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There are substantial uncertainties in the computational models currently used to predict 

the heating environment and the Thermal Protection System (TPS) material response during 

Mars entry. Flight data is required to quantify and possibly reduce such uncertainties as 

well as improve current computational tools. The Mars Science Laboratory (MSL) Entry, 

Descent and Landing Instrumentation (MEDLI) suite will provide a comprehensive set of 

flight data which will include subsurface temperature measurements of its PICA heatshield 

at different locations. Accurate reconstruction of MSL surface heat flux from the flight data 

is a critical step in reducing these uncertainties. The purpose of this paper is to investigate 

the time-dependent estimation of MSL surface heating from simulated MEDLI subsurface 

temperature data using inverse methods in the presence of random and bias measurement 

and model errors. The surface heat flux is indirectly reconstructed by estimating the 

discretized surface heat transfer coefficient profile as a function of time. Whole-time domain 

least-squares methods in conjunction with the Tikhonov regularization technique are 

applied to this problem. The analysis is performed for the instrument plugs at the lowest and 

highest heating locations. The performance of the estimation methods and the accuracy of 

the reconstructed surface conditions are investigated under different types of errors in the 

measurements such as random noise and thermocouple lag. Furthermore, the effect of 

material property bias on the estimation of surface conditions is also studied. 

Nomenclature 

A = Surface area 
B’ = Dimensionless surface blowing rate 
CH = FIAT heat transfer coefficient = ρeuech 

Cp = Specific heat 
h = Enthalpy, contact conductance 
H1 = First-order Tikhonov regularization matrix 
HR = Total recovery enthalpy 
J = Sensitivity matrix 
ṁ = Surface blowing rate 
M = Number of measurements 
N = Number of discretized CH points 
p = Pressure 
P = Vector of estimation parameters 
q = Heat flux 
S = Sum of square of errors (objective function) 
t = Time 
T = Temperature 
T = Vector of direct problem outputs (FIAT predictions) 
V = Volume 
Y = Vector of measurements 
α = Surface absorptivity 
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ε = Surface emissivity 
µ = Regularization parameter 
ρ = Density 
σ = Stefan-Boltzmann constant 
 
Subscripts 
c = Char 
cond = Conduction 
g = Pyrolysis gas 
host = Host material 
rad = Radiative 
w = Material surface 
wire = TC wire properties 
∞ = Freestream 
 
Superscripts 
BE = Best-estimate 
k = Iteration number 
Nom = Nominal 
T = Transpose of a matrix 

I. Introduction 

he Thermal Protection System (TPS) is responsible for protecting a spacecraft against entry aeroheating. When 
spacecraft travel to other planets for surface missions or when they return to Earth upon the completion of their 

missions, they typically enter a planet’s atmosphere at very high velocity to land on the surface. During entry, the 
interaction between the spacecraft and the planet’s atmosphere will generally dissipate more than 90% of the entry 
system’s initial kinetic energy, mostly in the form of heat. The heatshield must keep the aeroshell interior safe from 
these extreme environments. Since the TPS is critical to mission success, the aeroheating environment and TPS 
material response have to be modeled accurately. However, there are substantial uncertainties associated with the 
analytical models that are currently used for predicting aeroheating and TPS response, such as heating augmentation 
due to turbulence and catalysis, TPS recession prediction and TPS material properties.1 These uncertainties have a 
significant effect on the TPS material selection and total heatshield mass, and therefore limit our ability to design 
more capable and robust Entry, Descent and Landing (EDL) systems.  
 

Flight data can help engineers reduce these uncertainties to improve or validate computational tools. During the 
past few decades, there have been numerous entry missions that were equipped with instruments to collect 
aeroheating and TPS performance data, primarily in support of the Apollo program.2 Lessons have been learned 
from these efforts, but some of the returned data have either not been critically evaluated or were not sufficient for 
code validation. A majority of these instrumented missions have occurred in the Earth atmosphere. However, Mars 
has been and will continue to be a frequent destination in recent space exploration efforts. To date, Viking and 
Pathfinder have been the only missions equipped with forebody TPS instruments.3 The need for Martian flight data 
is further justified since the experimental facilities on Earth are not capable of fully recreating Mars flight 
conditions. Mars Science Laboratory (MSL), expected to land on Mars in August 2012, is instrumented with 
aerodynamic and aeroheating sensors. The MSL aeroshell is a 4.5-meter diameter spherically-blunted 70-degree 
half-angle cone with a triconic afterbody.4 MSL’s heatshield is made of an ablative material called Phenolic 
Impregnated Carbon Ablator (PICA). A uniform PICA thickness of 1.25 in is used. MSL Entry, Descent, and 
Landing instrumentation (MEDLI) 5 includes pressure sensors, in-depth thermocouples and isotherm sensors. The 
MEDLI dataset will provide the first non-Earth entry aeroheating data since the Pathfinder mission and will provide 
more EDL data than all of the previous Mars missions combined. 5 

