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Accurate post-flight reconstruction of a vehicle’s trajectory during entry into a planetary 
atmosphere can produce a wide array of valuable information. The data collected through 
the reconstruction of entry, descent, and landing system performance enables the 
quantification of performance margins for future systems. Beyond the engineering 
knowledge gained through trajectory reconstruction, the results may also be used by 
planetary scientists to generate an accurate atmospheric profile. A computer tool was 
developed to facilitate the rapid analysis of data gathered during entry, descent and landing. 
Emphasis was placed on making the tool flexible and capable of easily incorporating 
different types of data. These data are used to provide an accurate reconstruction through 
the use of an Extended Kalman Filter (EKF). The filter propagates the mean state forward 
using a three degree-of-freedom dynamic model and is capable of handling data from 
accelerometers and altimeters. The tool is validated against previous trajectory and 
atmosphere reconstructions that were performed for the Mars Pathfinder mission. In 
addition, an improved estimate of the Mars Pathfinder parachute drag coefficient is 
obtained by taking into account the parachute system deceleration during terminal descent. 
Inclusion of this acceleration effect within the reconstruction increases the reconstructed 
value of the parachute drag coefficient by approximately 7 percent (CDPar = 0.4419 ± 0.0549 
[3-σ]) relative to earlier estimates.  

Nomenclature 
g = local acceleration due to gravity 
h = altitude 
m = mass 
p = pressure 
q = dynamic pressure 
t = time 
v = velocity 
v = measurement noise vector 
w = state noise vector 
x = deviation in state vector from nominal 
z = observation vector 
 
AA = axial acceleration 
AB/S = backshell drag coefficient 
ALan = lander drag coefficient 
AN = normal acceleration 
APar = parachute drag coefficient 
AX = acceleration in the x-direction 
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AY = acceleration in the y-direction 
CA = axial force coefficient 
CN = normal force coefficient 
CD = drag coefficient 
CD,B/S = backshell drag coefficient 
CD,Lan = lander drag coefficient 
CD,Par = parachute drag coefficient 
CL = lift coefficient 
D = drag force 
FA = axial force 
FB = buoyancy force 
FD = drag force 
FN = normal force 
H = atmospheric scale height 
H = measurement sensitivity matrix 
K = Kalman gain  
L = lift force 
L/D = lift-to-drag ratio 
M = mean molecular weight 
M∞ = free-stream Mach number 
P = state covariance matrix 
Q = state noise covariance matrix 
R = measurement covariance matrix 
R = universal gas constant 
T = temperature 
Vi = inertial velocity 
Vr = relative velocity 
Vol = volume 
W = weight 
X = full state vector 
 
αT = total angle of attack 
γ = relative flight path angle (+ down) 
γi = inertial flight path angle (+ down) 
θ = planetcentric longitude  
ρ = local density 
ρ0 = density at h=0 km 
σ = bank angle 
φ  = planetcentric latitude 
ψ = relative heading angle 
ψi = inertial heading angle 
ω = planet rotation rate 
 
Φ = state transition matrix 
 

I. Introduction 
he use of measurements taken during entry, descent, and landing (EDL) is an established method for accurate 
post-flight reconstruction of a vehicle’s trajectory during entry into a planetary atmosphere.1-5 Many data types, 

such as inertial acceleration measurements from accelerometers, are commonly available for use in these analyses. 
Further, methods exist to leverage the data collected to create an estimate of the atmospheric profile encountered by 
the vehicle.6 -10 This report presents a review of these methods and discusses their incorporation into a computer tool 
for rapid trajectory and atmospheric reconstruction. 

T 

 The tool developed here is written in MATLAB and employs an Extended Kalman Filter (EKF) to incorporate 
measurement data. While other methods have been proposed and implemented in past studies,4,10 the use of an EKF 
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allows for an estimation of uncertainty in the reconstructed trajectory and atmosphere. This method is also capable 
of seamlessly incorporating many different measurement types. 
 This paper begins with a review of the theory and mathematics that form the underpinnings of the chosen 
trajectory reconstruction technique. Once this foundation is laid, the methodology and procedure used is investigated 
in more detail. A case study is completed where this tool is applied to reconstruction of the Mars Pathfinder entry, 
descent and landing trajectory and atmospheric profile. This investigation concludes with a detailed assessment of 
the Mars Pathfinder parachute descent segment and estimation of the Mars Pathfinder parachute drag coefficient. 

II. Overview of Trajectory Types 
 Three types of entry trajectories are discussed throughout this study. The relationship between these three 
trajectory types is shown in Fig. 1. The true trajectory is the path actually taken by the entry vehicle. The state 
variables along this path will never actually be known; they may only be estimated. The nominal trajectory 
represents the trajectory predicted by the analyst’s tools without the incorporation of additional measurements. This 
is the expected path of the entry vehicle. Fortunately, however, data is often available that allows for improvement 
of the nominal trajectory. By taking measurements during the flight, parameters related to the true trajectory may be 
estimated. By intelligently incorporating these data, the analyst may improve the estimate of the entry vehicle’s 
trajectory, resulting in the best estimated trajectory. Because there will remain some residual error in this process, 
the best estimated trajectory will never precisely match and can only approach the true trajectory. 
 

X̂

∗X

X
True Trajectory

Nominal Trajectory 

Best Estimated Trajectory

x: estimate of error in nominal stateThe actual 
initial state

Initial guess 
of the state

 
Fig. 1  Relationship between the true, nominal, and best estimated trajectory. 

 
 The full state used in this analysis is a six-element vector, X, with state variables of radius, r; planetcentric 
longitude, θ; planetcentric latitude, φ ; relative velocity, Vr; relative flight path angle, γ; and relative heading angle, ψ. 
The difference between the nominal trajectory and best estimated trajectory at any point along the trajectory is given 
by x. Note the slight difference in nomenclature used for the full state vector (indicated by a capital letter) and the 
error in the state vector (indicated by a lowercase letter). 
 

III. Theoretical Background 
The discussion of the theoretical and mathematical background is divided into four parts. First is a review of the 

equations of motion for planetary entry used to propagate the state variables forward in time. These equations form 
the foundation for many of the later analyses. This is followed by a definition of the state transition matrix as well as 
considerations associated with the numerical computation of this matrix. Thirdly, the measurement sensitivity matrix 
is presented and example formulations are derived for common EDL measurement types. Finally, all of these topics 
are combined in the presentation of EKF theory. 

