the covariance matching
technique for EDL reconstruction.

IV. Methodology

In this study, a simulated EDL trajectory has been used to gauge the e�cacy of the adaptive �lter
reconstruction methodology. The methodology is able to incorporate typical Mars EDL measurements, such
as IMU data, FADS data, and radar altimeter data, to reconstruct trajectory, atmospheric parameters, and
aerodynamic coe�cients.

A. Process Equations

Equations of motion, as seen in Eqs. (1), are the process equations used to propagate the estimate of the
states in time.44 The matrix Mv;b, which is solely a function of the quaternion, de�nes the rotation from the
local horizontal frame to the body frame and is de�ned in the literature.45 The planetary rotation rate is
!Mars and the angular rates in the body frame, !x, !y, and !z, come from the on-board gyroscopes, while
g is the altitude-dependent gravitational acceleration based on a spherical mass distribution. FN and FT

represent the normal (lift) and tangential (drag) forces in the body axis and lift modulation is modeled in
the equations using a bank angle (�). The dynamical equations for the freestream pressure and density are
derived from the hydrostatic equation and the perfect gas law and the derivation is described in Refs. 26
and 31.
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_r = V sin  (1a)

_� =
V cos  sin 

r
(1b)

_� =
V cos  cos 

r cos�
(1c)

_V =
FT

m
� g sin  + !2

Marsr cos� (sin  cos�� cos  sin� sin ) (1d)

_ =
1

V

�
FN cos �

m
� g cos  +

V 2

r
cos  + 2!MarsV cos� cos 

+!2
Marsr cos� (cos  cos�+ sin  sin� sin )

�
(1e)

_ =
1

V

�
FN sin �

m cos 
� V 2

r
cos  cos tan�+ 2!MarsV (tan  cos� sin � sin�)

�!
2
Marsr

cos 
sin� cos� cos 

�
(1f)

_p1 = ��1gV sin  (1g)

_�1 = ��
2
1gV sin 

p1
(1h)26664

_q0

_q1

_q2

_q3

37775 =
1

2

26664
�q1 �q2 �q3
q0 �q3 q2

q3 q0 �q1
�q2 q1 q0

37775
264 !x

!y

!z

� 1

r
Mv;b

264 V cos  cos 

�V cos  sin 

�V cos  cos tan�

375
375 (1i)

B. Extended Kalman �lter and traditional reconstruction

An extended Kalman �lter is a modi�cation of the linear Kalman �lter. The algorithm for this well-known
�lter is summarized below:46

1. Initialize the state vector and the state covariance matrix at time tk�1 = t0 and let k = 1, where k is
an index of the epoch when a measurement is �rst available.

2. Read in the measurement at time tk.

3. Calculate a nominal state (�xk) at time tk by integrating the non-linear equations of motions (Eqs. (1))
with x̂k�1 as the initial condition.

4. Calculate the nominal state covariance matrix ( �Pk) by integrating the Riccati equations (Eq. (2a))
using P̂k�1 as the initial condition.

5. Calculate the measurement residual vector (yk), the measurement sensitivity matrix (Hk), and the
Kalman gain (Kk) using the nominal state and state covariance (Eq. (2b)).

6. Calculate the best estimate of the state (x̂k) and state covariance (P̂k) using Eqs. (2c) and (2d).

7. Increment counter k and go back to step 2 until measurements at all times have been processed.

_P = AP + PAT +BQBT (2a)

Kk = �PkH
T
k

�
Hk

�PkH
T
k +Rk

��1
(2b)

x̂k = �xk +Kk (yk � h (�xk)) (2c)

P̂k = (I �KkHK) �Pk(I �KkHk)T +KkRkK
T
k (2d)

A is the Jacobian of the equations of motion with respect to the state vector, B is the Jacobian of the
equations of state with respect to the state noise vector, and I is the identity matrix. The measurement
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covariance matrix (R = E(vvT )) based on the measurement noise (v) is de�ned at time k and information
from pre-ight sensor calibration information is typically used for this matrix. The process noise covariance
(Q = E(wwT )) based on the process noise (w) is typically based on experimentation or pre-ight modeling
errors. For Mars EDL trajectory reconstruction, these two types of matrices have the largest uncertainties.
The EKF assumes a priori knowledge of the R and Q noise matrices; however, for Mars EDL applications,
the R matrix might involve a priori known bias, scaling, and calibration information, but the Q matrix can
include a priori unknown aerodynamic and atmospheric uncertainties. The lack of a good estimate for these
statistics can corrupt the trajectory reconstruction and lead to �lter divergence. Herein lies the motivation
for adaptive �ltering, since one could gain information about the measurement and process noise parameters
that could be helpful in updating the states and improve uncertainty quanti�cation.

