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ABSTRACT 
 
Probabilistic Multidisciplinary Design 
Optimization promises to incorporate critical 
design uncertainty in order to create optimal 
products with a high probability of meeting 
design constraints under a wide variety of 
circumstances. Several methods of accelerated 
probability analysis are available to designers. 
What is not available is a formal method for 
tying contributing analysis-level probability 
analysis into an integrated design framework 
capable of optimization. This would allow 
probability methods to be tailored to the 
characteristics of a particular contributing 
analysis as well as potentially reduce the 
dimensionality of the problems considered. This 
research presents such a method, then tests it on 
a conceptual launch vehicle design problem. 
 
This probabilistic optimization problem 
consisted of 84 noise variables and 4 design 
variables. This problem setup consistently found 
system optimums in 6-8 hours. It utilized several 
probability approximation methods run in an 
iterative manner to generate probabilistic vehicle 
sizing information. Once the probabilistic 
optimum was identified and confirmed using this 
process, a system-level Monte Carlo random 
simulation of the vehicle design was conducted 
around the optimum point to confirm the 
accuracy of the distributed approximation 
method. Because this simulation was 
prohibitively expensive, it was only conducted at 
the single optimum point. Following this 
accuracy confirmation, a comparison to a 

deterministic optimization of the same problem 
illustrated the difference between the 
probabilistic and deterministic optimums. 
 
 

NOMENCLATURE 
 
AE exit area 
AR area ratio 
DPOMD Discrete Probability Optimal 

Matching Distribution 
DSM Design Structure Matrix 
GLOW gross liftoff weight 
Isp specific impulse 
MER mass estimating relationship 
MRavail mass ratio available from vehicle 
MRreq mass ratio required by mission 
OML outer mold line 
P/We power-to-weight ratio of engine 
Pch chamber pressure 
r oxidizer to fuel ratio 
RLV reusable launch vehicle 
RSE response surface equation 
SSME Space Shuttle Main Engine 
SSTO single stage to orbit 
STS Shuttle Transportation System 
T/We thrust-to-weight ratio of engine 
TSL thrust at sea level condition 
Tvac thrust at vacuum condition 
VB Visual Basic 
WBS weight breakdown structure 
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INTRODUCTION 

 
Recent trends in aerospace conceptual design 
have lead to the use of distributed computational 
models covering multiple disciplines. 
Unfortunately at the level of conceptual design, 
many simplifying assumptions must be made 
because of the lack of design maturity. The 
problem with this lies in that current 
computational models are for the most part 
deterministic. They do not allow a designer to 
express uncertainties from such sources as user 
assumptions, computational model error and 
physical unknowns. Methods are therefore 
sought to use these distributed multidisciplinary 
deterministic models to generate probabilistic 
designs that can more accurately express the 
future performance of a concept.  
 
At the same time, these methods should be 
compatible with optimization. To this end, this 
paper presents a formal method for optimization 
that ensures a true optimum in the face of 
uncertainty while at the same time retaining 
traditionally distributed analyses. This will allow 
disciplinary experts to retain an integral role in 
all aspects of model creation. Therefore, the 
experience of the expert in probabilistic 
simulation of a particular discipline can be fully 
utilized to generate accurate and efficient 
estimates. 
 
The distinguishing feature of this new method is 
that it performs uncertainty calculations at the 
contributing analysis level. By reducing the 
communications requirements and lowering the 
dimensionality of the local uncertainty analyses, 
the distributed method has advantages for many 
classes of multidisciplinary design problems. 
 
Research Goals and Objectives 
 
The overriding goal for this activity is to 
introduce a new formal method for distributed 
probabilistic conceptual launch vehicle design. 
An important aspect of this is to demonstrate 
probabilistic analysis at the contributing analysis 
level, therefore reducing the dimensionality of 
each of the analyses. This demonstration will 
also reveal how the methods can be tailored to 
the particular problems, according to the 
experience and knowledge of disciplinary 
experts. The following list of goals and 
corresponding objectives was the guide for this 
research: 

 
• Demonstrate a distributed probabilistic 

multidisciplinary framework. 
 
This distributed philosophy of multidisciplinary 
design optimization has many advantages (Refs. 
1-4). Among these are local ownership of 
analyses, compatibility with existing analysis 
infrastructure and distributed computational 
effort. If the goal of demonstration of a 
distributed probabilistic framework for 
conceptual launch vehicle design optimization is 
met, then all of these advantages will be enjoyed. 
At the same time, probabilistic information, 
which is crucial at the conceptual design phase 
will be brought into conceptual launch vehicle 
optimization. 
 
The demonstration of the conceptual launch 
vehicle design framework will include a detailed 
account of the procedure to construct it. It will 
include any problems or hazards encountered 
and assist those who wish to create similar 
problem setups for other conceptual design 
problems. In this light, ease of setup is a high 
priority. Problem setup should be on the order of 
or less than two man-weeks. Anything longer 
than this amount of time represents a significant 
investment and is unlikely to be implemented by 
industry. 
 
Another objective used to measure the success of 
this demonstration will be the amount of 
probabilistic analysis able to be undertaken at the 
contributing analysis level. The degree to which 
probabilistic analysis can be done at this lower 
level will indicate how distributed the 
computational effort and responsibility has 
become. The objective for success was the 
creation of design framework that performed all 
significant calculations at the contributing 
analysis level. 
 
• In this framework, multiple heterogeneous 

computer platforms will be utilized on a 
conceptual launch vehicle design problem. 

 
By utilizing analysis integration software 
packages, a repeatable framework for analysis 
across heterogeneous platforms will show that 
application of this method is possible in 
established engineering environments with 
several, discrete analyses running on separate 
platforms. 
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This demonstration will show that a 
heterogeneous platform approach is feasible in 
combination with this probabilistic framework. 
Success will be measured here by utilizing more 
than one computing platform in the conceptual 
launch vehicle example problem. 
 