A. Equations of Motion 
Entry vehicle dynamics are modeled using the three degree-of-freedom (3-DOF) equations of motion. These 

equations assume point mass dynamics occurring over a rotating planet with the atmosphere fixed to the planet 
surface (i.e. no winds). The 3-DOF equations of motion are as follows: 

 ( )γsinrVr −=&  (1) 
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See the nomenclature section for a description of each of the variables in Eq (1) – Eq. (6). Note that the use of 
planetcentric longitude/latitude allows for the use of the spherical equations of motion over a non-spherical planet 
(i.e. the radius of the planet is free to vary with latitude and longitude). These equations of motion are compiled 
from a number of sources11-13 to achieve the desired combination of assumptions and variables. Changes are also 
made to account for the positive-down flight path angle convention used in this paper. 

Because Eq (1) – Eq. (6) are derived relative to a rotating planet, inertial state variable values (velocity, flight 
path angle, and heading angle) must be converted to the planet fixed frame. The conversion between the inertial and 
relative frames for these state variables is as follows: 
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Finally, it is important to note the difference between the heading angle, ψ, and the azimuth angle. The azimuth 
angle is a commonly provided input and the assumed convention is that it is measured clockwise from north. The 
heading angle, however, is measured counterclockwise from east. Therefore, it is easy to see that the conversion 
between azimuth and heading angle is given by the following expression: 

 ( )Azimuth−+= oo 36090ψ  (10) 
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B. State Transition Matrix 
In many cases, it is desirable to map error in the vehicle’s state vector at one time, t0, to a later time in the 

trajectory, t1. While the actual trajectory may be highly nonlinear, it usually possible to assume the errors behave in 
a linear fashion as long as they remain sufficiently small. Under this assumption, the equations of motion may be 
linearized by taking a series expansion about a reference trajectory and retaining only the first-order terms.14 The 
deviation vector, x, (a six-vector of the deviation in the full state vector, X) may then be mapped from time t0 to t1 
using the following expression: 

 x(t1) = Φ(t1,t0)x(t0) (11) 

The 6x6 matrix shown in Eq. 11, Φ, is a Jacobian that is frequently called the state transition matrix in this 
context. This matrix consists of the partial derivative of each state vector component at t1 with respect to all of the 
initial state vector components. 
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The tool developed here numerically calculates each partial derivative using forward finite differencing.  For the 
purposes of calculating Φ, the step size is estimated as a 0.01% of the state variable being perturbed or 1e-4, 
whichever is smaller. Each term in Φ is, therefore, calculated by perturbing the trajectory state variables one-by-one 
at t0 (using the appropriate h) and observing the change it creates in the trajectory at t1. 

C. Measurement Sensitivity Matrix 
In addition to mapping errors in the state variables from t0 to t1, it is also desirable to know how errors in the 

state vector relate to errors in measurements, z.  For the purposes of this discussion, z is assumed to be an nx1 vector 
representing the errors of n different observation types. It is important to note that measurement errors are expressed 
as the difference between the observed and computed values (i.e. observed minus computed). It is assumed that the 
observations are linearly related to the state by the following expression: 

  vHxz +=  (13) 

Here, x is the true, unknowable deviation vector and v is a random vector (mean of zero) that represents the error 
in the measurements. The nx6 matrix shown in Eq. (13), H, is the measurement sensitivity matrix. Each row of this 
matrix is formed by taking the partial derivative of a given measurement type with respect to each of the state vector 
components at a specified time. Clearly, the H matrix is problem specific and depends on the data types that are 
used. Two common examples in EDL reconstruction are presented here. The first is a 1x6 matrix where only axial 
acceleration measurements are incorporated to improve the state: 
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The next example is a 2x6 matrix where only altimeter data (altitude and altitude rate) is being used to improve the 
state. This matrix is as follows: 
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If other measurement types are desired, the appropriate H matrix rows must be derived. Fortunately, the 
derivation of these partial derivatives is typically straightforward and may be performed analytically. The analyst is 
responsible for assembling the appropriate H matrix for the measurement types employed in the problem. The 
mechanics of this process are discussed later in more detail.  
 

D. Extended Kalman Filtering14-16 
The Kalman Filter is based on a modification of Eq.11 that results in the following recursive dynamic model: 

 xk+1 = Φkxk + wk (18) 

Here, note the addition of the state noise vector, wk, with mean of zero and a covariance Qk=E(wkwk
T). The 

ability to account for state noise is one of the major advantages of the Kalman Filter over many other filtering 
methods. The inclusion of state noise allows for the consideration of statistical uncertainties in the dynamics model. 
Furthermore, as was discussed in Section III.C, the relationship between observations and the state are given by: 

 kkkk vxHz +=  (19) 

It is important to note that the observation sensitivity matrix, H, in the Kalman Filter only includes observations at 
time k. H will, therefore, have the same number of rows as types of data being processed. 

Implementation of the Kalman Filter is a sequential process that occurs in two phases: 1) observation processing 
and 2) mapping the state and covariance forward in time. When observational data is available, the following 
expressions may be used to update the current estimate of the state and covariance at a given time, k: 

 ( )−−+ −+= kkkkkk xHzKxx  (20) 

( ) ( ) ( ) kkkkkkkkkkk KRKHKIPHKIeeP +−−== E TTT −+++  (21)  

The matrix Rk is the measurement covariance matrix defined as Rk=E(vkvk
T). Further, note that xk

+ is an unbiased 
estimator of the true state, xk, after the measurement has been processed (xk

- is the estimate prior to processing the 
observation). The error in the estimate after the update is given by ek

+ = xk
+ - xk. Within Eq. (21), the variable Kk is 

known as the Kalman Gain. This matrix is selected to minimize the updated covariance by setting the differential of 
Eq. (21) to zero and solving for Kk. The equation for the Kalman Gain is given in Eq. (22). 

 ( ) 1−−− += k
T
kkk

T
kkk RHPHHPK  (22) 

 
The second phase of the Kalman Filter process, propagating the state and covariance forward in time, may be 

accomplished using Eq. (23) and Eq. (24). 
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  (23) +−
+ = kkk xΦx 1

  (24) kkkkk+1
T QΦPΦP += +−

The algorithm for implementing a Kalman Filter is shown graphically in Fig. 2. 
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Fig. 2 Algorithm for a Kalman Filter. 

 

IV. Implementation and Reconstruction Methodology  
With the theoretical foundation established, attention is turned to the reconstruction methodology. All of the 

processes described below have been implemented in MATLAB R2006a and run on a desktop computer with 
Microsoft Windows XP Professional, Version 2002, Service Pack 2. The computational process occurs, roughly, in 
the same order in which it is presented in this section. 

