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There are substantial uncertainties in the computational models currently used to predict 
the heating environment of a spacecraft and the Thermal Protection System (TPS) material 
response during Mars entry. Flight data will help with a better quantification and possible 
reduction of such uncertainties as well as with the improvement of the current 
computational tools. The Mars Science Laboratory (MSL) entry, Descent and Landing 
Instrumentation (MEDLI) suite will provide a comprehensive set of flight data. The Inverse 
Parameter Estimation (IPE) methodology presented in the current paper targets the 
reconstruction of the boundary conditions experienced by the spacecraft during the entry in 
the Mars atmosphere, in particular the heating to which the TPS is exposed. To investigate 
the feasibility of the IPE method, arcjet test conditions relevant to MSL entry environments 
are selected. The Nominal Analysis is performed first to examine the quality of the 
experimental data and to compare to the nominal model predictions. Next, a Monte Carlo 
study is performed to provide a hierarchy for the model input parameters based on their 
overall contribution to the measurement uncertainty. A Sensitivity Analysis is then 
performed where the correlation between the different input parameters is investigated to 
determine whether they can be simultaneously estimated. Finally, an IPE code is developed 
and tested on the Arcjet dataset. This code uses in depth temperature information and 
recession data to back calculate heating and material properties. Solution uniqueness, 
existence and stability are discussed in detail and are being identified as the main challenges 
of the inverse analysis.  

Nomenclature 
CH = FIAT heat transfer coefficient = ρeuech 
Cp = Specific heat 
f = Scaling factor 
G = Physical model 
J = Sensitivity matrix 
M = Number of measurements 
N = Number of input parameters 
P = Vector of input parameters 
S = Sum of square of errors (objective function) 
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T = Vector of direct problem outputs (FIAT predictions) 
X = Sensitivity coefficient 
Y = Vector of measurements 
Δ = Normalized 2σ uncertainty = (2σ/ xnom) 
ε = Emissivity, Error 
κ = Thermal conductivity 
µ = Damping parameter 
ρ = Density 
Ω = Diagonal matrix 
 
Subscripts 
c = char property 
i = index of input parameter 
k = time index of thermocouple temperature prediction 
v = virgin property 
 
Superscripts 
k = Levenberg-Marquardt iteration number 
T = Transpose of a matrix 

I. Introduction 
he Thermal Protection System (TPS) is a critical component of most Earth and planetary missions and is 
responsible for protecting the spacecraft against entry aeroheating. When spacecraft travel to other planets for 

surface missions or when they return to Earth upon the completion of their missions, they are required to enter a 
planet’s atmosphere at very high velocities and safely land on the surface. During entry, the interaction between the 
spacecraft and the planet’s atmosphere will dissipate more than 99% of the entry system’s initial kinetic energy, 
mostly in the form of heat. The heatshield will keep the aeroshell interior safe from these extreme environments. 
Since the TPS is critical to mission success, the aeroheating environment and TPS material response have to be 
modeled accurately. However, there are substantial uncertainties associated with the analytical models that are 
currently used for predicting aeroheating and TPS response. These uncertainties have a significant effect on the TPS 
material selection and total mass, and therefore limit our ability to design more capable and robust Entry, Descent 
and Landing (EDL) systems.  

 
Flight data can help scientists reduce these uncertainties to improve or validate the current computational tools. 

During the past few decades, there have been numerous entry missions that were equipped with instruments to 
collect aeroheating and TPS performance data. These missions were primarily in support of the Apollo program.1 
Many lessons have been learned from these efforts, but some of the returned dataset have either not been critically 
evaluated or they were not sufficient for code validation. Moreover, a majority of these instrumented missions have 
occurred in the Earth atmosphere. However, Mars has been and will continue to be a frequent destination in recent 
space exploration efforts. Mars Pathfinder was the only mission equipped with forebody TPS instruments.2 The need 
for Martian flight data is further justified since the experimental facilities on Earth are not capable of fully recreating 
Mars flight conditions. Mars Science Laboratory (MSL), scheduled to launch in the fall of 2011, is instrumented 
with aerodynamic and aeroheating sensors. The MSL aeroshell is a 4.5-meter diameter spherically-blunted 70-
degree half-angle cone with a triconic afterbody.3 MSL’s heatshield is made of an ablative material called Phenolic 
Impregnated Carbon Ablators (PICA). A uniform PICA thickness of 1.25 in is used. MSL Entry, Descent, and 
Landing instrumentation (MEDLI)4 includes in-depth thermocouples and isotherm sensors. The MEDLI dataset will 
provide the first non-Earth entry aeroheating data since the Pathfinder mission, and will provide more flight data 
than all of the previous Mars missions combined. 

 
The flight data acquired by MEDLI will help answer some of the fundamental questions related to aeroheating 

and TPS performance (material response) while also addressing the uncertainties associated with the current tools. A 
systematic post-flight data analysis strategy is required to maximize the benefits obtained from the MEDLI data. The 
main goal of this research is to develop relatively general and easy to modify methodologies and tools to analyze 
MEDLI aeroheating and TPS flight data to address the existing uncertainties, improve the current computational 
models and provide recommendations for future mission instrumentations. The suite of tools and methodologies we 
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refer to as the Inverse Parameter Estimation (IPE) method will reconstruct, using the data provided by the MEDLI 
instrumentation the surface heating and TPS material properties. The IPE method is based on the minimization of an 
objective function containing both calculated and measured temperature by adjusting several predefined parameters 
until a solution is obtained.  

 
The objective of this paper is to describe the development of the IPE methodology and its validation using a 

selected set of MSL Arc jet test data. Section II describes the primary uncertainties associated with the current 
computational models used for predicting MSL heating and TPS performance. Section III provides an overview of 
the MEDLI instrumentation suite with emphasis on the aeroheating subsystem, MEDLI Integrated Sensor Plugs 
(MISP). Section IV describes the arcjet test set used to validate the IPE method. The IPE method consists of four 
steps (Section V): Nominal Analysis, Uncertainty Analysis, Sensitivity Analysis and Inverse Analysis. These steps 
help identify the input parameters with significant contributions to the overall uncertainty, which parameters can be 
estimated, what range of data needs to be considered, and how the estimation process should be implemented. 
Section VI discusses how the developed methodology is applied to the selected MSL arcjet test dataset to estimate 
the desired heating and TPS parameters. Finally, the main challenges faced in the inverse parameter estimation 
process are discussed in detail. 

II. Current Modeling Uncertainties 
Modeling uncertainties are divided into two subgroups: uncertainties due to aerothermal modeling, and 

uncertainties due to TPS material response modeling. The current section will discuss such uncertainties from the 
perspective of Mars entry with emphasis on carbon/resin based ablators as a primary material for the heatshield. 
Most of these uncertainties however are also relevant for other planetary atmospheres. 

 
In a recent paper, Wright et al.5 reviewed the current status of aerothermal analysis for Mars entry missions and 

the uncertainties associated with the current models. In a carbon dioxide environment, the two primary uncertainties 
in forebody heating prediction are turbulence and surface reactions. Prior to MSL, all Mars missions flew mostly 
laminar trajectories; heating augmentation due to turbulent flow not being a major concern. The MSL vehicle 
however is larger than any previous Mars missions. Future human missions to Mars will require even larger entry 
vehicles. For such large vehicles, transition to turbulence happens early on in the trajectory and turbulent heating 
becomes a dominant factor. Significant uncertainties exist in the current knowledge and modeling of turbulent flow 
especially as related to the onset of turbulence, i.e. transition. Turbulent heating may also be augmented due to the 
roughness effects generated by the ablation of the TPS material. Figure 1 (right) compares MSL centerline heating 
for laminar flow using different turbulence models. It is evident that turbulent flow greatly increases heating when 
compared to the laminar heating predictions. 

 
Surface catalysis, the process in which the surface of the TPS material mediates recombination of the species 

from the boundary layer with additional heat deposition to the surface, is also an important source of uncertainty. 
The models currently used for characterizing such chemical reactions have not been validated and there are still 
large unknowns in these models especially related to the reaction rates. Usually catalytic effects are modeled using a 
conservative upper limit, that of supercatalytic wall. Figure 1 (left) shows the MSL centerline catalytic heating for 
an early MSL design trajectory as calculated using different catalysis models. It can be seen that the peak heat flux 
ranges from 47 W/cm2 for the non-catalytic surface to 125 W/cm2 for the supercatalytic surface (a factor of 3). 
Clearly, a better understanding of this phenomenon and a more accurate estimation of catalytic heating could reduce 
the current design margins which consequently could result in significant performance gains. 

