
 
American Institute of Aeronautics and Astronautics 

 

1

Mars Entry Bank Profile Design  
for Terminal State Optimization 

Jarret M. Lafleur* and Chris J. Cerimele† 
NASA Johnson Space Center, Houston, Texas  77058 

One challenge examined in NASA’s DRM 5.0 study is that of entry, descent, and landing 
(EDL) on Mars for high-ballistic-coefficient, human-class payloads. To define best-case 
entry scenarios for the evaluation of potential EDL system designs, a study is conducted to 
optimize the entry-to-terminal-state portion of EDL for a variety of entry velocities, vehicle 
ballistic coefficients (β), and lift-to-drag ratios (L/D). The terminal state is envisioned as one 
appropriate for the initiation of terminal descent via parachute or other means. A particle 
swarm optimizer varies entry flight path angle and ten bank profile points to find 
maximum-final-altitude trajectories. A baseline set of optimizations is performed, as are full-
lift-up and relaxed-deceleration-constraint sets for comparison. In total, an estimated 9 
million trajectories are analyzed to yield 1800 optimal trajectories.  Parametric plots of 
maximum achievable altitude are shown, as are examples of optimized trajectories. 
Characteristic vehicle contours are overlaid on the parametric plots, and conclusions are 
drawn on the feasibility of vehicles in the L/D vs. β design space. It is shown that entry bank 
angle control is highly deserving of consideration early in design, particularly for vehicles 
with mid- or high-L/D values, high entry velocities, and deceleration-limited trajectories. 
Key conclusions are also drawn regarding trends in optimal bank profiles and in the 
constraints which impose particularly severe limits on the design of these trajectories. 

Nomenclature 
 
a = vehicle acceleration      L/D  = vehicle hypersonic lift-to-drag ratio 
CD = vehicle drag coefficient     m   = vehicle mass 
CL = vehicle lift coefficient     MOLA  = Mars Orbiter Laser Altimeter 
D = drag force on vehicle      MSL  = Mars Science Laboratory 
d = drag direction unit vector    NASA  = National Aeronautics and Space Administration 
DRM = Design Reference Mission    q   = dynamic pressure 
EDL = Entry, Descent, and Landing    r   = vector from planet center to vehicle mass center 
g = local gravitational acceleration   S   = vehicle reference area 
h = altitude above reference ellipsoid  vrel   = vehicle velocity relative to surface of planet 
L = lift force on vehicle      β   = vehicle ballistic coefficient 
l = lift direction unit vector     ρ   = local atmospheric density 
 

I. Introduction 
N January 2007, NASA assembled an agency-wide team of scientists and engineers to develop a current 
assessment of objectives, system requirements, and prerequisites for human Mars exploration.  As a collaborative 

effort among all four mission directorates, the objectives of the study were to (1) update NASA’s human Mars 
mission reference architecture as DRM 5.0, (2) develop a plan of research and technology investments to reduce 
human Mars mission cost and risk, and (3) assess strategic linkages between human lunar and Mars exploration. 

One key challenge under examination as part of DRM 5.0 was that of conducting entry, descent, and landing for 
human-class payloads.  Coupling these massive payloads with launch-vehicle-limited aeroshell diameters typically 
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results in very high vehicle ballistic coefficients and low L/D which, for Mars, results in very supersonic terminal 
velocities.  It is generally impossible to decelerate these vehicles to velocities much lower than Mach 1.5 or Mach 2 
without the assistance of supersonic propulsion, large supersonic parachutes, or other large inflatable aerodynamic 
decelerators, none of which are yet proven for the Martian environment. 

To define best-case entry scenarios for the evaluation of potential descent and landing system designs, this paper 
focuses on the optimization of the entry-to-terminal-state phase for a variety of entry velocities, vehicle ballistic 
coefficients, and lift-to-drag ratios by selecting appropriate entry flight path angles and bank angle profiles.  The 
terminal state is envisioned as one appropriate for initiation of a terminal descent system, such as a parachute.  As is 
shown at the conclusion of this paper, this study permits identification of optimal regions of the ballistic-coefficient-
versus-L/D design space for any given entry vehicle capability envelope, which is important for minimizing the 
performance demands (and, in turn, technology demands) on terminal descent systems.  From the perspective of the 
aerodynamic decelerator, parachute, or propulsion designer, this study effectively black-boxes the entry phase of 
flight for a best-case entry for a variety of vehicle configurations and entry conditions.  As will soon be discussed, 
the metric chosen to represent these “best” cases is the maximum achievable altitude at a given Mach number.  

A. Previous Work on Entry Bank Profile Design 
Design of bank angle modulation profiles to control 

flight in the hypersonic regime of atmospheric entry is 
well-established.  Banking during atmospheric entry allows 
for the rotation of a vehicle’s lift vector (see Fig. 1) and 
thus allows a degree of control for achieving target landing 
sites or other trajectory objectives.  A variety of guidance 
algorithms have been developed to effect these bank angle 
modulations, and entry guidance has been employed in 
Earth entry for manned vehicles since the Gemini program.  
However, only recently has guidance been developed for 
precision landing on Mars. 

One of the most noteworthy applications of bank angle 
control for Mars is in the Mars Science Laboratory (MSL) 
mission slated to fly in 2009.  MSL uses a modified Apollo 
guidance algorithm requiring the definition of a reference 
bank profile.  Unlike the manned Apollo missions, which 
used a constant-bank reference profile, MSL utilizes a 
variable-bank profile which is divided into three segments 
in the relative velocity domain.  The use of this variable-bank profile is necessitated by the inability of a constant-
bank profile to meet parachute deployment constraints (e.g. altitude and dynamic pressure).1  Extensive work has 
been performed to design this three-segment reference bank profile for the approximately 140 kg/m² ballistic 
coefficient, 0.24 lift-to-drag-ratio vehicle. 

