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Decentralized relative formation flight about an estimated weighted mean orbit element
formation barycenter is investigated. Consensus over random directed graphs in the pres-
ence of time delays is reviewed and applied to the problem. On-orbit spacecraft formations
are considered random directed graphs with time delays and agreement over formation
parameters is shown. Consensus of formation state estimates and formation barycenter
using a distributed formation sensor network is proven. A simulation is described, demon-
strating the functionality and applicability of the approach. Conclusions and future work
are discussed.

I. Introduction

This paper is the first portion of a two-part discussion on a Formation Flight (FF) Guidance, Navigation,
and Control (GNC) solution that introduces a decentralized formation control approach. On-orbit FF GNC
has received significant attention over the last decade. The need for solutions to this problem has become
more immediate in recent years due to emerging mission concepts such as fractionation.1 The fractionation
approach is predicated on functionally decomposing large spacecraft into smaller, specialized spacecraft,
drastically increasing the system complexity of on-board autonomous fault management systems. As the
number of spacecraft in a formation increases, the burden on ground operations rises significantly. Combined
with large gaps in uplink/downlink connectivity, it is infeasible to simultaneously control the entire formation
from a central ground location. Further, on-orbit centralized control of the formation places the safety of the
entire formation at the mercy of continued operation of a specific spacecraft. For these reasons a decentralized
GNC implementation is desirable.

The on-orbit dynamic environment subjects individual spacecraft to significant oscillating, gross, and
differential perturbations. Mean orbit elements effectively ‘average out’ oscillating disturbances2 and are
valid for all orbit regimes. This makes differential mean orbit elements particularly useful for specifying
relative spacecraft geometry. Gross perturbations affect the entire formation, and can incur substantial δv
costs if they are rejected. Rather, it is preferable for long-term orbit maintenance that gross perturbations
be ignored in the short term and relative formation maintenance enforced. Differential mean orbit elements
relative to a weighted formation barycenter are used for a number of reasons. First, unperturbed differential
elements are constants of motion for arbitrary orbit regimes (depending of course on the orbit elements
chosen) and as such do not change with time, making formation ‘slot’ definitions easy and intuitive. Second,
differential motion can be examined under the effects of perturbations (e.g., J2) and partially mitigated
using intelligent differential mean orbit element positions.3–5 Third, because differential mean orbit elements
change slowly under perturbations, they are ideal consensus variables.

The challenge facing on-orbit formation guidance, navigation, and control, in a decentralized fashion, is
1) for the individual spacecraft to agree on where the perturbed formation barycenter is located, 2) to know
their desired relative state to achieve formation objectives, and 3) actuate to reduce relative state error while
minimizing ∆v.

Recent advances in cooperative control are immediately useful in addressing this challenge. The prob-
lem of spacecraft in a formation with intermittent communications agreeing on the location of the moving
barycenter may be directly framed as a consensus problem over random directed graphs.6–9 As each space-
craft is assumed to have its own on-board estimation capabilities (e.g. Extended Kalman Filters or Unscented
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Kalman Filters), the consensus problem needs to leverage provided estimation knowledge to quantify the
uncertainty of the consensus barycenter (in a fashion similar to Distributed Kalman Filters10 or Distributed
Bayesian Estimation11). Distributed spacecraft formation flight has been previously investigated using graph
theory.12,13

This paper intends to demonstrate formation consensus based on constituent spacecraft knowledge with
two primary contributions. a) The definition of a distributed relative formation in terms of differential
mean orbit elements and formation barycenter location consensus. and b) A consensus solution where each
spacecraft first agrees on barycenter weights and differential mean orbit element ‘slots,’ and then proceeds
to estimate the formation barycenter and associated uncertainty in a distributed fashion. To be clear, the
contributions of this paper are not graph theory, consensus, or mean orbit element usage for formation flight,
all of which are well established, rather the combined GNC approach using these techniques. Analytical
predictions are verified using simulations. Conclusions and future work are discussed. The second paper
(Part 2)14 explores proper consensus weighting schemes, differential orbit element control, and formation
stability.

II. Graph Theory & Consensus

To place later results and discussion in context, a very brief overview of graph and consensus terminology
is given here. Directed Graphs, Random Directed Graphs, and fundamental results on Random Graph
Consensus are briefly defined and discussed.

Definition 1. Directed Graph
A graph G(V, E) with a set of nodes V and a set of directed edges E(V) between the nodes in V is called a
Directed Graph.