 
The flight data acquired by MEDLI will help answer some of the fundamental questions related to aeroheating 

and TPS performance while also addressing the uncertainties associated with current tools. A systematic post-flight 
data analysis strategy is required to maximize the benefits obtained from the MEDLI data. The main goal of this 
research is to develop a relatively general methodology to analyze MEDLI aeroheating and TPS flight data. The 
authors previously developed a comprehensive Inverse Parameter Estimation (IPE) methodology for the analysis of 
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aeroheating and TPS data and applied that methodology to an arc jet test dataset.6 The previous work focused on the 
methodology and identification of the material properties and heating parameters are significant uncertainty 
contributors and which ones can be simultaneously estimated. In reference 6, the surface heating generated in the arc 
jet was a constant value with no time-dependency. However, in a flight case, the surface heating changes as a 
function of time. In addition, in flight, the uncertainties in surface heating are more significant than the uncertainties 
in the material properties. Consequently, an accurate reconstruction of the surface heat flux is a required step to 
improve the models used to estimate the TPS performance during a Martian entry.  

 
Reconstruction of an entry vehicle’s surface heating from TPS subsurface temperature data belongs to the class 

of Inverse Heat Conduction Problems (IHCP).7 These problems are mathematically ill-posed and difficult to solve, 
specifically in the presence of noise or bias error in the data or models. The solution normally involves the 
minimization of an objective function containing both the predicted and measured temperatures. Different 
approaches and minimization methods have been developed for the solution of IHCPs and are used in conjunction 
with regularization techniques8, 9 to make the problem better conditioned for solution. IHCPs have been studied 
extensively in the literature; however, the application of these methods to the problem of ablating and pyrolyzing 
TPS material has not been prevalent.  

 
The objective of this paper is to investigate the time-dependent estimation of MSL surface heating from 

simulated MEDLI data using inverse methods in preparation for the analysis of the actual flight data. Performing 
this analysis with simulated data is crucial because we have the benefit of knowing the true solution and it provides 
us with the opportunity to characterize the performance of the inverse methods in the presence of different 
measurement and model errors. This work will help identify the limitations of the inverse methods and the level of 
accuracy that can be achieved for the estimation of surface conditions. In this paper, the heat flux is indirectly 
reconstructed by estimating discretized surface heat transfer coefficient profile as a function of time. This is done 
using whole-time domain least-squares methods, specifically the Gauss-Newton method. The Tikhonov first-order 
technique is used for the regularization of this ill-posed problem. Section II provides an overview of the MEDLI 
instrumentation suite. Section III describes the methodology and the inverse techniques used in this paper. The 
process used to investigate IPE methods for this application is also described in this section. Section IV presents the 
result of the investigation process. Specifically, the effect of different types of measurement errors on the estimation 
results is explored. Furthermore, the effect of material property bias which comes from an inaccurate knowledge of 
material properties on the estimation results is investigated. 

II. MEDLI 

MEDLI consists of seven pressure ports and seven integrated sensor plugs at different locations on the MSL 
heatshield. The suite consists of three subsystems: MEDLI Integrated Sensor Plug (MISP) temperature/isotherm 
sensors, Mars Entry Atmospheric Data System (MEADS) pressure sensors, and Sensor Support Electronics (SSE). 
The sensors are installed into the PICA plugs that are flush-mounted to the flight heatshield. The MISP locations 
(Figure 1, T labels) cover a broad range of heat flux environments, while the MEADS locations (Figure 1, P labels) 
are concentrated in the higher pressure and lower heat flux region near the stagnation point and the nose region. The 
data from the MISP sensors are the focus of this research.  

 
Each MISP plug is 33 mm in diameter with a total depth of 20.3 mm, and contains four type-K U-shaped 

thermocouples.5 The thermocouples are approximately at 2.54, 5.08, 10.16, and 15.24 mm from the surface of the 
plug. The top two thermocouples are intended primarily for heating reconstruction, while the two deeper 
thermocouples are primarily intended for material property reconstruction. The science measurement range 
requirement for each thermocouple is 100 to 1300 K with an accuracy of ± 2.2 K or 2.0% below 273 K and ± 1.1 K 
or 0.4% above 273 K. The top thermocouple is sampled at 8 Hz while the deeper thermocouples are sampled at 
either 1 or 2 Hz depending on the location. Each MISP plug also contains an isotherm sensor called Hollow 
aErothermal Ablation and Temperature (HEAT).10 The HEAT sensor is designed to measure the temporal 
progression of 700 °C isotherm through the TPS. The sensor elements are conductive, so as the char layer-virgin 
material interface advances, these elements become shorter and the voltage output decreases. The measurement 
range for the HEAT sensor is 0 to 13 mm with an accuracy of ± 0.5 mm. The HEAT sensor is sampled at 8 Hz. 
Figure 2 shows a completed HEAT sensor and MISP plug. 
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Figure 1. MEDLI sensor locations on the MSL heatshield
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Figure 2. Completed HEAT sensor (left) and MISP plug (right) 

