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ABSTRACT 
 
 The goal of this research is to find a 
computationally efficient and easy to use alternative to 
current approximation or direct Monte Carlo methods 
for robust design.  More specifically, a new technique is 
sought to use selected deterministic analyses to obtain 
probability distributions for analyses with large inherent 
uncertainties. 
 
 Two techniques for this task are investigated.  
The first uses a design of experiments array to find key 
points in the algorithm space upon which deterministic 
analyses will be performed. An expectation value error 
minimization routine is then used to assign discrete 
probabilities to the individual runs in the array based on 
the joint probability distribution of the inputs. This 
creates a representative distribution that can be used to 
estimate expectation values for the output distribution. 
 
 The second technique uses a similar error 
minimization algorithm, but this time alters the location 
of the points to be sampled from the function space.  
This means that for every change in input variable 
distribution, the algorithm will generate a table of runs 
at input locations that minimize the error in expectation 
values. 
 
 The advantages of these techniques include a 
small time savings over approximation or direct Monte 
Carlo methods as well as elimination of numerical noise 
due to random number generation.  This noise will be 
shown to be a hindrance when converging multiple 
Monte Carlo analyses. In addition, when the variable 
location sampling point algorithm is used, this takes 
away the arbitrary task of defining levels for the input 
variables and provides enhanced accuracy. 
 
 

NOMENCLATURE 
 
CA contributing analysis 
CCD central composite design 
c.g.  center of gravity 
DP  discrete probability 
EC&D electric conversion and distribution 
FPI  Fast Probability Integration 
GLOW gross liftoff weight 
Isp  specific impulse 
ISS  International Space Station 
KSC Kennedy Space Center 
MC Monte Carlo 
MR mass ratio ( liftoff mass / burnout mass ) 
OMS orbital maneuvering system 
pf propellant mass fraction 
POST Program to Optimize Simulated Trajectories 
RCS reaction control system 
RSE response surface equation 
SSTO singe stage to orbit 
Tvac  vacuum thrust 
TRF technology reduction factor 
µ̂   sample mean 

σ̂   sample standard deviation 
 

INTRODUCTION 
 
Background and Motivation 
 
 Current aerospace vehicle conceptual multi-
disciplinary design is typified by deterministic design 
methods. These methods ignore important design 
uncertainty information. Designers are often required to 
make a “best guess”  estimate of a key design parameter 
thus losing critical knowledge of the range of 
uncertainty that might be present in a subsequent 
dataset. Conceptual launch vehicle design (Fig. 1) is 
one area particularly interested in this design 
uncertainty (Ref. 1.) 
 
 Risk is one type of information that is 
important to know, yet is usually not quantified. Risk in 
this case refers to the effect of uncertainty on the 
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performance of a design. When program planning and 
risk reduction activities are undertaken for an aerospace 
project, knowing the amount and sources of risk in a 
design should result in more efficient programs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Example of Reusable Launch Vehicle 
Conceptual Design 

 
 Another related quantity is design maturity. By 
carrying through appropriate levels of uncertainty in the 
design, appropriate confidence in that design’s 
performance can be expressed. This brings more 
realism and a heightened awareness of the lack of 
design maturity to conceptual design.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – Response Surface Equation 
 
 Current methods for robust conceptual design 
are typically direct Monte Carlo (MC) methods either 
operating directly on an engineering simulation or an a 
fast approximation of the true engineering simulation. 
The latter is called a “meta-model”  and is typically a 
polynomial approximation or response surface equation 
fit to selected data produced by the true engineering 
simulation (Fig. 2.) Monte Carlo methods use random 
inputs selected from assumed input distributions to 

obtain estimates of the output distributions and 
associated statistical characteristics. The MC analysis 
must be run on the order of 10,000 times to obtain 
output distributions. 
 
 To convey probabilistic information, a meta-
model must still be combined with a Monte Carlo 
simulation and again numerical noise is present due to 
the use of pseudo-random number generation. 
 
Research Goal 
 
 The goal for this research is to create a new 
method for probabilistic analysis that improves on 
current techniques. This new method should be fast, 
accurate and has low numerical noise. While speed and 
accuracy are obviously positive attributes, the goal for 
the method to have low numerical noise is so that it can 
be useful in an iterative multidisciplinary design 
environment. The generation of gradients is on task that 
requires low noise. 
 