Definition 2. Random Directed Graph
A graph G(V, E) is said to be a Random Directed Graph if the probability that an edge ej→i from node j ∈ V

to node i ∈ V, j 6= i, is a member of E with probability pij. This is often signified using the adjacency matrix
A = [aij ] ∈ RN×N by the definition aij = 1 with probability pij, and aij = 0 with probability 1− pij.

node 1

node 2

node 3

node 1

node 2

node 3

tk tk+1

Figure 1. Notional illustration of a random directed graph at time tk and tk+1. Edge existence from node j to
node i is a function of the probability pij .

Broadly, consensus algorithms are concerned with independent agents represented as nodes in a graph
G(V, E) agreeing on the value of a consensus variable x (i.e. x1(t) = · · · = xi(t) = · · · = xN (t)). Consensus
algorithms on the ith node typically operate by updating their consensus variable according to the new
information obtained from the instantaneously connected jth node.7,8

ẋi(t) = aij(t)
(
xj(t− σij)− xi(t)

)
(1)

where σij is the time delay of the information from node j to node i. There exists a large body of literature
that discusses the convergence of consensus problems.6,7, 13 A primary result is that, for a network of agents
described by a random directed graph, if the directed interaction topology between each node i and all other
nodes in the graph be constructed as a tree after sufficient periods of time, then the consensus variable will
lie within the convex hull of each agents initial value of the consensus variable xi(t0). This is equivalent to
the union of the instantaneous topologies forming a complete graph with sufficient frequency. Further, given
arbitrarily large periods of time, the network will converge on the consensus variable ‘almost surely’.6

2 of 13

American Institute of Aeronautics and Astronautics



There are some limitations on the size of acceptable information time delays σij . For a simple case, if
σij = σ, then it is necessary that 0 ≤ σ < 2π/λmax(L), where L is the graph Laplacian.8,15 Hereafter, it is
assumed that any time delays σij = σ satisfy this bound.

III. Formation Definition & Results

In this section the definitions of the weighted mean orbit element barycenter, formation slots, and relative
formations are given, and the resulting differential mean orbit element estimation and control problems
are described. The central results of this paper - that distributed networks of sensors on spacecraft in a
formation, can agree upon a common barycenter (as well as one another’s states) over a communications
topology represented by random directed graphs, are then proven. Finally, some discussion regarding these
results is given.

Given an instantaneous set of orbit elements œi
k for the ith spacecraft in a formation F (notationally,

i ∈ F) at time tk, the mean orbit elements may be directly computed using

œ̄i
k = ξ(œi

k, tk)

where œi
k are the instantaneous orbit elements of the ith spacecraft at time tk, and œ̄i

k are the mean orbit
elements of the same spacecraft at tk. Mean orbit elements are the secular portion of the short and long term
oscillations due to J2 perturbations. It is important to mention that no specific orbit element coordinates
are identified; any orbit element set will do. The definitions of the formation mean orbit element barycenter
and formation slots are now given and followed by a more formal definition of a spacecraft formation.

Definition 3. Weighted Formation Barycenter
The formation mean orbit element barycenter œ̄b

k at time tk given spacecraft weights wi
k and reference

differential mean orbit elements δœ̄i
r,k is defined as

œ̄b
k =

Nf∑
i=1

wi
kœ̄b,i

k =

Nf∑
i=1

wi
k

(
œ̄i

k − δœ̄i
r,k

)
(2)

where the weights wi
k ∈ R are such that 0 ≤ wi

k ≤ 1, i = 1, . . . , Nf , and w1
k + · · ·+ w

Nf

k = 1.

In simpler terminology, the formation mean orbit element barycenter is essentially the weighted average
of the individual spacecraft mean orbit elements offset by each spacecraft’s differential mean orbit element.
The differential mean orbit element reference offset δœ̄i

r,k may also be defined implicitly given a weighted

formation barycenter œ̄b
k and instantaneous reference mean orbit element œ̄i

r,k.

δœ̄i
r,k = œ̄i

r,k − œ̄b
k (3)

Note that œ̄i
r,k is the reference mean orbit elements, not the instantaneous orbit elements œ̄i

k.

Definition 4. Formation Slot
A formation slot is defined by a spacecraft’s choice of δœ̄i

k. The only constraints placed on δœ̄i
k is that they

be well defined on the orbit element space (e.g., differential mean eccentricity ēik such that 0 ≤ ebk + δēik < 1)
and satisfy user-defined constraints, such as collision avoidance and other operational needs.

