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Accurate characterization of Thermal Protection System (TPS) material properties is
an important component in modeling and simulating the response of the material under
heating. Unfortunately, for many common TPS materials, especially ablators, these mate-
rial properties are not always well known and contribute a source of aleatory uncertainty
to thermal simulations, impacting the safety and reliability of entry systems. Furthermore,
e�orts to capture these uncertainties have been hampered by a lack of suitable experimen-
tal data to establish proper input statistics, necessitating the use of ad-hoc methodologies
to fabricate input PDFs. In this work, new ablator material property data from the Mars
Science Laboratory (MSL) program is used to construct experimentally-based material
property PDFs for use in non-deterministic ablation simulations. A standard UQ propa-
gation, sensitivity analysis and uncertainty contributor breakdown analysis is performed
using the revised input set in the anticipated MSL aerothermal environment. Lastly, a
problem is formulated to quantitatively establish the relationship between errors in input
statistics and errors in output quantities of interest.

Nomenclature

cp Speci�c heat
CH Convective heat transfer coe�cient
h Enthalpy
_m Mass ow rate
q Heat rate
_s Surface recession rate
T Temperature
ue Boundary layer edge velocity
x Coordinate system moving with the recessing surface
y Fixed coordinate system
� Absorptivity
� Emissivity
� Resin volume fraction
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� Thermal conductivity
� Population mean
� Population standard deviation
� Density
� Time

Acronyms
EDL Entry, Descent and Landing
FIAT Fully Implicit Ablation and Thermal Analysis Program
MEDLI Mars Science Laboratory Entry Descent and Landing Instrumentation
MSL Mars Science Laboratory
PDF Probability Density Function
PICA Phenolic Impregnated Carbon Ablator
QMU Quanti�cation of Margins and Uncertainties
QoI Quantitiy of Interest
TC Thermocouple
TPS Thermal Protection System

Subscripts
A Resin constituent A
B Resin constituent B
C Ablator reinforcing material C
c Char
g Pyrolysis gas
R Radiation
v Virgin
w Wall or surface

I. Introduction

Objects traveling at hypersonic velocities through planetary atmospheres are subjected to extremely
harsh environmental conditions. Strong shock waves generated by the passage of the object through the gas
medium convert the kinetic energy present in the free stream to internal energy, resulting in high tempera-
ture, chemically reactive ow �elds near the object. Surviving these environmental conditions requires the
use of Thermal Protection Systems (TPS) to mitigate heat transfer to the vehicle’s critical systems and sub-
structure. This is accomplished by re-radiating energy at the surface back to the surrounding environment,
and, in some cases, via thermal decomposition and ablation.

High-�delity analysis and simulation capabilities have been developed over the past half-century to deliver
analysis and design tools for sizing TPS systems and for performing safety and reliability assessments. Despite
these e�orts, signi�cant errors and uncertainties persist that limit the accuracy, and consequently, the utility,
of this predictive capability. The taxonomy of these uncertainties is as follows:

1. Aleatory - These uncertainties arise from natural variation in the model parameters or boundary
conditions. For ablation simulations, these can be from a host of sources, including (but not limited
to): �nite manufacturing tolerances, material property non-uniformity, random atmospheric variation,
etc.

2. Epistemic - These uncertainties and errors emerge from a lack of knowledge about the problem or the
method by which the problem is solved. Examples of epistemic uncertainties include: improper input
characterization, errors in the form of the governing equations, incomplete physical models, numerical
errors from the discretization and solution of the governing equations, etc.