 
For TPS material response modeling, the primary uncertainty is the recession rate of the TPS material, especially 

in a dissociated shear flow environment. Such flow is normally seen in the leeside of the forebody heatshield. PICA 
recession is governed mainly by oxidation of the carbon char. Since the Martian atmosphere is mainly composed of 
carbon dioxide, there is significant uncertainty in the carbon oxidation modeling in a dissociated carbon dioxide 
atmosphere. The primary reason for this uncertainty is the lack of experimental capability to validate the ablation 
model. Currently, there is no U.S. ground facility capable of conducting a test with a high enthalpy dissociated 
carbon dioxide environment. Uncertainty in recession modeling impacts both the distribution of the energy terms in 
the surface energy balance as well as the in-depth material response, mainly the in-depth temperature profiles. One 
of the direct results of the MEDLI post flight analysis will be to compare measured in-depth temperature profiles 
with the model predictions and address such uncertainties. A second important component in modeling the behavior 
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of ablative materials is represented by the set of employed material properties for both virgin and char. Some of 
these thermal properties (char thermal conductivity, pyrolysis gas enthalpy, etc) are difficult to be measured 
accurately at high temperatures. MEDLI provided flight data could provide better information about the material 
properties exhibited by the ablative material in flight environments. 

 
Figure 1. Uncertainties in MSL centerline heating for an early MSL design trajectory for various catalytic 

heating models (left) and respective turbulent heating models (right) 5 

III. MEDLI 
MEDLI consists of seven pressure ports and seven integrated sensor plugs at different locations on the MSL 

heatshield. The suite consists of three subsystems: MEDLI Integrated Sensor Plug (MISP) temperature/isotherm 
sensors, MEDLI Entry Atmospheric Data System (MEADS) pressure sensors, and Sensor Support Electronics 
(SSE). The sensors are installed into the PICA plugs that are flush-mounted to the flight heatshield. The MISP 
locations (Figure 2, T labels) cover a broad range of heat flux environments, while the MEADS locations (Figure 2, 
P labels) are concentrated in the higher pressure and lower heat flux region near the stagnation point and the nose 
region. The data from the MISP sensors are the focus of this research. Table 1 summarizes the design environments 
for the MISP sensor locations.  

 

 
             Figure 2. MEDLI sensor locations on the MSL heatshield3. The location of the pressure sensors 
(MEADS) is indicated by the P labels while that of the temperature/isotherm sensors (MISP) is indicated by 
the T labels.  
 

 
 

Table 1.  MISP plugs design aerothermal 
environment 3 

 

Location Peak qw 
(W/cm2) 

Peak τw 
(Pa) 

Peak pw 
(atm) 

Qw 
(J/cm2) 

T1 56 8 0.371 2345 
T2/T3 189 376 0.267 5168 

T4 52 7 0.370 2092 
T5 107 124 0.265 3637 
T6 184 285 0.264 5028 
T7 118 101 0.48 3711 
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Each MISP plug is 33 mm in diameter with a total depth of 20.3 mm, and contains four type-K U-shaped 
thermocouples.4 The thermocouples are approximately at 2.54, 5.08, 10.16, 15.24 mm from the surface of the plug. 
The top two thermocouples are intended primarily for heating reconstruction, while the two deeper thermocouples 
are primarily intended for material property reconstruction. The science measurement range requirement for each 
thermocouple is 100 to 1300 K with an accuracy of ± 2.2 K or 2.0% below 273 K and ± 1.1 K or 0.4% above 273 K. 
The top thermocouple is sampled at 8 Hz while the deeper thermocouples are sampled at either 1 or 2 Hz depending 
on the location. Each MISP plug also contains an isotherm sensor named Hollow aErothermal Ablation and 
Temperature (HEAT).6 The HEAT sensor measures the temporal progression of 700 °C isotherm through the TPS. 
The sensor elements are conductive and as the char layer-virgin material interface advances these elements become 
shorter and the voltage output decreases. The measurement range is 0 to 13 mm with an accuracy of ± 0.5 mm. The 
HEAT sensor is sampled at 8 Hz. Figure 3 shows a completed HEAT sensor and MISP plug. 

 

 
Figure 3. Completed HEAT sensor (left) and MISP plug (right) 6 

IV. Arcjet Test Selection 
Arcjets are the main ground facilities employed for the testing and qualification of TPS materials and spacecraft 

heatshields. The heating environment for a given mission can be approximately simulated in arcjets and by placing 
an instrumented TPS material sample in the generated flow, one can study the TPS ablation and its in-depth 
performance. Multiple tests were carried out at the NASA Ames Research Center Arcjet Complex in the support of 
MSL heatshield development and qualification. For the purpose of the current study, arcjet test conditions (series 
AHF 271) relevant to the MISP operating environments are selected. Stagnation tests were performed using 4 inch 
Iso-q pucks to assess the in-depth thermal response of PICA in the heating environment of MSL. Thirty four arcjet 
runs were performed at 10 different aeroheating conditions. Most of the samples were instrumented with five 
thermocouples at varying depths.  

 

 
Figure 4. Left: Arcjet test conditions and envelope of predicted MISP heating environment. Right: Image of a 
post-test AHF 271 Iso-q sample. 
 

 

 

C1 

C2 

C3 
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The test conditions and the envelope representative to the MISP flight heating environment are plotted in Figure 
4. These environments were derived using a supercatalytic and fully turbulent assumption, and including 3σ 
trajectory uncertainty. Details in terms of heat flux, pressure, test duration and corresponding ablation model 
temperature and recession error prediction for the three arcjet test conditions selected to represent the MISP heating 
environment (circles in the Figure 4) are given in Table 2. The model error represents the % errors of the difference 
between the measurements and the computational model predictions.  
 

Table 2. Heating environment and corresponding model error for the three selected arcjet tests in Figure 4  
 

Condition Run # Heat Flux 
(W/cm2) 

Pressure 
(atm) 

Test Duration 
(s) 

% Temp 
Error 

% Recession 
Error 

C1 271-06 52 0.09 120 8-16% 17% 
C2 271-12 135 0.142 50 7% 1.5% 
C3 271-15 182 0.259 35 4% 3% 

 
While thermal conduction problems are usually easy and more accurate to model, ablation physics is a more 

complex phenomenon. The various approximations employed by the computational codes to model ablation may 
end up being inaccurate for some heating regimes introducing significant deviations from the actual physics 
happening. Since inverse parameter estimation methods usually wrap around such ablation models, the estimation of 
the model input parameters is as accurate as the physics and chemistry represented by the model. In other words, an 
inverse analysis may be only as good as the direct analysis upon which it builds. The current study utilizes the Fully 
Implicit Ablation and Thermal Response Program (FIAT) to model the TPS material performance and sizing 
(Reference 7). FIAT is an implicit ablation and thermal response program for simulation of one-dimensional 
transient thermal energy transport in a multilayer stack of isotropic materials that can ablate from a front surface and 
decompose in-depth. FIAT is developed by scientists at the NASA Ames Research Center and is a standard tool in 
the aerospace industry today for the thermal sizing and analysis of spacecraft heatshields. The equations solved in 
the FIAT code are the internal energy balance, internal decomposition, internal mass balance and surface energy 
balance equations. The B’ tables employed by the FIAT code are derived under the assumption of thermochemical 
equilibrium at the surface. This assumption is usually valid at high heating conditions. At lower heating conditions, 
finite-rate chemistry dominates and thus recession tends to be overestimated by the FIAT code. To investigate the 
FIAT model error for the three selected arcjet test cases listed in Table 2, the thermocouple temperature history is 
plotted with the FIAT predictions of in-depth temperature. These plots are shown in Figure 5 for both the lowest and 
highest heating arcjet test cases. 

 

 
Figure 5. FIAT Low model error for high heating case (left) and high model error for low heating case (right) 
 

Indeed, Figure 5 confirms that the model error (in terms of both temperature and recession) for the lower heating 
case (C1) is larger than that for the higher heating case (C2) with C3 intermediate. To ensure that FIAT is operated 
under the domain of validity of its assumptions, C3 with the lowest model error is selected for the IPE exercise. This 
arcjet test corresponds to a stagnation heat rate of 182 W/cm2 and a stagnation pressure of 0.259 atm. The duration 
of the test is 35 seconds after which and the sample was removed from the arcjet chamber and left at ambient 
temperature for cool down. Post-test measurement revealed the recession to be 5.2 mm.  