Note, specific ‘user-defined constraints’ are introduced and discussed in the companion paper.14 Finally,
now that both the weighted formation barycenter and formation slots are defined (Definitions 3 and 4,
respectively), the definition for a relative formation is now given.

Definition 5. Relative Formation
A spacecraft formation is said to be a relative formation when each spacecraft is aware of all other formation

spacecraft (i.e. given a set of formation spacecraft F , the size of F , Nf , is known, and a specific spacecraft

is associated with each i ∈ F), their respective barycenter estimates œ̄b,i
k , and barycenter weightings wi

k.
Further, each spacecraft must know its own differential mean orbit element formation slot δœ̄i

r,k.
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Figure 2. Formation construction illustration. Each spacecraft maintains a relative differential orbit element
offset δœ̄i

k to the agreed upon weighted mean orbit element barycenter of the formation œ̄b
k.

Note that, by definition, for any 0 < wi
k ≤ 1, it is necessary to have œ̄i

k and δœ̄i
r,k to compute œ̄b,i

k ,

and hence œ̄b
k. Conversely, it is clear that if wi

k, œ̄i
k, and δœ̄i

r,k are known for all spacecraft i = 1, . . . , Nf ,

then the formation mean orbit element barycenter œ̄b
k may be computed using (2). A relative formation,

weighted formation barycenter, and individual spacecraft formation slots are illustrated in Figure 2.
Importantly, given a constraint such as (3) for each slot i = 1, . . . , Nf , combined with the barycenter

definition (2), introduces 6(Nf − 1) constraints. Thus, while each individual spacecraft may be actively
maneuvering to a specified relative mean orbit element position in a formation, the formation as a whole
is free to drift according to collective or perturbative effects. This is a central concept in the approach
outlined by this paper. If the barycenter is required to be stationary, each individual spacecraft in the
formation must reject common perturbations (e.g., J2, drag) in addition to differential perturbations (e.g.,
differential J2, differential drag). Operationally, formation-wide maneuvers may periodically be required for
orbit maintenance. The instantaneous value of the differential mean orbit elements is given by

δœ̄i
k = œ̄i

k − œ̄b
k (4)

Explicitly, the instantaneous differential mean orbit element error is defined as

δēi
k = δœ̄i

r,k − δœ̄i
k (5)

Thus, the control problem described in part 2 of this effort14 is largely concerned with intelligent ways to
control the error δēi

k (δēi
k → 0) between the reference and instantaneous mean orbit elements for each

spacecraft while still maintaining formation stability.
In operational systems it is necessary to account for sensor accuracies and knowledge as well as the overall

estimation of the spacecraft formation barycenter. Suppose that some spacecraft subset S of the formation
F (S ⊆ F) each have sensors capable of measuring quantities related to the individual spacecraft states œ̄i

k

(note that ξ(·) defines a one-to-one and onto mapping between œ̄i
k and œi

k). The measurement function for
each spacecraft j ∈ S ⊆ F sensing spacecraft(s) p ∈ F is given as

yj
k =


...

hjp
k (œ̄j

k, œ̄
p
k, tk)

...

 (6)

The central results of this paper are now given in Lemma 1, Lemma 2, and Corollary 1.

Lemma 1. Formation Parameter Consensus
Given a formation F with Nf spacecraft, a communication topology described by a random directed graph
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G(V, E) where the ith spacecraft accepts all information regarding satellites j ∈ F , j 6= i and ignores infor-
mation regarding its own consensus variable, and communication time delays not exceeding σ, the formation
F will converge upon a consensus of individual weights wi

k and differential mean orbit element slots δœ̄i
r,k

over a sufficiently large time interval t ∈ [t0, tf ] ‘almost surely.’
Proof: Defining the network consensus variable as

xT =
[
w1

k · · · w
Nf

k (δœ̄1
r,k)T · · · (δœ̄

Nf

r,k )T
]

if each spacecraft i ignores updates regarding its own weight wi
k and differential mean orbit element slot δœ̄i

r,k

using a modified form of (1) such as

ẋi = aij
[
mi
]T (

xj(t− σij)− xi(t)
)

where the matrix mi has zeroes where multiplication with ẇj
k(t− σij)− ẇi

k and δ ˙̄œj
r,k(t− σij)− δ ˙̄œj

r,k occur,

then is is clear that for spacecraft i (and only spacecraft i), ẇi
k = 0 and δ ˙̄œi

r,k = 0 (effectively ensuring
that weights and differential orbit elements do not have dynamics). Thus, leveraging established results
for consensus (Mesbahi,9 Tsitsiklis6), each spacecraft i will retain its internal value of wi

k and δœ̄i
r,k while

simultaneously agreeing on all other spacecraft weightings and differential mean orbit element slots.
2