C. Adaptive �ltering - covariance matching

As mentioned earlier, adaptive �ltering is used when one does not have a priori accurate knowledge of the
measurement and process noise. Unlike linear, discrete, stochastic problems where the best linear, minimum
variance, unbiased estimate of the state is given by the Kalman �lter, no optimal estimator is known for a
case when the process noise and measurement noise parameters are unknown.37 The approach used in this
paper is the covariance matching or noise-adaptive technique and is summarized in Eqs. 3.37,47

wj = x̂j � �xj j = 1; : : : ; N (3a)

ŵ =
1

N

NX
j=1

wj (3b)

Q̂ =
1

N � 1

NX
j=1

B

�
(wj � ŵ) (wj � ŵ)

T �
�
N � 1

N

��
�P �j � P̂j

��
BT (3c)

�P �j =

Z tj

tj�1

�
AP + PAT

�
dt (3d)

vi = yi � h (�xi) i = 1; : : : ; L (3e)

v̂ =
1

L

LX
i=1

vi (3f)

R̂ =
1

L� 1

LX
i=1

�
(vi � v̂) (vi � v̂)

T �
�
L� 1

L

�
Hi

�PiH
T
i

�
(3g)

Since the exact process and measurement noise are unknown (together with the true states), empirically
derived quantities serve as surrogates to estimate the process and measurement noise. The empirically
derived quantities w and v are approximations of the actual state noise and measurement noise vectors.
Using these quantities, one can estimate Q and R as shown in Eqs. 3. Information from the last N state
estimates are used to calculate w, while information from the last L measurement points are used to calculate
v.

The values for the various state and covariance updates are found from the EKF. The state noise vector’s
batch size N does not need to be the same as the measurement noise vector’s batch size L. Also, it should be
noted that for at least the �rst N and L state and measurement updates one has to use the a priori estimate
of Q and R in the EKF. Thus, the batch sizes are tuning terms that need to be determined empirically:
small batch sizes would mean that the �lter can begin adapting quickly in the reconstruction process, but a
small sample size also means that the estimated statistics, Q and R, are not representative according to the
central limit theorem.

For the speci�c case of Mars EDL trajectory reconstruction, Q can give information about the aero-
dynamic coe�cient uncertainties or the atmospheric property uncertainties on the day-of-the-ight. The
measurement noise uncertainties, R, can give valuable information about the sensor calibration hitherto
assumed to be known in reconstruction studies.
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V. Results

A. Simulated Mars EDL trajectory

The Program to Optimize Simulated Trajectories II48 is used to generate a Mars EDL trajectory for a 2.65
m diameter, 70 deg. sphere-cone that is shown in Figure 3. The vehicle characteristics are similar to that
of the MER vehicles. This trajectory represents the truth data and the reconstructed values are compared
with them.
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(g) Axial force coe�cient
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Figure 3: Nominal reference trajectory used in the simulation.

Accelerometer, gyroscope, pressure transducer, and altimeter measurements are created using the sim-
ulated trajectory. Random noise is added to the simulated measurement and the sensors were e�ectively
sampled at various frequencies to simulate the rate of data collected by a typical Mars EDL vehicle. The
information is summarized in Table 3.

Table 3: Measurement noise uncertainties for the simulated dataset.

Measurement 3� uncertainty (normal) Sample rate (Hz.) Availability

Three-axis sensed acceleration 100 �g-RMSa 100 Entire trajectory

Three-axis angular rate 0.03 deg/hour-RMSb 100 Entire trajectory

Radar altimeter altitude 0.3 ma 1 For alt. � 10 km

Pressure transducers 1% reading/transducerc 8 Between 89-237 secd

Notes: aRef. 49 bRef. 19 cRef. 11 d When dynamic pressure is above a threshold (850 Pa)

The random noise statistic is also used for the measurement noise covariance in this case. Although the
adaptive �ltering method described in the earlier section can calculate the measurement noise covariance
from the residual of the outputs, this study is focused on estimating the process noise covariance more
accurately to improve the uncertainty quanti�cation of the states. In previous studies,10,31 it has been
seen that model errors, especially of the atmospheric and aerodynamic parameters, can drive the overall
uncertainty of the states, and thus they are the main objectives of this study. In a real Mars ight case,
measurement uncertainty can also degrade due to the sensor’s exposure to extreme space conditions, but
for this study that uncertainty has been assumed to be known. Future work could include estimation with
unknown measurement noise. Statistical �ltering also requires the knowledge of the initial state covariance.
This information for the current example is summarized in Table 4, which is based on initial state covariances
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of recent planetary entry missions.