Historically, these errors and uncertainties have been mitigated by conservative design methods, expert
judgement, experience and good engineering practice. However, more aggressive science and exploration
missions (such as NASA’s Mars Science Laboratory) are pushing missions into aerothermal environments
where no experience, or experimental data exists, calling into question the reliability and safety of these new
systems, and necessitating new design and analysis methodologies.
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In recognition of this need, the Hypersonics branch of NASA’s Fundamental Aeronautics Program has
initiated a strategic plan13 to identify sources of uncertainty as part of a comprehensive e�ort to develop new
physics-based models for hypersonic systems, and to apply standard uncertainty quanti�cation methodologies
to existing high-�delity analysis tools. Over the past decade, numerous analyses have been performed using
a probabilistic interpretation of aleatory uncertainty to establish TPS reliability. Monte Carlo methodologies
have been applied to uncertain parameters in ablation6,9, 17 and aerothermal2,3 models, to determine the
e�ect on imposed heating, subsurface temperatures, and surface recession levels. These approaches have
given rise to new methods for assessing TPS margin8 and have been the basis for new design and risk
assessment methodologies.

However, gaps and limitations exist in the current body of work, particularly related to the character-
ization of the input probability density functions used to represent uncertain parameters. This is due in
large part to a lack of large experimental datasets to accurately characterize input statistics and the rela-
tionships between inputs. As a consequence, input distributions for the cited analyses have been generated
using largely ad-hoc approaches, with assumptions of PDF functional form, statistical moments, and pa-
rameter independence. Furthermore, there has been little emphasis placed on determining the e�ect these
assumptions have on output statistics and reliability metrics.

This work addresses the highlighted issues with the following primary research goals:

1. Construct an experimentally-based set of probability density functions for ablator material properties.

2. Perform a standard uncertainty propagation, contributor breakdown, and sensitivity analysis for a
problem of relevance to the ablation modeling community.

3. Characterize the errors output PDFs as functions of the quality of the input distributions.

This approach enables intelligent design of experiments to e�ciently capture the most important con-
tributors to overall uncertainty; attempts to quantitatively establish the relationship between input quality
and output error; establishes the expected spread to quantities of interest, highlighting potential sources of
epistemic uncertainty in the model as ight data becomes available; and constructs a seamless process by
which experimental test results are incorporated directly into the analysis. Governing equations and physical
models are outlined in Section II. The details of the analysis procedures described above are in Section III
and results of the three step approach can be found in Section IV.

II. Model

Results presented in this work are generated using the Fully Implicit Ablation and Thermal Analysis
Program (FIAT),5 developed at NASA’s Ames Research Center. This software package represents the state-
of-the-art and has been used in the analysis and design processes for many agship NASA missions, including,
Galileo, Stardust, and MSL.

FIAT solves a system of four coupled partial di�erential equations to determine heat transfer through
the TPS material. These four governing equations are supplemented with additional auxiliary equations
modeling speci�c source terms, that will not be discussed in this work. For a full listing, refer to the original
source material.5

A. Internal Energy Balance Equation

The internal energy balance equation is a transient thermal conduction problem with radiation and pyrolysis
contributions:
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As the ablator material pyrolyzes, chars, and subsequently ablates, the surface of the material recedes. The
x coordinate moves with this ablation front, while the y axis remains �xed. The terms in Eq. (1) can be
interpreted as: the accumulation of sensible energy, net rate of conduction and radiative heat uxes, rate of
energy consumed during the pyrolysis process, convection rate of sensible energy due to a moving coordinate
system, and the rate of energy convection from pyrolysis gas.
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B. Internal Decomposition Equation

The ablator material is modeled as a three component composite material, where two materials A and B for
the resin �ller are mixed with a reinforcing material C in a volume fraction dictated by the input parameter
�:

� = � (�A + �B) + (1 � �) �C : (2)

Each component decomposes independently according to a model based on an activation temperature for
each constituent.

C. Internal Mass Balance Equation

As ablator material thermally decomposes, its density changes from that of the virgin material to a less-
dense charred state, producing pyrolysis gasses that are ejected from the material into the surrounding
ow�eld. The continuity equation captures this mass transfer by assuming quasi-1D ow and an impermeable
substructure:

@ _mg

@y
=
@�

@�
: (3)

D. Surface Energy Balance Equation

The surface energy balance dictates the heating to the TPS material due to the imposed aerothermal envi-
ronment, capturing convective, radiative, and surface thermochemical e�ects between the ablator and the
surrounding ow�eld:

�eueCH (Hr � hw) + _mchc + _mghg + �qrad = ( _mc + _mg)hw + ��wT
4
w + qcond: (4)

Left hand side terms represent the contributions to the surface energy rate while the right hand side terms
reject heat from the surface. Contributors the the surface energy include the sensible convective heat ux,
the contribution to surface heat ux due to the moving coordinate system, the energy from the escaping
pyrolysis gas, and the incoming radiative heat ux. Rejection of energy from the surface is due to energy
released from the ablation process, energy re-radiated to the surrounding ow�eld, and conduction into the
the heatshield material. The convective heat transfer coe�cient CH employs a correction to account for the
blowing of pyrolysis gasses at the surface.

