
For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191

37th Aerospace Sciences
Meeting and Exhibit

Jan. 11-14, 1999 / Reno, NV

AIAA 99-0110
Demonstration of CLIPS as an Intelligent
Front-End for POST

I. A. Budianto
J. R. Olds
N. C. Baker
Georgia Institute of Technology
Atlanta, GA

AIAA 99-0110

1

Demonstration of CLIPS as an Intelligent Front-End for POST

Irene A. Budianto†

Dr. John R. Olds*

Dr. Nelson C. Baker‡

Georgia Institute of Technology

Atlanta, GA 30332

ABSTRACT

Most of the analysis codes used in the design of
aerospace systems are complex, requiring some
expertise to set up and execute. POST, which is used
in many conceptual design studies to compute space
vehicle performance characteristics, often encounters
numerical difficulties in solving the defined
trajectory problem. Usually POST fails to converge
when its control variables are given a bad set of
initial guesses, causing the trajectory to remain in the
infeasible design region throughout the computations.
The user then analyzes the output produced and relies
on a set of heuristics, typically gained from
experience with the program, to determine the
appropriate modification to the problem setup that
will guide POST in finding a feasible region and
eventually converge to a solution.

The potential benefits of employing knowledge-
based system within a design environment have long
been well known. Various methods of utilization
have been identified. As a post-processing guide, an
expert system can distill information obtained from
an analysis code, such as POST, into knowledge.
The system then can emulate the human analyst’s
decision-making capability based on this collected
knowledge.

This paper describes the implementation of
POST expertise in a knowledge-based system called
CLIPS and demonstrates the feasibility of utilizing
this integrated system as a design tool. The
automation of POST executions and CLIPS’ output
evaluation and decision-making is shown to
potentially reduce design cycle time. In addition,
verification of the decision process and of the quality
of the results is easily attained in CLIPS.

NOMENCLATURE

CLIPS C Language Integrated Production
System

CPU Central Processing Unit
ctha optimization indicator from POST
HTHL Horizontal Take-off Horizontal Landing
KBS Knowledge-Based System
LH2 Liquid Hydrogen
LOX Liquid Oxygen
P2 weighted constraint error from POST
POST Program to Optimize Simulated

Trajectories
q dynamic pressure (psf)
RBCC Rocket-Based Combined Cycle
SSDL Space Systems Design Laboratory
SSTO Single-Stage-to-Orbit
wopt weighting factor for optimization

variable
α angle of attack

INTRODUCTION

Background

Many current research works in the field of
aerospace are geared towards improving the design
phase of these complex systems [1]. One of the

† Palace Knight Fellow, School of Aerospace Engineering,

Student member AIAA
* Assistant Professor, School of Aerospace Engineering,

Senior member AIAA
‡ Associate Professor, School of Civil & Environmental

Engineering

Copyright © 1999 by Irene A. Budianto, John R. Olds and

Nelson C. Baker. Published by the American Institute of

Aeronautics and Astronautics, Inc. with permission.

AIAA 99-0110

2

major thrust areas is to reduce design cycle times and
costs. This can either shorten the system’s overall
development time or allow for more trade-off studies
to be conducted, resulting in a more extensive
selection of alternative optimum designs.

Utilization of artificial intelligence within the
design environment has received much attention in
the past. In particular, knowledge-based systems
(KBS) have been shown to be well suited for various
design applications [2, 3, 4]. For example, an expert
system can serve as a post-processing guide. It can
be encoded to analyze the results of an analysis code
and, based on the information obtained and the set of
knowledge imbedded in the system, determine the
appropriate next step without the need for human
intervention. This automation of information
processing and decision-making promises to shorten
design cycle times.

Program to Optimize Simulated Trajectories, or
POST [5], plays an important role in many space
vehicle conceptual design studies. POST, created by
NASA and Lockheed-Martin, is widely available and
has become an industry standard tool for solving
various trajectory optimization problems, including
constant dynamic pressure trajectories for
airbreathing vehicles. As a design analysis tool,
POST provides the performance characteristics
necessary to determine the feasibility and viability of
a vehicle concept.

POST is a generalized event-oriented trajectory
simulation program capable of optimizing a user-
specified objective function, subject to certain
conditions and constraints, by determining the
appropriate values of the control variables. Within a
namelist input file, the user structures the trajectory
by a logical sequence of events and defines the model
of the vehicle as well as the necessary constraints and
conditions. The user is further required to specify the
parameters and control variables. POST generates a
text output file that summarizes the results of the
simulation.