• This distributed probabilistic framework 

should have a significant computational 
expense savings when compared to Monte 
Carlo simulation. 

 
To make this method competitive with other 
options for system-level probabilistic analysis, a 
two or greater order of magnitude improvement 
in speed when compared to a Monte Carlo 
simulation is required. This will ensure that the 
analysis method is competitive in terms of other 
options. 
 
• Optimization should be able to be completed 

in a reasonable amount of time. 
 
To ensure that this method is applicable in real 
engineering situations, an entire optimization 
should be able to be completed overnight. This 
should simplify manpower tasking while waiting 
for results, as another task does not need to be 
found for the engineer if the optimization can be 
run during off hours. 
 
• Optimization using this method should be 

repeatable. 
 
To measure the success of this goal, several 
confirmation optimizations of the primary 
optimization beginning with different initial 
guesses must find the same optimum point. 
Success here is all of the confirmation 
optimizations finding the same answer. 
 
• The distributed probability approximations 

should arrive at accurate values. 
 
This objective will be measured against a 
confirmation Monte Carlo simulation. The 
approximate framework should be no more than 
5% off on the important problem constraints and 
objective function evaluation. The other 
secondary output parameters should also have 
errors within the calculated error bound for the 
Monte Carlo simulation. 
 
• Uncertainty sources for conceptual launch 

vehicle design will be identified and 

reasonable distribution assumptions will be 
made. 

 
The goal of uncertainty identification is crucial 
to an accurate representation of the conceptual 
launch vehicle design problem. This will involve 
identification of the sources of uncertainty, both 
environment and human based. Therefore, this 
research should identify and quantify as many 
open-source launch vehicle uncertainty 
parameters as is possible. These sources can then 
be represented by appropriate input distributions 
and included in the conceptual launch vehicle 
example problem. This work should be helpful to 
future launch vehicle designers who wish to 
include a formal mechanism to account for 
modeling uncertainties. However, most 
practicing organizations should be able to better 
quantify these uncertainties than this research 
given the competitive nature of many of the 
quantities of interest and the experience of most 
manufacturers.   
 
 
Techniques 
 
This method of multidisciplinary design 
optimization is best described as a set of 
requirements on the variable communication 
between disciplines as well as the accuracy of 
the results from each of the analyses. To be a 
valid multidisciplinary analysis technique, the 
proposed method must have certain 
characteristics related to passing accurate 
information between the disciplines. In addition 
to accurate data passing, it must also ensure that 
all the disciplines have all the required inputs for 
analysis. For deterministic analysis, this is a 
relatively simple task. When translating this to 
probabilistic analysis there are some important 
considerations. Finally, there should exist some 
capability for handling objective functions from 
several disciplines. This capability should also 
exist in deterministic design frameworks, but 
probabilistic optimization introduces new 
possibilities, as described in the background 
chapter, that require more computational effort 
than most deterministic multi-objective 
formulations.  
 
The requirement of accurate variable 
communication between the contributing 
analyses meant the transfer of data should 
include enough distribution information in the 
coupling variables to give each contributing 
analysis a good idea of the probability map 
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exiting the other disciplines as they occurred 
together. This means that at a minimum, second 
order moments should be transferred. To do this, 
a set of standard deviations for each variable 
along with a correlation coefficient for each 
variable combination that is an input to any 
contributing analysis. The correlation is required 
because these variables are not assumptions, they 
are fits to the multivariate probabilistic solution 
of another analysis. In many cases, these outputs 
are highly correlated and ignoring this 
information would lead to faulty results for 
subsequent contributing analyses. 
 
This correlation information requirement means 
that the inputs and outputs of a probabilistic 
multidisciplinary analysis problem will be 
slightly different from that of a deterministic 
one. In order to generate correlation coefficients 
required by other analyses, extra variables need 
to be added to certain contributing analyses that 
do not require them for deterministic 
optimization. The Design Structure Matrix 
(DSM) in Fig. 1 illustrates this point. 
Contributing analyses for propulsion and 
trajectory both feed multivariate normal 
distributions into the mass properties analysis, 
but a correlation between propulsion and 
trajectory cannot be generated in this situation, 
yet it exists and is an important input to the mass 
properties analysis. Therefore, an extra link is 
created between propulsion and trajectory so that 
the propulsion analysis can calculate the required 
correlation between the output of the trajectory 
contributing analysis and its own outputs. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Launch Vehicle Design Structure 
Matrix 

 
 
This technique of adding links between 
disciplines should yield accurate simulation 
results, assuming that the results of the 
contributing analyses are in fact normal. This 

assumption should therefore be tested using a 
Monte Carlo analysis on each contributing 
analysis at a typical design point, before 
optimization begins. The type of output observed 
by each should then indicate what type of 
distribution is most appropriate to fit. These 
variables should still be fit in a multivariate 
manner, with correlation coefficients recorded 
and transferred to the other disciplines so that 
they can be simulated accurately as inputs. 
 
One of the advantages of this type of loosely 
coupled formulation is that there are minimal 
requirements placed on the subsystem 
probabilistic analysis other than accuracy and the 
ability to handle its own probabilistic constraints. 
Besides making sure that confidence levels for 
constraint satisfaction and the coupling variables 
are consistent within the system, there is very 
little else the system level implementation must 
handle. The consistency between coupling 
variables is ensured by requiring the contributing 
analysis to provide information for its outputs 
based on updated information about its inputs. 
This delegation of authority is one of the primary 
advantages of the loosely coupled approach.  
 
 
Example Problem 
 
An example problem using these techniques has 
been completed. It was a single stage to orbit 
(SSTO) reusable launch vehicle (Fig. 2) 
conceptual design optimization problem with a 
large number of uncertainty variables (83).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Single Stage to Orbit Reusable 
Launch Vehicle 
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This problem was analyzed using three distinct 
contributing analyses. These can be seen in 
design structure matrix in Fig. 1. In a design 
structure matrix, each link represents an 
information flow. The links above the diagonal 
represent feedforward flows, while the links 
below represent feedback flows.  
 