Run 15 Run 06 
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V. Methodology 
An inverse parameter estimation methodology has been developed here for a more comprehensive analysis of 

aeroheating and TPS experimental data. The development of this methodology is motivated by future analysis of the 
MISP flight data; however, in lieu of actual MISP data, the arcjet test case described above is used to test the 
methodology and investigate its feasibility. This methodology needs to be general enough to be applied to other 
experimental data with minimal modifications or additions. The purpose of this methodology is to systematically 
estimate target design parameters from experimental data. Typically in most engineering problems, a theoretical 
model is developed to represent the physics of the problem, design parameters are selected and then the system’s 
response is calculated. This is called a direct problem as simplified in Equation 1. 

 

€ 

T =G[P]                                                                               (1) 
 

where T is the system’s response (outputs), P is the design input parameters, and G is the physical model. In the 
direct problem G and P are known and the goal is to find T. Conversely, experimental analysis relies on the 
knowledge of the measurements of the system’s response (T) and the physical model (G) and the goal is to estimate 
the input parameters (P). This is called an inverse problem. Inverse problems are solved using inverse parameter 
estimation methods. In the simplest sense, these methods are based on the minimization of an objective function 
containing both the measured system’s response and the response predicted by the physical model. The parameters 
that minimize this objective function are considered the solution of the inverse problem. IPE methods iterate on 
input parameters until the closest possible match between measurements and calculations is achieved. However, the 
above equation is the simplest case possible, a perfect scenario, where the physical model perfectly captures the 
physics of the problem and the measured response exactly represents the true response of the system. In this case, 
the estimated parameters will be the true system parameters. Real life applications however need to account for 
various sources of uncertainty, being a random noise, a statistical dispersion, a measurement error or a bias. Thus, 
Equation 2 given below is a more realistic representation of the problem: 
 

€ 

Y = T+ εrandom +εbias( ) =G[Ptrue ]+εmodel                                                   (2) 
 

where Y is the measurements of the system’s response. As shown on the left hand side of the equation, in reality the 
measurements are not exactly the same as a system’s true response due to measurement errors. The errors could be 
either random, which lead to noise in the measurements or they could be in the form of a bias in the measurements. 
An example of a bias error is the thermal lag of a thermocouple meaning that there is a lag between the temperature 
that the thermocouple is showing and the actual temperature of the material. Additionally, we can have measurement 
errors due to instrument malfunctions. The right hand side of the equation shows that in reality the physical model is 
not always perfect. Theoretical models are our best effort in modeling a physical phenomenon and therefore do not 
always represent the physics exactly. This difference is called model error. If fewer approximations are used in 
developing the physical model the total model error would be lower. In current ablative TPS modeling, there are 
many approximations used due to the complicated nature of the problem. Therefore, as we have seen in the arc jet 
test conditions discussed earlier, the model error could be significant 

 
Measurement and model errors pose several challenges to inverse problems. Now, one cannot be certain that the 

estimated parameters are the true system parameters. The estimation process could converge to a solution that is not 
the true solution. It is important to identify these errors and try to minimize them. When they cannot be avoided, 
effort should be made to perform the estimation process in a way that the results are not affected by these errors. 
Another issue in inverse problems is the possible non-uniqueness of the solution. Different parameter combinations 
could result in similar system responses leading the estimation process to converge to more than one solution 
making the simultaneous estimation of multiple parameters not possible. The existence of the above-mentioned 
complexities can make the estimation process very unstable. Avoiding this situation is a major motivation for 
developing a comprehensive methodology.  

 
Before approaching a problem using the IPE methods, one needs to perform preparatory steps to ensure that 

estimation process is done correctly and to maximize the benefits from the results. What is the quality of the 
experimental data? How much random and bias error does it have? What range of the data can be trusted? How does 
the current nominal response compare to the experimental data? How significant is the model error? What are the 
parameters we want to know? Which parameters are the most significant contributors to the uncertainty? What is the 
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sensitivity of the outputs to the input parameters? How correlated are the parameters with each other? Which 
parameters can be estimated simultaneously? The methodology developed in this paper provides an answer to these 
questions and proposes guidelines on how to conduct the parameter estimation via four steps: Nominal Analysis, 
Uncertainty Analysis, Sensitivity Analysis, and Inverse Analysis. More details on these steps and how they are 
applied to the test problem on hand are given in the following sections. 

A. Nominal Analysis 
This step requires the examination of the experimental data, review of the current modeling approach, and 

comparison of the measurements to the predicted nominal response. The examination of the experimental data 
targets the identification of possible sources of measurement errors. Measurement errors are usually minimized by 
smoothing the data and removing bias errors. Also, data anomalies such as non-physical features or instrumentation 
malfunctions have to be identified. These data anomalies may be removed by simple interpolation methods; 
however, sometimes these anomalies can not be fixed and the data should be considered untrustworthy and 
disregarded. Such examination of data quality is done for the arcjet test problem and the details are discussed in 
“Implementation & Results” section.  

 
The examination of the current modeling approach and the predicted nominal response implies that one needs to 

understand how the direct problem is currently being done before embarking on the inverse analysis. Since the 
physical model is the central piece of both the direct and the inverse analysis, it is important that the model as well 
as its assumptions and limitations are well understood. This information directly feeds into understanding the model 
error, i.e. the accuracy of the physical model in representing the problem on hand. Discussion of the details of 
ablative TPS response modeling is available in literature and is not the focus of this paper. As discussed before, the 
arc jet condition selected for the IPE study corresponds to a very small model error, i.e. falling in a regime where the 
material response model FIAT is known to be reasonably accurate. The application of this step to the selected arcjet 
test dataset is explained in “Implementation & Results” section. 

B. Uncertainty Analysis 
The uncertainty analysis is performed to identify what design parameters need to be estimated by the IPE method 

and what range of measurements must be used in the estimation process. This process defines a hierarchy of the 
aerothermal variables and material properties based on the largest uncertainty contribution to the in-depth 
temperature predictions. This step also provides great insight into the direct problem and expected qualitative trends, 
which is a prerequisite for any inverse analysis. The approach employed to accomplish these goals is probabilistic 
and is accomplished with Monte Carlo simulations.  

 
Aerothermal and TPS designs and analyses are typically deterministic. A probabilistic TPS design to 

demonstrate the use of Monte Carlo techniques in determining TPS margins was first discussed by Dec and 
Mitcheltree8 for the proposed Mars Sample Return Earth Entry Vehicle. However, only a small number of input 
parameters were studied. Extensive studies performed by Bose et al.9,10 also showed the great potential of Monte 
Carlo simulation as a technique to predict the uncertainties in aerothermal environments. Chen et al.11 demonstrated 
a general Monte Carlo technique for establishing appropriate TPS thickness margins and for performing sensitivity 
studies. They applied this technique to the TPS design for several space entry vehicles. Building on this work, Sepka 
and Wright12 developed a Monte Carlo analysis software tool and applied it to the MSL aeroshell TPS design. The 
tool helped them determine the parameters that have the greatest influence on the MSL bondline temperature.  