However, to date, no study known to the authors has considered the systematic optimization of high-ballistic-
coefficient Mars entry trajectories through control of bank angle profile.  Some past studies have made broad 
parametric sweeps, as this study does, but have assumed a full-lift-up profile throughout the trajectory.2,3  While 
intuition may suggest that a full-lift-up trajectory is most advantageous in terms of final altitude, often a lift-down 
bank angle early during entry allows a vehicle to dive and spend more time in high-drag (and high-lift) regions 
lower in the atmosphere.  Other studies, such as for MSL, consider bank angle optimization but only for specific 
cases with relatively low ballistic coefficients.4  Substantial gains are possible through control of the lift vector, and 
it is prudent to consider the performance effects of banking in any parametric assessment of Mars vehicle designs.  
This is especially true for the high-ballistic-coefficient, and likely high-lift-to-drag ratio, human-class vehicles 
toward which this study is directed. 

B. Challenges in the Physics of Mars Entry 
Entry, descent, and landing on Mars is particularly challenging because of the physical characteristics of Mars 

itself.  Unlike Earth, which has a relatively thick atmosphere and high gravity, and the Moon, which has no 
atmosphere but low gravity, Mars has essentially the worst of both worlds:  a thin atmosphere and relatively high 
gravity.  As an illustration of Mars’ aerodynamic “unfriendliness”, a previous study5 has shown that heavier-than-air 
flight on Mars requires 2.1 times as much power as on Earth and 17.5 times as much power as on Titan due to the 
high value of g1.5/ρ0.5 on Mars. 

 
Figure 1. Bank angle (φ) definition. 
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Another illustration of Mars’ aerodynamic unfriendliness is shown in Fig. 2, which plots terminal velocity on 
Mars as a function of altitude above the MOLA reference ellipsoid (h) and vehicle ballistic coefficient (β).  As 
shown in Eq. (1), terminal velocity is a function only of ballistic coefficient, local gravitational acceleration, and 
local atmospheric density (the latter two of which are functions of altitude).  The definition of ballistic coefficient is 
shown in Eq. (2) (note that m is object mass, CD is object drag coefficient, and S is object reference area). 

Note from Fig. 2 that terminal Mach number on Mars is generally about a factor of ten higher on Mars than for 
the same ballistic coefficient and altitude on Earth.  This highlights the extreme challenge that Mars poses in terms 
of entry, descent, and landing:  Any vehicle with a ballistic coefficient greater than 85 kg/m² would naturally impact 
the Martian surface supersonically.  This is in stark contrast to Earth, where an 85 kg/m² vehicle would impact the 
ground at about Mach 0.10.  As a further illustration, based on data available from Ref. 6, it can be estimated that a 
skydiver on Mars would have a terminal velocity somewhere in the range of Mach 1.0 to 1.5 (assuming a ballistic 
coefficient of between 90 and 180 kg/m², depending on the degree of the transonic drag rise). 

A final note to make on Fig. 2 is that later in this paper, it will be seen that many optimal trajectories are able to 
reach some altitudes at velocities lower than the terminal velocity at that altitude.  For example, one optimal 
trajectory yields a vehicle which reaches Mach 2 at 6.8 km for a 600 kg/m² vehicle even though terminal velocity at 
6.8 km for a 600 kg/m² ballistic coefficient is Mach 3.6.  The reason this sub-terminal velocity is possible is because 
of the presence of lift, which provides the vehicle with some authority to loft and thereby trade kinetic energy (i.e. 
velocity) for potential energy (i.e. altitude). 

 ρβ g
Vterm 2=  (1) 
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C. Vehicle Parameterization 
One principle on which this study relies is that a given entry vehicle can, from a trajectory perspective, be 

completely described by ballistic coefficient (β) and lift-to-drag ratio (L/D).  This principle hinges on the assumption 
of a constant trim drag coefficient (CD) and L/D, which is approximately true for hypersonic flight.  A proof of the 
validity of this parameterization is shown below: 
 

Beginning with the definition of ballistic coefficient given in Equation 2, the definition of L/D = CL/CD, and 
Newton’s second law for a constant-mass object, a vector equation of motion may be derived.  For entry, 
the only forces acting on a vehicle are lift (L), drag (D), and gravity (mg), allowing the force term to be 

 
Figure 2. Terminal velocities (in m/s) and Mach numbers on Mars (left) and Earth (right) as a function of 

altitude and ballistic coefficient. 
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written as in Eq. (3) below, where hat (^) terms indicate unit vectors in the respective directions of lift and 
drag.  Equation (4) is equivalent to Eq. (3) except with all terms normalized by m.  Note that q is dynamic 
pressure. 
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Recognizing that SCD/m = 1/β and that CL/CD = L/D, Eq. (4) can be written as: 
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Expressing the l and d unit vectors in physical terms and recognizing that the left hand side is actually the 
vehicle’s acceleration allows Eq. (5) to be written in its final form as: 
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Note that in Eq. (6), the vehicle’s acceleration (the highest-order state derivative) is a function only of the 
vehicle’s current state (q is a function only of velocity and density, which is a function of altitude, and g is 
a function only of altitude) and the parameters β and L/D.  As long as β and L/D are assumed constants (as 
is approximately true for trimmed hypersonic conditions), then this equation shows that the entry dynamics 
of a vehicle on a given planet can be completely described by β and L/D. 

 
Ballistic coefficients and L/D values for several historical and future entry vehicles are shown in Table 1 and 

Table 2.  Note that all robotic Mars entries flown to date have utilized either zero-lift ballistic trajectories or full-lift-
up profiles, which has primarily been acceptable to the terminal descent system design because of their low ballistic 
coefficients.  The Mars Science Laboratory mission, however, utilizes banking, and all U.S. manned vehicles since 
Gemini have also utilized banking.  The manned vehicles are particularly relevant to the context of this study 
because they illustrate the high ballistic coefficients typically associated with manned flight. 
 