Lemma 2. Distributed Sensor Network Formation Consensus
Given a formation F with Nf spacecraft, a communication topology described by a random directed graph
G(V, E), communication time delays not exceeding σ, a set of sensing spacecraft S ⊆ F with measurement
functions described by (6), and mutually agreed upon values wi

k and δœ̄i
r,k (i = 1, . . . , Nf ), then if all of the

states
œ̃T

k =
[

(œ̄1
k)T · · · (œ̄i

k)T · · · (œ̄N
k )T

]
are observable over a given sufficiently long time interval t ∈ [t0, tf ], and ˆ̃œ0 (note, the ·̂ notation implies that
the item · in question is an estimate) and P0 are chosen such that the applied nonlinear estimation algorithm
is stable, the relative formation (Definition 5) will converge upon a consensus value of an estimated ˆ̃œk and
associated uncertainty covariance matrix Pk ‘almost surely,’ and as a result all spacecraft will agree on a
common barycenter estimate ˆ̄œb

k.
Proof: From Lemma 1 it is clear that all spacecraft in the formation F can agree upon weightings wi

k and
differential mean orbit element slots δœ̄i

r,k, i ∈ F . If all of the spacecraft instantaneous mean orbit elements

œ̄i
k are written using œ̃k, then for each spacecraft j in the set of sensing spacecraft S (j ∈ S ⊆ F) the

measurement equation (6) may be written as

zjk = hk(œ̃k, tk)

In turn, all sensing spacecraft measurement functions may be combined such that all measurements are
written as

zk = hk(œ̄k, tk) (7)

Under this notation and supposing that œ̃k is observable over the sufficiently large time interval t ∈ [t0, tf ],
results from Extended Kalman Filters,16 Distributed Kalman Filters (DKFs),10 and Distributed Bayesian
Estimation11 may be directly extrapolated to the estimation and consensus of ˆ̃œk and associated uncertainty
covariance matrix Pk. Equation (2) may then be used to compute the formation barycenter estimate ˆ̄œb

k. It
is important to recall that this result is also dependent on the stability of the chosen estimation algorithm
(e.g., Extended Kalman Filter, Unscented Kalman Filter).
2

Remark 1. Distributed Estimation Algorithm Stability
As mentioned in Lemma 2, for distributed formation consensus to be stable it is necessary that the distributed
estimation algorithm be stable. In general the measurement functions (6) (and by extension (7)) are nonlin-
ear, necessitating nonlinear estimation algorithms such as Extended Kalman Filters (EKFs) or Unscented
Kalman Filters (UKFs). These estimation algorithms are not guaranteed to converge for arbitrary initial
guesses and distributions and must accordingly be applied carefully to this problem.
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Application of Lemma 2 presumes a distributed sensor network and combined state estimation approach.
A simpler, more robust though less general form, may be constructed by assuming that each individual
spacecraft is capable of estimating its own mean orbit element set ˆ̄œi

k and associated uncertainty Pi
k.

Corollary 1 distills this approach.

Corollary 1. Independent Barycenter Consensus
Given a formation F with Nf spacecraft, a communication topology described by a random directed graph
G(V, E), communication time delays not exceeding σ, agreed upon spacecraft weightings wi

k and differential
mean orbit element slots δœ̄i

r,k, and individual spacecraft capability to compute ˆ̄œi
k and Pi

k, then all spacecraft

i ∈ F will agree on a common estimate of the formation barycenter ˆ̄œb
k over a sufficiently large time interval

t ∈ [t0, tf ] ‘almost surely.’
Proof: In the same manner as agreement on formation parameters is reached (see Lemma 1), the spacecraft
in formation F can agree upon ˆ̄œi

k and Pi
k ‘almost surely’ given sufficient time. After consensus is achieved

the formation barycenter may be computed using 2. Note also that this result may also be derived by requiring
that S ≡ F , and each measurement function may be written as yi

k = hi
k(œ̄i

k, tk).
2

Comparing the approaches in Lemma 2 and Corollary 1 holding sensor capabilities constant, it is clear that
the distributed networked sensor estimation consensus is operationally preferable because Pk contains cross-
correlation terms, reducing the resulting uncertainty in ˆ̄œb

k. Further, if each individual spacecraft measures
only its own state, no relative measurements are made. In the event of a sensor failure the corresponding
mean orbit element state becomes unobservable. Contrasting this to the distributed estimation consensus
approach outlined in Lemma 2, if there are sufficient sensors a single sensor failure will not eliminate the
observability of the formation states. However, the approach in Lemma 2 relies on stability of the estimation
algorithm over the entire formation, while that in Corollary 1 requires only that the individual spacecraft
estimators be stable. Under this definition, distributed estimation methods may be applied for the formation
F to estimate the formation orbit elements œ̃k in a distributed manner. When this approach is used, the
estimated œ̃k, ˆ̃œk, is considered the consensus variable update law optimally mixes information from the ith

and jth spacecraft (though each spacecraft maintains it’s own associated uncertainty Pk).