 
All these studies have demonstrated the utility of a probabilistic methodology to quantify the uncertainty levels, 

and rank sources of input uncertainties. This study uses the same technique and tool as Reference 12 to perform the 
Monte Carlo study. The software tool used to perform Monte Carlo simulations is called McFIAT12 which is a 
PERL-scripted code for use with FIAT. These simulations are done for a range of uncertainties in aerothermal 
variables and material properties. Gaussian distributions are used for these input parameters. Ten thousand runs are 
performed to ensure statistical accuracy. The nominal values used in this study for the input parameters are the 
current design values of for PICA material properties and CFD predictions of the arcjet heating parameters. The 
material property uncertainties are primarily determined via expert judgments based on the experience in predicting 
material performance during experimental testing.13 The input aerothermal variables’ uncertainties are based on 
previous works done on the probabilistic analysis of the uncertainties in the computational models used to predict 
the heating environment. Table 3 shows the normalized 2σ uncertainty values (Δ) for both aerothermal and material 
input parameters used in this Monte Carlo study. 
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Table 3. Normalized 2σ uncertainties used in the Monte Carlo study for input parameters 

 
Material Input Parameter Δ Aerothermal Input Parameter Δ 
Virgin density 0.05 Surface pressure 0.15 
Char density correlated Blowing reduction in CH 0.20 
Virgin specific heat 0.05 Heat transfer coefficient, CH 0.15 
Char specific heat 0.10   
Virgin conductivity 0.15   
Char conductivity 0.15   
Virgin emissivity 0.03   
Char emissivity 0.05   
Pyrolysis gas enthalpy 0.20   
Resin decomposition rate 0.20   
Char recession rate 0.04   
Initial material temperature 0.05   

 
One modification has been made to McFIAT code for this study. In McFIAT, the uncertainty values are 

independently defined and the code does not take into account correlations between the different parameters. 
Furthermore, the code checks to make sure that the random value generated for char density is always less than the 
value generated for virgin density. In doing so, the code creates artificial skewness in the char density distribution. 
Figure 6a shows the virgin and char density scaling factors as generated by a Monte Carlo run with the original 
McFIAT and the skewness can be clearly seen. A skewed distribution for an input parameter results in skewed 
distributions in output parameters which invalidates the normal distribution assumption used in the analysis of the 
results. Since these two material properties are not independent and are correlated, correlations were implemented in 
McFIAT for these parameters. Many tests have been done to measure virgin and char densities of PICA samples. 
Using the results of these tests one can develop a probabilistic equation relating the two. Figure 6b shows such a 
study that was done at NASA Ames Research Center. A linear equation with uncertainty bars was derived based on 
the experimental data. Now, one can generate random values of virgin density and calculate the char density from 
the derived equation. This capability is added to McFIAT. Figure 6c shows the virgin and char density scaling 
factors as generated by a Monte Carlo run with the modified version of McFIAT and no skewness can be seen in 
distributions. 

  

                                                          

       
 

Figure 6. Addition of correlation to McFIAT removes the skewness problem 

a) 

b) c) 
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The Monte Carlo post-processing is traditionally done using linear regression analysis by calculating the relative 

contribution of each input’s variability to the overall output’s variability12. The input-output correlation coefficients 
are first computed. In this study the outputs of interest are time-dependent temperature predictions at the 
thermocouple locations and the final recession. The square of the correlation coefficient is interpreted as the 
fractional contribution to the uncertainty in the output due to the uncertainty in the input parameter. Traditionally a 
pie chart is used to illustrate the percent contribution of the input parameters for a certain output. This illustration is 
useful when the outputs are single-valued numbers such as final bondline temperature or final recession. This has 
been the case in the Monte Carlo work done in literature. However, a thermocouple measures the temperature over 
time and it is important to show the time evolution of these uncertainty contributions. Therefore, in this work for the 
first time this regression analysis is done in a time-dependent manner. To illustrate time dependent results, area 
charts (sand charts) are used instead of pie charts. Each vertical slice of the area chart represents a pie chart. These 
charts help us determine what parameters are the most important parameters and what time range is most sensitive to 
those parameters.  

 
The results of the Monte Carlo analysis for the selected arcjet case are presented in the “Results & 

Implementation” section. It should be noted that even though this analysis is a powerful tool for identifying the 
parameters with the highest contribution, any Monte Carlo analysis is only as good as the code used to solve the 
direct problem. Therefore, if there are any deficiencies in FIAT’s ability to fully capture the physics of the problem 
in certain conditions, such deficiencies will affect the reliability of the Monte Carlo analysis. Some problems with 
FIAT have been already discussed, so the reader should remember that the Monte Carlo results presented in this 
paper are only as good as FIAT’s accuracy. 

C. Sensitivity Analysis 
The Monte Carlo Analysis only identifies the most important parameters but it provides no information on the 

magnitude of the effect that the input parameters have on the output parameters, or the correlation between the input 
parameters. These two pieces of information have important implications on the inverse analysis. In inverse analysis 
a parameter can be easily estimated if it has large effect on the measured outputs and if it is not correlated with other 
inputs. If two parameters are correlated they have similar effects on the measured outputs, and it becomes very 
difficult to estimate these parameters independently. Therefore a FIAT-based sensitivity analysis needs to be 
performed before the inverse analysis. This analysis will tell us what parameters can be estimated simultaneously. 
The sensitivity analysis is done by calculating sensitivity coefficients of the outputs to input parameters (partials of 
the outputs to the inputs). These partials are approximated using central difference as shown in equation 3. 

 

€ 

Xi,k =
∂Tk
∂Pi

=
Tk (Pi + h) −Tk (Pi − h)

2h
                                                    (3) 

 
In the above equation “h” is a small change in the input parameter, T is the output of interest (in this case 

predicted thermocouple measurements) and P is an input parameter. The calculated sensitivity coefficients are 
plotted as a function of time for all the parameters to investigate the correlation between the parameters. The results 
of the Sensitivity Analysis for the selected arcjet case are given in the “Implementation & Results” section. 

D. Inverse Analysis 
All the previous steps provide crucial information for the last step which is Inverse analysis. Using all the 

information obtained, in Inverse Analysis we plan and execute an estimation process. At the core of Inverse 
Analysis are the IPE methods. Before defining the details of this step, a review of some past IPE work in related 
fields is presented. 

 
1. Review of Past Work 
IPE techniques have been used widely for a broad range of applications. These methods are utilized to estimate 

physical parameters characterizing a model from collected observations. As a result, these methods have been used 
in variety of fields where direct measurement of physical parameters is either impossible or difficult. During Mars 
EDL, entry vehicles go through a quick sequence of events in harsh conditions making the direct measurement of 
parameters difficult. Therefore, IPE methods have been utilized to reconstruct EDL trajectory parameters and 
atmospheric conditions for most Mars missions. References 14 and 15 discuss the current methods for trajectory and 
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atmosphere reconstruction of Mars entry vehicles. For the sake of brevity, this section discusses only the past IPE 
work in the heat transfer field. An important application of the IPE methods in the heat transfer field is the 
estimation of material thermal properties and surface heat flux. Normally, it is difficult to measure these parameters 
directly due to lack of reliable instruments, harsh working conditions and the high cost of experimental set up. The 
reader can refer to Reference 16 for a more detailed discussion of Past IPE work in the heat transfer field.  

 
Estimation of the thermal properties of solid materials has been widely studied. In 1966 Beck17 developed a 

methodology to estimate thermal conductivity and specific heat of nickel given transient temperature measurements 
using least-square minimization methods. He also discussed the design of experiments for which the thermal 
properties of a material can be accurately determined. Sawaf and Ozisik18 estimated linearly temperature-dependent 
thermal conductivity components and specific heat of an orthotropic solid using the Levenberg-Marquardt iterative 
method. Haung and Yan19 estimated thermal conductivity and specific heat using the conjugate gradient method. 
Dantas and Orlande20 employed a function estimation approach to determine temperature-dependent thermophysical 
properties using the conjugate gradient method. Dowding21 used parameter estimation techniques to estimate 
thermal properties of a carbon-carbon composite by combining experiments in a sequential manner. Garcia22 used 
genetic algorithms to estimate thermophysical properties of composite materials.  

 
The estimation of properties for ablative materials is more complicated than regular solid materials since ablative 

materials pyrolyze and recede. Little IPE work has been done with ablative materials. Oliveira and Orlande23 used 
the conjugate gradient method with adjoint problem to identify the heat flux at the surface of an ablating material 
from simulated measurements of temperature and the position of the ablating surface. Kanevce24 et al. estimated the 
thermal properties of an ablative material using the Levenberg-Marquardt method. Silva and Orlande25 estimated an 
ablator’s thermal properties using a combination of the Levenberg-Marquardt method and the sequential parameter 
estimation technique. Molavi et al.16 utilized the Levenberg-Marquardt method to estimate temperature-dependent 
thermal conductivity and specific heat of the noncharring ablator carbon-carbon using simulated measurements. 
They used the CMA code for modeling the ablative material response. In summary, the estimation of properties of 
solid materials has been extensively studied using different IPE methods. Application of IPE methods to estimate the 
ablative material properties is relatively new. Different gradient based least-square optimization methods have been 
used for ablative materials with some success. The current results look promising even though more work is 
required in this field. 