 
 

 
 
 

 
 

Table 2.  Entry Characteristics of Selected Manned Vehicles.12-18 

Vehicle Mercury Vostok Gemini Apollo X-38 Soyuz Space Shuttle 
Last Entry Date 1963 1963 1966 1975 N/A 2008** 2008** 
Entry β (kg/m²) 260 580 330 380 920 590 530 
Hypersonic L/D 0 0 0.17 0.32 0.92 0.28 1.4 

Bank Scheme N/A N/A Guided Guided Guided Guided Guided 
**As of writing of this paper; flights are ongoing. 

 

Table 1.  Entry Characteristics of Selected Mars Landers.7-11 

Vehicle Viking 1 Pathfinder Mars Microprobes Beagle 2 MER-A Phoenix MSL 
Last Entry Date 1976 1997 1999 2003 2004 2008 2010* 

Entry β (kg/m²) 64 63 36 73 94 65 140 
Hypersonic L/D 0.18 0 0 0 0 0 0.24 

Bank Scheme Full Lift-Up N/A N/A N/A N/A N/A Guided 
*Expected 
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II.  Assumptions and Objective Function Selection 

A. Objective Function 
One of the first steps in this study is the definition of an objective function by which to define an “optimal” 

trajectory.  If a vehicle is defined and sizing models are available, the most obvious choice is the maximization of 
landed payload mass for a given entry mass or, equivalently, the minimization of entry mass for a given landed 
payload mass.  However, in this study, an entry vehicle is not defined beyond L/D and ballistic coefficient. 

Instead of vehicle mass minimization, this study seeks altitude maximization for a given trajectory termination 
Mach number.  The inherent assumption behind this objective is that it is desirable for an entry vehicle to be 
traveling as slow and as high as possible when terminal descent is initiated (via parachutes, inflatable aerodynamic 
decelerators, or propulsion).  The reason for this is rooted in altitude being a proxy for time-to-ground.  To help 
explain this, Fig. 3 shows the variation of potential and kinetic energy with time for a vehicle entering at 4.7 km/s 
with β = 200 kg/m² and L/D = 0.5 on a maximum-altitude trajectory terminating at Mach 2.  Note that the potential 
energy associated with altitude is a small fraction of the total energy, even at the end of the trajectory.  Furthermore, 
potential energy changes relatively little even with large changes in altitude.  Thus, while entry may be considered a 
total energy minimization problem (on the trajectory below, 98.3% of vehicle total energy is removed by Mach 2), 
kinetic energy changes are of principal importance.  High altitude is known to be an important indicator of time 
available during parachute or inflatable device phases, and it also indicates the ease with which low-altitude terminal 
states may be achieved.  Thus, since high altitude is also not a significant player in terms of energy, it is used as a 
defining characteristic of optimum trajectories. 
 

 

B. Assumptions 
In the completion of this study, several assumptions are made.  The most significant is the assumption of an 

atmosphere.  For consistency purposes with corresponding human Mars entry simulation efforts at other NASA 
centers, an equatorial landing site is assumed for entry on November 3, 2010 (Julian date 2455503.5).  The 
corresponding atmospheric density and temperature profiles from the widely-used Mars-GRAM engineering-level 
atmospheric model19 are shown in Fig. 4.  Altitudes reported are above the MOLA reference ellipsoid. 

 

 
Figure 4. Density and Temperature profiles for the atmosphere assumed for this study. 

 
Figure 3. Specific energy for a β = 200 kg/m², L/D = 0.5 vehicle entering at 4.7 km/s on a maximum-altitude 

trajectory terminating at Mach 2.  The right graph magnifies the final 2 minutes of flight. 
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As described earlier, a constant-trim condition is assumed for hypersonic flight, and as a result, a vehicle can be 
completely defined by a ballistic coefficient and lift-to-drag ratio.  Additionally, this study assumes a 10-point bank 
profile defined in terms of points evenly spaced in the relative velocity domain.  Bank angle is linearly interpolated 
between each of these points, much as was done by Ref. 4. 

Constraints include a 4.5 Earth-G acceleration limit to reflect acceptable deceleration for a deconditioned human 
crew while also allowing a 0.5 G margin for dispersion performance.  Heat rate is constrained to 1000 W/cm² (half 
the limit published by Ref. 20) over an assumed one-meter-radius sphere, although in the study results, no 
trajectories were limited by this constraint.  Some series of runs are noted as implementing a 10 km “dip constraint”, 
which constrain those trajectories to minimum altitudes no less than 10 km, reflecting the desire to limit the extent to 
which a vehicle is allowed to skim close to the ground prior to a loft to a higher altitude.  Additionally, trajectories 
are automatically terminated if they fall below -5 km in altitude. 

As summarized in Table 3, the effective matrix of runs for this study consists of inertial entry velocities of 3.3 
km/s (representative of entry from a 500 km circular orbit), 4.7 km/s (representative of entry from a 1-sol elliptical 
orbit), and 5.5 km/s (representative of a direct entry).  Note that, while entry velocities reported are inertial, they are 
approximately equal to the relative entry velocity since the assumed entry azimuth is 0° (north).  Ballistic 
coefficients range from 200 to 1000 kg/m² in 
increments of 200 kg/m², and lift-to-drag 
ratio ranges from 0.2 to 0.9 in increments of 
0.1.  Altitude is maximized at four distinct 
termination Mach numbers meant to 
represent potential parachute, inflatable, or 
propulsion deployment points:  Mach 0.8, 
2.0, 3.5, and 5.0. 