III. Methodology

The analysis presented in this work addresses aleatory and epistemic sources of uncertainty pertaining to
material properties for ablation simulations. The research objectives discussed in Section I will be approached
in the following manner:

1. Construct experiment-based material property input PDFs to be used for non-deterministic ablation
simulations. Determine the PDF functional form and establish dependencies between input parameters
shown in the experimental data.

2. Propagate the established uncertainties through the material response model using a Monte Carlo
methodology. Supplement the propagation with a �nite-di�erence based sensitivity analysis and un-
certainty contributor breakdown using Pearson’s moment correlation coe�cients and Sobol’ global
sensitivity indices.

3. Characterize errors in output quantities of interest (QoI’s) as a function of input distribution quality
on the basis of Kullback-Leibler divergence for several assumed input PDF functional types.

Details for each portion of the analysis will be supplied in Sections III.B, III.C, & III.D.

A. Problem De�nition
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Parameter

Virgin Density �v

Virgin Speci�c Heat cpv

Virgin Thermal Conductivity �v

Char Density �c

Char Speci�c Heat cpc

Char Thermal Conductivity �c

Table 1. PICA material model parameters carry-
ing uncertainties.

NASA’s most recent agship mission, the Mars Science
Laboratory, provides a unique opportunity for the ab-
lation modeling community. A suite of instrumented
plugs is embedded in the heat shield that will collect
in-depth temperature measurements and the progression
of an isotherm during the Entry, Descent and Landing
(EDL) phase of the mission, currently scheduled for Au-
gust 2012. This instrumentation will provide the largest
volume of data ever collected in the Martian atmosphere
to be used to infer the heating environment, to evaluate
the performance of the thermal protection system, and to
verify & validate high �delity analysis tools. The MSL
Entry, Descent and Landing Instrumentation (MEDLI)
program is ideally suited to methodology proposed in this work and will be the focus of the analysis, but it
should be emphasized that the approach presented is widely applicable to other problems of interest.

A more detailed description of the anticipated aerothermal environments, the strategic placement of the
instrumentation on the capsule forebody and a schematic of an instrumented plug is shown in Fig. (1). The
placement of the sensor plugs is intended to inform scientists and engineers of the physical phenomena that
are anticipated during the entry phase, including turbulent transition, and windside heating augmentation.
Each sensor plug, denoted by the white dots in Fig. (1b), contains four embedded thermocouples and an
isotherm detector. In total, the instrumentation will provide the time history of the temperature at four
�xed depths and the progression of an isotherm through the material under the local heating conditions,
shown in Fig. (1a). Location four of Fig. (1b) is the focus of the analysis presented here and was selected
because of the benign anticipated heating conditions.

(a) Thermal environments. (b) Instrumentation layout. (c) MISP plug.

Figure 1. Mars Science Laboratory anticipated thermal environments, and embedded heat shield instrumen-
tation.

As errors and uncertainties associated with the aerothermal environment and surface conditions are
beyond the scope of this work, a special analysis strategy was developed. The anticipated surface conditions
(characterized by time histories for wall recovery enthalpies, radiative ux, pressures, etc.) are used to
generate nominal temperature pro�les in the material. The time history of temperature at the thermocouple
closest to the surface then becomes a boundary condition for a second simulation, permitting the elimination
of the surface energy balance, Eq. (4), from the governing equation set and facilitates the examination of
the ablation and thermal conduction problem for the remaining thermocouples. The schematic in Fig. (A)
shows the procedure graphically.