A. Generating Total Angle of Attack History 
Various methods have been proposed for determining the time-history of an entry vehicle’s aerodynamic 

performance using only accelerometer data.18 Of particular interest is an approach for estimating the time-history of 
the total angle of attack developed in previous studies that investigated the reconstruction of the Mars Pathfinder 
entry trajectory.4,22 The observation was made that the total angle of attack could be estimated through recognizing 
the following relationship: 
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In practice, one accelerometer is typically placed along the axial direction, yielding AA directly. Two other 
accelerometers are placed in the plane perpendicular to the axial direction yielding AX and AY, the accelerations in 
the x-direction and y-direction, respectively. The root-sum-square of AX and AY may be then be used to compute AN: 

 22
YXN AAA +=  (26) 

Combining the relationships shown in Eq. (25) and Eq. (26) with vehicle aerodynamics allows the analyst to 
compute the time-history of total angle of attack. In many vehicle aerodynamic models, vehicle performance (CA, 
CN, CL, CD, CM, etc) is given as a function of both velocity and angle of attack. Therefore, the CN/CA ratio may also 
be computed as a function of velocity and angle of attack. If an early estimate of the velocity is available through an 
initial integration of the axial deceleration pulse, and the CN/CA ratio is available from accelerometer data, the angle 
of attack may be computed. This procedure was performed in MATLAB through the interpolation of tabulated 
aerodynamic data. 

B. Gravity Modeling 
The current version of the reconstruction tool provides the analyst the freedom to include a gravity model with 

fidelity of their choosing. At the beginning of the code, the user specifies a function handle pointing to an m-file that 
contains the gravity model they desire to use. Currently, a simple spherical gravity model of the following form is 
used: 
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If the user wishes, however, they may write a more sophisticated gravity model that is latitude/longitude dependent. 
The simple model shown in Eq. (27) is assumed to be sufficient for these analyses. 

C. Generating a Nominal Atmosphere 
With a time-history of angle of attack created and a gravity model established, the next step is to generate the 

nominal atmosphere. This process is begun by integrating the axial deceleration pulse forward in time from the 
initial state. Of particular importance are the time histories of altitude and velocity generated from this procedure. 
Combining these results with the time history of angle of attack and the aerodynamic model, the following 
expression may be used to compute density: 
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2
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Thus, a density profile is created over the range of altitudes for which integration of the axial deceleration pulse is 
valid. In many missions, the accelerometer data becomes difficult to use towards the end of the trajectory as 
significant oscillations are introduced by a number of events that commonly occur near the end of the EDL timeline 
(e.g. parachute deployment, heatshield separation, lowering of lander on bridle below backshell, etc.). A different 
method must be used here. Depending on the data available, one of two approaches is recommended. If atmospheric 
measurements are available during or shortly after the EDL sequence (as is the case for Mars Pathfinder), this 
information may be used to reconstruct the bottom segment of the atmosphere. The density at a specified altitude 
(frequently the landing site) is anchored to measured values and an exponential atmosphere model is used to connect 
this data point to the bottom of the atmospheric profile generated through deceleration measurements. Recall the 
form of an exponential atmosphere, 
 

 [ ]Hh /exp0 −= ρρ  (29) 

 
where ρ0 is the density at an altitude of zero (h=0) and H is the atmospheric scale height. Given the data available, it 
is straightforward to solve for ρ0 and H to satisfy the conditions described above. 
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 If no atmospheric measurements are available, a different approach must be taken. Retaining the use of the 
exponential model for the missing atmosphere segment, both ρ0  and H may be approximated from the acceleration 
derived atmosphere model. Here, the atmospheric scale height may be estimated from a curve fit of the bottom 
portion of the available atmosphere model (how much of the atmospheric profile is used for this fit depends on the 
specific problem); ρ0 is selected to ensure continuity between atmosphere segments.  

D. Generating a Nominal Trajectory 
With the time-history of the total angle of attack, gravity model, and nominal atmosphere available, the nominal 

trajectory may be created. Beginning with the initial state, the equations of motion shown in Eq. (1) - Eq. (6) are 
integrated forward in time while being subjected to the nominal density profile and the vehicle aerodynamics 
coupled with the time history of total angle of attack. The ‘ode45’ integration routine was implemented in 
MATLAB. This built-in function implements a dynamic time-step Runge-Kutta 4,5 algorithm. As is expected, the 
deceleration pulse created by this trajectory matches the measured data extremely well. 

All trajectory analyses incorporate event modeling to allow for changes in mass (e.g. drop heatshield), drag area 
(e.g. deploy parachute), aerodynamics, or any other user-defined discontinuity in a vehicle parameter. Specifically, 
the analyst is free to divide the trajectory into an arbitrary number of flight segments and is only required to input 
the start and end times of each phase, the mass during each phase, the aerodynamic reference area during each phase, 
and a function-handle pointing to an m-file that contains the aerodynamic model for each phase. An example of how 
this is done is presented in the Mars Pathfinder case study located at the end of this report. 

E. Implementation of the Extended Kalman Filter 
Referring back to the section on Kalman filtering theory, recall that the following inputs are needed to 

implement an EKF:  
1. Nominal trajectory – creation of this trajectory is as discussed in the pervious section 
2. Ability to integrate equations of motion – made possible through the gravity model, nominal atmosphere, 

and time-history of total angle of attack 
3. Initial state and covariance – input that must be provided by the analyst on a problem specific basis 
4. Measurement sensitivity matrix – requires nominal trajectory with rows constructed as discussed in Section 

III.C; the user must create this to match the data types used in the Kalman filter  
5. Measurement covariance – input that must be provided by the analyst on a problem specific basis 
6. State noise – input that must be provided by the analyst on a problem specific basis 
7. State transition matrix – calculated numerically using the approach shown in Section III.B 

 
In the above list, note that all the required inputs are either input by the analyst or generated using the approaches 

described in Section IV.A through Section IV.D. The initial state and covariance are incorporated directly by the 
analyst at the beginning of the code. For the other user specified inputs, the analyst specifies a function handle that 
points to an m-file (with time and the current state vector as inputs) which returns the desired information – either 
the H, R, or Q matrix. The analyst is free to make these matrices whatever form they wish subject to the 
input/output constraints specified in the code.   