III.  Simulation and Optimization Method 

A. Entry Simulation 
The entry simulator used in this study is selected to allow quick, accurate trajectory simulation.  A custom 

MATLAB simulation models vehicle motion about an assumed spherical, rotating planet in a planet-centered inertial 
frame.  Only three forces act on the vehicle:  lift, drag, and gravity.  These vector forces are translated into 
accelerations for the assumed constant-mass vehicle and integrated over time using MATLAB’s ode45 function.  No 
bank rate or bank acceleration limitations are modeled.  Note also that, as is applicable for skip-entry cases, 
atmospheric density is assumed to be zero above 125 km in altitude.  Planet-specific simulation constants are shown 
in Table 4.  Sample trajectory results from the MATLAB simulation were validated against trajectories generated 
via the Simulation and Optimization of Rocket Trajectories (SORT) tool used extensively at NASA JSC. 

 

B. Optimizer 
To allow a thorough global search through the bank-angle and entry-flight-path-angle space, the optimizer 

selected is a particle swarm optimizer written originally for use on Mars Science Laboratory entry optimization.21  
MATLAB’s fmincon gradient optimizer was also considered but yielded suboptimal results for early test cases. 

Optimizations involve 50 particles limited to 100 iterations‡ to determine the maximum altitude attainable by 
varying the inertial entry flight path angle and 10 bank angles evenly spaced along the expected relative velocity 
range.  Bank angles are limited to a range of 0° to 180°, and entry flight path angle is limited to skip-out and g-
limited ranges computed prior to the optimization process.  The entry flight path angle g-limit is defined by the 

                                                        
‡ In some highly constrained problems in which a 10 km dip constraint is imposed, 10 particles are limited to 500 
iterations in order to speed the particle swarm initialization process, which would otherwise take over a week of 
computer run time. 

 
Table 4.  Mars Entry Simulation Constants. 

Mars Atmospheric Constants  Mars Physical Constants 
Ratio of Specific Heats 1.289   Gravitational Parameter 42828 km³/s² 
Molecular Weight 43.34 g/mol  Planetary Radius 3396 km 
Specific Gas Constant 191.8 J/kg/K  Rotational Period 24.62 hours 
Maximum Altitude of Atmosphere 125 km  Sphere of Influence Altitude 571140 km 

 

Table 3.  Parameterization of Vehicle 
and Boundary Condition Variables. 

Parameter Values Assessed 
Inertial Entry Velocity (km/s) 3.3, 4.7, 5.5 
Termination Mach Number 0.8, 2.0, 3.5, 5.0 
Vehicle Ballistic Coefficient (kg/m²) 200, 400, 600, 800, 1000 
Vehicle L/D 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 
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steepest entry flight path angle for which a full-lift-up bank profile does not exceed the specified deceleration limit.  
The skip-out limit is defined by the shallowest entry flight path angle for which a full-lift-down bank profile causes 
the simulation to terminate at its 7-day time limit (allowing the optimizer to consider skip-entry trajectories).  
Otherwise, simulations would terminate based on Mach number (0.8, 2.0, 3.5, or 5.0) or at a -5 km altitude. 

IV.  Results and Discussion 
The data from this study yields a wealth of information on characteristics of Mars entry physics and implications 

for the design of future Mars entry vehicles (crewed or otherwise).  By no means is this section comprehensive in 
covering the implications of all this data; however, the most important trends and implications are illustrated. 

Three distinct sub-studies were implemented – a baseline sub-study defined by the assumptions and constraints 
listed earlier in this paper and two additional sub-studies which utilized changes to those assumptions or constraints.  
A full-lift-up sub-study is implemented identically to the baseline except that bank angle is constrained to be 0° (i.e. 
full-lift-up) and the only free variable is entry flight path angle.  The full-lift-up study demonstrates how often a full-
lift-up profile can approximate an optimal bank profile.  A 30-G-constrained sub-study is implemented identically to 
the baseline except that the 4.5-G deceleration constraint is replaced by a 30-G constraint.  This deceleration 
constraint change is meant to provide insight into the optimal nearly-unconstrained bank angle profile and could also 
be applicable to unmanned vehicles which are restricted in their deceleration only by structural limitations. 

A. Baseline Sub-Study Results 
Shown in Fig. 5 is a plot of the baseline sub-study results, showing the maximum attainable final altitude (the 

objective function of the optimization) as a function of ballistic coefficient, lift-to-drag ratio, termination Mach 
number, and whether the 10 km dip constraint is imposed.  This figure corresponds to an entry velocity of 4.7 km/s, 
but it is also representative of the 3.3 km/s and 5.5 km/s plots since it is found that, if bank control is permitted, 
maximum altitude performance is almost independent of entry velocity.  It should also be noted that, while Mach 0.8 
termination cases were run, none returned any viable trajectories (i.e. trajectories which did not hit -5 km altitude 
prior to reaching Mach 0.8). 

The first note to make about this figure is that, as would be expected, for a given termination Mach number and 
dip constraint, maximum attainable altitude increases with increasing lift-to-drag ratio and decreasing ballistic 
coefficient.  There are no local extrema, meaning that from a performance perspective, high lift-to-drag ratio and 
low ballistic coefficient are always desirable. 

Besides yielding numbers for the maximum attainable altitude, Fig. 5 can also be interpreted as showing “iso-
altitude-performance” contours.  For example, for Mach 5 altitude performance with no dip constraint imposed, a 
200 kg/m² vehicle with L/D = 0.6 is equivalent to a 600 kg/m² vehicle with L/D = 0.9.  In this way, it can be seen 
that a ballistic coefficient decrease can be traded against a lift-to-drag ratio increase and vice-versa.  This is 
important to note because, typically, as an entry vehicle shape is altered to improve L/D, its ballistic coefficient 
increases.   Again, as discussed earlier, under the assumption of trimmed hypersonic flight, from the atmospheric 
perspective a vehicle may be completely defined by its ballistic coefficient and lift-to-drag ratio. 