 

METHODOLOGY 
 
Overall Concept 
 
 The technique presented consists of selecting a 
small number of discrete points representing samples 
from an input probability distribution and use them in a 
deterministic engineering simulation to approximate the 
entire resultant output probability distribution. Key 
statistical parameters (mean, standard deviation, etc.) 
are also desired. 
 
 The first step is to represent the input 
distribution as discrete points. Each of these points has 
a probability associated with it. Both the location and 
probability values can be selected so as to either 
minimize or drive to zero the error in selected 
expectation values between the discrete points and the 
actual distribution.  
 
 The expectation value of a function E(g(x)) is 
the weighted mean of g(x) where the weights are the 
probabilities of each point x in a discrete distribution 
(Ref. 2.)  
 
 Fig. 3 shows a one-dimensional example of the 
point selection process. These points can be used to find 
expectation values that represent important properties 
of the input distribution, such as mean, standard 
deviation and skew. Higher accuracy in the input 
distribution model should translate to higher accuracy 
in the output distribution model. 
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 Because the probability of a set of inputs 
occurring is equal to the probability of the associated 
result occurring, the probabilities of each of the outputs 
is known. These discrete points can then be evaluated to 
obtain estimates of the output distribution properties 
using the expectation values of the discrete output 
distributions. Again, these can include mean, variance, 
skew, etc. It is important to note that these properties 
have been obtained non-stochastically and should have 
low numerical noise. 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 – Discrete Point Representation of an Input 

Distribution 
 
Fixed-Location Method 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 – Three Variable Central Composite Design 

 
 The first technique to be introduced for this 
paper is a fixed-location method. It utilizes a central 
composite design (CCD) experiment array to determine 
the sampling point locations for the input distribution 
model. A three dimensional example of the sampling 
points is shown in Fig. 4. The cube corners form a two 
level full factorial, while the points radiating from the 
center are referred to as “star points.”  These typically 
extend past the upper and lower bounds of the two-level 
full factorial. This central composite should span an 
appropriate amount of the input distribution variables 
so that a reasonably accurate representation of the 
distribution is possible. 
 

 The input distribution properties are then 
matched by varying the probabilities of the individual 
points in the discrete model. The technique used for this 
is analogous to least squares curve fit matching. The 
problem statement for this is given in Equation 1. 
 

(1) 
 
 

 The E
�

vector contains expectation values for 
polynomial terms corresponding to the properties of the 
input distribution. It expresses the properties of the 
input distribution. It is important that one of the g 
polynomial terms be unity so that the probabilities of 
the points in the model add up to one. The matrix A 
contains the locations of the points in the model 
expressed in rows corresponding to the polynomial 

terms expressed in E
�

. A description of these arrays is 
found in Equations 2 and 3. The columns of A 
correspond to each of the m sample points. The p

�
 

vector contains the probabilities of each of the m points 
in the model to be determined by the minimization.  
 
 
 

(2) 
 
 
 
 
 
 
 

(3) 
 
 
 
 
 The vector p

�
 is found using a QR 

factorization minimization of the form shown in 
Equations 4 - 7. 
 
 
 

(4) 
 

(5) 
 
 
 Because Q is orthogonal, Equation 5 is equivalent 
to Equation 6. 
 

A B C X 

P
ro

ba
bi

lit
y 

2
EpAMin

p

��� −



















=

))((

))((

))((

2

1

xgE

xgE

xgE

E

n

�
�
�
�

�



















=

)()()(

)()()(

)()()(

21

22112

12111

mnnn

m

m

xgxgxg

xgxgxg

xgxgxg

A

�	��

�

���
����

22

22

)( EQpRQMinEpQRMin

EpQRMinEpAMin

T

pp

pmxnp 



��
��

−=−

−=−

Star Points 

Factorial Points 



AIAA 2000-4863 

4 

 
(6) 

 

 
so 

 
(7) 

 
solves the minimization. This is because the only 
variable is the p�  vector and it cannot affect the (n+1)th 

through mth equations. Also, to avoid singularity 
problems, it is important that the polynomial terms 
chosen for use as expectation values be linearly 
independent and that sample points are not repeated in 
the discrete model.  
 