If only accelerometer data is available over the bulk of the trajectory, it may not be possible to create meaningful 
shifts in the nominal atmosphere or trajectory through the use of the EKF. In other words, the best estimated 
trajectory will coincide with the nominal trajectory. This is because the assumptions made in creating the nominal 
atmosphere will result in a nominal deceleration pulse that is always nearly identical to the measured deceleration 
pulse. Despite this limitation, the EKF remains an effective way to investigate the uncertainty in each of the states 
throughout the trajectory. Further, if non-accelerometer data is available (e.g. altimeter data, spacecraft-to-spacecraft 
radiometric data), the EKF is capable of appropriately shifting the trajectory states to better agree with the measured 
data. 

Finally, care must be taken when implementing the EKF. If measurements cause large deviations from the 
nominal, the error in the states may become unstable when integrated over the entire descent trajectory – especially 
if these errors are introduced early in the process. In some cases, the introduction of additional state noise helps 
address this problem. 

F. Atmosphere Reconstruction 
After implementation of the EKF on the entry trajectory, a reconstruction of the atmosphere may be performed. 

As before, the density profile may be determined using Eq. (28).  One of the primary challenges associated with this 
methodology is the difficulty associated with separating errors in density and errors in the aerodynamic modeling. 
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This is especially problematic if no direct measures of atmospheric properties are available. Additional errors are 
introduced by the use of Eq. (28) when only coarse aerodynamic models are available (as is the case for the Mars 
Pathfinder case study discussed below). Despite these challenges with determining mean density values, the 
uncertainties generated by the EKF in the trajectory states (specifically altitude and velocity) may be used to 
generate an uncertainty in density. 

With a density vs. altitude profile established, the hydrostatic equation may be integrated to determine a pressure 
distribution with altitude: 

 g
dh
dp ρ−=  (30) 

Ideally, direct surface pressure measurements will be available to produce a good starting point from which to begin 
the integration. If they are not available, a guess of the pressure must be made from other available data and the 
analyst’s judgment. Finally, the temperature profile may be calculated at each point along the trajectory through the 
ideal gas law: 
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where M is the mean molecular weight (assumed to be 43.2685 kg/kmol on Mars) and R is the universal gas 
constant (8314.34 J/kmol-K). 

V. Mars Pathfinder Case Study 
Data for Mars Pathfinder was compiled from a number of sources.3, , -4 18 26  Where possible, an effort was made to 

ensure equivalent assumptions were made before combining data. Basic vehicle parameters and the initial entry state 
are obtained from the Mars Pathfinder EDL reconstruction work of Spencer et al.4 The entry mass is assumed to be 
585.3 kg with a heatshield mass of 64.4 kg and a backshell mass of 56.9 kg. The assumed entry state is as shown in 
Table 1. While the uncertainty in the entry states is not directly available in the literature, uncertainty data is 
available on the NASA Planetary Data System (PDS) at a slightly earlier epoch (July 4, 1997, 16:51:12.28 UTC, 
approximately 38.2 seconds prior to what is defined as entry interface).21 Assuming that these uncertainties are 
uncorrelated, they may be mapped forward in time (for 38.2 seconds) using the state transition matrix as is described 
in Eq. (24) with Q=0. The uncertainties shown in Table 1 are generated by the author and correspond to the PDS 
uncertainties propagated forward in time. Analysis demonstrated that over 38.2 seconds, the error in the state grows 
by approximately 1.5% in the worst case. Therefore, the levels of uncertainty at both times are identical to within the 
precision presented. 

Table 1 Summary of Mars Pathfinder entry state.  

Parameter Mean Value4 Uncertainty (1σ) 

Epoch at entry interface July 4, 1997 
16:51:50.482 UTC Not available 

1.7 km Radial distance 3,522.2 km 
0.04 deg Aerocentric latitude 22.6303 deg 
0.01 deg Aerocentric longitude 337.9976 deg 

0.7 m/s Inertial velocity 7.2642 km/s 
0.02 deg Inertial flight path angle -14.0614 deg 
0.02 deg Inertial flight-path azimuth 253.1481 deg 

A. Analysis of Acceleration Data 
Acceleration data from the accelerometers that were part of the Atmospheric Structure/Meteorology (ASI/MET) 

experiment is available throughout the EDL sequence. Note that for these accelerometers, lab tests demonstrated that 
1 g = 9.795 m/s2. The measured axial acceleration is provided in Fig. 3. This axial acceleration pulse may be used to 
infer the timing of key events during the EDL sequence. The times of relevant EDL events are summarized in Table 
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2. Preprocessing of this data was performed prior to use in the reconstruction analysis performed below. This 
procedure removed spurious data, including spikes introduced when the gain on the accelerometer was switched. 

Additionally, care must be taken when incorporating the accelerometer data. Recall that accelerometers only 
measure the sensed inertial acceleration. Therefore, when using equations of motion in a rotating frame, one must be 
careful to compare accelerations in the same frame. 
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 a) Axial acceleration            b) Normal acceleration 

Fig. 3  Acceleration as measured by the ASI/MET accelerometers. 

 

Table 2  Summary of key EDL events. 

Event 
Time from 

entry, sec 
Entry interface (r = 3522.2 km) 0.0 
Mortar fire 171.4 
Begin parachute inflation 172.2 
Parachute full inflation 172.7 
Heatshield separation 192.1 
Radar ground acquisition 276.0 
Rocket ignition 299.1 
Bridle cut 301.3 
Touchdown (first bounce) 305.0 

B. Creation of Flight Segments 
The Mars Pathfinder entry trajectory was divided into three flight segments using the approach described in 

Section IV.D. These three flight segments are defined by the user-defined inputs described in Table 3. 

Table 3 Mars Pathfinder flight segments. 

 start time end time mass Aerodynamics 
Flight segment 1 0 sec 172.2 sec 585.3 kg capsule 
Flight segment 2 172.2 sec 192.1 sec 585.3 kg capsule + parachute 
Flight segment 3 192.1 sec 297 sec 520.9 kg capsule + parachute 

 
Flight segment 1 defines the vehicle characteristics from entry through the beginning of parachute inflation. The 
entry vehicle aerodynamic database used during this portion of flight is as described in the literature. Tabular data of 
the Mars Pathfinder capsule aerodynamics are available and the data used are presented in Table 4. These data were 
incorporated into a MATLAB m-file and linear interpolation was performed based on inputs of angle of attack and 
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velocity. Linear interpolation was chosen over other interpolation methods (such as Hermite cubic) for 
computational speed. 