Another observation which can be made from Fig. 5 is that imposition of the 10 km dip constraint (shown in the 
plots on the right) effectively changes the concavity of the altitude contours.  Vehicles of low ballistic coefficients 
and high lift-to-drag ratios are unaffected by the constraint (these trajectories meet the constraint even when it is not 
imposed on the optimization), but vehicles at high ballistic coefficients and low lift-to-drag ratios are entirely 
eliminated from the data set (these trajectories cannot attain final altitudes greater than 10 km even without the 
constraint).  Vehicles between these extremes show reduced altitudes compared to those attainable without the 
constraint. 

Finally, and perhaps most importantly, examination of the trajectories associated with each data point in Fig. 5 
yields some insight into the physics of the optimal trajectories which are converged upon.  Eight specific trajectories 
are detailed below to illustrate trends observed from the wealth of data generated from this study. 

 
1. Apollo-Class Vehicle Trajectories 

The following example trajectories approximate the performance of an Apollo-class vehicle as one with a 
ballistic coefficient of 400 kg/m² and lift-to-drag ratio of 0.3 (Table 2 shows the actual Apollo ballistic coefficient as 
380 kg/m² and lift-to-drag ratio as 0.32, although this did vary slightly from mission to mission).  It can be shown 
that even with bank angle control, the Apollo command module would not be able to decelerate to a velocity slower 
than Mach 2.1 prior to reaching 0 km altitude on Mars.  Examined here is the maximum altitude Apollo could reach 
at Mach 5 (e.g. if the vehicle were to have a supersonic decelerator to deploy at Mach 5). 
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Apollo-Class Entry at 4.7 km/s 
Figure 6 shows the maximum-final-altitude trajectory for an Apollo-class vehicle entering Mars’ atmosphere at 

4.7 km/s (e.g., entry from a 1-sol orbit).  The maximum attainable altitude at Mach 5 is 18.3 km, lofted from a 
minimum altitude of 12.7 km (thus, this trajectory meets the 10 km dip constraint).  Note that the deceleration 
constraint of 4.5 G’s is reached and limits performance.  Of particular interest is the zig-zag bank profile as the 
maximum deceleration point is approached, which serves to limit this maximum deceleration while still maximizing 
final altitude.  Also note that the optimum bank profile is full-lift-up starting at approximately 3000 m/s (somewhat 
under Mach 15).§ 
                                                        
§ One interesting feature in virtually all of these trajectories is a peak altitude which occurs prior to the end of the 
trajectory (one would intuitively expect the maximum altitude for a given Mach number to occur at the top of a loft).  
While this feature is difficult to physically explain, it is so consistent within this study that it is believed to be a real 
characteristic.  Independent optimization routines using the POST simulation at NASA Langley Research Center 
have yielded solutions with equally consistent early peaks. 

 
Figure 5. Maximum attainable altitude (in km) for an entry velocity of 4.7 km/s. 

Gray regions indicate regions in which no solutions are found due to constraints.  White regions with broken or 
absent contours indicate the boundary between the constrained and unconstrained regions. 
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Apollo-Class Entry at 3.3 km/s 

Figure 7 shows maximum-final-altitude trajectory data for the same vehicle entering at 3.3 km/s (e.g., entry from 
a low Mars orbit).  The maximum attainable altitude at Mach 5 is 14.1 km, which is achieved without lofting.  Note 
that the deceleration constraint is not approached (maximum deceleration is 1.7 G’s), which is typical of low-L/D, 
low-entry-velocity cases in this study.  Entry flight path angle is quite shallow, and the trajectory is effectively full-
lift-up.  Note also that the duration of the flight is about 1.5 minutes longer than the 4.7 km/s entry case. 

 

 
 

 
Figure 7. Optimal trajectory data for an Apollo-class vehicle entering at 3.3 km/s. 

 
Figure 6. Optimal trajectory data for an Apollo-class vehicle entering at 4.7 km/s. 
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Apollo-Class Entry at 5.5 km/s 
Figure 8 below shows maximum-final-altitude trajectory data for the same Apollo-class vehicle entering at 5.5 

km/s (e.g., direct entry).  Similarities to the 4.7 km/s case abound.  Note the similarity in maximum and minimum 
altitude to the 4.7 km/s case (both have a final maximum altitude of 18.3 km, and the minimum altitudes differ by 
only 98 m).  Note also the double acceleration peak, indicating not only that the maximum allowable acceleration is 
a significant constraint, but also that it is a dynamic that the optimizer is attempting to follow in order to maximize 
altitude.  The optimum entry flight path angle is within 0.3° of the 4.7 km/s case, and bank angle is once again 0° for 
the final 3000 m/s of the trajectory.  One additional note to highlight, however, is the fact that no bank rate or 
acceleration limitations are assumed in these studies, and this trajectory allows bank angle to change quite rapidly 
from 0° to 180° in approximately 12 seconds. 

 

 
 
 
 

2. Deceleration-Limited Trajectory Illustration 
The trajectory shown in Fig. 9 below illustrates the significance that the 4.5 G constraint has on limiting some of 

the trajectories in this study.  For this high-L/D (L/D = 0.6), low-ballistic-coefficient (β = 200 kg/m²) vehicle, three 
distinct deceleration peaks of nearly equal magnitude are seen in close proximity to each other, corresponding 
directly to the oscillation of the bank angle.  This effective constant-deceleration region occurs over almost 2000 m/s 
of the trajectory (from approximately Mach 20 until Mach 10). 

In contrast, when the 4.5-G constraint is replaced with a 30-G constraint, the optimal trajectory shown in Fig. 10 
results.  The differences are very pronounced.  When unconstrained by deceleration limits, the deceleration load 
peaks at 16.2 G’s.  Minimum altitude drops to 5.5 km (as opposed to 12.9 km), and maximum achievable final 
altitude rises by 8.2 km to 34.4 km.  To achieve this, entry flight path angle is steepened by 13.5°, giving a very 
steep -25.2°.  The trajectory is full-lift-up very early during entry, starting at approximately Mach 18.  This steep-
flight-path-angle, full-lift-up behavior appears to be quite typical of optimal trajectories when acceleration 
constraints are released. 