10 

III. Methodology 

The purpose of this work is to investigate the estimation of MSL surface boundary conditions from simulated 
MISP temperature data using inverse methods. Typical engineering problems are direct problems where a physical 
phenomenon is studied using an analytical model. Model parameters and boundary conditions are known and the 
goal is to compute the system response or model outputs. However, analysis of experimental data is an inverse 
problem where the measurements of a system’s response are available; an analytical model is then used to estimate 
certain model parameters and/or boundary conditions from the data. Inverse problems are mathematically ill-posed 
meaning that the conditions of solution existence, uniqueness and stability are not generally satisfied. These 
problems tend to be unstable and sensitive to random or bias errors. Furthermore, different inputs to the model could 
result in similar model outputs. Therefore, the estimation of parameters or boundary conditions from measurements 
of model outputs is not guaranteed to have a unique solution. The non-uniqueness stems from a multi-modal 
objective function. Regularization techniques are used to redefine the problem such that the new problem is better 
posed. In the following sections, the estimation problem is defined by selecting the range of boundary conditions to 
be estimated and the range of simulated data to be used. The inverse methods used in this study are explained, 
followed by a review of the investigation process and comparison criteria used in the paper. 

 Definition of the Estimation Problem A.
Similar to all inverse problems, the MSL surface heat flux estimation problem used in this investigation has three 

parts: direct model, estimation parameters, and simulated data. 
 
1. Direct Model 

The current study utilizes the Fully Implicit Ablation and Thermal Response Program (FIAT) with PICA 
properties to model the TPS material performance and sizing (reference 11). FIAT is an implicit ablation and 
thermal response program for simulation of one-dimensional transient thermal energy transport in a multilayer stack 
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of isotropic materials that can ablate from a front surface and decompose in-depth. FIAT has been developed by 
scientists at the NASA Ames Research Center and is a standard tool in the aerospace industry today for thermal 
sizing and analysis of spacecraft heatshields. The equations solved in the FIAT code are the internal energy balance, 
internal decomposition, internal mass balance and surface energy balance equations. The surface energy balance is 
solved using pre-calculated surface blowing rate, B’, tables derived under the assumption of thermochemical 
equilibrium at the surface. Small modifications were made to FIAT version 2.5 for this work. 

 

2. Estimation Parameters 

The purpose of this study is to estimate time-dependent surface heat flux. However, for an ablative material, heat 
flux is not a direct input to FIAT. Instead, the following surface energy balance equation is solved: 

 

( )( ) ( ) 0'1 44 =−−−++++− ∞ condwwradwccggwrH qTTqhmhmhBHC σεα&&                  (1) 

 

The above equation includes terms representing many of the complex processes that occur at the surface of an 
ablative material. These terms include the incoming convective heating, the incoming radiation from the shock 
layer, the reradiation from the TPS material, the material response through pyrolysis and ablation processes and the 
heat conducted into the TPS material. The recovery enthalpy HR, surface pressure, radiative heating qrad, blowing 
correction, and the heat transfer coefficient CH are inputs to FIAT environment file as a function of time. The B’ 
tables and gas enthalpy are also inputs to FIAT. The boundary layer convective heating is represented by the first 
term in the above equation. It is not possible to estimate all the terms in the above equation. Therefore, we have to 
pick the most relevant parameter. In this study, we estimate the heat transfer coefficient CH which is the main 
contributor to the incoming convective heating. The other parameters are assumed to be known with low 
uncertainty. Once the heat transfer coefficient is estimated the resulting heat flux can be calculated using the other 
parameters. The surface heat flux is the sum of the first three terms in the above equation. 

 
The heat transfer coefficient is a time-dependent parameter. In this study, CH is discretized every 1 second. This 

discretization is a balance between the desire to have a higher resolution CH profile, computational resources and the 
stability of the inverse methods. Figure 3 shows a plot of the nominal heat flux and heat transfer coefficient for two 
plug locations, T2 and T4 (highest and lowest heating) for the entire MSL trajectory. These surface conditions were 
calculated using the Computational Fluid Dynamics (CFD) along DPLR from MSL’s nominal design trajectory.12 
This study limits the estimation of the surface conditions for the time range where heat flux is greater than 1 W/cm2, 
which corresponds to the time range shown with the black vertical lines (20-150 s). 