B. Input Distributions

A set of revised input distributions for material properties is desired for use in future stochastic ablation
simulations. An analysis of the available experimental data permits a determination of the functional form (if
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Figure 2. Time-dependent temperature and pressure boundary conditions for UQ propagation.

any) that best describes the trends seen in the data, and establishes relationships between material properties.
This eliminates, to the greatest extent possible, the ad-hoc methodologies currently in use. Experimental
data from the MSL TPS quali�cation e�ort is used for the analysis and is su�cient to establish statistics for
a subset of the quantities of interest listed in Tab. (1). Further experimental testing, performed in support
of the MEDLI program, will target the remaining parameters of interest, but is not currently available.

To determine the PDF functional form, the following approach is used. Means, standard deviations,
covariances, and correlation coe�cients are calculated for supported material properties (�v, �c, and �v)
then used as parameters for candidate density functions. The experimental data is binned, and plotted as
a histogram and compared the candidate functions based on the statistical parameters calculated from the
data.

For the remaining parameters of interest where there is insu�cient data to perform a statistical analysis
(�c, Cpv, Cpv), alternative approaches are used. The functional form of the char thermal conductivity is
assumed to be the same as what is used for its virgin counterpart. The mean value for the distribution is
matched to the available data, and a standard deviation of 15% of its mean value is assumed. Covariance
between virgin and char thermal conductivities is assumed to be equal to the covariance between virgin and
char density. Speci�c heats are calculated via thermal di�usivity, �, shown in Eq. (5). A uniform distri-
bution is assumed for thermal di�usivity, with mean values matching those from experiments and standard
deviations of 5% of the means. Speci�c heat is then calculated via algebraic manipulation, incorporating
previously sampled values of thermal conductivity and density.

� =
�

�cp
(5)

C. Uncertainty Analysis

The uncertainty propagation, contributor breakdown and sensitivity analysis utilizes the revised inputs and
applies the observed uncertainties to a problem of relevance to the ablation modeling community, explained in
detail in Section III.A. Each portion of the analysis targets information vital to understanding the behavior,
expected variation, and sources of uncertainty within the model, that are both temporally and spatially
dependent. As ight data becomes available, this detailed analysis forms the backbone of establishing
ground-to-ight traceability between ground testing and simulation of the ight environment, and provides
evidence that can be used to reconcile potential di�erences between the observed data and predictions.

1. Uncertainty Propagation

The propagation of uncertainties through the material response model is performed via a standard Monte
Carlo method. Samples are drawn from the material property density functions constructed in III.B and
used as inputs for the material response model. This process is repeated many times to collect statistics
for the in-depth temperature at each of the thermocouple locations. Plotting these statistics provides a
time evolution of the expected temperatures from the ight data and a region of con�dence where in-depth
temperatures are expected due to aleatory variations in material properties.
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2. Sensitivity Analysis

The sensitivity analysis is performed using a standard �nite-di�erence based approach to calculate gradients
in temperature at each of the thermocouple locations with respect to the uncertain parameters. Nominal
material property values are selected to be the mean values for each of the material properties. These
nominal values are perturbed by 0.5% of their nominal value and the local gradient is calculated using
central di�erencing about the nominal. These gradients give a pure measure how the model responds to
perturbations to the input parameters and provide clues to the dominant physical processes being modeled
at any given time and location.

3. Uncertainty Contributor Breakdown

The contributor breakdown is performed using two methods, Pearson’s moment correlation coe�cients and
Sobol’ global sensitivity indices. The correlation coe�cient approach is prevalent in the existing ablation
UQ literature and measures the strength of the linear dependence between the inputs and output QoI’s. As
the governing equations are inherently non-linear, it is not clear that this linear analysis accurately captures
and ranks the primary uncertainty contributors. As an independent check, the results from the correlation
coe�cient analysis are checked with the results from the Sobol’ method, which is capable of identifying non-
linear relationships between inputs and outputs. By comparing the results, the adequacy of the correlation
approach as it applies to ablation simulations can be evaluated.