 
 
 
 
 
 
 

 
Figure 8. Optimal trajectory data for an Apollo-class vehicle entering at 5.5 km/s. 
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Figure 10. Optimal trajectory data for the same case as in Fig. 9 with no effective deceleration constraint.  

 
Figure 9. Optimal trajectory data for a 4.5-G constrained case. 
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3. Dip Constraint Illustration 
The trajectory shown in Fig. 12 is for an identical case as the trajectory in Fig. 11 except with an added 10 km dip 
constraint.  For this high-L/D (L/D = 0.6), moderate-ballistic-coefficient (β = 600 kg/m²) vehicle, note that, while the 
nominal case dips to 4.6 km in order to reach a final altitude of 25.6 km, the case with the dip constraint dips only to 
10.1 km and lofts only to 20.5 km.  The dip-constrained case is also clearly not limited by acceleration (unlike the 
nominal case), as it only hits the 4.0-G mark.  Note also the fluctuation in the dip-constrained bank profile, as 
opposed to the smoothness of the nominal profile. 
 
 

 
 
 

 

 
Figure 12. Optimal trajectory data for the same case as in Figure 11 but with a 10 km dip constraint. 

 
Figure 11. Optimal trajectory data for a 600 kg/m², L/D = 0.6 vehicle. 
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4. Skip-Entry Illustration 
The trajectory shown in Fig. 13 is illustrative of the behavior of optimal trajectories for very-high-L/D cases 

(L/D = 0.8 or 0.9).  The vast majority of these very-high-L/D cases exhibit skip-entry behavior for one or several 
skips over a period of hours.  In the case in Fig. 13, an initial skip (during which the peak heat rate is experienced) 
removes about 900 m/s of velocity from the vehicle with a maximum acceleration of 1.8 G’s.  A suborbital coast 
period occurs next, during which the vehicle reaches an apoapsis altitude of 1800 km (not shown) and re-enters the 
atmosphere at 3.8 km/s.  The 4.5-G limit is hit on the second entry, and bank angle is 0° below about Mach 7. 

The reason for this skip behavior is not entirely clear, but its consistency for nearly all very-high-L/D cases 
makes it unlikely to be an anomaly.  One reason for its optimality may be the fact that the skip(s) allow the vehicle 
to effectively re-enter the atmosphere at a lower velocity, which is known to reduce peak deceleration (as discussed 
earlier).  This capability to artificially lower entry velocity through skipping may exist for lower L/D values but was 
not found to be optimal. 

 

 
 

B. Full-Lift-Up Sub-Study Results 
In addition to the baseline study described for the bulk of this report, a full set of optimizations (minus the 10-km 

dip-constrained cases) was performed for a full-lift-up profile.  Thus, final altitude at all Mach numbers under 
consideration was maximized by varying entry flight path angle.  The results of these optimizations for the 4.7 km/s 
entry velocity are shown in Fig. 14 in terms of maximum attainable altitude.  Interestingly, zig-zag patterns exist in 
these contours which correlate with boundaries between skip trajectories.  For example, for Mach 5 termination, 
optimal trajectories for vehicles with L/D values greater than about 0.3 involve a significant loft at high velocities (a 
“half-skip”).  Then, above an L/D of about 0.7, optimal trajectories exhibit one full skip plus a significant loft (a 
“one-and-a-half skip”).  At the L/D = 0.3 and 0.7 locations, trajectories are deceleration-limited but are not 
deceleration-limited in the surrounding L/D regions.  This behavior is consistent but so far does not have a clear 
physical explanation; these optimum trajectories between the deceleration-limited regions are some of the few in this 
study which do not appear to be limited by any one constraint. 

Figure 15 shows the difference between these full-lift-up results and those of the baseline study.  Note that at 
very low L/D values, altitudes are similar (i.e. the difference is near zero).  However, as L/D increases, the benefit of 
bank angle control during entry becomes increasingly pronounced.  Even for a low-L/D vehicle such as an Apollo 
capsule, using a banked (instead of full-lift-up) profile could result in 4 km final altitude gains at Mach 3.5 and 5 and 
a 1 km final altitude gain near Mach 2.  This highlights the importance of considering bank angle control in 
preliminary entry trajectory design. 

 

 
Figure 13. Optimal trajectory data for a 400 kg/m², L/D = 0.9 vehicle. 
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C. 30-G Constrained Sub-Study Results 
A third set of optimizations is performed, again to complement the baseline sub-study described for the bulk of 

this paper.  In this third set, the 4.5 G deceleration constraint is relaxed to 30 G’s, meant to effectively remove the 
deceleration constraint.  This modification had the dual purposes of theoretically revealing “purer” optimum bank 
profiles which would be unconstrained by the strict 4.5-G deceleration limit and showing potential optimum 
trajectories for uncrewed (e.g. cargo or robotic) missions. 

The maximum final altitude results from this study are shown in Fig. 16 below.  Note that the altitudes seen here 
are, depending on the specific case, up to 16 km higher than those seen in the baseline study.  Also note the 
interesting change in contour concavity in the high-L/D, high-ballistic-coefficient region of the Mach 3.5 and Mach 
5 plots.  Interestingly, analysis of the trajectories associated with this region indicates that these trajectories are 
actually constrained by the -5 km altitude limit within the entry simulation.  Thus, this concavity change is 
analogous to the concavity difference between the baseline study’s nominal and 10-km dip-constrained cases. 

 
 

 
Figure 15. Difference in maximum attainable 
altitude (in km) between the baseline and full-
lift-up sub-studies for a 4.7 km/s entry velocity.  
Note that there is clearly a greater benefit to bank 

angle control as L/D increases. 