 Once the probabilities are determined, the sample 
points can be evaluated. This gives the response and 
each of the corresponding probabilities. For the three 
dimensional CCD shown in Fig. 4, a sample response 
distribution would resemble Fig. 5. Note that each of 
the input point probability values corresponds to a value 
for the response. 
 
 
 
 
 
 
 
 
Figure 5 – Final Output Response of a Fixed Location 

Discrete Probability Method Using a  Central 
Composite Design 

 
Variable Location Method 
 
 The second technique for this paper uses both 
variable sample point locations and probabilities in its 
input distribution model. This has an advantage in that 
the user does not need to arbitrarily set the locations of 
the sample points. It also has the advantage of 
additional degrees of freedom when minimizing the 
error to the target input distribution expectation values. 
This means that more distribution matching accuracy 
can be carried through the analysis with fewer points 
when compared to the fixed location method. 
 
 For this method, the input distributions are 
assumed to be independent. This simplifies identifying 
sample points a great deal. Each of the sample point 

settings can be found independently for each variable’s 
input distribution, then combined to form a full-
factorial design. This idea is illustrated in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 – Variable Location Point Generation 
 
 For each of the variable input distributions, the 
locations and probabilities of the sample points must be 
determined. In order to maximize the amount of input 
distribution property information carried through the 
analysis, this particular method drives the error in the 
selected expectation values to zero. 
 
 For each of the variables, there are four 
degrees of freedom. That means that all expectation 
values up to cubic can be matched by the method. 
Consequently, mean, variance and skewness can all be 
represented. The problem to be solved to find the 
location and probabilities of the sample points is 
defined by Equations 8 and 9. 
 
 
 
 

(8) 
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This is equivalent to: 
 
 
 

(9) 
 
 
 
 From this point, a Newton-Rhaphson 
multivariate root finding method is employed to solve 
the nonlinear set of equations. As a practical note, 
initial guess is very important. For most cases 
encountered by this study, an initial guess of the mean 
plus and minus one standard deviation is sufficient for 
x1 and x2, the high and low sample points. An initial 
guess of 50% for p1 is also effective. 
 
 Once the inputs are combined to form a two-
level full factorial design (Fig. 6,) the deterministic 
analysis finds the response corresponding to each of the 
sample points. Again the input probabilities are used 
along with this response to find the output parameters 
of interest. 
 
Model for Launch Vehicle Sizing 
 
 For a test of these methods, an iterative sizing 
algorithm is used. Because probabilistic sizing is 
different from deterministic sizing, definition and 
description of this algorithm is required. 
 
 In this case, a simple two-analysis sizing 
technique is used. The first contributing analysis (CA) 
is Weights and Sizing. In a deterministic environment, 
this analysis changes the mold-line size of the launch 
vehicle until the vehicle’s mass ratio (MR) matches the 
mass ratio reported by the trajectory analysis. This is 
commonly done photographically so as to minimize the 
aerodynamic coefficient change between iterations. 
Stage MR is related to stage propellant mass fraction 
(pf) by Equation 10. For high propellant fraction 
vehicles, MR is a more convenient metric and will be 
used from this point forward.  
 

 (10) 
 
 
 For probabilistic analysis, it is still convenient 
to use the vehicle size as a control variable. However, a 
probabilistic trajectory analysis yields a distribution of 
MR, not a single value. There are also internal 
uncertainties in the weights and sizing analysis  that 
yield a probability distribution of available MR.  
 

 To reconcile this problem, an error variable is 
created that is the difference of the available and 
required MR’s. At this point a decision must be made 
as to the desired confidence level of the analysis. This 
number should be related to the acceptable program 
risk. Using the decided confidence level, the size of the 
vehicle is altered until the percentile corresponding to 
the desired confidence level of MR error is driven to 
zero (Fig. 7.) For example, a 90% confidence level 
corresponds to a 90% chance that this size vehicle will 
either meet or exceed mission requirements. 
 
 
 
 
 
 
 
 
 
 
Figure 7 – Probabilistic Weights and Sizing Algorithm 
 
 The probabilistic trajectory analysis is more 
straightforward. Here, internal uncertainty variables are 
combined with the distributions reported from weights 
and sizing to generate a distribution of optimized MR. 
A diagram of this iteration is in Fig. 8. 
 