 
Table 1 - Coupling Variables for Distributed 

Probabilistic Launch Vehicle Design 
 

Coupling Location 
Parameters 

Passed 
Mass Properties and Sizing 

– Propulsion (1) 
GLOW mean, 

GLOW std. dev. 

Mass Properties and Sizing 
– Trajectory (2) 

GLOW mean, 
GLOW std. dev., 

Sref 

Propulsion – Trajectory (3) 

Tvac mean, Tvac 
std. dev., Ispvac 

mean, Ispvac std. 
dev., Ae mean, 

Ae std. dev., 
GLOW-Tvac 
corr., GLOW-
Ispvac corr., 

GLOW-Ae corr., 
Tvac – Ispvac 

corr., Ae – Tvac 
corr., Ae – Ispvac 

corr.  

Trajectory – Propulsion (4) 

MRreq mean, 
MRreq std. dev., 
MRreq  - GLOW 

corr. 
Trajectory – Mass 

Properties and Sizing (5) 
MRreq mean, 

MRreq std. dev. 

Propulsion – Mass 
Properties and Sizing (6) 

Tvac mean, Tvac 
std. dev., Ae 

mean, Ae std. 
dev., T/We mean, 

T/We std. dev., 
MRreq – Ae corr., 

MRreq – Tvac 
corr., MRreq – 

T/We corr., Ae – 
Tvac corr., Ae – 

T/We corr., Tvac – 
T/We corr.  

 
 
 
The first contributing analysis, mass properties 
and sizing, determined the weight components 

and then photographically scaled the vehicle to 
meet sizing requirements to a desired confidence 
level. Propulsion similarly analyzed and sized 
the main propulsion system to match constraints 
to a given confidence. Trajectory simulated the 
ascent of the vehicle in order to propellant and 
loading requirements. 
 
The distribution communication between these 
disciplines can be found in Table 1. 
 
 
Mass Properties and Sizing 
 
The mass properties and sizing algorithm was 
originally constructed using an Excel© 
spreadsheet. This particular spreadsheet 
calculated the vehicle weight parameters for a 
given set of mass estimating relationship (MER) 
assumptions and a vehicle outer mold line 
(OML) length. Because these MER’s were 
highly interrelated, fixed-point iteration with no 
relaxation was used to solve the system. This has 
proven in this past to be a simple and reliable 
method for solving these sets of equations.  
 
For this sizing analysis, the vehicle in question 
had a 20 klb. payload, a 350 fps. orbital 
maneuvering capability and a five minute 
powered landing capability provided by a pair of 
hydrogen turbofans. Also, zero weight growth 
margin was assumed. This is the traditional 
safety factor method for accounting for 
uncertainty in the MER’s and performance 
estimates. Because this job is now done using 
more advanced probabilistic methods, this 
margin was no longer necessary. These 
assumptions were constant and have a significant 
impact on the size and weight distribution of the 
vehicle.  
 
A compiled Matlab© function generated the 
Discrete Probability Optimal Matching 
Distribution (DPOMD) (Ref. 5) tables in a 
format that could be read by the previously 
described Visual Basic (VB) script. This 
function took text file inputs for the mean, 
standard deviations and correlation coefficients 
for the input coupling variables and a separate 
file for triangular distribution information. This 
information, along with a reduction factor for the 
fractional factorial DPOMD method comprised 
the inputs used to generate the run table. 
  
Embedded in the spreadsheet was a VB macro 
that read in a run table for the assumptions and 
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input variables, executed the spreadsheet for all 
the cases, then calculated output parameters such 
as means, standard deviations and confidence 
levels. These responses included all the items in 
the generated weight breakdown structure 
(WBS) as well as overall variables such as gross 
liftoff weight (GLOW), vehicle dry weight and 
mass ratio available (MRavail). These parameters 
were then sent to cells in the spreadsheet where 
they would be available to the Analysis Server© 
wrapper utility. 
 
 
To bring the contributing analysis into the 
ModelCenter© environment, two different 
wrappers were created. The first step was to 
create a wrapper around the Excel©-based mass 
properties analysis. This wrapper provided inputs 
for deterministic variables such as vehicle length, 
vehicle thrust-to-weight ratio, etc. The output 
parameters for the probabilistic process were 
also wrapped during this step, after being 
calculated by the VB script in the spreadsheet 
described in the previous paragraph. 
 
The second wrapper provided inputs to the 
DPOMD analysis in a compiled Matlab© 
function. This wrapper provided data to the text 
files for input distribution information. The 
output from the DPOMD program, however, was 
not handled by ModelCenter©. DPOMD 
executable  and input files were placed in the 
same directory as the mass properties 
spreadsheet so that when the analyses were 
executed in order, the data was available to the 
mass properties analysis. This avoided having to 
send the rather large amounts of data through 
across the network to the ModelCenter© control 
panel. 
 
Once both parts of the analyses were wrapped, 
they were connected together in ModelCenter©. 
This meant that input distributions could be 
provided inside ModelCenter, along with a 
vehicle size and corresponding output parameters 
could be generated. The next step was to 
construct the sizing process. This was done using 
the ModelCenter-integrated version of DOT 
(Ref. 6). Using the goal seek method, the 80% 
confidence level on the difference between the 
MRreq and MRavail by changing the vehicle 
length. This goal seek was only necessary on the 
mass properties spreadsheet, as none of the input 
distributions changed with the vehicle length 
directly. This added the sizing element to the 
process and completed the mass properties and 

sizing contributing analysis as it was 
incorporated here. This analysis was then 
inserted into the framework described earlier. A 
screen shot of the completed set of components 
in ModelCenter© can be seen in Fig. 3. 
 