 
Figure 14. Maximum attainable altitude 

(in km) for an entry velocity of 4.7 km/s 
under a full-lift-up bank profile. 
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Figure 16. Maximum attainable altitude for a 
4.7 km/s entry velocity under a 30-G constraint.  

Note that substantially higher altitudes are 
achievable compared to Fig. 5. 
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V. Conclusions and Implications 
This study has generated a wealth of data and insight into the characteristics of optimal trajectories for a wide 

range of combinations of ballistic coefficients, lift-to-drag ratios, entry velocities, termination Mach numbers, and 
dip constraints.  In the completion of this study, more than 9 million trajectory runs were completed to optimize 
more than 1,800 data points.  By choosing to analyze these scenarios in a vehicle-independent fashion (by assuming 
constant hypersonic aerodynamic coefficients), the vehicle analysis described next is made possible. 

A. Vehicle Implications 
The advantage to choosing a vehicle-independent analysis is that all performance data gathered in this study is 

valid for any vehicle (within the bounds of uncertainty due to the constant hypersonic aerodynamic coefficients 
assumption).  Thus, if performance of a specific vehicle is desired, only its ballistic coefficient and lift-to-drag ratio 
are required and its optimal altitude performance is known.  Specific vehicles are points in the ballistic-coefficient 
vs. lift-to-drag-ratio domain.  Generic vehicle shapes may be represented as contours in this domain since center of 
mass location and vehicle mass may vary to change both ballistic coefficient and L/D. 

Figure 17 and Fig. 18 below show the Mach 3.5 and Mach 5 performance of entry vehicles entering at 4.7 km/s 
under a 10 km dip constraint.  Overlaid on those altitude contours are iso-mass contours for three ellipsled designs 
plus a 12 m diameter capsule design.  Additionally, Apollo and Soyuz designs are shown at their respective 
locations on the plots.  Note that the 10 km dip constrained plot is shown because the 10 km limit is taken to 
represent a realistic margin above the ground to account for dispersions and safety considerations.  Additionally, it 
should be noted that this 10 km constraint is relative to MOLA and not ground level (so the situation would be 
significantly more constrained if landing sites higher than 0 km MOLA are desired). 

These figures illustrate several very important points about requirements for high-ballistic-coefficient Mars entry 
vehicle designs.  First, it is clear that, when restricted to diameters below 12 m, an Apollo-class vehicle design for a 
high-mass crewed Mars mission is on the fringes of what is acceptable if no supplementary deceleration is available 
prior to Mach 3.5 (it lies very close to the gray region in which it is impossible to meet the 10 km dip constraint). 
For a 12 m capsule above about 100 metric tons in entry mass, deployment or activation of some decelerator device 
is required by Mach 5 if a 10 km dip constraint is not to be breached.  Similarly, for a 12 m capsule above about 60 
metric tons in entry mass, decelerator activation is required by Mach 3.5.  These masses are fairly low considering 
the 40+ metric ton landed masses which are often desired for human Mars design reference missions.   

For a capsule, the only way to improve this mass 
performance is to increase capsule diameter** , which 
would decrease ballistic coefficient and shift the capsule 
contours to the left in the figures below.  A capsule 
diameter conversion chart is shown in Table 5.  Each of 
the brown contours in Fig. 17 and Fig. 18, which are 
plotted for a 12 m capsule diameter, can be re-labeled 
with the masses shown in Table 5 if a different capsule 
diameter is assumed.  For example, the performance 
curve for a 40 t (40 metric ton) 12-m capsule is the same 
as for a 62.5 t, 15-m capsule. 

Slender-body shapes such as ellipsleds can perhaps perform better than capsules, but they are still significantly 
constrained to large vehicles with relatively small payload masses.  Fig. 17 shows that a 12 × 35 m ellipsled allows 
an entry mass between 120 and 140 metric tons to reach Mach 3.5 without the assistance of a supplementary 
decelerator.  An additional note of interest is that a given vehicle shape and mass does have its own maximum 
attainable altitude which can be visually found via the intersection of altitude and vehicle mass contours (for 
example, the maximum altitude that the 120 metric ton ellipsled described above can reach at Mach 3.5 is about 15 
km, if subject to the 10 km dip constraint). 

 
 
 

                                                        
** Unless in-space assembly is considered, a practical limit on vehicle diameter is launch vehicle fairing diameter.  
For example, the anticipated fairing diameter of the Ares V rocket is in the range of 8.4 m to 12 m.22  In this respect, 
slender-body shapes such as ellipsleds offer advantages over capsules in that they can accommodate more volume 
(and potentially mass) for a given vehicle diameter. 

Table 5.  Equivalent-ballistic-coefficient capsule 
mass conversion chart. 

 
10-m Capsule 

Mass (t) 
12-m Capsule 

Mass (t) 
15-m Capsule 

Mass (t) 
27.8 40 62.5 
41.7 60 93.8 
55.6 80 125.0 
69.4 100 156.3 
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Figure 18. Overlay of Mach 5 maximum attainable altitude contours (shown in gray) with ellipsled and 12 

m capsule vehicle characteristic contours.  Note that the gray shaded region indicates the design space in 
which it is known that no solutions exist. 

 
Figure 17. Overlay of Mach 3.5 maximum attainable altitude contours (shown in gray) with ellipsled and 
12 m capsule vehicle characteristic contours.  Note that the gray shaded region indicates the design space in 

which it is known that no solutions exist. 
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B. Key Conclusions 
Key conclusions from the data presented throughout this paper include: 

 
� Unless vehicle L/D  is low (about 0.2 or lower), entry velocity is low (under roughly 3.5-4.0 km/s), or 

deceleration constraints are absent or very high (in the 20’s of Earth G’s), optimal banking should be 
considered in the preliminary design of entry trajectories.  This study found that, for entry velocities of 
4.7 km/s and 5.5 km/s, the optimal bank profiles for L/D = 0.2 vehicles were primarily lift-up.  For the 3.3 
km/s entry velocity, optimal bank profiles for vehicles with L/D values less than 0.6 were also primarily 
lift-up.  Additionally, for cases unconstrained by deceleration loads, the optimum-bank tendency was full-
lift-up at a very steep entry flight path angle (unless altitude constraints interfered). 