    
Figure 3. The nominal surface heating conditions for T2 and T4 locations showing the estimation range 

 
3. Simulated Data 

As mentioned before, MISP consists of seven plugs at different locations on the heatshield each containing four 
thermocouples (TC) and an isotherm sensor. In this paper we limit the analysis to the plugs that experience the 
highest and lowest surface heating, T2 and T4 respectively, to bound the range of surface heating expected by MISP 
plugs in flight. Currently, the isotherm sensor is going under an extensive testing and calibration program.13 The 
purpose of this calibration campaign is to determine the nominal value of the isotherm and the associated 
uncertainties. The isotherm that this sensor tracks could depend on the temperature change rate as well as the local 
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temperature. As a result, the current study does not use the isotherm measurements as a part of the data. The heat 
flux estimation will not greatly benefit from the isotherm data; however, it could be beneficial in determining TPS 
recession in a future study. The top two TCs are closest to the surface and therefore are most sensitive to the 
boundary conditions. Furthermore, the actual flight data will carry some bias due to the uncertainty in the material 
properties. The deeper TCs are affected more by an inaccurate knowledge of material properties. For these reasons, 
only the top two TCs are used in this work for estimation of surface conditions. For plug T2 the recession front 
reaches the top TC; therefore, the simulated data for this TC is only used up to the vicinity of the burnout point.  

 
Figure 4a shows a plot of the simulated measurements as a function of time for both plug locations. These 

measurements were simulated using FIAT and the current nominal heating and material parameters for the MSL 
vehicle. This plot shows the measurement without any noise/errors. Simulated random and bias noises can be added 
to the data to study their effect on the estimation results. Random errors are sampled from a normal distribution with 
a mean of zero and standard deviation of 0.5% of TC temperature, and are added to the simulated data. Figure 4b 
shows an example of simulated noisy data for the T4 location. 

 

         
Figure 4. (a) Simulated TC measurements for the two plug locations. (b) T4 simulated data with added 

random noise 

 
 An example of data bias error is TC thermal lag. In this paper, thermal lag is implemented by lagging the 
simulated TC temperatures using a simple lump capacitance model for an infinitely long wire. At any time step, 
given the current temperature of the host material (original simulated TC temperature) and the initial wire 
temperature, the heat transferred from the host material to the wire can calculated for a given contact conductance, 
hc, wire properties, volume and surface area. The change in wire temperature for the current time step is then solved 
using the equation below: 
 

( )wirehostsc

wire

p TTAh
t

T
VC −=






∆

∆
ρ                                                      (2) 

 

 For this problem, the properties of a type-K thermocouple are used for the wire properties. Figure 5 shows the 
lagged TC measurements for different contact conductance values for plug T4. It can be seen that higher contact 
conductance, hc results in smaller thermal lag in the TC measurements. In this paper whenever thermal lag is added 
to the data a nominal contact conductance of 350 W/m2K is used. The effect of varying this parameters on the 
estimation results are shown later for plug T4. 
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Figure 5. Implementation of TC thermal lag using a simple lump capacitance model for plug T4 

 Investigation Process B.
The TC measurements are simulated using the nominal surface conditions and PICA material response model. 

The surface CH profile that generates this data is taken to be the truth or known solution. A simple Gaussian function 
is used for the initial guess. This represents a realistic starting solution for the actual flight problem because heat rate 
profiles generally resemble Gaussian functions. As shown in Figure 6, this initial guess looks very different from the 
known solution and it does not have some of the asymmetry present in the known solution curve. The effect of using 
a different initial guess is shown later for one of the cases. Figure 6 illustrates the CH profile used to generate the 
data and the one used for initial guess for plug T2. 

 
Figure 6. Initial guess compared to the known solution for plug T2 

 
The investigation process begins with the simulation of the TC measurements using the nominal CH profile and 

nominal material response model. The simulated data are then used either in this from or with added noise and 
thermal lag depending on which case is being studied. Once the data is generated, the inverse method starts with the 
initial guess and attempts to estimate the CH profile in order to achieve the best match between the TC temperature 
predictions and simulated data. This is done by iterative minimization of the sum of square of errors between the TC 
predictions and simulated measurements. This process is continued until convergence is reached and the best-
estimate CH profile is obtained. In addition to random noise and thermal lag, the effect of material property bias on 
the estimation results is also investigated. This is done by simulating the measurements with a perturbed material 
response model and then performing the estimation using the nominal model. In this case, we are simulating the 
situation where our knowledge of material properties is inaccurate, which is expected for flight data. For this study 
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the material response model is perturbed by increasing either PICA density (all components) by 10% or decreasing 
thermal conductivity by 10%.  