 This system is iterated until the MR_required 
distribution converges. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 – Conceptual Sizing Iteration 
 
 

TEST PROCEDURE AND RESULTS 
 
 To test these methods, two separate examples 
were run. The first involved a single deterministic 
analysis to compare the accuracy of several methods. 
The second was an iteration test to primarily determine 
the importance of noise in probabilistic 
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multidisciplinary sizing. This test also provides a 
practical example of probabilistic sizing. This section 
describes the procedure and results of both tests. 
 
Single Analysis Test 
 
 One relatively computationally intensive part 
of conceptual launch vehicle design is trajectory 
analysis. Because of this, it is an ideal candidate for 
testing probabilistic approximation methods. Program 
to Optimize Simulated Trajectories (POST, Ref. 3) was 
used for this test. The trajectory for testing was a three 
dimensional, single-stage-to-orbit (SSTO) rocket 
traveling to an International Space Station (ISS) 
transfer orbit. Fig. 9 illustrates this. 
 
 
 
 
 
 
 
 
 
 

Figure 9 – Test Trajectory Parameters 
 
 Three noise variables were selected for the 
test. They were: 
 

• Drag: a multiplier on the vehicle drag to reflect 
uncertainty in vehicle aerodynamic 
coefficients. 

• Vacuum thrust (Tvac): a multiplier on the 
vehicle vacuum thrust to simulate possible 
engine underperformance. 

• Isp: varied to reflect uncertainty in engine 
efficiency. 

 
 These variables were given triangular input 
distributions corresponding to Table 1. For this type of 
distribution, the probability density varies linearly from 
zero at the minimum and maximum to a most likely 
point somewhere between the min and max. 
 

Table 1 – Trajectory Input Distributions 
 

 Minimum Most Likely Maximum 
Drag Mult. 80% 100% 120% 
Thrust Mult. 95% 100% 105% 
Isp 449 sec 451.5 sec 453 sec 
 
 
 

Monte Carlo Analysis 
 
 Four different simulations were performed. 
First was a direct Monte Carlo analysis on POST. This 
was used as the reference for the other approximation 
methods. This technique was chosen as a reference 
because it did not rely on an approximation assumption 
for analysis. Because of this, it was the most 
straightforward analysis, but also the most 
computationally intensive. First, a table of 10,000 
randomly selected input settings from the distributions 
described above were generated. Next, these randomly 
generated points were run and the output properties 
measured. 
  
Response Surface – Monte Carlo Analysis 
 
 The first approximation method tested was and 
is a common technique for robust simulation. The first 
step was to create a meta-model of the analysis. In this 
case, a quadratic response surface equation was created 
for the three noise variables. This was accomplished by 
sampling from a CCD and then performing a least-
squares curve fit on the results. 
 
 Next, a 10,000 run Monte Carlo analysis was 
run on the RSE. Output distribution properties could 
then be calculated in the same manner as in the direct 
Monte Carlo test. 
 
Fixed-Location Sampling Method 
 
The first of the new methods tested for this paper was 
the fixed-location discrete probability technique. For 
sampling points, this used the same CCD as the 
Response Surface – Monte Carlo technique. Equation 
10 shows the expectation values that were used for 

input distribution probability matching. The EG  vector 
is explained in the previous section on methodology. 
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Variable Location Method 
 
 The variable location method was executed as 
described in the methodology section with no additional 
assumptions. The uncertainty variables were identical 
to the other tests. 
 
Single Analysis Test Results 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 – Direct Monte Carlo Test Results 
 
 The first step is to gauge the reference distribution. 
Fig. 11 shows the output MR distribution for a direct 
Monte Carlo simulation. It should be noted that this 
required 10,000 fully optimized trajectory runs, and for 
most organizations is too computationally intensive a 
technique for use in a fast-response multidisciplinary 
environment. For example, the analysis for this paper 
took approximately eight days using two SGI Octane 
workstations running in parallel. 
 
 This test seems to show reasonable MR 
numbers as well as a well-formed distribution. The 
values of mean and standard deviation shown in the 
corner indicate the target values for the other analyses. 
 
Response Surface – Monte Carlo Analysis Result 
 
 Figs. 12 and 13 show a reasonable correlation 
between the response surface and the direct analysis 
when it comes to approximating the mean of the 
distribution. However, it is slightly less accurate at 
measuring standard deviation than the two discrete 
sampling point methods. Fig. 13 shows a normal 
distribution probability density function (PDF) plotted 
using the test results for mean and standard deviation. 