D. Error Analysis

The results of the error analysis are aimed toward quantitatively assessing how the quality of the input
distributions a�ects the statistics of output quantities of interest. In particular, it addresses the question of,
\how much investment is required to adequately resolve my safety and reliability metrics?" To accomplish
this, a problem is fabricated in the following manner:

1. Assume there exists some ‘true’ distribution(s) representing aleatory uncertainties for material prop-
erties.

2. From that true distribution, we draw a small number, N , samples, replicating the material testing
process.

3. Using the data collected from the ‘testing’ phase, construct approximate probability density func-
tions to be used in a UQ analysis. Approximate density functions are to be constructed under three
assumptions:

(a) The approximate input has the same functional form as the ‘true’ distribution.

(b) The approximate inputs are independent gaussian random variables.

(c) The approximate inputs are independent uniform random variables.

4. Perform a Monte Carlo analysis using M >> N samples to achieve converged statistics for each
assumed input type and for the ’true’ inputs.

5. Calculate the error between the converged statistics using the approximate inputs and the converged
statistics from the ‘true’ distribution.

By varying the number of samples drawn, N , and by evaluating the error from the input functional type,
we can examine how the error is a�ected by additional investment in input characterization (experimental
testing) and how the assumptions made during the formation of the inputs a�ects the accuracy of the results.

IV. Results

A. Input Probability Density Function

An examination of the MSL TPS quali�cation data for virgin density, char density, and virgin thermal
conductivity supports the use of a multivariate normal distribution to represent ablator material properties
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Figure 3. Block diagram showing the error analysis methodology.

(with special accommodation for unsupported parameters, described in Section III.B). Histograms of the data
are co-plotted with marginal distributions with matching statistical parameters in Fig. (4a), showing good
agreement between the experimental data and the presumed distribution. Fig. (4b) shows the dependencies
observed between virgin and char densities, and between virgin density and thermal conductivity in scatter.
Experimental data points are plotted in green, while samples drawn from the presumed distribution are
plotted in black. Correlation coe�cients and corresponding p-values are shown in Tab. (2) and Tab. (3)
indicating statistical evidence to support dependence between the parameters. The importance of capturing
these dependencies is highlighted in IV.E

Verification of Multivariate Normal Input for Representing Experimental Data
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Figure 4. Input PDF veri�cation and validation

��v;�c
0:934

��v;�v 0:242

Table 2. Correlation coe�cients calculated from experimental data.

Fig. (5) plots samples from the presumed distribution for all parameters of interest, normalized by
population mean. Where applicable, binned experimental data is co-plotted in green. An examination of the
histograms and scatterplots shows the revised input distribution, based on a multivariate normal distribution
that incorporates inter-parameter dependencies, accurately represents the available experimental data. As
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p�v;�c 0:000
p�v;�v 2:86 � 10�4

Table 3. P-values coe�cients calculated from experimental data.

additional experimental results become available, this assertion must be tested, particularly for char material
properties.

Experimental Data and Simulation Inputs Histogram Comparison
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Figure 5. A comparison between experimental data and samples drawn from the constructed PDF

B. Uncertainty Analysis
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Figure 6. Expected virgin and char front depths.

A Monte Carlo methodology, using 2000 samples
from the input density function from Section IV.A
is used to propagate uncertainties through the ma-
terial response model using the temperature-based
boundary conditions described previously. Results
from the stochastic analysis is shown in Fig. (7) for
thermocouples 2, 3, and 4. Mean values are shown
as solid lines, and three standard deviations from the
mean are plotted as dotted lines, showing a band of
expected temperature variation from the established
material property uncertainties.

An alternate visualization of the data showing
the evolution in the standard deviation of tempera-
ture in time for the thermocouples accompanies the
envelope plot. Uncertainty to in-depth temperature
is maximized at the peak heating conditions and de-
creases during the cool-down process, showing peak
standard deviations of roughly 2.5% the mean value.
This propagation analysis shows a reasonably nar-
row temperature band of anticipated temperature
readings. This is advantageous for identifying potential sources of epistemic (model-form) uncertainties as
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Figure 7. MISP 4 propagation of uncertainties.

ight data becomes available.
The pyrolysis region is shown in Fig. (6) with mean and 3 standard deviations for the front position as

it evolves in time. The 98% virgin line shows a large region where the onset of the pyrolysis zone begins.
Under the applied heating conditions, the char region never fully forms and grows, shown by the char depth
of zero in the �gure. Simulation conditions indicate the possibility of a very wide pyrolysis zone (as much
as two centimeters), indicating the need for good models during the material transition phase.