 
The estimated CH profiles and the corresponding reconstructed surface heat flux will be compared. In most cases 

the best-estimate and known solution CH profiles are co-plotted and compared visually. Another criterion used for 
comparison is the Normalized Absolute Difference (NAD), which is the absolute difference between the known 
solution and best-estimate CH profiles as a percentage of the peak CH value (shown in equation 3). This criterion is 
used instead of percent error because a small absolute error when the CH value is small itself could lead to a large 
percent error. This criterion can be defined similarly for surface heat flux. Another criterion used for comparison is 
what is called the Relative Integrated Error (RIE) which is the integrated square of differences between the nominal 
(known solution) and best-estimate CH profiles as a percentage of the integrated square of the nominal CH profile 
(shown in equation 4). This criterion can be similarly defined for the surface heat flux. 
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 Inverse Estimation Methods C.
Inverse methods have been widely used to solve data analysis problems in a broad range of fields such as heat 

transfer,14-18 geophysics,19 trajectory reconstruction,20, 21 remote sensing, mathematics, and astronomy. The general 
methods used in these fields are similar. For that reason and for the sake of brevity, we only focus on the methods 
used in heat transfer problems. This is not intended to be a complete review of inverse methods, but only the 
methods relevant to this work.  

 
IHTPs can be categorized in many different ways.16 They can be classified in accordance with the nature of the 

dominant heat transfer process: conduction, convection or radiation. Another classification is based on the type of 
parameters being estimated: boundary conditions,7 model parameters (material properties),14 initial conditions or 
geometric characteristics. This makes the inverse problem either a parameter estimation or function estimation 
problem. Another classification is based upon the differential equations representing the problem: linear or 
nonlinear. The temporal and spatial dependence of material properties makes the heat conduction problem nonlinear. 
The inverse methods used for these problems can also be classified based on the time domain of the measurements 
used in the estimation process: whole-time domain or sequential. Other ways of classification include the dimension 
of the heat transfer problem (ex.: 1-D, 2-D or 3-D) and the method of solution of the direct heat transfer problem 
(ex.: finite difference, finite element, finite control volume, Duhamel’s theorem). This inverstigation is concerned 
with the category of nonlinear Inverse Heat Conduction Problems (IHCP) for the estimation of boundary conditions. 
The direct problem is solved using FIAT which is a one-dimensional finite difference code.  

 
 Two methods that have been considered for this problem are the whole-time domain method and the sequential 
function specification method. The whole-time domain methods estimate all of the parameters characterizing the 
boundary condition profile at the same time using all measurements. The estimation is done by iterative 
minimization of an objective function S (ordinary least square), which is equal to the sum of the square of errors 
between the measurements and the corresponding temperature predictions. Different methods can be used to 
perform the minimization such as Gauss-Newton,14, 17 Levenberg-Marquardt,16 Box-Kanemasu14 and different 
variations of the Conjugate Gradient method.16 The Gauss-Newton method provides the fastest convergence 
however it can be unstable. In this paper we use this method and resolve the instability problem with the use of 
regularization techniques. As explained before inverse problems are ill-posed they become unstable in the presence 
of errors and for small time steps. This results in large oscillations in the boundary condition estimates. 
Regularization approaches have to be used in conjunction with the minimization scheme to make the problem better 
posed and more stable. Regularization has a smoothing effect on the parameter estimates. Russian mathematician 
Andrey Tikhonov devised a procedure for the regularization of ill-posed problems.8, 9 His technique involves the 
addition of a penalty function to the ordinary least square function to alleviate oscillations in the solution. By doing 
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this, we are effectively solving a neighboring problem that has solution close to the solution of the original problem, 
with the distinction that the new problem is better posed. The regularization term can take many different forms. 
 
 Unlike whole-time domain methods, sequential methods estimate a given parameter using only a limited range 
of measurements and continue sequentially in time. One of the leading methods is the function specification method 
with future time algorithm developed by James Beck.7 In this method the boundary condition at a given time is 
estimated using TC measurements for only a limited future time window. Then the solutions are saved and the 
method continues to the next time step. The number of future time steps used in the estimation has the same effect as 
the regularization approach used for the whole-time domain methods. This method has the advantage of being more 
computationally efficient than whole-time domain methods, but less stable. However, to benefit from this efficiency, 
the code used to solve the direct problem must be able to save and restart the solution in time. FIAT does not 
currently offer this option. For this reason and the higher stability of whole-time domain methods, they are used for 
this study. The authors are currently working with NASA Ames Research Center personnel to modify FIAT to allow 
a restart option, and will perform similar analyses with the future time function specification method once this 
option becomes available. 
 