 
2. IPE Code 
This study applies the methods and lessons learned from past work to the problem on hand. First an IPE code 

needs to be developed for this problem. For the arcjet test problem, we are trying to estimate certain material 
properties and heating parameters from the arcjet data. As mentioned before, the IPE methods estimate these 
parameters by trying to match the predicted outputs with the measurements. Therefore, an important part of the IPE 
code is the code representing the direct problem (the physical model). Like previous steps FIAT is used to model the 
direct problem of ablative material response. The diagram below shows the structure of the IPE code developed.  

 

 
Figure 7.  Structure of the IPE code 

 
In the simplest sense, the IPE code is an optimizer which requires the solution of the direct problem at different 

steps. Therefore, the code is written to wrap FIAT meaning that it is able to create FIAT input files based on the 
current values of the input parameters and parse the FIAT output files and get the outputs of interest. In this case the 
input parameters are material properties and heating parameters and the outputs of interest are time-dependent in-
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depth temperature predictions at the five thermocouple locations. The estimator is an IPE algorithm. In this problem, 
a least square minimization algorithm is employed to perform the parameter estimation. Most of the past work for 
ablative materials has used gradient-based optimization methods such as Levenberg-Marquardt method or the 
conjugate gradient method. For this test problem we use the Levenberg-Marquardt method because it has shown 
success in dealing with these kinds of problems. The code is written mainly in MATLAB while two FORTRAN 
programs are used to wrap FIAT. The code operation starts with an initial guess for the parameters, then FIAT input 
files are generated and FIAT is run. The output files are parsed and the outputs of interest are returned to the 
estimator. The IPE algorithm updates the parameters to minimize the difference between predicted outputs and 
measurements. This process is repeated until convergence is achieved.  

 
The heating and material input parameters used in the IPE code are not the actual dimensional values, but they 

are non-dimensional scaling factors with respect to the current nominal values. This choice of parameters makes the 
coding simpler and is also useful because one can easily see how much the parameters change from the original 
nominal values by the estimation process. Also, there are many heating and material input parameters that go in 
FIAT; however not all these parameters are major contributors. Therefore, the code is written only for a subset of the 
input parameters. This subset was identified through the Monte Carlo analysis described earlier. The detailed results 
for the Monte Carlo analysis are given in the later sections. The top contributors are identified as heat transfer 
coefficient (heating), density, virgin and char specific heat and thermal conductivity, and char emissivity. The 
parameters vector is shown the equation below where f denotes scaling factors:  

 
 

€ 

P = [ fCH
, fCpv , fCpc , fρ , fκ v

, fκ c
, fε c

]                                                     (4) 
 

The code is written so that the user has control over what parameters to estimate. One can have the code estimate 
all the above parameters, or a smaller subset of them. Furthermore, the code has the capability of generating 
simulated data. Simulated data are useful in code validation and debugging. Also simulated data show a scenario 
where the data and model is perfect because the data is created by the model. Therefore, simulated data can be used 
to discuss some limitations of inverse analysis that have nothing to do with the quality of the data or model.  

 
3. Levenberg-Marquardt Method 
The Levenberg-Marquardt method is an iterative method for solving nonlinear least squares problems of 

parameter estimation. This method estimates the parameters by minimizing the sum of squares of the errors between 
the measured temperatures and the calculated temperatures as predicted by the code used to model the direct 
problem. This method is mainly based on the calculation of a sensitivity matrix at every iteration. The sensitivity 
coefficients in this matrix are partial derivatives of the predicted temperatures with respect to estimation parameters. 
At each iteration, the parameters are updated based on these sensitivity coefficients and other information. This 
technique was derived as a method that would tend to the Gauss method in the neighborhood of the minimum and 
would tend to the steepest descent method in the neighborhood of the initial guess. This is done using a damping 
parameter which reduces oscillations and instabilities due to the ill-conditioned nature of inverse heat transfer 
problems in the region around the initial guess.  

 
The details of the Levenberg-Marquardt computational algorithm26 are summarized below. In the algorithm 

below, P is the vector containing the parameters that need to be estimated (defined by Eq.4); Y is the vector 
containing the measured temperatures at different times and from different sensors (in this problem, thermocouples 
1-5 measurements); and T is a vector containing the corresponding temperatures as predicted by the code used to 
model the direct problem (in this problem, material temperature as predicted by FIAT at thermocouple locations). 
The algorithm shown below describes the steps at iteration k: 

1) Solve the direct problem with the current estimate of parameters 

€ 

Pk  to obtain the predicted temperatures 

€ 

T Pk( ). 

2) Compute the sum of square of errors 

€ 

S Pk( )  using the equation below. Superscript T is transpose. 
 

€ 

S Pk( ) = Y −T Pk( )[ ]
T
Y −T Pk( )[ ]                                                            (5) 

 
3) Compute the sensitivity matrix J using the following equation. The sensitivity coefficients are calculated 

using central difference approximations. 
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⎢ 
⎢ 
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⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

                                                              (6) 

 
4) Solve the following linear system of equations to find 

€ 

ΔPk  
 

€ 

Jk( )T Jk + µkI[ ] ΔPk = Jk( )T Y −T Pk( )[ ]                                                    (7) 

 
5) Compute the new estimate 

€ 

Pk+1 as 
 

€ 

Pk+1 = Pk + ΔPk                                                                           (8) 
 

6) Solve the direct problem with the new estimate of parameters 

€ 

Pk+1 to obtain the predicted temperatures 

€ 

T Pk+1( ). Compute the new sum of squares of the errors 

€ 

S Pk+1( ) . 

7) If 

€ 

S Pk+1( ) ≥ S Pk( ) , replace 

€ 

µk  by 

€ 

10µk  and return to step 4. 

8) If 

€ 

S Pk+1( ) < S Pk( ) , accept the new estimate 

€ 

Pk+1 and replace 

€ 

µk  by 

€ 

0.1µk . 
9) Check the stopping criteria. If the stopping criterion is satisfied, stop the iterative procedure; otherwise 

replace k by k+1 and return to step 3. 

VI. Implementation & Results    
In the previous section, the four steps of the proposed methodology for the TPS experimental data analysis were 

explained and the goals for each step were discussed. In this section, the developed methodology will be tested using 
the selected arcjet test data. We will show the benefits gained from each step of the methodology and discuss the 
major limitations and challenges faced in an inverse analysis. This practice gives us valuable information and 
experience on how to analyze the future MISP data and what are the areas that require more investigation. 

A. Nominal Analysis 
The main goal of this step is to examine the quality of the data. As discussed before, random and bias errors 

could cause instability and inaccuracy in the estimation process, therefore it is important to remove these errors 
before performing the inverse analysis. The arcjet data are in form of time-dependent thermocouple measurements. 
Some of the problems with the quality of this data are discussed here. First, the thermocouple measurements have 
random noise that could be easily smoothed out. In addition, there are other data anomalies that are shown in the 
figure below. One example is the sudden increase (“bump”) in the beginning of thermocouple data shown in Figure 
8a. This is seen in most arcjet data and is believed to be due to some unexplained exothermic reaction. Further 
problems with the data are shown and circled in Figure 8b. This anomaly is probably due to a sensor malfunction. 
There is no way for FIAT to model these features. Another problem with the data is that the thermocouples start at 
different temperatures as shown in Figure 8a. This could be due to both varying in-depth temperature of material and 
sensor malfunctions. In FIAT, only one initial temperature can be defined for a material layer, therefore we have to 
make sure the data for the different thermocouples start at the same temperature. 
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Figure 8. Data anomalies and non-physical features in arcjet thermocouple data 

 
As mentioned before, there is no way for FIAT to model these data anomalies; therefore they need to be 

corrected for before the inverse analysis. The random noise in the data is reduced with a 5-point moving average 
data smoother in MATLAB. Figure 9a shows the original data and the smoothed version for one of the 
thermocouples. The initial bump in the thermocouple data is removed by using MATLAB’s cubic spline data 
interpolation. The beginning of the thermocouple data is made asymptotic to remove the sudden bump. Figure 9b 
shows how this is done for one of the thermocouples. The data anomalies shown in Figure 8b are also corrected 
using the same spline data interpolation function. Figure 9c shows how this is done for one of the thermocouples. 
The fact that the thermocouples’ starting temperatures are different is corrected by considering only the temperature 
rise. In other words, all the thermocouple measurements are shifted to the same initial temperature, 294 K (same 
number used in FIAT simulations). This is shown in figure 9d. 