Remark 2. Communicated Information for an EKF
Each communications packet contains several pieces of information: Hi

k, the measurement function Jacco-
bian produced by measurements, zik, the measurement generated by the ith spacecraft , Ri

k, the measurement
uncertainty of the ith spacecraft, and œ̃i

k, the ith spacecraft’s current estimate of the consensus variable œ̃i
k.

With the navigational benefits of the proposed approach described here, the following section demon-
strates a successful implementation. The companion paper14 continuous the theoretical discussion and goes
in to further detail regarding Guidance and Control aspects of the proposed combined distributed mean orbit
element formation flight GNC methodology.

IV. Simulation and Results

For these examples, the classical mean orbit elements orbit elements œ̄ = [ā, ē, ī, ω̄, Ω̄, M̄ ]T are used.
Here, ā is the mean semi-major axis, ē is the mean eccentricity, ī is the mean inclination, ω̄ is the mean
argument of periapsis, Ω̄ is the mean ascending node, and M̄ is the mean mean anomaly. The formation is
defined with three spacecraft (Nf = 3). The desired differential orbit elements are given in Table 1, and the
true initial mean orbit elements are given in Table 2. The individual SC weightings wi

k are chosen to be

w1
k = w2

k = w3
k =

1

3
, ∀k

To emphasize the estimation and consensus results, the spacecraft in the following examples are quies-
cent. Maneuvering spacecraft are considered in the companion paper.14 In the event that spacecraft in the
formation are maneuvering, then the information described in Remark 2 must also include the chosen control
ui
k. An Extended Kalman Filter (EKF) with a consensus term is used to reach barycenter consensus. For

the consensus term, the consensus gain is ε = 0.1. In the interest of simplicity, each spacecraft is assumed
to have a GPS receiver with a simplified measurement function zik = h(xi

k) = [I 0]xi
k. The spacecraft states

in the filter are expressed in Earth-Centered-Inertial (ECI) coordinates. The initial uncertainty for each
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Table 1. Desired Formation Differential Mean Orbit Elements

Mean Orbit Element δœ̄1
r,k δœ̄2

r,k δœ̄3
r,k

Semi-Major Axis (δā, km) -0.002558 -0.002558 -2.558e-05

Eccentricity (δē, -) 0.0004607 0.0004607 4.628e-06

Inclination (δī, deg) 0.0001745 0.0001745 1.745e-06

Arg. of Periapsis (δω̄, deg) 0.001541 -0.005085 -0.01745

Ascending Node (δΩ̄, deg) -0.001745 0.001745 0

Mean Anomaly (δM̄ , deg) 0 0.003491 0.01745

Table 2. True Initial Mean Orbit Elements

Mean Orbit Element œ̄1
0 œ̄2

0 œ̄3
0

Semi-Major Axis (ā, km) 6879.4645 6879.4844 6879.4781

Eccentricity (ē, -) 0.04948277 0.049481426 0.04901866

Inclination (̄i, deg) 0.48913929 0.48913941 0.48905386

Arg. of Periapsis (ω̄, deg) 0.53550703 0.52882969 0.51629866

Ascending Node (Ω̄, deg) 0.78361235 0.78709963 0.78535755

Mean Anomaly (M̄ , deg) 2.6077467 2.6112894 2.6254102

spacecraft on-board is 5m (1-σ) in position and 0.1m/s (1-σ) in velocity. As described in Lemma 2, each
spacecraft simultaneously estimates the state of each spacecraft (including itself). Also, at each time step,
each spacecraft computes its own estimate of the formation mean orbit element barycenter.s

Two examples are used to illustrate successful mean orbit element barycenter consensus (Lemma 2), and
are summarized in Table 3. The first is a short duration simulation with a 25% chance of spacecraft receiving
measurement information from one another. The second is a longer duration example that has only a 1%
chance of spacecraft receiving measurement information from one another.