 

 
 

Figure 3 – Probabilistic Weights and Sizing in 
ModelCenter© 

 
 

Propulsion 
 
The propulsion analysis consisted of three layers. 
The innermost layer was the SCORES (Ref. 7) 
analysis, which sized each engine scenario. 
Wrapped around this analysis was a Perl script 
that took inputs from a text table, then executed 
the table for each scenario listed. The outer layer 
was a Matlab function responsible for generating 
the DPOMD runs for the propulsion analysis to 
execute. This is shown in Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 – Overview of Probabilistic 

Propulsion Analysis 
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The input table consisted of the inputs for the 
propulsion analysis. This meant that variables 
added for the purpose of generating correlations 
such as the MRreq parameters did not need to be 
included in the list. The variables that were 
included in the list were Tsl, Pch, P/We, AR and 
r. The last two were deterministic variables, so 
these did not vary with the runs in the table. For 
each of the scenarios listed in the table, SCORES 
constructed an engine with matching sea level 
thrust and reported the vacuum engine 
performance and thrust, exit area and whether or 
not there is a shock in the nozzle. 
 
To generate the table, a Matlab© function 
producing a full factorial version of the DPOMD 
method was constructed. This function took 
distribution information from input files and then 
generated a DPOMD table corresponding to 
those inputs, minus those random variables that 
were added for the purpose of generating 
correlation coefficients. Once the script was done 
generating the table, it executed the Perl script 
described above. Once the Perl script had run 
SCORES for the required table of scenarios, the 
output responses were read from a text file of 
responses generated by the Perl script. Using 
these responses, distribution information was 
calculated and placed in another text file. This 
final text file would eventually be read by 
ModelCenter© and used as outputs to other 
contributing analyses. 
 
The final step of including this analysis in the 
overall system consisted of first wrapping the 
correlated normal coupling variable distribution 
parameters for GLOW and MRreq, the 
uncorrelated normal input Pch and finally the 
deterministic inputs T/Wv, AR and r. The outputs 
wrapped were the correlated normal coupling 
variables parameters for Ispvac, Tvac, Ae and T/We 
plus correlations to selected input variables as 
listed in Table 1. 

 
Trajectory 
 
The trajectory contributing analysis consisted of 
a Monte Carlo simulation performed on a 
response surface of propellant-optimized 
trajectories. A ten variable on-face central 
composite experiment with full factorial box 
points was used. This design had 1,045 runs that 
took approximately two days evaluate.  
 

∑∑ ∑ ++=
alli allj alli

iijiij cxbxxaxf )(  (1) 

 
Once the responses to the experiment were 
generated, a quadratic function of the form in 
Eqn. 1. was fit in a least squares sense using the 
software package JMP© (Ref. 8). For a slightly 
improved fit, a stepwise regression was done for 
each response. This technique performs an F 
significance test (Ref. 8) on the terms of the 
polynomial to determine which ones are essential 
to the fit and which ones create numerical error. 
The essential terms of the polynomial are 
retained and the others are discarded, ignoring 
the overall fit. These tests determined which 
terms of the equation would be used. This 
process improves the fit of the equation by 
eliminating terms that only slightly contributed 
to the response. The fit parameters resulting from 
this process are given in Table 2. 
 

Table 2 – Results of Stepwise Regression for 
Trajectory RSE 

Fit Parameter Value 
R-Square Value 0.9995 

Adjusted R-Square Value 0.9995 
Number of Terms Selected 33 

Number of Terms Eliminated 33 
 
 
Once the coefficients of the equation were 
determined, they were put into a text file that 
was read by a C++ program designed to evaluate 
a response surface for a text file list of inputs. 
Now the probabilistic analysis was ready to be 
run using Monte Carlo simulation. Because of 
the inherent batch nature of the RSE evaluation 
program, this process did not require a Perl script 
step like the propulsion test. Instead, a Matlab© 
function that generated a list of inputs from a 
previously created list of pseudo-random 
numbers was wrapped directly around the RSE 
executable. 
 
The random number generation process used a 
table of random numbers generated offline, then 
relied on a transform to give the trials the proper 
distribution characteristics. First, for the normal 
distributions, samples from independent standard 
normal distributions were generated offline. This 
saved the expense of having to perform a costly 
inverse cumulative probability function call for 
each variable in each trial. For each subsequent 
Monte Carlo simulation, this list of standard 
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normal samples was transformed into the 
required multivariate normal distribution by 
means of an inverse Hasofer-Lind (Ref. 9) 
transform. 
 
For the triangular distributions, a more standard 
approach was taken. Here, a list of uniform [0,1) 
samples was generated offline. Then, for each 
different Monte Carlo simulation, an inverse 
triangular cumulative probability function was 
used to determine the samples from each of the 
triangular random variables. This was more time 
consuming than the normal distribution 
generation, but there were only two triangular 
random variables, so this extra expense was not 
noticeable. In addition, the distribution 
parameters for triangular distributions did not 
lend themselves to a simple transform like the 
normals. 
 
Once the table of random inputs for the RSE 
program was ready, the program was run and the 
responses recorded to a separate file. These 
responses were then read in by the outer Matlab 
function and the parameters for the output 
distributions calculated. In this case, the sole 
output distribution was the MRreq, but the 
correlation of this variable with GLOW was also 
calculated. These parameters were then written 
to a text file where they would be easily 
accessible to ModelCenter©. This process is 
illustrated in Fig. 5. 
 
 

 

 
 
 
 

 

 
 
 
 
 
 
Figure 5 – Overview of Probabilistic Trajectory 

Analysis 
 
 
This high dimensionality in the random variables 
space, along with limited communication 

requirements between the contributing analyses 
made this problem an ideal candidate for 
distributed probability analysis. 
 
This problem was then optimized using the 
DOT©

  (Ref. 6) gradient-based optimization tool. 
 

RESULTS 
 
Optimization 
 
To test the feasibility of these distributed 
probability methods to generate a 
probabilistically optimum launch vehicle, an 
optimization of the launch vehicle design system 
described in the previous section was 
undertaken. This optimization altered four design 
variables traditionally known to have a large 
effect on all-rocket SSTO reusable launch 
vehicle (RLV’ s). These were: 
 

• Engine Mixture Ratio (r) – This variable 
is the ratio of oxidizer mass to fuel mass 
burned in the engine. This variable 
primarily affects engine efficiency and 
propellant bulk density. For optimization, 
the value of this variable was limited to 
values from 5 to 7. 