   

 
Figure 9. Measures taken to improve the quality of the experimental data 

 

a) b) 

a) b) 

c) d) 
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Another goal of this step is to compare the experimental data to the nominal TPS response as predicted by the 
physical model, FIAT. Figure 10a shows the thermocouple measured temperature compared to the nominal FIAT 
temperature predictions at thermocouple locations. In the inverse analysis we try to match these two sets by 
changing the input parameters; therefore, it is important to compare them beforehand. This comparison also helps us 
identify where the physical model has obvious deficiencies. Overall, there is a good agreement between the two sets. 
There are some discrepancies and data anomalies that are corrected as explained before. The data match very well 
for TC1-3 for most of the early part of the test. However, we can see that the difference increases for the later times 
in the test and also for TC4-5 data. The reason for this trend is 2D effects. FIAT is a 1D heat transfer code and does 
not account for in-plane heat transfer. In reality, there is heat transfer in both in-depth and in-plane directions. For 
heatshields or large arcjet coupons, the in-plane heat transfer is insignificant; therefore 1D heat transfer is a good 
assumption. However, this test was performed with a small 4 inch coupon and the 2D effects are important. Also 
FIAT models only surface heating. In the arcjet environment the gas going around the coupon transfers provides 
some lateral heating to the coupon in addition to the surface heating. If the coupon is small the lateral heating 
reaches the thermocouples faster. Therefore, the lateral heating becomes significant for a small coupon, deeper 
thermocouples and for the longer test durations. This is the case for this arcjet run. Therefore, the data from deeper 
thermocouples and later times is not as useful because of the 2D effects that FIAT can not model. This is an 
important finding for planning the inverse analysis. 

 
Figure 10b also shows the nominal material response as predicted by FIAT. In this figure, the recession, char and 

virgin depths are plotted as a function of time. On the same plot the depth of the five thermocouples is shown. This 
plot is important because one could see what the state of the material is at any given time at any thermocouple 
locations. This helps us in explaining the trends and results seen throughout the Monte Carlo and Sensitivity 
analyses. 

 

    
Figure 10. Comparison of the experimental data to the nominal TPS response 

 

B. Uncertainty Analysis 
The main purpose of the uncertainty analysis is to identify the parameters that contribute the most to the 

uncertainty of the predicted thermocouple measurements. This exercise tells us what parameters should be of most 
interest for the inverse analysis. The input parameters are heating and material parameters, while the outputs are the 
time-dependent predicted temperatures at five the thermocouple locations and the final recession. Since the 
predicted temperatures are time-dependent, the results can not be shown with traditional pie-charts; therefore, one 
area chart is employed for each thermocouple. However, the final recession is not time-dependent and a simple bar 
chart is employed. Figure 11 shows the percent contribution of the input parameters to these outputs. Not all the 
input parameters are major contributors; therefore, only the top contributors are labeled. Thermocouple 1 is the 
closest to the surface and burns out once the surface recession reaches its depth. For this reason, the results for TC1 
are shown for a shorter time than the other thermocouples.   

 

a) b) 
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Figure 11. Percent contribution of the input parameters to the predicted measurements uncertainty 

     
When interpreting these plots it is important to know the state of the material at each thermocouple as a function 

of time. Different input parameters become important whether the thermocouple is in the char zone, pyrolysis zone 
or virgin zone. Figure 10b (the depth plot) provides this information. However, the Monte Carlo analysis also gives 
us the capability to put uncertainty bars on the recession, char and virgin depths. The figure below shows recession, 
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char and virgin depths as a function of time with 2σ uncertainty. On the same plot we can see the location of the 
thermocouples. 

 

 
Figure 12. Time-dependent recession, char and virgin depths with 2σ uncertainty 

 
Looking at the above plot, we can now interpret the area charts given in Figure 11. The first thing to notice is 

that the same trend shifted in time can be seen in all the thermocouples. This is indicative of the time that it takes for 
the heat to transfer in the material. For all the thermocouples, we can see that the initial material temperature is the 
top contributor in the beginning. This parameter is not important for inverse analysis, because we can easily take the 
material initial temperature to be the same as thermocouple initial reading. As the time increases, we can see that the 
virgin properties become important. At this time the material is mainly virgin and the heat transfer is governed 
mainly by these parameters. In particular we can see that virgin conductivity and density are the top contributors. 
These two parameters control the thermal diffusivity and the material’s heat absorption.  

 
We can also see that as time increases the heat transfer coefficient’s importance increases. The longer it goes, the 

TPS material senses the effects of surface heating more and therefore the heating parameters become more 
important. For the same reason we can see char emissivity becoming more important. This is due to the fact that the 
char emissivity controls the surface re-radiation. Therefore, higher char emissivity results in lower effective input 
surface heating. Next we can see the char properties, specifically char thermal conductivity and specific heat 
becoming important. At this point the material is charring from the top and pyrolyzing in the middle. This creates 
char and pyrolysis zones in the material in addition to the virgin zone. The pyrolysis zone material properties depend 
on both virgin and char properties which explain why the char properties become more important. To point out the 
connection between the material state and the Monte Carlo results more clearly, we can look at Figure 12 for TC4. 
We can see that TC4 enters the pyrolysis zone some time between 40-55 s. Now if we look at the area chart for TC4 
in Figure 11, we can see that char thermal conductivity’s contribution becomes significant around 40 s and 
increases. 

 
Comparing between different thermocouples we can see that the heating parameters are most important for the 

thermocouples close to the surface while material properties are more important for the thermocouples deep in the 
material. For example, TC5, which is the deepest thermocouple, is almost entirely affected by material properties. 
Finally, looking at the bar chart for final recession we can see that it is mainly affected by heat transfer coefficient 
and density. This is important observation for inverse analysis. For example, if the experimental and theoretical 
recessions match well, it means that our current nominal values for the heat transfer coefficient and density are good 
estimates. Later, we use this observation in the inverse analysis.  

 
Another interesting but non-intuitive observation is that the heat transfer coefficient’s contribution increases as 

time increases but then suddenly goes to zero and then increases. To explain this behavior, we have to remember 
that the material sample was kept in the arcjet for 35 s and then it was removed to cool down for the rest of the run 
time. The higher the heat transfer coefficient the hotter the sample gets, and the faster it cools down. Therefore, for a 
low heat transfer coefficient the TC temperature goes up to some value and then drops slowly once it is removed. 
However, for a high heat transfer coefficient the TC temperature will go higher but then it would drop faster when it 
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comes out of arcjet. Therefore, one could conclude that there would be a crossing time where TC temperature is not 
affected by the heat transfer coefficient. This behavior can be easily seen in the Figure below. Figure 13 shows the 
different temperature profiles for TC3 when heat transfer coefficient is varied from -20% to +20% of the nominal 
value. We can see that all the profiles cross each other at about 70 s. Now looking at the area chart fro TC3 in Figure 
11 we can see that the contribution of heat transfer coefficient drops to zero around the same time. 

 

 
Figure 13. TC3 temperature profiles for varying heat transfer coefficients 

 
A rather surprising observation is that pyrolysis gas enthalpy does not show up as a top contributor in the Monte 

Carlo plots. From physical intuition one would expect the gas enthalpy to be a major driver due to the amount of 
energy released through pyrolysis. Similar trends have been observed in other independent FIAT Monte Carlo 
studies. Currently, the authors have no explanation for this observation, but it is important to remember that the 
Monte Carlo analysis is only as accurate as FIAT. Therefore, if FIAT does not capture the importance of a parameter 
the Monte Carlo analysis won’t either.  

 
There are many other interesting observations that can be made from the generated area charts and the Monte 

Carlo analysis in general. However, for the purposes of the IPE work, the main conclusion from this analysis is the 
identification of the top contributors. We have already seen that some of the parameters are not major contributors 
and don’t show up in the area charts. Based on the discussion above, we have narrowed down the parameters to the 
top seven uncertainty contributors. These parameters are: heat transfer coefficient, char conductivity, virgin 
conductivity, density, virgin specific heat, char specific heat and char emissivity. These are the parameters that we 
are most interested in and would want to have a good estimate of.  