Table 3. Example Descriptions

Example pij Duration

1 0.25 0.05 orbit periods

2 0.01 2.00 orbit periods

The first example is summarized in Figures 3 through 6. Figure 3, 4, and 5 plots the ECI state estimate
error and uncertainty for spacecraft 1, 2, and 3. Because each of the spacecraft estimates of the consensus
variable include ECI state estimates for itself and the other two spacecraft, each of these estimates are
superimposed over one another. Because pij = 0.25 in this example, it can be seen that the uncertainty for
the spacecraft’s own state is lower than for the other spacecraft, for which only intermittent information is
available. The consensus of the mean orbit element barycenter error (as measured from truth) is plotted in
Figure 6. As can be seen here, the mean orbit elements are initially in disagreement and, as the simulation
progresses, achieve consensus with one another and ultimately demonstrate zero-mean error with the true
mean orbit element barycenter of the formation. This result is in concordance with Lemma 2.

The second example results are summarized in Figures 7 through 10. In this example, the probability of
consensus information packets being received from spacecraft i by spacecraft j is only pij = 0.01. Due to
this highly unreliable information transfer, the state estimate errors and associated uncertainties in Figures
7, 8, and 9 grow appreciably during gaps in communication. The difference between each spacecraft’s own
state estimate and that of other formation members is pronounced. The successful consensus of the mean
orbit element formation barycenter between the spacecraft is plotted in Figure 10. In Figure 10, despite the
highly unpredictable communications connectivity, the formation achieves zero mean consensus error after
approximately 0.25 orbits, as Lemma 2 predicts. Qualitatively, the barycenter uncertainty after consensus
for example 2 in Figure 10 is much larger than that shown for example 1 in Figure 6. This result conforms
to intuition, as the reliability of information sharing communications is much better in example 1 than in
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Figure 3. Earth-Centered-Inertial EKF Estimate Error and 3-σ Covariance for Spacecraft 1

Figure 4. Earth-Centered-Inertial EKF Estimate Error and 3-σ Covariance for Spacecraft 2
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Figure 5. Earth-Centered-Inertial EKF Estimate Error and 3-σ Covariance for Spacecraft 3

Figure 6. Individual Spacecraft Formation Mean Orbit Element Barycenter Estimate Consensus Error
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example 2.

Figure 7. Extended Earth-Centered-Inertial EKF Estimate Error and 3-σ Covariance for Spacecraft 1

Figure 8. Extended Earth-Centered-Inertial EKF Estimate Error and 3-σ Covariance for Spacecraft 2
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Figure 9. Extended Earth-Centered-Inertial EKF Estimate Error and 3-σ Covariance for Spacecraft 3

Figure 10. Extended Individual Spacecraft Formation Mean Orbit Element Barycenter Estimate Consensus
Error
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Both of these examples successfully demonstrate mean orbit element formation barycenter consensus
using different directed random graph characteristics.

V. Conclusions

A brief survey of literature for distributed systems and spacecraft formations is reviewed. Applied graph
theory is briefly introduced and applied to networked groups of spacecraft in a formation. Definitions are
given for weighted formation barycenters, formation slots, and relative formations. Some analytical results
are presented demonstrating that, using existing theory, formations can achieve consensus on both the
formation weightings and differential mean orbit elements. The guidance, navigation, and control utility of
this approach to defining distributed spacecraft formations is discussed. It is then shown that by leveraging
existing theoretical results in graph theory that a spacecraft formation with a distributed sensor network
can achieve consensus on the spacecraft states as well as the mean orbit element formation barycenter
provided that sufficient inter-spacecraft communication and state observability are present. Two examples
are given that demonstrate successful mean orbit element formation barycenter consensus with different
communication probabilities.

Significant opportunities for future work exist. Information-theoretic results demonstrating optimal inte-
gration of consensus variables and associated uncertainties from communicating spacecraft in the combined
estimation / consensus problem would improve results shown here. Demonstration of the distributed mean
orbit element combined guidance, navigation, and control problem with more interesting and non homo-
geneous sensor configurations (e.g., ranging, range-rate, angles-only) would also provide value. Also, the
current simulation uses ECI coordinates in the filter, whereas previous work by Alfriend et al. has shown
that estimation in orbit elements is demonstrably superior - future work should use orbit elements rather
than ECI coordinates as the estimation state. Finally, a detailed set of operational scenario demonstrations,
such as spacecraft ingress, egress, changing weightings, and various failure modes would address operational
concerns related to distributed spacecraft formation flight.
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