• Engine Area Ratio (AR) – This is the ratio 
of the engine exit area to the engine throat 
area. It primarily affects how the engine 
performs with changing altitude. For the 
system optimization, the value of this 
variable was constrained to be from 40 to 
85. 

• Vehicle Liftoff Thrust to Weight (T/Wv) – 
This ratio determines how much vehicle 
thrust is present at liftoff. It primarily 
affects the relative weight of the engines 
on the vehicle, the trajectory gravity 
losses and required throttle level on 
ascent. The limits on this variable were set 
to be from 1.2 to 1.6. 1.2 was the 
minimum to ensure safety while clearing 
the launch tower, while 1.6 was chosen 
because of throttling concerns near 
burnout. 

• Mean Engine Combustion Chamber 
Pressure (Pch) – This variable was 
assumed to be a somewhat controllable 
noise. The mean value was varied while 
the standard deviation around that mean 
was assumed to be a constant 4 atm. This 
parameter primarily affects engine weight 
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and performance. It was limited to values 
from 150 atm. to 210 atm. 

 
Each time these values were altered, the resulting 
vehicle was sized according to the rules and 
techniques laid out in the previous section. When 
this sizing was completed, the objective function, 
the 95th percentile dry weight, was returned to 
the optimizer. The particular optimizer used for 
this process was the DOT package using 
conjugate gradient unconstrained optimization 
method. 
 
Because numerical noise from the sizing process 
was a concern, a finite difference derivative test 
was undertaken at a particularly difficult point. 
This point was identified by launching the 
optimizer using the default settings for finite 
difference gradients and observing the area 
where the optimizer could not generate a viable 
search direction. The defaults for this 
preliminary search were forward difference 
gradients with a relative step size of 0.001. This 
point around which the derivative test was 
conducted can be seen in Table 3. 
 

Table 3 – Testing Point for Finite Difference 
Derivatives 

Design Variable Value 
Mixture Ratio (r) 5 
Area Ratio (AR) 40 

Vehicle Thrust to Weight (T/Wv) 1.2 

Engine Chamber Pressure (Pch) 210 
atm. 

 
 
Once a trouble point was located, several step 
sizes using both forward and central differences 
were taken. These were used to calculate both 
forward and central difference partial derivative 
estimates. A sweep of step size can be seen in 
Fig. 6. 
 
The sweep in Fig. 6 illustrates how the decision 
on step size was made. The general direction of 
the large step sizes was considered to be correct. 
This was assumed because the error here is in the 
finite difference approximation, which is 
unlikely to reverse the direction of the estimate 
for reasonably large derivative values. However, 
the magnitude of these large step sizes was 
assumed to be faulty. At the other extreme, the 
numerical noise in the sizing process can create 
huge errors in the derivative estimate. So to 

minimize the error due to both the finite 
difference approximation and numerical noise, 
the smallest step size that did not have obvious 
numerical noise was taken. Because the other 
three derivative sweeps exhibited similar 
behavior to the one shown in Fig. 6, a relative 
step size of 0.005 was chosen. Because this was 
a rather large step size, central difference 
gradient estimates were used in place of forward 
difference. This change made sure that the 
gradients supplied to the optimizer were as 
accurate as was possible. It will be shown later 
that this step size enabled the system optimizer 
to consistently find the optimum design. 
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Figure 6  – Step Size Sweep for Derivatives with 
Respect to Area Ratio 

 
 
Once the derivative test was complete, the 
optimization process was started at several 
points, each one with its own rationale. The 
baseline point was an SSTO starting out with an 
engine design similar to the Space Shuttle Main 
Engine (SSME). This baseline optimization data 
can be found in Table 4. This baseline point 
optimized quickly, taking about six hours to find 
the best solution. An iteration history of the 
objective function, the 95% confidence level of 
dry weight, can be seen in Fig. 7. 
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Figure 7 – Objective Function History for Initial 
Probabilistic Optimization 

 
The design variables in this case went to 
optimum settings common for this type of 
problem. The area ratio went to a lower value, 
from 77.5 to 53. This is to be expected, since the 
engines must provide the entire vehicle thrust 
from the pad to orbit. This differs from the 
Shuttle Transportation System (STS) in that the 
STS delivers the majority of its main engine 
impulse at higher altitudes. The lower mixture 
ratio also shows indicated the high demand for 
engine performance provided by this variable. 
The other variables did not change very much, 
instead going to their constraints for this 
problem. 
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Figure 8 – Design Variable History for Initial 
Optimization 

 
 
To confirm that in fact this was the true 
optimum, two other starting points were run. The 
first re-optimization began from the engine 
manufacturer’ s dream design. This point 
maximized area ratio for the best vacuum 
performance, minimized mixture ratio for the 
highest propellant efficiency, maximized 
chamber pressure in order to push the limits of 
power head technology and maximized vehicle 
thrust to weight in order to sell more engines. 

This set of design variables then proceeded to the 
system optimum found in the initial optimization 
in about the same amount of time, even though it 
started further away. The overall comparison of 
start and end points can be seen in Table 4. 
 
The next point to be optimized came from the 
standpoint of using a slightly lower propellant 
performance, but also try to take advantage of a 
higher bulk density and higher thrust, lower 
gravity loss trajectory. This corresponded to a 
low engine chamber pressure, a high mixture 
ratio, a high area ratio and mid-level vehicle 
thrust to weight. This optimization also traveled 
to the same optimum as the others. This fact can 
be seen in Table 4. Each of these system-level 
optimizations took six hours to complete on a 
combination of Windows NT© and SGI Octane© 
workstations. 