C. Sensitivity analysis 
As discussed before, the knowledge of the correlation between the input parameters is crucial for the inverse 

analysis because most IPE algorithms are gradient-based and use sensitivity coefficients in order to update the 
parameters. If the magnitudes of these sensitivity coefficients are small or if they are correlated with each other, it 
could cause problems with solution stability and uniqueness of the inverse method. Therefore, the sensitivity 
coefficients are numerically calculated for this arcjet test problem. The figure below shows the sensitivity 
coefficients for the input parameters and for the five thermocouple locations. Only the top seven parameters 
identified by uncertainty analysis are shown here. These plots show partials of the outputs to the inputs, effectively 
showing how much the thermocouple temperatures change for 1% change in the input parameters (one at a time).  

 
The first observation in Figure 14 is that the closer the thermocouple is to surface the more the magnitude of its 

temperature is affected by the input parameters. In other words the top thermocouples are most sensitive to change 
in parameters and therefore the most useful in estimating these parameters. We can see the magnitude of the change 
decay as we go deeper to the point where TC5 is barely affected by a small change in the inputs. In addition to the 
magnitude of the sensitivity coefficient plots, one needs to also investigate the shape of these plots and compare 
them among the different parameters. This is traditionally done in order to investigate correlation and linear 

+20% CH 

-20% CH 
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dependency between parameters27. If two parameters have similar profiles, they have a strong linear dependency. 
This means that they have similar effects on the outputs and an estimator would not be able to distinguish between 
their individual effects. Therefore, such parameters can not be estimated simultaneously. 

  

   

   

 
Figure 14. Sensitivity coefficient plots show correlation between different input parameters 

 
Examining the shapes of the sensitivity coefficient profiles, at first we can see that the heat transfer coefficient 

and density have similar but inverse profiles. This means that increasing the heat transfer coefficient or decreasing 
density almost has the same effect on the material in-depth temperature. The same relationship can be seen between 
virgin conductivity and specific heat, and also between char conductivity and specific heat. The reason for this 
behavior is that the heat transfer through the material is mainly driven by thermal diffusivity which is directly 
proportional to the thermal conductivity and inversely proportional to the specific heat. In the FIAT governing 
equations, thermal conductivity always shows up as a quantity that is divided by the specific heat. Therefore 
increasing one or reducing the other will almost have the same effect. These parameters cannot be estimated 
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simultaneously. In conclusion, while the uncertainty analysis informs us of what parameters need to be estimated, 
the sensitivity analysis shows what parameters can be estimated simultaneously and independently. 

D. Inverse Analysis 
All the prerequisite information to plan a successful estimation process is now available. In this step, we perform 

the inverse analysis knowing the quality of the data, what parameters we want to estimate and what parameters we 
can estimate. However, we first need to verify the IPE code developed for this work. Next, the limitation of the code 
and the IPE problem in general is discussed. Finally a test problem is solved to show how the different steps of 
methodology come together. 

 
1. Inverse Code Verification 
The IPE code can be divided into two parts: the IPE algorithm (estimator) that calls FIAT in its solution process, 

and the wrapper script that performs FIAT Input/Output (I/O) operations. In the simplest sense the estimator is an 
optimizer. One needs to verify that the code converges to the true mathematical minimum to ensure that the 
objective function is globally minimized. In addition to mathematical verification, we need to show that the 
parameters estimated by the code are the parameters. We need to apply the code to a problem for which we know 
the true parameters and examine if the IPE code can converge to the true solution. The only case when we know the 
true parameters in advance is if we generate the data ourselves. Therefore, first we verify the code with simulated 
data. 

 
Simulated data represents a perfect scenario meaning that the data is created by the same physical model that is 

used for the inverse analysis. In other words, there are no measurement errors or model errors. In such a case one 
would expect the code to converge to the same parameters that were used to generate the data. However, this is not 
always the case due to the limitations in inverse analysis. To show this, the following experiment is done. The 
current nominal parameters are used with FIAT to create the simulated data. Remember that the parameters in the 
code are scaling factors non-dimensionalized with respect to the nominal values. Therefore in this case the 
parameters used to generate the data are all 1’s. Once data is generated, a random vector of parameters is used as the 
initial guess for the IPE code. If all goes well, the code should be able to recover the parameters back to the nominal 
values (all 1’s). The code does that most of the time. However, if we want to estimate all the parameters 
simultaneously, the code sometimes converges to non-nominal parameters that have the same thermal response as 
the nominal parameters. This tells us that the inverse problem’s solution is non-unique. In other words, different 
combinations of the parameters can result in similar thermal response (temperature profiles). However, the non-
nominal parameters that the code converges to are not just random combinations. There is a pattern in them which 
can be physically explained according to the governing equations solved by FIAT. As an example, one of the 
solutions that the code converges to is given below: 

 

€ 

P = [ fCH
, fCpv , fCpc , fρ , fκ v

, fκ c
, fε c

] = [1.05,1.00,1.00,1.05,1.05,1.05,1.05]                 (9) 
 
As a matter of fact if we replace 1.05 with any other number close to 1 (ex. 1.08), it results in the same material 

performance. At first this might seem odd, but we know that thermal response is governed by the in-depth energy 
balance and surface energy balance. The surface energy balance is composed of two terms: surface heating governed 
by Ch, subtracted from reradiation heating governed by emissivity. If these two parameters are equally perturbed 
from their nominal values they result in the same effective heating. Also, we showed before through the sensitivity 
analysis that density and Ch have opposite effects on the thermal response; therefore increasing both of them equally 
will cancel their individual effect and results in the same thermal response. Furthermore, the in-depth energy transfer 
is governed by thermal diffusivity which is equal to thermal conductivity divided by density and specific heat. If 
specific heat stays constant and we increase density and conductivity equally we get the same thermal diffusivity. 
Figure 15 shows the temperature profile for both the nominal parameters (i.e. true solution) and the non-nominal 
parameters. 

 
The main conclusion here is that even with perfect data and perfect model, the simultaneous estimation of all the 

parameters is not possible due to the non-unique nature of the inverse problem. Of course, a simple way around this 
problem is not to estimate all of the parameters. If some of the parameters are not estimated and are set to their 
nominal values, the estimator forces the rest of the parameters to their nominal values in order to have the same 
thermal response. For example, in the case that was discussed above if one decides that density is known and only 
the other parameters are estimated, the IPE code converges to the true nominal solution. 
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Figure 15. Non-nominal parameters result in the same thermal response as the nominal parameters 

 
We also need to verify that the code is working properly with real experimental data. For an estimation problem 

with experimental data, there is no way to know the solution in advance and ensure that the code converges to the 
true solution. However, we can verify that the algorithm converges to the global minimum of the objective function. 
In the algorithm used here, the objective function is S, the sum of square of errors between the predicted 
temperatures and the thermocouple measurements. In order to verify that, first the code was used to estimate two 
parameters from arcjet experimental data. Then, an exhaustive search was done to find the true global minimum of S 
for the given parameters. In other words, FIAT is run for all the possible combinations of those two parameters 
(within reasonable limits), S is calculated for all those combinations, and the combination that makes S minimum is 
determined. Then we check if the IPE code converged to the true minimum. This process requires about four 
thousand FIAT runs and is very time consuming; however, it is important because it ensures us that the code is 
doing what it is supposed to. Here we estimate heat transfer coefficient and char conductivity with the IPE code, and 
then an exhaustive search is performed for these parameters. Figure 16 shows the result of the exhaustive search. 

 

 
Figure 16. Exhaustive search shows that the IPE code converges to the true mathematical minimum 

 
The IPE code converges to a heat transfer coefficient of 1.086 and char thermal conductivity of 0.928. Looking at 
Figure 16, we can see that the exhaustive search shows that the code has converged to the true mathematical 
minimum of the objective function. 