Table 4: Initial state uncertainties used for the reconstruction process.

State 3� uncertainty (normal)

Radius (planet-centric)49 5100 m

Latitude (planet-centric)49 0.12 deg.

Longitude49 0.03 deg.

Velocity (relative)19 2.9 m/s

Flight path angle (relative)49 0.06 deg.

Heading angle (relative)49 0.06 deg.

Euler angles (related to the quaternion) 0.03 deg./angle

Freestream pressure 10P1;0

Freestream density 10�1;0

B. Reconstruction Results

Figure 4 compares the reconstructed trajectory using the adaptive �ltering technique to the actual data.
One can see that there is a close agreement between the estimated and actual quantities. The maximum
error in altitude is only around 150 m and the maximum velocity error is about 0.5 m/s throughout an
EDL sequence that lasts around 275 seconds. Interestingly, the e�ect of the relatively low uncertainty radar
altimeter data is clearly visible in the altitude plots when the residual of the error reduces signi�cantly
around 220 seconds when that data are introduced. This is very similar to actual Mars EDL cases when
radar altimeter data available during terminal landing greatly reduces the error ellipse of the landing site
derived from accelerometer only data.28,31
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Figure 4: Estimated position and velocity using adaptive �lter (N = 10).

Some derived states, such as angle of attack, sideslip angle, and dynamic pressure, are also important
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in EDL performance evaluation and can be calculated using a combination of the estimated state vector.
These reconstructed states are shown in Figure 5.
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(f) Error in dynamic pressure

Figure 5: Derived trajectory and atmospheric parameters using adaptive �lter (N = 10) estimation results.

In Fig. 5, the yellow band shows the region when pressure transducer measurements were available.
It has been noted before that typical Mars EDL dataset often leave many parameters of interest directly
unobservable. However, FADS sensors measure the pressure distribution on the aeroshell during entry, which
in turn can be used to estimate freestream density and pressure without relying solely on accelerometer
data. This additional source of information also has the e�ect of improving the estimation of quantities
like angle of attack and dynamic pressure, which can be observed in a slight improvement in the residual
after the introduction of this data. The adaptive �lter further improves the uncertainty estimation of these
parameters, which is signi�ed by the tight con�dence bounds of the estimated states when compared to
uncertainty quanti�cation results obtained using other statistical �lters. The performance of non-adaptive
statistical �lters for the same simulated data can be found in Ref. 10, and the comparison of some of the
state and uncertainty estimation performance is summarized in Table 5 and Fig. 8 later in this paper.

Finally, adaptive �lters provide another bene�t by quantifying uncertainties of underlying process model
parameters, such as aerodynamic coe�cients. Figure 6 shows the reconstructed axial force coe�cient com-
pared to the actual aerodynamic coe�cient value. One can see that the introduction of the pressure data
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immediately improves the reconstruction accuracy. More importantly, the estimated axial force coe�cient’s
uncertainties are tightly bound in this region, at least when compared to the results of other statistical
�lters.10 The tighter con�dence bounds raises hope that reconstruction of actual ight data using adap-
tive �lters will give realistic con�dence bounds for estimated force coe�cient and possibly allow for the
maturation of current aerodynamic error models (such as those shown in Table 1).
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Figure 6: Derived aerodynamic parameter using adaptive �lter (N = 10) estimation results.

C. Tuning of the Adaptive Filter

Most statistical �lters have tuning parameters that have to be determined by the analyst to ensure that the
�lter maintains consistency and does not diverge. For Extended Kalman Filters, the tuning parameters are
usually process noise, which the analyst determines experimentally or by using an optimization procedure.50

An Adaptive �lter with the covariance matching technique takes this subjectivity out of the equation by
using the state and measurement residual statistics to calculate process and measurement noise and thus
ensure consistency. However, since sample statistics are substituted for true (but unknown) statistics of the
problem, there is still some subjectivity left in the choice of the sample size. Too large of a sample size will
ignore sudden changes in the process dynamics, while too small of a sample size will not be consistent with
the central limit theorem and produce oscillatory results. One can compare this situation to using a moving
average �lter with a variable sample window.
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Figure 7: E�ect of the adaptive �lter batch size on uncertainty calculation.