 
 

Table 4  – Optimum Confirmation Run Results 

Design Variable 
Start 
Pt. 1 

Opt. 
Pt. 1 

Start 
Pt. 2 

Opt 
Pt. 2 

Start 
Pt. 3 

Opt. 
Pt. 3 

Mixture Ratio (r) 6 5.61 5 5.60 7 5.62 

Area Ratio (AR) 77.5 53.2 85 52.1 85 51.3 

Vehicle Thrust to 
Weight (T/Wv) 

1.2 1.2 1.6 1.2 1.4 1.2 

Engine Chamber 
Pressure (Pch) 

206 
atm. 

210 
atm. 

210 
atm. 

210 
atm. 

150 
atm. 

210 
atm. 

Objective: 95% C.L. 
Dry Weight 

156.7 
klb. 

150.2 
klb. 

237.2 
klb. 

150.2 
klb. 

286.1 
klb. 

150.1 
klb. 

 
 
The two design variables that were not limited 
by constraints generally fell to the same value. 
While there are slight differences in the optimum 
results, these all resulted in negligible differences 
in the 95% confidence level value for dry weight, 
so they can be considered the same result. To 
further illustrate the convergence of these two 
variables, Fig. 9 shows a path iteration history of 
mixture ratio versus area ratio. 

 
The results in Fig. 9 show that consistent 
probabilistic optimums can be generated using 
this distributed probabilistic technique in a 
reasonable amount of time. This was one of the 
key goals of the research and the objectives 
relating to this goal have been met. 
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Figure 9 – Design Variable Paths for Area Ratio 
and Mixture Ratio 

 
Monte Carlo Confirmation 
 
To confirm that the generated probabilistic 
optimum has been accurately approximated, a 
Monte Carlo simulation of the optimum point 
was executed. This involved removing authority 
over the local noise variables and bringing them 
into ModelCenter© and applying a central Monte 
Carlo simulation. This tested the accuracy of the 
overall process, including all of the 
approximations made. This simulation consisted 
of 1,000 trials, all of which had to be run on the 
heterogeneous framework. It is important to not 
that this was not an optimization process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 – Design Structure Matrix for Monte 

Carlo Confirmation 
 
 
The process for each trial consisted of iteratively 
sizing the propulsion system with the mass 
properties analysis, then feeding the resultant 
scenario to the combination of POST (Ref. 
10)/GRAM99 (Ref. 11). This system therefore 
tested the atmospheric approximation GRAM99 
as well as the probabilistic methods. A design 
structure matrix and coupling table illustrating 

the confirmation process data flow are shown in 
Fig. 10 and Table 5. 
 
The coupling variables in Table 5 were all 
deterministic, since the probabilistic analysis 
would be handled at the system level. The DSM 
above was only responsible for evaluating the 
scenarios given to it by the top-level Monte 
Carlo simulation. 
 

Table 5 – Coupling Variables for Monte Carlo 
Confirmation 

Coupling Location Parameters 
Passed 

Mass Properties – Propulsion (1) GLOW 
Mass Properties – Trajectory (2) GLOW, Sref 

Propulsion – Trajectory (3) Tvac, Ae, 
Ispvac 

Propulsion – Mass Properties T/We 
 
 
The mass properties algorithm was different 
from the previous probabilistic optimization in 
two ways. First, there was no sizing step. This 
meant that the analysis took place for a single 
length vehicle, the same length that was the 
solution to the probabilistic optimization. 
Second, the probabilistic analysis does not take 
place at the contributing analysis level, so the 
functions to generate runs and pass them to the 
mass properties spreadsheets were eliminated. 
The steps taken to implement this were to 
eliminate the VB script to run several scenarios 
for mass properties and then wrap all of the 
assumptions corresponding to random variables 
into ModelCenter© as inputs, and all of the 
responses corresponding to output variables 
required by other analyses and output 
distributions. 
 
The propulsion contributing analysis in this case 
was a simple wrapping of the SCORES analysis, 
with no run generating function or Perl wrapper. 
Inputs were taken for Tsl (generated by T/Wv 
and GLOW) and the settings of the design 
variables at the optimum point, and a sized 
engine was sent back to the mass properties. 
These analyses were iterated until the engine size 
was consistent, then the propulsion data for the 
chosen scenario was sent to the trajectory 
analysis. 
 
The Monte Carlo trial ended with a call to the 
trajectory contributing analysis. Because there 
was no sizing involved, a feedback to mass 

Mass 
Properties 

Propulsion 

Trajectory 

1 2 

3 4 
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properties was not necessary. The trajectory 
contributing analysis here consisted of the 
original call to POST using a random 
atmosphere generated by the GRAM99 range 
model. This was not the parameterized 
atmosphere used by the approximation methods.  
 
This system of contributing analyses was run 
1,000 times for random scenarios picked from 
the POST / GRAM99, SCORES and mass 
properties random inputs. For the POST analysis, 
the random variables that were required for input 
were the aerodynamic multipliers and the 
random atmosphere. The atmosphere generation 
required a different random seed each time, 
along with a random date and time of launch. 
SCORES required random values for the engine 
chamber pressure and power-to-weight ratio 
while the mass properties took random 
parameters corresponding the assumptions in the 
MER’ s. The settings for these random variables 
were identical to those in the respective analysis 
test baseline Monte Carlo simulations. The 
simulation took approximately 24 hours running 
on a combination of Windows NT and SGI 
Octane workstations. This makes it far too slow 
to even use in a sizing process, much less an 
optimization. 
 
Table 6 reveals some important facts about the 
approximations used for optimization in this 
research. Because there was no feedback from 
the trajectory optimization, inaccuracies in the 
results of this analysis must either come from an 
inaccurate input or a bias in the analysis 
approximation itself. In converse, inaccuracies in 
the trajectory outputs had no effect on the results 
from the other contributing analyses. Keeping 
this in mind, Table 6 shows that the propulsion 
and mass properties analyses matched well with 
the Monte Carlo simulation, while the trajectory 
analysis output parameters had values outside the 
error bands for the Monte Carlo. This was due to 
a problem modeling the trajectory during 
optimization, this fortunately only lead to a slight 
underestimate of the probability of success with 
regards to meeting propellant requirements in the 
sizing process. This meant that the size of the 
vehicle was slightly overestimated when 
compared to the confidence level indicated by 
the result of the Monte Carlo simulation. 
However, this error was small enough that it was 
still well within the 95% confidence level error 
bands calculated for the Monte Carlo simulation. 
 