 
2. Test problem 
The developed IPE code for the arcjet problem has been verified. Now it is time to show how all the steps of the 

proposed methodology come together and how the final estimation process is planned according to what we have 
learned about the problem through the different analyses performed. Before that, we need to summarize some of the 
issues and challenges we have encountered in dealing with inverse problems and some suggested strategies on how 
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to deal with these challenges. The main issues could be categorized as solution existence, solution uniqueness and 
solution stability. As discussed before, in reality the experimental data have bias and random errors. Also the 
physical model used for the direct problem might not fully represent the physics of the problem. Because of these 
errors a direct relationship between parameters and the measurements might not exist. In other words, we can not 
find a set of parameters that can exactly match the experimental results. Therefore, most inverse problems do not 
have a solution in this exact sense. However, we can try to find the parameters that give us the best match with the 
experimental data. This raises many different questions such as what measure one should use to define the best 
match. Furthermore, the error in the experimental data translates to error in estimated parameters. If the 
measurement and model errors are large one can not be certain if the estimated parameters are good estimates of the 
true parameters. Another challenge faced in inverse problems is the non-unique nature of the solution. We showed 
earlier that even with perfect data and perfect model (i.e. no errors), different combinations of the parameters can 
result in the same thermal response. Therefore, an inverse problem could have more than one solution, and one can 
not be certain that the estimated parameters are the true parameters. Finally the last challenge faced in inverse 
problems is solution stability meaning that can we get the same solution under different circumstances. In other 
words, if we use different ranges of measurements or if we estimate different subsets of the parameters, do we get 
the same solution every time? 

 
We need to use some strategies or guidelines in order to deal with these challenges. First the errors in the 

problem need to be minimized. The model error can be minimized by using high-fidelity physical models. For 
ablative TPS modeling, FIAT currently is the industry standard high-fidelity tool. However, there are many 
approximations in the way TPS modeling is done today which results in FIAT’s inability to predict recession 
accurately for some heating regimes. There is definitely a need for higher fidelity models that capture the physics 
and chemistry of the problem more accurately. However, FIAT is the best available for now. In order to minimize 
model error, we have to ensure that the experiment is done for conditions where FIAT is reasonably accurate. In this 
work, this was done in the arcjet test selection. Another source of error is measurement error. This can be minimized 
by smoothing the data to remove random noise or by trying to correct for bias error. Also, if some data can not be 
trusted we need to disregard that part of the data. This could be due to simple sensor malfunctions or our inability to 
model a feature seen in data. We applied parts of this strategy in Nominal Analysis where we smoothed the data and 
made some corrections. Finally, in order to deal with the solution uniqueness and stability challenges we need to 
plan the estimation process carefully based on the results of the uncertainty and sensitivity analyses. We can not 
estimate all the parameters simultaneously. Therefore, based on the analyses we have done we have to select what 
parameters we want to estimate, decide what parameters we can estimate and what range of measurements we 
should use.  

 
So for this arcjet problem, there are two questions to answer for the estimation process. What parameters we 

should estimate? What range of measurements we should use? To answer the first question, we have to examine the 
results of the uncertainty and sensitivity analyses. The uncertainty analysis helped us narrow the list of parameters 
down to the top seven uncertainty contributors. These are the parameters that cause the most uncertainty in our 
design and we need to have a good estimate of these parameters. However, the sensitivity analysis showed us that 
there is a strong linear dependency between thermal conductivity and specific heat, and between the heat transfer 
coefficient and density. This means that these parameters should not be estimated simultaneously. Another 
important fact is that the current nominal predicted recession matches very well with the experimental recession. 
From the uncertainty analysis, we showed that the final recession is affected mainly by heat transfer coefficient and 
density. Therefore, we can assume that our nominal values for these parameters are good estimates. Also density and 
specific heat are normally known with low uncertainty. Considering all these facts, we assume that density, specific 
heat and heat transfer coefficient are known and we estimate virgin and char thermal conductivity.  

 
The second question to answer is what range of measurements we should use. TC4 and TC5 data are affected by 

the 2D effects and lateral heating because they are deeper in the material. There are some other data anomalies due 
to sensor malfunctions in the data for both these thermocouples. Such errors could cause problems in estimation and 
we can not trust these data. Furthermore, the thermocouples used for this test are only calibrated up to 1300 K and 
the data above this temperature can not be trusted as much. Considering these facts, we only use TC1-3 
measurements up to 1300 K. Now that we know what parameters we want to estimate and what range of 
measurements need to be used, we apply the verified IPE code to this problem. The arcjet test experimental data are 
used. The current nominal values of the parameters are used as the initial guess. The estimation was performed and 
the code successfully converged to the solution below: 
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€ 

P = [ fκ v
, fκ c

] = [1.051,1.060]                                                         (10) 
 
This means that the estimated values for the virgin and char conductivity are respectively 5.1% and 6.0% higher 

than the current nominal value for these parameters. Figure 17 shows the temperature profiles for the measurements, 
the initial guess (nominal), and the final estimated parameters (best match). This figure is zoomed-in to show the 
details. 

 

    
Figure 17. Through inverse estimation a better match with the experimental data is achieved 

 
Looking at Figure 7, we can see that after the inverse estimation a better match with the experimental data is 

achieved. The estimated parameters are also within reasonable limits and the expected uncertainty associated with 
these parameters.  

VII. Conclusions and Future Work 
In this paper, a comprehensive inverse parameter estimation methodology for the reconstruction of surface 

heating and TPS material properties was developed. There are substantial uncertainties in our ability to predict the 
heating and the TPS material thermal response. The MEDLI instrumentation suite which will fly on the upcoming 
MSL mission was designed to provide valuable flight data for reducing these uncertainties and validating the current 
computational tools. A review of these uncertainties was presented, followed by an overview of the MEDLI 
instrumentation suite and the expected measurements. The main motivation for the development of this 
methodology is to maximize the benefits we get from the post-flight analysis of the MEDLI data. The developed 
inverse parameter estimation methodology was applied to an arcjet test dataset in order to investigate the feasibility 
of such approach. A discussion of the available arcjet data and the final selected test case was presented.  

 
The proposed methodology is composed of four steps designed to provide the required prerequisite information 

for the inverse estimation of the heating parameters and material parameters. The first step was the Nominal 
Analysis where the quality of the experimental data was examined and a comparison to the current nominal 
predictions was presented. The second step was the Uncertainty Analysis where a Monte Carlo study was performed 
to identify the parameters that contribute the most to the measurement uncertainty, or in other words to identify the 
parameters that we want to estimate. For the selected arcjet test we determined that the heat transfer coefficient, char 
and virgin specific heat, thermal conductivity, density and char emissivity were the top contributors to the 
measurement uncertainty. The third step was the Sensitivity Analysis where the correlation between the different 
parameters was investigated in order to determine what parameters can be estimated simultaneously. In this step, we 
determined that there was strong correlation between the heat transfer coefficient and the density and between the 
specific heat and the thermal conductivity which meant that these parameters could not be estimated simultaneously. 
Finally, the last step was the Inverse Analysis where an inverse parameter estimation code was developed to 

Measurements 
Nominal 

Best Estimate 
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estimate heating and material parameters from the arcjet data. The developed code was verified and some of the 
limitations of the inverse approach were discussed. Solution existence, uniqueness and stability were identified as 
the main challenges faced in the inverse analysis. Some strategies were suggested in order to deal with these 
challenges. Finally, in order to show how the different steps of this methodology come together a test problem was 
solved to estimate the virgin and char thermal conductivity. The developed code successfully estimated these 
parameters by reducing the error between the arcjet thermocouple measurements and the temperatures predicted by 
the physical model, FIAT.  

 
Future plans include a more detailed investigation of the challenges faced in the inverse analysis and possible 

strategies for dealing with them. This will also include a more detailed literature search of how IPE methods are 
used in other fields and how some of these issues are resolved. The current approach and the inverse tool developed 
for this problem is deterministic, so a future task would be to include stochastic capabilities. A stochastic tool would 
consider measurement uncertainties in its estimation methodology and therefore would be capable of estimating 
uncertainties in the estimated parameters. Next task will be to apply the tool to multiple available datasets such as 
other arcjet data, stardust and Mars Pathfinder data, and estimate heating environment and/or material properties for 
those datasets. This would be a useful practice in preparation for analyzing the future MISP data. Also, the 
reassessment of Pathfinder flight data could answer many fundamental questions related to Mars entry aeroheating 
and TPS performance. Next, a range of IPE methods could be implemented in the tool to compare the advantages 
and disadvantages of these different methods and identify the most appropriate one. Finally, the matured tool and 
methodology could be integrated with trajectory/aerodynamics reconstruction approaches in preparation for full 
MEDLI data analysis. By this time, a good knowledge will be gained about the problem and the challenges faced. 
Therefore, this knowledge can be used to develop methodology and guidelines for planning and designing future 
instrumentations in order to maximize the benefits of post-flight analysis. 
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