Table 4  Mars Pathfinder capsule aerodynamics.24

Angle of 
Attack, deg M∞ CN CA CN/CA

0 31.6 0.00000 1.6984 0.00000 
0 22.3 0.00000 1.7290 0.00000 
0 9.4 0.00000 1.6393 0.00000 
0 1.9 0.00000 1.3079 0.00000 
2 39.3 0.00749 1.6597 0.00451 
2 36.7 0.00358 1.6796 0.00213 
2 31.6 0.00238 1.6943 0.00140 
2 27.7 0.00623 1.7138 0.00364 
2 22.3 0.00621 1.7208 0.00361 
2 20.9 0.00557 1.7168 0.00324 
2 18.3 0.00344 1.7141 0.00201 
2 16.0 0.00173 1.6999 0.00102 
2 14.0 0.00262 1.6740 0.00157 
2 12.2 0.00322 1.6547 0.00195 
2 9.4 0.00364 1.6382 0.00222 
2 1.9 0.00480 1.3069 0.00367 
5 39.3 0.01852 1.6508 0.01122 
5 36.7 0.01121 1.6595 0.00676 
5 31.6 0.01047 1.6616 0.00630 
5 27.7 0.01451 1.6821 0.00863 
5 22.3 0.01425 1.6877 0.00844 
5 18.3 0.01104 1.6804 0.00657 
5 16.0 0.00996 1.6679 0.00597 
5 14.0 0.00859 1.6563 0.00519 
5 12.2 0.00890 1.6418 0.00542 
5 9.4 0.00971 1.6278 0.00597 
5 1.9 0.01190 1.3027 0.00913 

11 39.3 0.04517 1.5896 0.02842 
11 36.7 0.03592 1.5767 0.02278 
11 22.3 0.03571 1.5954 0.02238 
11 1.9 0.02607 1.2813 0.02035 

 
Flight segment 2 begins at parachute inflation and lasts through heatshield separation. To remain consistent with 

previous studies, parachute drag coefficients of CD0=0.4120 and CD0=0.504 were investigated. During inflation, the 
drag generated by the parachute is modeled through the inflation curve method: 

 
n

SIFI

SI
DP tt

tt
SqCF ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

= 00  (32) 

where tSI is the inflation start time and tFI is the time of full inflation. Through inspection of the accelerometer data, 
it was determined that the inflation time was approximately 0.53 seconds. 

Flight segment 3 begins after the 64.4 kg heatshield is dropped and the vehicle mass is reduced from 585.3 kg to 
520.9 kg. During this segment, drag is produced by both the parachute and capsule. This phase is concluded at 297 
seconds after entry interface, just prior to retrorocket ignition. 
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C. Reconstruction of Total Angle of Attack 
Using the measured acceleration data shown in Fig. 3 and the aerodynamics specified in Table 4, the time 

history of total angle of attack may be computed. Fig. 4 shows a comparison of the normal-to-axial acceleration ratio 
developed using the techniques described in this study with data available in the literature. Fig. 5 provides a similar 
comparison for total angle of attack. 
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     a) CN/CA after data preprocessing              b) CN/CA=AN/AA  from literature22

Fig. 4  Comparison of time history of normal-to-axial acceleration ratio. 
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  a) total angle of attack generated for this study             b) total angle of attack  from literature22

Fig. 5  Comparison of time history of total angle of attack. 

After reviewing the total angle of attack data shown in Fig. 5, the limitations of the aerodynamic model presented in 
Table 4 become apparent. The relatively coarse resolution of aerodynamic data combined with the linear 
interpolation between available data points likely contributes to the difference seen in angle of attack between 50 
seconds and 70 seconds. The predicted angle of attack before 50 seconds and after 70 seconds shows good 
agreement with the values presented in the literature. 

 

D. Creation of Mars Pathfinder Nominal Atmosphere 
The nominal atmosphere for Mars Pathfinder may now be computed as discussed in Section IV.C. The altitude 

and velocity profiles may be estimated through propagating the measured axial deceleration pulse forward in time, 
while the axial force coefficient, CA, is estimated based on the velocity, angle of attack (Fig. 5), and assumed 
aerodynamic database (Table 4). Fortunately, Mars Pathfinder took atmospheric measurements shortly after landing. 
The measured density at the surface was approximately 0.0176 kg/m3.26 To ensure continuity between atmosphere 
segments, the exponential atmosphere model used to estimate the density at low altitudes requires an atmospheric 
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scale height of 13,787 km. Note that the scale height of 13.8 km is only used in the initial estimate of the atmosphere 
– the best estimated atmosphere will have a different scale height. The nominal density profile generated using the 
techniques discussed in Section IV.C is as shown in Fig. 6. Additionally, this figure provides a comparison of the 
nominal density profile with the post-flight density profile available on the NASA PDS constructed from ASI/MET 
data.27 All motion in this reconstruction is assumed to occur over a spherical planet. 
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  a) nominal density profile reconstruction             b) percent error in density (relative to NASA  
        PDS atmosphere reconstruction)27

Fig. 6  Nominal density profile reconstruction and comparison with results from literature. 

 

E. Creation of Mars Pathfinder Nominal Trajectory 
The atmospheric, aerodynamic, and event data presented above are sufficient to construct a nominal trajectory. 

This trajectory is created by integrating the initial conditions shown in Table 1 forward in time. Because the 
Pathfinder entry vehicle was spin stabilized at a rate of approximately 2 rpm, perturbations in the ballistic trajectory 
caused by normal acceleration were assumed to cancel each other out. The results obtained for the nominal 
trajectory in this study, along with a comparison with results from the literature, are shown in Fig. 7 and Fig. 8.  
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      a) nominal velocity and flight path angle               b) velocity and flight path angle from literature4

Fig. 7  Comparison of nominal atmosphere-relative velocity and flight path angle with results from literature. 
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   a) nominal altitude above landing site      b) altitude above landing site  from literature4

Fig. 8  Comparison of nominal altitude with results from literature. 

 

F. Implementation of Extended Kalman Filter 
An EKF was implemented to incorporate the accelerometer data and altimeter data recorded during the Mars 

Pathfinder entry. The accelerometer data is available at sampling rate 32 Hz and altimeter data is available at 1 Hz. 
The instrument characteristics used to generate the measurement covariance matrix, R, are as shown in Table 5. 

Table 5  Summary of assumed instrument performance. 

Instrument Description 
Measurement Measurement 

Uncertainty 
Accelerometers28 Allied Signal QA-3000 Sensed Acceleration 1,500 μg-rms 

Altitude 0.3 m Altimeter Honeywell HG8505DA Altitude Rate 1 m/s 
 
Prior to parachute deployment, the standard deviation in accelerometer measurements is assumed to be 

approximately equal to the instrument measurement uncertainty at the stated sampling rate (1,500 μg).28 After the 
parachute is deployed, significant oscillations in the accelerometer data are observed throughout the remainder of 
the trajectory. From this point forward, based on inspection of the apparent noise level in the data, a standard 
deviation of 0.1 g is assumed. 