1. Gauss-Newton Algorithm 

The Gauss-Newton algorithm is widely used to solve nonlinear least squares problems.14, 16 It is a modification 
of Newton’s method which does not require the knowledge of second derivatives. The algorithm iteratively 
minimizes the ordinary least square objective function S, which is equal to the sum of square of differences between 
measurements and temperature predictions shown below in matrix form at iteration k: 

 

  ( ) ( )[ ] ( )[ ]kTkk
S PTYPTYP −−=                                                              (5) 

 

where P is the vector of parameters being estimated (discretized CH values), Y is the vector of the simulated TC 
measurements (TC1 and 2 combined) and T is the corresponding vector of temperature predictions. The Gauss-
Newton method is developed by deriving the gradient of the above equation, linearizing the vector of predicted 
temperatures T(P) with a Taylor series expansion around the current solution Pk and setting the gradient of S to zero. 
The expression can be rewritten to derive the change in parameters ∆P required to minimize S: 

 

( )[ ]kTkkkTk
PTYJPJJ −=∆                                                               (6) 

 

where J is the Jacobian matrix which is equal to the derivative of the predicted TC temperatures to estimation 
parameters (discretized points along the CH profile) as shown in the equation below: 
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where M is number of measurement and N is the number of estimation parameters. The calculation of this 
Jacobian matrix is where most of the inverse problems difficulties arise and is computationally expensive because its 
numerical approximation requires N solutions of the direct problem. This procedure is continued until a stopping 
criterion is reached. A range of convergence criteria can be used for this problem. Iteration can be stopped when S 
reaches a small number or when the percent or absolute change in S is small. Another criterion could be to stop the 
iteration once the absolute or percent change in estimation parameters is smaller than a specified value. A maximum 
number of iteration is another criterion. These criteria are all implemented in the inverse code; however, in the 
presence of errors they might never be satisfied because the objective function cannot be reduced to small numbers. 
An approach widely used in literature is the discrepancy principle in which the iteration is stopped once S reaches 
the expected error in the data.15 This would be equal to Mσ2 where σ is the standard deviation of the measurement 
errors. This approach is useful when the errors are known and normal and have a constant standard deviation. 
However, in reality this assumption is not always valid. Furthermore, if measurements have bias errors this approach 
cannot be used. Therefore, in order to develop methods that can be similarly applied to the case of flight data, this 
criterion is not used in this work. The iterations are continued for a specified maximum number and the best 
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estimate is taken to be when the solution is stable. In this work, the maximum number of iterations was set to 200 to 
make sure that a converged solution is reached.   

 
2. Tikhonov Regularization 

Tikhonov technique is used to regularize the ill-posed inverse problem and alleviate the non-physical oscillations 
that occur in the boundary condition estimate.7, 8 First order Tikhonov regularization has proved to be the most 
effective for the surface heating estimation problems and is therefore used here. The penalty function added is the 
sum of square of differences between the consecutive CH values. Equations 5 and 6 need to be modified accordingly: 
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Small values of µ ensure rapid minimization of the ordinary least square function, but result in large oscillations 
in the CH profile. Larger values of µ reduce oscillations, but slow down the minimization of the objective function. 
There are different methods and criteria in the literature for the selection of this parameter. The general approach 
used here is to start with a small value of µ and increase it until the obtained estimate is satisfactory and the degree 
of oscillations is reduced sufficiently. Qualitatively a good solution is a solution that traces through the 
unregularized oscillatory solution. The µ values that worked for this problem ranged from 109 to 1012. This might 
seem too large compared to the values seen in literature, but it should be noted that most of the work in literature 
involves the estimation heat flux which is orders of magnitude greater than CH. In the case of simulated data with no 
noise, regularization was not needed and an almost perfect estimate was obtained using the Gauss-Newton method. 

IV. Implementation & Results   

This section provides the estimation results for the different noise cases for both plug locations. Furthermore, 
brief discussions on the effects of the initial guess, regularization parameter, and contact conductance are presented. 
Figure 7 shows the estimation results for the simulated data without any noise. Only normalized absolute difference 
is shown here because the best estimate profile is almost the same as the known solution. We can clearly see that the 
CH profile is estimated very well and the normalized absolute difference is very close to zero for the entire profile. In 
the same figure, similar results are obtained for plug T4. The errors are in the order 10-5 %.  

 

 
Figure 7. Error in the best estimate CH profile for the case of simulated data without noise 
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These results are obtained with the Gaussian initial guess. In order to study the effect of the initial guess on the 
estimated profile, the estimation is also repeated for a constant CH initial guess (10% of the peak CH value) for the 
T2 location. Figure 8 compares the estimation results and convergence behavior for these two initial guesses. The 
original initial guess is labeled as “IG 1” while the constant 10% initial guess is labeled as “IG 2”. We can clearly 
see that in both cases the estimated profile is very close to the known solution and very similar estimates are 
obtained. However, as expected, a more difficult initial guess takes longer to converge. We can see in the right plot 
that the simple initial guess case takes 7 iterations to converge while the constant initial guess case takes 24 
iterations. 

 

   
Figure 8. The effect of initial guess on the estimation results and convergence behavior 

 
Figure 9 shows the estimation result for the case of simulated data with random noise for both plug locations. 

We can clearly see that without regularization the solution is oscillatory. 