� Optimal final-altitude-maximizing bank profiles tend to be full-lift-up at the end of the trajectory, tend to 
have somewhat lift-down bank angles at the beginning of the trajectory, and, for higher entry velocities, 
almost always attempt to follow deceleration load constraints. 

� Multiple bank profiles may be capable of reaching the same (or nearly the same) optimum altitude.  
Contours shown in final altitude plots in this study all appear smooth, which suggests quite strongly that the 
true optimum altitudes were nearly always found.  However, the bank angle profiles which achieve 
neighboring optimum altitudes often show more irregular behavior.  One credible explanation of this is that 
multiple bank angle combinations are commonly capable of achieving the same (or nearly the same) final 
altitude/velocity state. 

� Minimum altitude constraints and deceleration load constraints are significant optimal trajectory 
drivers.  As shown in this study, a 10 km dip constraint can severely limit the ballistic coefficient and lift-
to-drag combinations that are allowable.  High-L/D, low-ballistic-coefficient vehicles do not violate the 
constraint, while low-L/D, high-ballistic-coefficient vehicles violate it simply because they cannot reach a 
final altitude above 10 km in the first place.  Fringe cases see significant reductions when the dip constraint 
is imposed.  Similarly, releasing a 4.5-G deceleration load constraint can result in altitude gains up to 16 
km for the cases considered in this study (or approximately 2 km for an Apollo-class vehicle). 

� Low-L/D vehicle configurations (e.g. capsules and short ellipsleds) require very low ballistic coefficients 
to overcome their lift limitations.  As detailed earlier, if no supplementary deceleration options (e.g., 
parachutes, inflatable decelerators, propulsion) are available prior to Mach 5, a 12 m diameter capsule is 
limited to 100 metric tons.  If no options are available prior to Mach 3.5, that mass is lowered to 
approximately 60 metric tons.  A 12 × 35 m ellipsled can reach a mass of between 120 and 140 metric tons 
and still reach Mach 3.5 without the assistance of a supplementary decelerator.  Without decelerator 
assistance, Mach 2 is unachievable for L/D values of 0.5 or less (unless ballistic coefficient is less than 200 
kg/m²), and Mach 0.8 cannot be achieved for any ballistic coefficient and L/D combination considered in 
this study. 

C. Study Limitations 
This study has attempted to be as broadly applicable within the limits of time and the scope of work for the 

NASA Mars DRM 5.0 effort.  Two principal limitations are recognized, and avenues for future follow-on work are 
identified. 

First, this study has not considered environment and state knowledge dispersions which are crucial to any real, 
guided landing on Mars, especially human missions.  This study has also not specified what type of guidance would 
be required to adequately fly the optimal trajectories which have been identified.  It should be noted, however, that 
margin is included in these trajectories in the form of a 10 km dip constraint and a 4.5-G (instead of 5-G) 
deceleration limit.  This study was principally concerned with maximizing altitude and assumes that adequate 
margin was given at this stage of design.  It is hoped that this work will continue in the future and include 
consideration of guidance performance.  One such follow-on study is documented in Ref. 23. 

Second, some of the optimum low-L/D trajectories for the 3.3 km/s entry velocity converged to very shallow 
(sometimes 0°) entry flight path angles.  The reason for this is that 3.3 km/s at a 0° flight path angle is below orbital 
velocity at the 125 km entry interface point (meaning that, while this is still a valid elliptical orbit, the periapsis of 
this orbit is within the atmosphere or planet).  However, this limitation is difficult to remedy without assuming an 
initial orbit (which would disrupt the generality of this study).  Before using any of the low-L/D results for the 3.3 
km/s entry velocity cases, the user should check the optimized entry flight path angle to be sure that entry state can 
be reached from the user’s initial orbit. 
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One concern which is acknowledged is the inherent limitation of the optimizer and bank profiles used.  The 
smoothness of the objective function (final altitude) curves in all plots suggests that true optima were consistently 
found.  However, the bank profile was inherently limited by the ten evenly-spaced points prescribed in the relative 
velocity domain.  For example, it was often clear that the optimizer was attempting to follow a constant-deceleration 
profile, but the placement of the bank points did not allow a high degree of control over this.  While the approach 
used in this study was suitable for the goal of a broad parametric sweep, higher-fidelity studies in the future should 
assess different methods of defining a bank profile which are more flexible and adaptable to recognized trends than 
the method used here. 

Finally, in the context of winged vehicles, this study is limited in the scope of L/D values considered.  As noted 
in Table 2, the hypersonic L/D of the Space Shuttle is 1.4, which is well outside the L/D = 0.9 upper limit considered 
in this study’s parametric sweep.  Since altitude performance increases with increasing L/D, it is recognized that 
with a high enough L/D, it may be possible to reach the elusive Mach 0.8 termination at a reasonable altitude and 
avoid many of the technology hurdles involved in designing large supersonic parachutes, supersonic propulsion, or 
inflatable aerodynamic decelerators.††  This study is unable to identify what L/D values are required to accomplish 
such low-Mach termination states, but this may be worthy of consideration in future studies. 

Overall, this study has accomplished its original goal of determining, to a reasonable certainty, optimal bank 
profiles for a wide range of human-class Mars entry scenarios.  It has identified both the best-case altitudes and the 
bank profile characteristics which generally allow those altitudes to be achieved.  It is hoped that this study’s result 
and methods will find broad use within the Mars entry community. 
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