Myers37 recommends using a fading memory weighting factor to emphasize recent samples in the statis-
tical calculation. However, this introduces another subjective tuning parameter for the analyst to choose.
Additionally, experimentally this �lter has been found to be useful for situations when there is a sudden
shift in dynamics, such as a vehicle maneuver. For the simulated EDL dataset used for this study, there are
no such sudden maneuvers; thus, the fading memory �lter was not utilized. It may be useful, however, for
the reconstruction of other types of EDL datasets, such as MSL, which has several bank angle reversals.

Thus, the only tuning parameter was the batch sample size, N, which was found experimentally as shown
in Fig. 7. The �lter was run for several N-values, and it was found that N = 10 provides uncertainty values
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consistent with �lters with much larger N-values. Note that for a small sample size of N = 5, the uncertainty
values are very oscillatory, especially during the terminal descent region where a highly certain altimeter
data and a relatively less certain accelerometer data are available. With a small sample size, the uncertainty
oscillates between the altitude estimate from these two data sources.

D. Comparison of Estimation Performance

The bene�t of using adaptive �ltering is more apparent when compared with results from other statistical
�lters with subjectively-derived process noise. Table 5 shows a comparison of the state estimation results
from the Adaptive Filter abnd results from the EKF and Unscented Kalman Filter (UKF) found in a
previous study using the same simulated dataset.10 Figure 8 shows a similar comparison for the uncertainty
estimation.

Table 5: Comparison of state estimation performance between EKF, UKF, and Adaptive Filter.a

State EKF UKF Adaptive

Angle of attack (deg.) 0.192 0.145 0.082

Sideslip angle (deg.) 0.211 0.140 0.112

Dyn. pressure (% max pressure)b 0.670 0.283 0.081

Axial force coe�cient 0.017 0.006 0.005

aRMS of the residual when FADS is available.
bRMS residual normalized by max. pressure and turned to a percentage.
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Figure 8: State uncertainty quanti�cation comparison between EKF, UKF, and Adaptive �lter.

Adaptive �ltering provides marked improvement in state estimation, as demonstrated by the low root
mean square (RMS) of the residuals. However, the biggest bene�t is in the tighter con�dence bounds as
seen in Fig. 8a. The process noise used for the EKF and UKF to have non-divergent solutions was chosen
to be an uniform value using auto-tuning techniques found in Ref. 50. However, the adaptively calculated
process noise varied over time (as seen in Fig. 8b) and was sometimes greater than and less than the process
noise used for the EKF and UKF. This adaptive noise allowed the �lter to have the appropriate level of
noise necessary to maintain consistency and accuracy in the state estimation without increasing the state
uncertainty too much. The result was a more accurate state estimation with tighter con�dence bounds.

VI. Conclusions

Mars entry, descent, and landing vehicle trajectories are highly dependent on the vehicle aerodynamic co-
e�cients and the atmospheric properties on the day-of-ight. These parameters are hard to simulate and test
on Earth, and despite seven successful entry, descent, and landing missions, there remains high uncertainty
in the knowledge of these parameters. Traditional entry, descent, and landing reconstructions have either
deterministically estimated the vehicle’s trajectory, thus ignoring measurement and model uncertainties, or
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have assumed a priori knowledge of the process and measurement noise vectors in the statistical �lter. Adap-
tive �ltering techniques discussed in this paper can estimate these unknown parameters together with the
state vector of the statistical �lter. This methodology is tested here with simulated Mars entry trajectories
(where truth data are known) to improve the estimation of the vehicle’s trajectory, atmosphere, and aerody-
namic coe�cients as well as the uncertainties associated with these parameters. The results show a marked
improvement in state estimation using covariance matching adaptive �lter techniques when compared with
other statistical �lters, such as the Extended Kalman Filter and the Unscented Kalman Filter. However,
the best improvement is in the signi�cantly tighter con�dence bounds calculated during the uncertainty
quanti�cation process. This leads one to believe that adaptive �lters can give realistic uncertainty values
when actual ight data are reconstructed. These estimated states and uncertainties can further improve the
current engineering models of vehicle aerodynamics and Martian atmosphere.
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