The RSE method is not discernable from the direct 
Monte Carlo in this context.  
 
 Because the RSE can be quickly calculated, it 
might make sense to do more than 10,000 runs to try to 
improve the accuracy of the technique. One 
consideration is that 10,000 runs on the polynomial 
response surface does take on the order of 30 seconds 
using a 500 megahertz Pentium III IBM-compatible PC. 
Increasing this would increase this time to a point 
where the expense of the method would not really be 
comparable to the others, which have negligible post-
processing expense. Increasing to 30,000 runs does 
improve the accuracy, but it is still not as close on 
standard deviation as the two-level variable location 
discrete probability method. 
 
 
 
 
 
 
 
 
 
 
 
Figure 12 – Plot of Mean MR vs. Standard Deviation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 13 – Normal Distribution Probability Density 
Function of Test Results 

 
 

Fig. 13 puts these results in perspective, however. 
As evidenced by the plotted normal distribution 
approximation for all of the methods, the RSE – MC 
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method is one of the techniques that falls on top of the 
direct Monte Carlo distribution in this figure. The 
difference in standard deviation is not visible from this 
perspective.  

 
Variable Location Test Result 
 
 This technique is the closest to the Monte 
Carlo reference distribution. Figs. 12 and 13 show this 
clearly. It has both good mean and standard deviation 
accuracy while at the same time requiring the fewest 
number of runs. 
 
 The major disadvantage of this technique is 
that it requires re-running the deterministic analysis 
sampling set every time the input distributions change. 
This is acceptable for a “once-through”  analysis, but 
could become cumbersome in an iterative situation. 
 
 However, due to its low number of sample 
points and high accuracy, this is still a powerful tool for 
many situations. Even iterative analyses might still 
make use of this technique if alternatives have noise 
that is too high. 
 
Fixed Location Test Result 
 
 There appears to be significant error in the mean of 
the output distribution using the fixed location method. 
The cause of this error is not readily identifiable, and 
otherwise the method appears to be accurate. This 
distribution is the offset curve in Fig. 13. One 
advantage is that it is the closest in standard deviation, 
however as Fig. 13 illustrates, this is not enough to 
make up for its mean error. 
 

Table 2 –Results of Single Analysis Test 
 

 POST runs MR mean MR std. dev. 

Direct Monte Carlo 10,000 7.8756 5.2558x10-3 

RSE – Monte Carlo 15 7.8745 5.2033x10-3 

Rel. error from MC  0.014 % 1.0 % 

2 level discrete prob. 8 7.8742 5.2241x10-3 

 Rel. error from MC  0.018 % 0.60 % 

3 level discrete prob. 15 7.8843 5.2714x10-3 

Rel. error from MC  0.11 % 0.30 % 

 
 
 If the accuracy can be improved, this should be a 
very powerful tool for iterative analysis. While it 
requires more runs than the variable location method, it 

does not need to be rerun, as long as the input 
distributions are within the range of the original sample 
points. In this way, it is similar to response surface 
methods, but with less iterative noise. This could be a 
great advantage in future iterative systems. 
 
Iteration Test 
 
 An example launch vehicle was sized to 
determine the suitability of probabilistic analysis in a 
multidisciplinary environment.  
 
 The vehicle sized was a wing-body reusable 
rocket third generation technology SSTO. The concept 
is a simple wing-body with a cylindrical propellant 
tanks and oxidizer tank aft layout. It features five high 
thrust-to-weight ratio liquid oxygen/ liquid hydrogen 
(LOX/LH2) rocket engines mounted in a cluster at the 
rear of the craft. The payload is carried centrally, near 
the vehicle center of gravity (c.g.), giving it a small c.g. 
travel between payload-in and payload-out conditions. 
Other design features include wingtip mounted fins for 
lower induced drag and greater control authority, 
cylindrical tanks with elliptical domes for low structural 
weight and a set of hydrogen ducted fan landing 
engines for landing abort capability. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 – Example Vehicle For Iteration Test 
 
 For the iteration test, the sizing algorithm 
described in the methodology section was used. More 
specifically for the Weights and Sizing analysis, a 
direct Monte Carlo simulation was used. There were 
two reasons for this decision.  
 