C. Finite-Di�erence Sensitivity Analysis

A central-di�erence approach using step sizes of 0.5% of the nominal material property values is used to
calculate the gradient in temperature at each thermocouple depth. The stacked-area plots of Fig. (8) show
the contribution of each of the vector components of the gradient (e.g. the areas of each of the colors
at a vertical slice gives the relative contribution of that component to the norm of the gradient at that
time). These gradient plots give a raw measure of the dominant e�ects present in the model under the time-
dependent heating conditions at the three depths. Early, under benign heating, the sensitivity is split evenly
between the virgin density, thermal conductivity, and speci�c heat, but as char formation begins to occur,
the char density becomes a key parameter. As anticipated, thermocouple 2 shows the largest sensitivity to
char properties, especially thermal conductivity, with these char parameters becoming less important deeper
in the material.

D. Uncertainty Contributor Breakdown

The contributor breakdown is performed using both the common Pearson’s correlation coe�cient approach
and the Sobol’ index method and is shown in Fig. (9). Total uncertainty is normalized for both sets of plots at
each time step, and is plotted using stacked areas (vertical slices of the plot give the relative contributions to
overall uncertainty for a given point in time at a certain thermocouple depth). These contributor breakdowns
di�er from the pure sensitivity analysis, shown in the previous section, in that the variation of the parameter
due to its input PDF is factored into the analysis. So, for the variation seen in Fig. (7) the corresponding
vertical slice from the contributor breakdown shows which parameters are most responsible for the observed
QoI variation.

It is interesting to note that discrepancies between the results of the correlation and Sobol’ approaches
exist. These discrepancies are highlighted in Fig. (10), Fig. (11), and Fig. (12). Correlation and Sobol’ results
for each parameter are co-plotted, highlighting di�erences in the evolution of their overall contribution to
uncertainty. To make the e�ects of these discrepancies more apparent, the time-dependent ranks of each
uncertainty contributor are plotted using the two methods, showing how the discrepancies in contributor
evolution a�ect the overall ranking of primary uncertainty contributors. These dissimilarities between the
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Figure 8. MISP 4 �nite-di�erence sensitivity analysis.

methods highlights the dangers of using linear methods to draw conclusions on inherently non-linear systems,
and makes a strong case for the use of Sobol’ indices for future contributor breakdown studies.

E. Error Analysis

The error analysis strategy detailed in Section III.D is performed using the maximum TC4 temperature as
the quantity of interest. This particular quantity is used as a surrogate for the bond line temperature (the
temperature at the base of the TPS where the heat shield and vehicle substructure are bonded together),
which is a common design criteria for TPS sizing. The ‘true’ distribution is de�ned as the input density
function from IV.A. Converged statistics between the truth and approximate inputs are compared for the
three assumed input PDF functional forms (‘truth’, independent normal, and independent uniform random
variables) and are shown in Fig. (13). Qualitatively, the assumption of independent variables reduces the
variance in the QoI. Variation in the output QoI is aggravated by positive correlation between the virgin and
char materials that is not accurately captured if the parameter dependence is not established. For example, a
higher virgin thermal conductivity implies a higher char thermal conductivity, hence a much larger di�erence
in temperature than if this dependence were not captured.

A calculation of the Kullback-Liebler divergence between the truth and approximate distributions is
shown in Fig. (14). The error shows insensitivity to the number of sample draws, N , as expected from the
Monte Carlo based approach upon which the approximate distributions are formed, but does show signi�cant
sensitivity to input PDF functional type assumptions. Error dramatically increases as the input PDF type
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Figure 9. Comparison of correlation coe�cient and Sobol’ index contributor breakdowns for plug 4.
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Figure 10. Comparison of Sobol’ and correlation coe�cients at TC 2.