 
Figure 9. Estimation in the case of simulated data with random noise with no regularization 

 
Figure 10 and Figure 11 show the results for the same estimation performed with Tikhonov first order 

regularization. The oscillations have been substantially reduced and the best-estimate CH profile is very close to the 
known solution. The right plot in Figure 10 shows the residuals between best estimate temperature predictions and 
the measurements. As expected we can see that the difference in temperatures after estimation is random around 
zero, and with similar distribution as the added random noise to the data. Figure 11 illustrates the normalized 
absolute difference between the best-estimate and known solution CH profiles for both plug locations. We can see 
that even in the presence of relatively substantial random noise the estimation results are very good and within 1% 
of the peak value.  
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Figure 10. The case of simulated data with random noise with regularization for T2 

 

  
Figure 11. Estimation errors in the case of data with random noise with regularization  

 
In Figure 12, the effect of regularization parameter on the estimated profile for plug T2 is presented. The 

estimation is performed for two values: 109 and 1011.  
 

 
Figure 12. The effect of regularization parameter on the estimation results 
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high values of µ over-penalize the solution and substantially slow down the reduction of the objective function and 
solution convergence. Therefore, a good strategy for the selection of the regularization parameter is to increase it 
until the oscillations in the final estimate have been reduced enough and the estimate still traces the general trend of 
the unregularized estimate closely. The results for the remaining cases are shown only for the regularized estimates, 
but the same trend is seen  
 

Figure 13 demonstrates the estimation results for the case of simulated data with thermal lag for both plugs. The 
simulated data are lagged with a thermal conductance of 350 W/m2 K. Thermal lag in the data is a bias error and we 
can see that there is a bias error in the estimated CH profile. The estimated profile lags the original CH curve the 
same way the simulated TC measurements lag the original TC measurements. The lag is more pronounced on the 
decreasing half of the CH curve due to the fact that the effective heat rate is lower compared to the increasing side 
(see Figure 3).   
 

 
Figure 13. Estimation results in the case of data with thermal lag 

 
In Figure 14, the estimation is performed for the simulated data with thermal lag for plug T4 for three different 

values of contact conductance. This is done to show the effect of the magnitude of thermal lag on the estimated CH 
profile.  

 
Figure 14. The effect of contact conductance in lag modeling on estimation results 
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original simulated data. Estimated CH is initially lower than original CH and then it crosses over and exceeds the 
original curve after about 80 s. The results from Figure 13 and Figure 14 confirm that a large thermal lag in the TC 
data could result in a large error in the estimated profile. Therefore, in the case of the analysis of flight data, it is best 
to model TC lag as accurately as possible and either implement this effect within FIAT or correct the data. 
 

Figure 15 demonstrates the effect of the PICA density perturbation on estimation results for both plugs. In this 
case, the data is simulated using a perturbed PICA thermal response model with 10% higher density (all components 
for virgin and char) and then the original response model (lower density) is used in the estimation of CH curve. CH 
and material density have similar but opposite effects on the in-depth material temperature response. Generally, 
higher surface CH results in higher subsurface temperatures while higher material density results in lower subsurface 
temperatures. Therefore, if a lower density material model is used in the estimation process compared to the one 
used to generate the data, the predicted subsurface temperatures will be higher, and the estimated CH will be lower to 
compensate for the higher subsurface temperatures. This is exactly what is seen in the estimation results. This shows 
that the strong linear dependency between CH and material density results in a direct translation of the bias error in 
material density to a bias error in estimated CH profile. 

 

 
Figure 15. Estimation results in the case of data with PICA density perturbation 

  
Figure 16 shows the effect of the PICA thermal conductivity perturbation on the estimation results for both 

plugs. The simulated data are generated with a material model with 10% lower conductivity (virgin and char) and 
then the original material model (higher conductivity) is used in the estimation process.  

 

 
Figure 16. Estimation results in the case of data with PICA conductivity perturbation 
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estimated CH profile. However, CH and thermal conductivity are not as linearly dependent as CH and density, 
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In other words, due to the lower linear dependency between CH and conductivity, a large reduction in CH profile 
does not completely compensate for the bias error in the data, and the estimated profile is closer to the original 
curve. 
 

Figure 17 and Figure 18 show the estimation results for both plugs for the simulated data with random noise, 
thermal lag (hc = 350 W/m2 K) and material property bias (density perturbation). The estimated CH profile shows a 
combination of both lag and material property biases seen before. These errors result in a CH profile that is not the 
same as the profile used to generate the data. Such errors and biases in the measurements and models are expected 
within the flight data. Therefore, it is very crucial to correct for these errors and biases in order to ensure an accurate 
estimation of surface boundary conditions.  
 