Motivation

Analyzing simulated trajectories computed by
POST requires knowledge about flight mechanics
and vehicle performance. Producing a numerical
solution with POST, on the other hand, also demands

the type of expertise that comes with practice. As
with other numerical simulation programs, POST at
times encounters difficulties in solving the defined
problem. If the control variables are given a bad set
of initial values, many times the program fails to find
a feasible region.

Expert users of POST have developed a variety
of heuristics to aid the program in overcoming these
numerical difficulties, so as to converge to a solution.
For example, when POST fails to concurrently satisfy
the constraints and converge to an optimum solution
with a given set of initial control variable values, one
common practice is to first remove optimization from
the problem, requiring for POST to simply target the
specified conditions and satisfy the given constraints.
Then usually the analyst would remove some of the
“less crucial” constraints from the problem. Once a
feasible region of the design space for this simplified
problem is found, the new control variable values
obtained are used as initial values for solving the
original problem. Thus expert POST users
essentially must learn various tricks to help the
program explore the design space in search of the set
of control variable values that will result in a
trajectory that satisfies the optimum criteria and
meets all the constraints and conditions.

Implementation of this type of expertise in a
knowledge-based system, such as CLIPS (C
Language Integrated Production System [6]), that
interacts with POST can prove to be very valuable,
particularly in a conceptual design environment. The
integrated system promises a “plug-and-play” POST
capability, which, to a certain extent, can free the
expert analyst from the task of “babysitting” the
simulations. Consequently, this expert POST has the
potential to greatly reduce design cycle time and cost,
especially as the whole design process is becoming
more automated. The ability to verify the decision
process and the quality of the solution must not be
compromised, however. This is accomplished partly
by CLIPS’ explanation facility that supplies the user
with an account of all steps that led to the final
solution. The user must, in addition, review the final
trajectory solution.

Problem Formulation

The main objective for this work is to create a
prototype of the CLIPS-POST integrated system and

AIAA 99-0110

3

demonstrate its feasibility for solving an airbreathing
ascent trajectory, which involves a constant dynamic
pressure phase. This type of trajectory simulation
and analysis is very complex due to the fact that the
thrust produced by airbreathing engines varies with
altitude, Mach number and dynamic pressure and that
the vehicle aerodynamic characteristics are
continuously changing [7]. POST often has
difficulties solving this type of problem.

The expert system’s main duty is to assist POST
in finding the control variable values that will result
in an optimum, without requiring programming
modifications to POST itself. It is assumed that the
user has created an error-free namelist input file
(POST version 5.1) and has successfully obtained a
usable nominal (iteration 1) trajectory. A long list of
experiential knowledge exists to help users with this
nontrivial step but is not implemented for the purpose
of this demonstration work. In the future, however,
the development of an expert system that will work
with a generic POST input file is envisioned.

PROTOTYPE SYSTEM

System Overview

As shown in Figure 1, POST input and output
files form the natural interface to CLIPS. This expert
POST has been designed such that the parsing of the
files as well as the system calls to execute POST are
directly performed by CLIPS. Thus, when the
integrated system is implemented in a space vehicle
design environment, CLIPS acts as the front-end to
POST. The end user of this integrated system is
prompted for the input file name of the problem to be
solved, herein referred to as the original problem
setup. This is the extent of the user interaction
required by the prototype system.

The iterative process begins with the first
execution of POST and parsing of the resulting
output file to obtain a set of information needed by
CLIPS. This includes the problem setup (e.g.
constraints, conditions, optimization flags, tolerances,
control variables) and the numerical results (e.g.
constraint error, optimization indicator value,
objective value history, final values of the control
variables, warning and error messages). Copies of
the original files are created to keep them free from

any modifications made by CLIPS. The inference
engine of CLIPS then emulates the processing
strategy of an expert POST user.

Figure 1. Diagram to illustrate the process of the CLIPS-

POST integrated system.