In this problem, the EKF is implemented in two phases. From entry interface until the time the altimeter acquires 
the ground (t = 0-277 seconds), only accelerometer data is used and measurements are incorporated using the H 
matrix shown in Eq. (15). From altimeter ground acquisition (277 seconds) until just prior to retrorocket firing (298 
seconds), altimeter data is used. No altimeter data was available to the author beyond 298 seconds after entry 
interface. The altimeter measurements are incorporated into the EKF using the H matrix shown in Eq. (17). 

Implementation of the accelerometer data yields the results shown below in Fig. 9. The nominal trajectory is 
shown in black and the 1-σ error bands are shown in green. 
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       a) best estimated altitude profile                           b) best estimated ground track 

Fig. 9  Time-history of selected states from the best estimated trajectory. 

 
Comparison with the trajectories from the literature (see Fig. 7 and Fig. 8) shows excellent agreement. To 

achieve a better comparison than is possible by visual inspection, the data for the (sequential) best estimated 
trajectory developed by Spencer et al. in 19994 was obtained by the author. This information allowed for a more 
detailed comparison of the results from these two studies. This comparison is shown in Fig. 10.  
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  a) difference in best estimate altitude from literature        b) difference in best estimate velocity from literature  

Fig. 10  Absolute difference in altitude and velocity between the results of this study and those found by 
Spencer et al. in 1999.4

The results shown in Fig. 10 compare the error observed for two different parachute drag coefficients. If a 
parachute CD0 of 0.50 is used (the assumption made by Spencer et al.), then the maximum difference in position is 
about 750 m and the maximum error in velocity is about 18 m/s. The observed differences become greater if a 
parachute CD0 of 0.41 is used instead (the reconstructed Pathfinder DGB performance by Desai et al. in 2005).20 A 
more detailed discussion of parachute performance is given in Section VI in which the authors demonstrate that the 
best estimate of the Mars Pathfinder parachute drag coefficient is between these two values,  0.4419 ± 0.0549 [3-σ]. 

The difference between the results of this study and those found by Spencer et al. are small – on the order of 
100s of meters in altitude and 10s of m/s in velocity. Of particular interest is the approximately constant bias in 
altitude of ~750 m seen throughout the direct comparison between the two trajectories (the black line in Fig. 10). 
The observed differences are possibly introduced by a number of sources. First, note that the sequential estimator 
employed by Spencer et al. utilized noncoherent Doppler data collected during entry in addition to accelerometer 
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and altimeter measurements. This data was not available for use in this study. Because only accelerometer data was 
available for the majority of the trajectory, the approach discussed here was not able to shift the trajectory away 
from the nominal estimate (i.e. no new information is available to create an appreciable shift the states between t=0 
sec and t=277 sec). Note that when the altimeter data becomes available the difference between the method 
presented here and that presented by Spencer et al. collapses to zero. 

A second reason that likely contributes to the observed error is the choice of reference from which altitude is 
measured. While the label attached to the data used for comparison states that all altitudes are given with respect to 
elevation above the landing site, it is clear that there is an initial condition difference of approximately 750 m 
between the Spencer et al sequential estimation and the stated altitude at entry interface if a spherical planet is 
assumed. If, however, a non-spherical planet was used, this initial condition error may be eliminated. If such a shift 
were to be made, it would result in a difference similar to that shown by the red line in Fig. 11 (assuming a 
parachute CD0=0.50). Unfortunately, a discussion of the planet model used (e.g. spherical, ellipsoidal, etc) was not 
available in the primary reference4 or in related literature by the same authors.19,23
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Fig. 11  Absolute difference in altitude with reference frame shift. 

A third potential reason for the observed discrepancies is the aerodynamic and atmospheric assumptions made in 
the current analysis. First, it was assumed that the normal accelerations canceled each other out and they were not 
included in this analysis. Further, the aerodynamic database available was limited to the data seen in Table 4 and the 
resolution available here is likely much coarser that what was used by Spencer et al. Further, these aerodynamic data 
are only valid in the continuum regime. In future work, improvements to the current capsule aerodynamic model 
could be made and the effect on the trajectory assessed. Errors in the capsule aerodynamics may translate to errors in 
the estimated density. Additionally, a more sophisticated parachute drag model could be used to improve trajectory 
modeling after parachute deployment. As is clear from Fig. 6, the nominal density profile predicts an atmosphere 
that is too thin at higher altitude and too thick at lower altitudes. Such an offset in density helps explain some of the 
patterns seen in Fig. 10. At the higher altitudes, where the accelerometer data is used to compute the density, errors 
in the trajectory induced by density and aerodynamics errors should (mostly) cancel each other out due to the 
method used to compute density. Such a cancellation is not observed, however, when the vehicle enters the low-
altitude exponential atmosphere at approximately 171 seconds after entry interface (when altitude = 7.65 km). Here, 
errors in density and aerodynamics will directly cause errors in the trajectory solution. Because the density at low 
altitudes is higher than predicted by NASA PDS, the drop in altitude (relative to the trajectory predicted in the 
literature) is expected. Additional data types may eliminate this problem. The combination of results from applying 
an EKF forwards and backwards along the trajectory may also work. 

A few additional observations may be made by zooming in on the last portion of the altitude vs. time plot, where 
results are driven by altimeter measurements (Fig. 12). The far left-hand side of Fig. 12 provides a better description 
of the difference between the best estimated trajectory developed in this study and the results from the literature at 
the point of maximum deviation between the two solutions. Further, this figure also shows how altimeter data 
collapses the error between the two solutions. 
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Fig. 12  Investigation of trajectory during times with operational altimeter. 

 
Finally, the performance of this algorithm in determining the Pathfinder landing location was assessed. The 

landing site generated by the best estimated trajectory, along with the 1-σ error ellipse around this site, is shown in 
Fig. 13. The results from this study are compared to other estimates of the Pathfinder landing site made in past 
studies. While the trajectories showed good agreement throughout the EDL profile, a significant overshoot is 
observed in the final landing site estimated in this study. This error could arise from a number of sources, including 
the assumed atmosphere profile (Fig. 6 shows that the atmosphere is too thin throughout most of the trajectory) or 
vehicle aerodynamics. Additionally, it is interesting to note that both the reconstruction of Spencer et al. and the 
reconstruction performed in this study predict a landing site noticeably south of the actual landing site. 
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Fig. 13  Comparison of various solutions to the Pathfinder landing site. 