 

Table 6 – Results of Full Monte Carlo 
Confirmation of Optimum 

System 
Parameter 

Approx. 
Estimate 

Monte 
Carlo 

Estimate 

95% 
C.l. 

Rel. 
Error 

Dry Weight µ 142,190 lb. 142,190 
lb. 

± 300 
lb. 

0 % 

Dry Weight σ 4,880 lb. 4,840 lb. ± 213 
lb. 

0.826 % 

P(Dry > 
150,200 lb.) 

95 % 94.7 % ± 11 
% 

0.317 % 

MRReq µ 8.0496 8.0400 ± 
0.0016 

0.119 % 

MRReq σ 0.0309 0.0261 ± 
0.0011 

18.4 % 

MRavail µ 8.2331 8.2446 ± 
0.013 

0.139 % 

MRavail σ 0.217 0.215 ± 
0.010 

0.930 % 

P(MRReq - 
MRavail > 0) 

80 % 82.4 % ± 5 % 2.91 % 

 
 
To show the accuracy of the propulsion and mass 
properties approximations, Figure Fig. 11 shows 
a plot of the approximate dry weight for the fixed 
OML optimum vehicle generated using the 
approximation compared to the Monte Carlo 
result for the same random variable. As is shown 
in Table 6, the result here has negligible error. 
The probability density values for the Gaussian 
plot were scaled to match the frequency plot for 
the Monte Carlo simulation. 
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Figure 11 – Dry Weight Approximation and 
Monte Carlo Confirmation 
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Fig. 12 shows the error in mass ratio required 
and the impact it had on the overall system. 
While the errors are significant to the estimate 
for required mass ratio, the large spread of the 
mass ratio available probability minimizes the 
impact of the error and puts the mass ratio 
difference error back in the confidence level for 
the Monte Carlo simulation. For the Gaussian 
line plots, the probability density was scaled to 
match the frequency axis of the Monte Carlo 
simulation results. 
 

 

Figure 12 – Sizing Histogram for Full Monte 
Carlo Confirmation 

 
 
While the cause of this small error does lie in the 
trajectory analysis, the cause could be any 
number of approximations made by this 
algorithm. Because the error was not a problem 
to the overall synthesis estimates, this was still a 
good method for probabilistic optimization. 
However, it is clear where room for 
improvement in accuracy in terms of 
contributing analysis probability estimation lies. 
 
 
Deterministic Optimization Comparison 
 
To see if there was any difference between the 
deterministic optimum and the probabilistic 
optimum solution, a deterministic optimization 
using the same models and design variables was 
conducted. The models used were the direct 
versions of the propulsion and mass 
properties/sizing algorithms and the response 
surface version of the trajectory analysis. The 
results of this were compared to the probabilistic 
optimum for 95% confidence level dry weight to 
determine their differences.  

 
These results were compared using two criteria. 
First, it was determined if the settings of the 
design variables were any different from the 
probabilistic optimization. This should give 
relative information about which design 
variables are related to robustness in weight 
growth. Second, the difference will be shown in 
the results of the two optimizations, such as the 
reported dry weight value and OML size. This 
will show how using probabilistic information 
can tailor the reported results to the desired risk 
level of the program. If a high risk is tolerable, 
the confidence levels can be reduced and more 
optimistic results can be reported. If it is not 
tolerable, the confidence levels can be raised and 
correspondingly less optimistic results reported. 
The key is that the risk is expressed in easy to 
translate terms, such as the probability of not 
having enough propellant for the mission, or the 
probability of a dry weight value larger than 
150,000 lb. It is easier to quantify this risk than 
the risk associated with changing dry weight 
margins. 
 

Table 7 – Results of Deterministic Optimization 
Comparison 

Design 
Var. 

Start 
Pt. 1 

Opt. Pt. 1 
(Prob./Det) 

Start 
Pt. 2 

Opt Pt. 2 
(Prob./Det) 

Start 
Pt. 3 

Opt. Pt. 3 
(Prob./Det.) 

Mixture 
Ratio (r) 6 5.61 / 5.65 5 5.60 / 5.65 7 5.62 / 5.66 

Area 
Ratio 
(AR) 

77.5 53.2 / 52.3 85 52.1 / 52.7 85 51.3 / 54.0 

Vehicle 
Thrust to 
Weight 
(T/Wv) 

1.2 1.2   / 1.2 1.6 1.2 / 1.2 1.4 1.2 / 1.2 

Engine 
Chamber 
Pressure 

(Pch) 

206 
atm. 

210 / 210 
atm. 

210 
atm. 

210 / 210 
atm. 

150 
atm. 

210 / 210 
atm. 

95% C.L. 
Dry 

Weight / 
Dry 

Weight 

158 / 
139 
klb. 

151 / 134 
klb. 

186 / 
164 
klb. 

151.0 / 
133.8 klb. 

250.4 / 
213.7 
klb. 

151.1 / 
133.9 klb. 

Prob. 
Length / 

Det. 
Length 

147 / 
142 ft. 

147 / 142 
ft. 

152 / 
147 ft. 

147 / 142 
ft. 

168 / 
161 ft. 147 / 142 ft. 

 
 
The results in Table 7 show a decided similarity 
between the design variable settings for the 
probabilistic and deterministic optimizations. 
The one small difference that is consistent is the 
difference in mixture ratio. The optimizations 
found that a slightly lower mixture ratio was 
favorable for the probabilistic optimum. This is 
surprising because most of the uncertainty in 
sizing is due to the mass properties algorithm, an 
analysis that usually favors higher bulk density 
for system robustness (Ref. 12). The shift in 
mass ratio required due to the slightly higher 
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engine specific impulse seems to have offset this 
effect. 
 