 First, there were thirty uncertainty variables. 
These are described in the Appendix. This would mean 
over a billion runs if any of the approximation methods 
mentioned above were to be used. 
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 Second, using the Monte Carlo would test the 
hypothesis that the noise in a Monte Carlo analysis 
would hinder convergence in a multidisciplinary 
system. 
 
 For the trajectory analysis, the variable 
location discrete probability sampling method was 
used. Because of the lower level of uncertainty than the 
weights and sizing, an approximation method could be 
used. As will be shown later, this sampling method 
proved to be the most accurate. The trajectory analysis 
was identical to the one  in the single analysis test, 
except for the inclusion of a probability distribution for 
gross liftoff weight (GLOW.) 
 
Iteration Test Results 
 
 The main interests in the results of this test are 
convergence speed and numerical noise caused by 
iterating probabilistic analyses. 
 
 Fig. 14 shows a convergence rate similar to 
deterministic analyses. However, what is more difficult 
to see is the noise in the solution. Iterations three and 
four do not have changes that are discernable by the 
root finding method used to size the vehicle. This is due 
to noise in the Monte Carlo analysis. This creates a 
problem because the MR distribution has not yet 
converged to the level of precision (five significant 
figures) typically expected of the deterministic version 
of this sizing exercise. It had only achieved three 
significant figures of convergence at this point. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14 – Convergence History of Iteration Test 

Table 3 – Iteration History 
 

 Mass Ratio Distribution  

Iter. Minimum Most Likely Maximum Avg. % Change 

0 8.3 8.4 8.5 N/A 

1 7.6714 7.8299 8.0214 6.7% 

2 7.7057 7.8559 8.0584 0.41% 

3 7.7008 7.8605 8.0542 0.058% 

4 7.7042 7.8537 8.0566 0.053% 

 
 
 This illustrates both an advantage and a 
problem with Monte Carlo based probability analysis. 
The advantage is that many times, the number of 
variables is so large that most organized sampling 
methods simply explode in the number of runs required. 
The disadvantage is noise. 
 

Table 4 – Final Results of Iteration Test 

 Mean Std. Dev. 

Dry Weight 168,405 lb. 3,679 lb. 

Gross Liftoff Weight 1,726 Klb. 4,263 lb. 

Length 149 ft. N/A 

Width 30 ft. N/A 

Wingspan 102 ft. N/A 

Mass Ratio 8.0633 0.1296 

 
 
 
 The types of results this analysis can generate 
are shown in Fig. 15 and Table 4. These show 
distributions for the vehicle weights, and a single value 
for the vehicle’s physical dimensions. This is due to the 
sizing technique discussed before. 
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Figure 15 – Weight Results of Iteration Test 
 
 

CONCLUSIONS 
 
 Several conclusions can be drawn from the results 
of the tests generated above. 
 
1. Two new methods for determining the uncertainty 

through deterministic analyses were presented. 
Along with them, two examples were given for the 
use of these methods. Useful information about the 
robustness of a launch vehicle concept was 
extracted and the one of the methods was tested in 
practical application. 

 
2. This technique promises to remove the burden of 

overly precise WER’s, provided they can be 
interfaced with other probabilistic methods. This 
should also yield appropriate risk information. 

 
3. The variable location discrete probability method 

was shown to have advantages in speed, accuracy 
and generality. Generality was shown in that the 
technique required little definition before it could 
be adapted to the example problems. 

 
4. Numerical noise was shown to be an issue with 

iterative stochastic analyses. It proved to be a 
hindrance to convergence to the desired level of 

precision. Potential ways of solving this problem 
are presented in the Future Work section of this 
paper. 

 
5. Currently, problems with large uncertainty cause 

sampling schemes that are too large. One possible 
way to reduce this number would be a screening 
array to find the variables that contribute most to 
the response. 

 
 

FUTURE WORK 
 
1. Find a way to improve the accuracy of the fixed 

location discrete probability sampling method. 
There are a number of ways to improve this 
estimate, such as changing the expectation value 
model, experiment design, etc.  

2. Find a way to reduce the number of sample points 
required for large problems. This the major 
disadvantage of all the approximation methods 
presented in this paper. 