13 of 18

American Institute of Aeronautics and Astronautics



0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

MISP 4 TC 3 Correlation vs. Sobol': ρ
v
  

U
nc

er
ta

in
ty

 C
on

tr
ib

ut
io

n

 

 
Correlation
Sobol'

0 50 100 150 200 250 300

1

2

3

4

5

6

Time (sec)

R
an

k

(a)

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

MISP 4 TC 3 Correlation vs. Sobol': ρ
c
  

U
nc

er
ta

in
ty

 C
on

tr
ib

ut
io

n

 

 
Correlation
Sobol'

0 50 100 150 200 250 300

1

2

3

4

5

6

Time (sec)

R
an

k

(b)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

MISP 4 TC 3 Correlation vs. Sobol': C
p

v

 

U
nc

er
ta

in
ty

 C
on

tr
ib

ut
io

n

 

 
Correlation
Sobol'

0 50 100 150 200 250 300

1

2

3

4

5

6

Time (sec)

R
an

k

(c)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

MISP 4 TC 3 Correlation vs. Sobol': C
p

c

 

U
nc

er
ta

in
ty

 C
on

tr
ib

ut
io

n

 

 
Correlation
Sobol'

0 50 100 150 200 250 300

1

2

3

4

5

6

Time (sec)

R
an

k

(d)

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

MISP 4 TC 3 Correlation vs. Sobol': κ
v

U
nc

er
ta

in
ty

 C
on

tr
ib

ut
io

n

 

 
Correlation
Sobol'

0 50 100 150 200 250 300

1

2

3

4

5

6

Time (sec)

R
an

k

(e)

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

MISP 4 TC 3 Correlation vs. Sobol': κ
c

U
nc

er
ta

in
ty

 C
on

tr
ib

ut
io

n

 

 
Correlation
Sobol'

0 50 100 150 200 250 300

1

2

3

4

5

6

Time (sec)

R
an

k

(f)

Figure 11. Comparison of Sobol’ and Correlation Coe�cients at TC 3.
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Figure 12. Comparison of Sobol’ and Correlation Coe�cients at TC 4.
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Figure 14. The e�ect of sample count, N, and independence assumptions on output error.

This analysis shows the importance of properly replicating observed data with appropriate PDF types.
Furthermore, it emphasizes the importance of characterizing the relationships between material property
parameters, as independence assumptions contribute signi�cantly to the overall error in the output statistics,
potentially impacting design metrics in a non-conservative fashion.

V. Conclusions

A comprehensive material property analysis was performed using available data from the MSL TPS
quali�cation e�ort, in conjunction with state-of-the-art high-�delity material response modeling tools to
assess the a�ects of material property characterization on UQ e�orts for ablation simulations. The following
conclusions and assertions can be made from the results shown in Section IV:

1. The available material property data for virgin density, char density, and virgin thermal conductivity
supports the use of a multivariate normal distribution to faithfully represent observed trends. Further-
more, there is statistically signi�cant evidence to support that the material property parameters are
dependent on one another and that it is important to capture those dependencies when performing UQ
analyses, necessitating the development of a uni�ed material model or a greater investment in material
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property testing.

2. The expected variation to in-depth temperature due to aleatory material property uncertainties is
relatively small, facilitating e�orts to reconstruct surface environmental conditions and to establish
or refute sources of epistemic (model-form) uncertainties in existing state-of-the-art material response
codes. Correlation coe�cient and Sobol’ global sensitivity indices show discrepancies in the primary
uncertainty contributors, emphasizing the need to capture outputs from the non-linear governing equa-
tions using non-linear approaches to prevent false accounting.

3. Output QoI error shows insensitivity to high volumes of material property testing, but shows great
sensitivity to assumed input forms (as expected based on the Monte Carlo approach used). This
emphasizes the need to perform su�cient testing to establish the functional forms and inter-parameter
dependencies for simulation inputs, at a minimum.
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