These optimizations took around 10 minutes 
each to complete. While this was a very short 
amount of time, it took only 40 times longer (~6 
hrs.) to optimize the probabilistic system. 
Considering the number of noise variables (84), 
this is a below linear real-time cost scale-up to 
use the distributed probabilistic system. This was 
a major cost savings over existing methods.  
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Figure 13– Design Variable History for Initial 
Deterministic Optimization 

 
 
The convergence of the deterministic 
optimization was slightly better than that of the 
probabilistic optimization. This was most likely 
due to the more accurate gradients, since a 
smaller step size was possible for finite 
difference estimates. It is clear from a 
comparison of Fig. 8 and Fig. 13 that the 
deterministic optimization process was close to 
the optimum much sooner than the probabilistic 
process. The results here show that there is a 
small difference in the optimum variable settings 
for the two optimizations, but a large difference 
in the conservatism of the final answer.  
 
To determine to which confidence levels the 
deterministic optimum corresponded, a Monte 
Carlo simulation of the final deterministic 
optimum was conducted. This simulation was 
similar to the confirmation of the probabilistic 
optimum except that it was conducted at a 
smaller length for slightly different settings of 
the design variables. The results of this 
simulation show that the probability of the 
reported dry weight being equal to or lower than 
133.8 klbs. was only 53%. In addition, the 
confidence level associated with having enough 
propellant to perform the mission was only 54%. 

When compared to the error associated with a 
1,000 trial Monte Carlo simulation, these can be 
both considered around 50%. These values are 
much lower than the 95% and 80% confidence 
levels reported for the probabilistic optimum. 
Histograms of mass ratio required and mass ratio 
available for the deterministic optimum can be 
seen in Fig. 14. The curves represent the 
predictions for the probabilistic optimum. As can 
be seen in Fig. 14, the probabilistically sized 
vehicle has a much higher probability of the 
mass ratio available exceeding the mass ratio 
required. 
 
 

 

Figure 14 – Sizing Histogram of Deterministic 
Optimum 

 
 
Apparently, the deterministic assumption of 15% 
dry weight margin corresponds to a fairly high 
risk level when compared to what was 
considered acceptable for the probabilistic 
phases of this study. The acceptable probability 
of success with regards to meeting propellant 
requirements for orbit was only 80%, and the 
probability of coming in under dry mass budget 
was 95%. These probabilities were not 
outrageously high, and in the case of the 
propellant requirement constraint, actually quite 
low. These results combined with the results of 
the Monte Carlo simulation of the deterministic 
optimum suggested that a 15% margin was very 
risky with respect to the assumptions made here 
about noise variables. 
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CONCLUSIONS 
 
The specific goals attained were as follows: 
 
• A new distributed probabilistic framework 

for launch vehicle conceptual design was 
demonstrated.  

 
This was evidenced by the detailed process 
account given in this research. Also, now that the 
technique has been demonstrated, it should allow 
for this process to be re-implemented in less than 
two man-weeks. This implementation can also 
be done in parallel by individual disciplinary 
experts and as a result improve the overall 
process setup time. Finally, all of the uncertainty 
analysis was conducted at the contributing 
analysis level. This was important to retaining 
the advantages of distributed analysis. 
 
• The utilization of heterogeneous computing 

platforms in a distributed probabilistic 
framework was demonstrated by the 
inclusion of executable programs, Perl 
scripts, Matlab scripts and Excel worksheets 
in a single automated framework.  

 
These codes were based on both SGI 
workstations and Windows NT PC’ s. While this 
was done using the ModelCenter© commercial 
analysis integration package, the compatibility of 
this package with the distributed probabilistic 
launch vehicle design problem was a key to the 
utility of the technique. 
 
• The goal of a multiple order of magnitude 

improvement in speed over a Monte Carlo 
simulation method was demonstrated.  

 
This was shown in the fact that an entire 
probabilistic vehicle sizing process could be 
accomplished in about thirty minutes using the 
distributed approximations, while just a single 
length evaluation process took around 16 hours 
using a non-distributed Monte Carlo simulation. 
Accounting for the repeated simulations that 
would be required for a sizing process, this is a 
three order of magnitude improvement over a 
direct, system-level Monte Carlo process. 
 
• Optimization utilizing the distributed 

probability analysis method was shown to be 
fast.  

 
The goal of overnight optimization was met by 
the fact that the demonstration optimizations 

took between 6 and 8 hours each. Considering 
the amount of time that the non-distributed 
Monte Carlo simulation took for just a single 
length analysis, this is a huge savings. 

 
• The test optimization was confirmed, 

showing that the problem formulation was 
sound and that the noise in the sizing 
process was not so great as to interfere with 
accurate gradient generation. This was 
shown by the optimization finding the same 
point from three separate starting locations. 

 
• The accuracy of the distributed 

approximation was also found to be quite 
good.  

 
It exceeded the objective of 5% accuracy set for 
constraint satisfaction by a comfortable margin 
for both the propellant required and dry weight 
confidence level calculations. This was 
determined by comparison of the found optimum 
to a single length Monte Carlo simulation. In 
addition to this, all of the critical output 
parameters, along with the majority of all 
parameters were well within the error bounds 
calculated for the Monte Carlo simulation. 

 
• While the deterministic and probabilistic 

optimum design variable settings were not 
very different, the reported vehicle size by 
the two processes was vastly different. This 
means that the reported size of the analysis 
corresponds to a specific user confidence 
level, not just an arbitrary growth safety 
factor. 

 
All in all, a new fast and efficient method for 
probabilistic optimization of conceptual launch 
vehicle designs was presented, along with test 
results verifying its speed and accuracy. This 
new architecture has the potential to allow for 
the practical probabilistic optimization of 
reusable launch vehicles in inherently distributed 
environments where it was impractical before. 
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