 
3. Test other probability estimating techniques, such 

as Fast Probability Integration (FPI, Ref. 4) for 
their applicability to launch vehicle systems design. 
This should be done in a fully iterative 
environment with an eye to computational expense. 

 
4. Test the discrete probability sampling technique on 

problems other than trajectory. This should reveal 
additional advantages and disadvantages to the 
different methods. 

 
5. Attempt to integrate this method into several 

multidisciplinary design environments, including 
Collaborative Optimization (Ref. 5), Optimization 
Based Decomposition, etc. 

 

lbs. 
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Appendix – Weights and Sizing Uncertainty Assumptions 
 
 

 Minimum Most Likely Maximum Description 

EC&D %age of Dry Wt. 5.58% 6.2% 6.82% 
Electrical Conversion and Distribution percentage of dry 
weight. 

Surface Control Actuation % of Entry Weight 0.432% 0.480% 0.528% Aerodynamic Surface Control Weight 

Residual OMS/RCS %age 4.5% 5% 5.5% percentage of OMS and RCS propellant left after use. 

Main Propellant residuals 0.45% 0.5% 0.55% Percentage of Main propellant left after as unusable. 

OMS/RCS reserves 9% 10% 11% Reserve on-orbit maneuver propellant. 

RCS %age of Entry Wt. .302% .336% .370% 
Reaction control system weight as a percentage of entry 
weight. 

OMS Isp 455s 463s 470s Efficiency of the Orbital Maneuvering System. 

RCS Isp 420s 440s 462s Efficiency of the Reaction Control System 

Ascent Reserve and Unusable 0.45% 0.5% 0.55% 
Ascent Reserve propellant as a percentage of ascent 
propellant 

Inflight Losses and Vents 0.9% 1.0% 1.1% 
Inflight propellant and pressurant losses as a percentage 
of ascent propellant 

Tank Ullage 2.25% 2.50% 2.75% Percent of tank volume that is unfillable. 

Start up % of Ascent Propellant 0.9% 1% 1.1% Engine startup propellant expended before liftoff 

Primary Structure Wt. Per Unit Area 2.45 lb/ft2 3.20 lb/ft2 3.94 lb/ft2 Load bearing structural elements 

Secondary Structure Wt. Per Unit Area 1.12 lb/ft2 1.25 lb/ft2 1.37 lb/ft2 Light-load bearing structural elements 

LOx Tank Wt. / Volume 0.509 lb/ft3 0.566 lb/ft3 0.680 lb/ft3 Liquid oxygen tank weight per unit volume 

LH2 Tank Wt. / Volume 0.353 lb/ft3 0.392 lb/ft3 0.431 lb/ft3 Liquid hydrogen tank weight per unit volume 

Body Flap Wt. / Area 2.257 lb/ft2 2.900 lb/ft2 3.637 lb/ft2 Body Flap weight per unit volume. 

Exposed Wing TRF 36% 40% 46% 
Percentage technology reduction factor for the exposed 
wing structure weight. 

Wing Carry Through TRF 36% 40% 46% 
Percentage technology reduction factor for the internal 
wing structure weight. 

Tail TRF 36% 40% 46% Percentage technology reduction factor for the tail weight 

Thrust Structure TRF 23% 30% 37% 
Percentage technology reduction factor for the thrust 
structure weight. 

Payload Bay Structure %age 7% 15% 24% Percentage of payload weight 

ACC Panel Unit Weight 1.62 lb/ft2 1.80 lb/ft2 2.34 lb/ft2 
Weight per unit area for nose Thermal Protection System 
(TPS) 

TUFI Tile Unit Weight 1.17 lb/ft2 1.30 lb/ft2 1.69 lb/ft2 Weight per unit area for windward side TPS 

TABI Blanket Unit Weight 0.72 lb/ft2 0.80 lb/ft2 1.04 lb/ft2 Weight per unit area for leeward side TPS 

Primary Power Weight per Day 125.6 lb 139.6 lb 153.6 lb Power generation for launch vehicle per mission day. 

Avionics Weight 1,440 lb 1,600 lb 1,760 lb Weight of avionics 

Environmental Control Multiplier 0.90 1.00 1.10 
Multiplier on the weight of the environmental control 
system. 

Landing Ducted Fan Isp 12,000s 16,000s 20,000s Fuel efficiency of the ducted fan for powered landing. 

 
 
 
 