G. Reconstruction of Atmosphere 
The final step in the reconstruction process is to generate a reconstruction of the atmosphere encountered by the 

vehicle. This analysis is performed according to the procedure outlined in Section IV.F using the best estimated 
trajectory data developed above. This analysis results in no appreciable change in the mean density shown in Fig. 6 
and produces a temperature profile as indicated in Fig. 14. 
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In performing this analysis, it was observed that the pressure and temperature profiles are extremely sensitive to 
small changes in density/temperature/pressure assumed at the Pathfinder landing site (if the hydrostatic equation is 
integrated from the surface upwards). The results appear to be much less sensitive to error if the analysis is 
performed in the opposite direction (i.e. integrate hydrostatic equation from entry interface to the surface). While 
this approach appears to be less sensitive to small errors in the initial conditions, the properties of interest must be 
available at entry interface. 
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Fig. 14 Reconstruction of temperature profile with comparison to results from the literature.27

 

VI. Reconstruction of Mars Pathfinder Parachute Performance 
 Parachute drag coefficient is a key parameter in the performance of an entry, descent, and landing system 

and must be accurately understood in order to appropriately design and analyze such a system. Despite the 
successful landings of previous missions on Mars, it remains difficult to determine the drag coefficient of a Mars 
parachute because the exact operating conditions cannot be matched in tests on the Earth. Also, it is difficult to 
separate estimation of atmospheric density from parachute drag coefficient in reconstruction of Mars flight data. 
During design, development and operations of the MPF mission, a parachute drag coefficient of 0.5 was assumed in 
all trajectory analysis. As part of development of the Mars Exploration Rovers, the MPF parachute drag coefficient 
was re-examined.18 Using the above radar altimeter data, it was determined that the MPF parachute drag coefficient 
was 0.4133 (based on the parachute’s nominal area), with a 3-sigma uncertainty of 0.0514. This study assumed a 
quasi-steady state terminal descent, neglecting the effect of the parachute’s continued deceleration. In the present 
study, the MPF parachute drag coefficient is evaluated using the same radar altimeter data but taking into account 
the fact that the MPF parachute continued to decelerate during its terminal descent. This deceleration is also 
evaluated from the radar altimeter data. This section includes a reassessment of the Langley/JPL reconstruction, a 
reconstruction that does not assume quasi-steady state motion, a comparison between these two approaches, and a 
comparison with estimates of the Mars Pathfinder parachute drag coefficient obtained through wind-tunnel testing 
and drop testing. 

A. Reassessment of Quasi-Steady State Study 
In the CDPar reconstruction performed in Reference 18, the equation of motion given in Eq. 33 was evaluated at 

the terminal descent condition (Fig. 15) at 1,000 m above the surface.  At the terminal descent condition, the sum of 
the vehicle drag force and the buoyancy force are assumed to be equal to the weight of the vehicle (i.e., the 
acceleration term given in Eq. 34 is assumed to be zero). Additional implicit assumptions in the Ref. 18 analysis 
include vertical descent and flight of a non-gliding parachute. 
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Fig. 15  Terminal descent configuration. 
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The terms in Eq. 33 are further defined for the drag force (Eq. 35), the buoyancy force (Eq. 36), and the vehicle 

weight (Eq. 37). 
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Rearrangement of Eq. 33 and substitution from Eqs. 35-37 yields an equation for CDPar
 as shown in Eq. 38 under 

assumption of quasi-steady state motion. 
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 To solve Eq. 38, knowledge of numerous vehicle and environmental parameters must be estimated. Some of 
these parameters were measured for the MPF system and are known precisely; whereas, others can only be 
estimated and considerably uncertainty remains. As such, a deterministic reconstruction of the MPF drag coefficient 
can not be performed; however, a statistical distribution of the reconstructed MPF drag coefficient can be estimated. 
The best estimate of these parameters and their uncertainty is described in Ref. 18, and will not be repeated herein. 
In this investigation, the best estimate and uncertainty in these parameters from Ref. 18 is assumed. The parameters, 
mean values, distribution type, and uncertainty range are listed in Table 6 for completeness. 
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Table 6  The input variables for the CDPar
.

Parameter Mean Distribution Uncertainty 
Range 

m, kg 520.9 -- -- 
g, m/s2 3.7245 -- -- 
AB/S, m2 5.39 -- -- 
ALan, m2 1.76 -- -- 
APar, m2 127.6 Gaussian 5% (3-σ) 
Vol, m3 135 Uniform 20% 
CDB/S 1.33 Uniform 5% 
CDLan 1.072 Uniform 5% 
Temp., K 221 Uniform 9 
S. Press., mbar 6.76 Uniform 0.15 
v, m/s 65.5 Gaussian 1.8 (3-σ) 

 
 Using the specified distributions for each parameter, a Monte Carlo analysis of 1,000 random samples was 
conducted to determine the mean and standard deviation of CDPar

. This Monte Carlo analysis agrees quite well with 
the Ref. 18 result, as shown in Table 7. The distribution of CDPar

 values for the Monte Carlo analysis is shown in Fig. 
16. 
 

Table 7 The Statistical CDPar
 Values Quasi-Steady State Monte Carlo Analyses. 

Value 
Ref. 18 Quasi-
Steady State 

Estimate  

Present Quasi-
Steady State 

Estimate 

% 
Difference 

Mean 0.4133 0.4108 0.61 
3-σ 0.0514 0.0515 0.18 
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Fig. 16  Distribution of Reconstructed MPF CDPar

 Values Assuming Quasi-Steady State Terminal Descent. 

B. Altimeter Data for Deceleration Term 
 The Ref. 18 study assumed equilibrium of forces during terminal descent. However, due to the thin atmosphere 
of Mars, this assumption may not be sufficiently accurate. In order to assess the impact of the acceleration term on 
the CDPar

, Eq. 33 is solved without the quasi-steady state terminal velocity assumption, as shown in Eq. 39. 
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 From Eq. 39, it follows that CDPar
 may be estimated, including the acceleration term, as shown in Eq. 40. 
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 The MPF radar altimeter data, taken at a sampling rate of 8 Hz, was analyzed to find the acceleration (Fig. 17). 
The data was analyzed for ±5 seconds around the 1,000 m altitude point (284.83 s), since this is the altitude used in 
the Ref. 18 density calculations. 

Although the assumption of zero acceleration appears to fit the altimeter data at first glance, a closer look at the 
data shows that the altitude-time profile is not linear in shape, i.e., this data has a non-zero second derivative 
(acceleration term). 
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Fig. 17  MPF altimeter data: height as a function of time. 