 
Figure 17. Estimated CH profile in the case of data with combined errors 

 

 
Figure 18. Estimated CH normalized absolute difference in the case of data with combined errors 

 
 As mentioned before, the surface heat transfer coefficient is the parameter that is estimated in this study because 
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reconstruction accuracy requirements are stated for heat flux not CH. Therefore, in this study, the final accuracy 
criteria will be given for the surface heat flux. Figure 19 shows the reconstructed surface heat flux for the case with 
combined errors for both plugs (corresponding to CH estimation in Figure 17). The difference between the known 
solution and best estimate profiles look somewhat different from the trends observed for CH profiles. From Figure 
20, we can clearly see that the errors in heat flux profile are smaller than CH profile. 
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Figure 19. Estimated surface heat flux for the case of combined errors 

 

  
Figure 20. Estimated surface heat flux normalized absolute difference for the case of combined errors 

 
 Table 1 provides a summary of the accuracy of the heat flux estimation results for the different cases that are 
investigated in this paper. These accuracy criteria are calculated and shown for estimation of both plugs for the six 
cases studied: no error, random noise, TC thermal lag, density perturbation, conductivity perturbation and the 
combined error cases. In addition to the observations made for each case, we can see that the estimation results for 
T2 are generally less accurate than T4. This is expected due to the fact that the top TC burns around 95s for T2 and 
only TC2 data is available for the rest of the period. TC2 is deeper and consequently less sensitive to the surface 
conditions and more prone to uncertainties compared to TC1. Therefore, the estimation results are less accurate 
when the top TC data is not available completely. 
 

Table 1. Accuracy of surface heat rate estimation in the presence of different types of errors 

 Plug T2 Plug T4 

 NAD range (%) RIE (%) NAD range (%) RIE (%) 

No Noise [-6 e-5, 1 e-5] 2.0 e-12 [-1 e-5, 5 e-5] 2.0 e-13 

Random Noise [-1.2, 1.5] 0.0070 [-0.7, 1.0] 0.0061 

Thermal lag [-4.0, 3.0] 0.1727 [-3.5, 3.5] 0.1143 

ρ perturbation [-7.5, 0.5] 0.5230 [-8.0, 0.5] 0.4986 

κ perturbation [-5.0, 1.2] 0.1076 [-3.5, 0.5] 0.0909 

Combined Errors [-10.5, 2.5] 0.9151 [-11.0, 2.0] 0.6084 
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V. Conclusions 

In this paper, the estimation of MSL surface heat transfer coefficient from simulated subsurface temperature data 
was investigated. Whole-time domain Gauss-Newton least square minimization method in conjunction with 
Tikhonov first-order regularization was used to perform the estimation. The performance of the inverse methods and 
the accuracy of the estimated boundary conditions were investigated in the presence of different measurement errors 
such as random noise, TC thermal lag and model bias errors such as TPS material density and thermal conductivity 
perturbation. Due to the fact that the data were simulated and the true solution was known, this study was able to 
inform the level of accuracy with which the surface conditions can be reconstructed from subsurface temperature 
measurements using inverse techniques.  

 
We observed that regularization is crucial in reducing the oscillations in the estimated CH profiles. 

Regularization was required in order to obtain a smooth estimate in all cases except the case without any errors. A 
good estimate was obtained in the case of data with random noise. However, bias errors in the data such as TC 
thermal lag resulted in a large bias in the estimated boundary conditions. This proves the necessity of implementing 
accurate lag models in FIAT or the correction of TC data for thermal lag. A simple capacitance model was used in 
this study to simulate TC lag; nevertheless, this analysis can be repeated once more accurate Finite Element 
Analysis (FEA) lag modeling or experimental data is available for thermal lag in MISP plugs. Bias error in the 
model, such as PICA density or conductivity perturbations, resulted in a bias in the estimated surface CH profile. 
Such bias is larger in the case of density perturbations compared to conductivity perturbations. This is due to the 
stronger linear dependency between CH and material density.  
 

This investigation focused on the estimation of surface heating boundary conditions from simulated MEDLI 
data. However, a bias error in the thermal response model such as inaccurate knowledge of material properties was 
shown to produce an inaccurate estimation of surface conditions. This motivates the use of a comprehensive 
methodology to target the estimation of material properties in addition to surface conditions. A TC driver approach 
will be used for the estimation of both surface heating and material response from MISP flight data. In this 
approach, problem is decoupled by using the data from the top TC as the boundary condition and calculating the 
simpler heat conduction problem for the TPS block below that TC. This way we temporarily eliminate the surface 
boundary conditions and their effect on the material response below the top TC. Now the developed IPE 
methodology for multi-parameter estimation can be applied to the TC driver problem to estimate material properties 
from the remaining deeper TC data. Once the material properties are updated with this new estimate, we can solve 
the normal ablation problem and use the top TCs to estimate the time-dependent surface conditions as detailed in 
this paper.  
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