 
 The height data was fit with three polynomials: a quadratic fit (Eq. 41) and a matching cubic (Eq. 42) and fourth-
order fit. 
 
  (41) 2955342.13411994.0 2 +−= tth
 
  (42) 153749179665954017.600793393.0 23 −+−= ttth
 
Differentiating the equation for h(t) twice, and evaluating it at 284.83 s (1000.7 m), results in the following 
accelerations: 0.23988 m/s2 (quadratic) and 0.23985 m/s2 (for both the cubic and fourth order fits).  Each of these 
curve fits yield essentially the same acceleration:  0.240 m/s2.  Thus, this value is used in the refined evaluation of 
the MPF parachute drag coefficient. 

C. Effect of Deceleration Term on Parachute CDPar 
 The acceleration term was included in the 1,000-case Monte Carlo analysis and compared to the quasi-steady 
state estimation with respect to mean and standard deviation values (Table 8). The distribution of CDPar

 values for 
this Monte Carlo analysis is shown in Fig. 18. 
 Inclusion of the acceleration term increases the mean CDPar

 by approximately 7% over the quasi-steady state 
estimation to a value of 0.4419 ± 0.0549 [3-σ]. Relative to the quasi-steady estimate, this difference in drag 
coefficient is relatively large because the deceleration being experienced by the Pathfinder system at this time is 
approximately 0.240 m/s2, a relatively significant value in comparison to the acceleration of gravity on Mars (3.7245 
m/s2). This difference demonstrates the importance of including this term in reconstruction of CDPar

 for EDL 
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analysis. It is also of historical interest to note that while statistically possible, the CDPar
 value of 0.5 (used in all 

Mars Pathfinder pre-flight and operations engineering analysis23) was unlikely to be achieved on Mars. 

Table 8  The Effects of Including the Non-Zero Acceleration Term on Estimation of the MPF Parachute CDPar. 

Value Quasi-Steady 
State Estimate 

Non-Zero 
Acceleration 

Estimate 
% Diff. 

Mean 0.4108 0.4419 7.04 

3-σ 0.0515 0.0549 6.12 
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Fig. 18  Distribution of Reconstructed MPF CDPar

 Including the Acceleration Term. 

D. Comparison with Previous Test Data 
 The best estimate of CDPar

 from this investigation is also compared to estimates derived by other techniques 
(Table 9). In the Earth-based aerial drop-test reconstruction performed by Witkowski,29 CDPar

 is calculated to be 0.43. 
Note that in an Earth drop test, the system descends slower than it would on Mars due mainly to atmospheric density 
differences between the two planets. This makes the acceleration term and the resulting effect of the acceleration 
term on the CDPar

 reconstruction small. As a result, one would expect a drag coefficient derived from this test to be 
bounded by the two Mars reconstruction estimates calculated in the present investigation (between the estimate 
which assumes quasi-steady state motion and the estimate which includes the non-zero acceleration term). It should 
be noted that the accuracy of the drop test instrumentation, atmospheric motion, and fabric permeability differences 
could also affect this drag coefficient comparison. Given this uncertainty, the results from the present reconstruction 
and the aerial drop test can be viewed as a consistent data set. 
 In wind tunnel tests of sub-scale disk-gap band parachutes,30 a mean CDPar

 of 0.405 was estimated at the relevant 
Mach number to that achieved by the MPF system at 1000 m. While matching Mach number, corrections to the 
wind-tunnel data were applied due to the higher dynamic and absolute pressure environment experienced in the 
tunnel relative to that reconstructed for the MPF EDL. The mean reconstructed value calculated in the present 
analysis, that includes the acceleration term (0.442), is within the uncertainty range estimated by the wind-tunnel 
testing. Given the wind tunnel model scale, and uncertainty in fabric permeability effects, differences between the 
wind tunnel tests and the flight system are not surprising. In fact, the results from the present reconstruction and the 
wind tunnel test can be viewed as a consistent data set. 
 

Table 9  CDPar
 estimate with acceleration compared to previous results. 

  CDPar % Difference 
Estimate with Non-
Zero Acceleration 

0.4419 ± 0.024 --- 

Aerial Drop Test 0.43 2.69 

Wind Tunnel Test 0.405 ± 0.023 8.35 
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To summarize, based on consideration of multiple estimates of the Mars Pathfinder parachute drag coefficient, it 

is felt that the present reconstruction, inclusive of the acceleration term, provides the best estimate of the Mars 
Pathfinder parachute flight system drag coefficient as 0.442 ± 5.49% (3-σ). 

VII. Conclusions 
A flexible trajectory reconstruction tool has been created. This tool is capable of simultaneously handling many 

different measurement types that occur over different mission phases. Additionally, the user is capable of specifying 
vehicle characteristics (including mass, reference area, and aerodynamics) as a function of time. This flexibility 
gives the user the ability to vary the fidelity of the trajectory and atmospheric reconstruction as appropriate. 

This tool has been validated through reconstruction of the Mars Pathfinder entry, descent and landing trajectory 
and atmospheric profile. The strengths of this particular approach to trajectory reconstruction lie in two areas. First, 
a great deal of effort has been made to make this tool as flexible and open as possible. This attribute allows for the 
rapid implementation of this tool to new problems. Secondly, the methodology of directly integrating the 
deceleration pulse to provide a good initial guess of the atmospheric profile removes many of the problems 
associated with attempting to reconstruct a trajectory with a poor atmosphere model. This tool has a wide array of 
potential applications. The most straightforward application is use in the reconstruction of entry profiles from 
upcoming Mars missions such as Mars Phoenix or Mars Science Laboratory. Further, this tool may be used in 
conceptual design studies to determine if the performance of a proposed navigation architecture is sufficient to 
provide adequate state variable knowledge. 

In addition, detailed analysis of the Mars Pathfinder parachute descent segment has led to an improved estimate 
of the MPF parachute drag coefficient. This estimate is obtained by taking into account the parachute system 
deceleration during terminal descent, through further analysis of the MPF radar altimeter data set. Inclusion of this 
acceleration effect within the reconstruction increases the reconstructed value of the parachute drag coefficient by 
approximately 7 percent (CDPar = 0.4419 ± 0.0549 [3-σ]) relative to an estimate which assumes the quasi-steady 
terminal descent condition. This reconstructed value of the Mars Pathfinder parachute drag coefficient is shown to 
be consistent with estimates obtained through drop testing and wind tunnel tests. 
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