When POST fails to converge, the user would
first identify the “symptoms.” For example, what
error messages are produced by POST? Is the
iteration limit exceeded? How do the objective
function and the dependent variable values behave
over POST iterations? Then according to the
information gathered and the user’s expertise, he/she
makes the appropriate changes to the problem setup
and reruns POST with the modified input file in an
effort to aid POST in finding a better set of control
variable values. If POST still fails to converge,
return to the “symptom identification” step by
analyzing the new output. Else, retain the control
variable values from the last POST run and use them
with the original input deck.

Similarly, CLIPS’ inference engine must match
the set of gathered data (facts) with the knowledge
already imbedded in the system. The strategy used
for prioritizing these activated (matched) rules is set
to simplicity. CLIPS makes the appropriate
modifications to the input deck, reruns it in POST
and studies the output. The iterative process
continues until a successful POST execution is
obtained.

In the meantime, an account of all the
modifications is kept in memory during each session
and is referred to by CLIPS at every step. Each time
POST converges, the resulting control variable values
are retained. The system backtracks through the
cumulated records in the database of past
modifications and runs the previous problem setup
with these control values. This sequential process, as

CLIPS POST

modify
input

analyze
output

start
process

with first
POST run

converged
solution

AIAA 99-0110

4

has been proven many times manually in actual
practice, will eventually lead to a convergence of the
original problem.

Process Knowledge Control Structure

The task of the expert POST system can be
hierarchically ordered into several sub-problems, as
is graphically represented in Figure 2. The problem
is considered solved when the POST input and output
files are parsed, optimum criterion is met and the
constraints and targets are satisfied. Similarly,
optimality of the solution requires nonsingular
sensitivity matrix (the Jacobian matrix consisting of
the partials of each of the constraints with respect to
the control variables), a converging objective value
history and an improving weighted-error constraint
history.

The typical constraints and targeting conditions
that are involved in the ascent trajectory simulation
of an airbreathing vehicle are maximum wing normal
forces, the constant dynamic pressure segment, final

altitude and final flight path angle. Each of these
constraints forms a sub-problem for the “Constraints
Met” node.

Following the strategy used by an expert POST
user in examining a POST output, the backward-
chaining tree illustrated in Figure 2 is utilized to
structure the knowledge process of the CLIPS-POST
system. Each node in this network is a hypothesis
that can be considered completed only if all its child
nodes have been completed (proven). According to
the hypotheses that remain unproven, CLIPS can
make an intelligent decision on the appropriate
modifications to the POST input deck.

The mechanism for keeping a history of input
file modifications takes advantage of the dynamic
linking capability of a sequence method. The chain
of sequence nodes (linked list) is built up as new
modifications are made. Thus, each time POST fails
to converge to a solution, a new input setup is created
and a new node, representing this modified setup, is
added at the end of the linked list.

Figure 2. Diagram illustrating the backward-chaining tree structure for the knowledge process control of the CLIPS-POST

system.

Dynamic
Pressure Rate
at Entry Good

Dynamic
Pressure at
Entry Good

Final
Gamma
Good

Final
Altitude

Good

Constant
q Met

Weighted Error
Constraint
Function

Converging

Objective
Function

Converging

Nonsingular
Sensitivity

Matrix

Constraints
Met

Optimum
Criterion Met

Solution
Found

AND
AND

AND

AND AND

AND

Files
Parsed

AND

AIAA 99-0110

5

Table 1. A sample of the domain knowledge collection

RULE
NO. RULE CONDITIONS CONCLUSIONS / ACTIONS

1 POST optimum criterion, ctha, is satisfied; the

weighted error constraint, P2, indicates that all

constraints are satisfied.

Problem is solved and solution is found.

2 The problem involves a constant dynamic pressure

segment and has not already been simplified; POST

fails to target the conditions and meet the constraints;

POST cannot improve P2.

Change to target-only mode and eliminate

constraints that apply beyond the constant

dynamic pressure phase.

3 The dynamic pressure experienced by the vehicle as

it enters constant q segment is too low (high).

Increase (decrease) the first few angles of the

pitch control table applied during the phase

before entering the constant q phase.

4 The altitude at the end of the trajectory is too low

(high).

Increase (decrease) the second and third

angles of the pitch control table applied at the

end of the trajectory.

37 POST encounters a singular constraint sensitivity

matrix.

Reduce take-off angle of attack.

38 POST encounters no change in state. Check wopt and change if necessary.

39 All constraints are satisfied; ctha indicates POST has

not converged; objective value is not changing much.

Problem is solved and solution is found.

40 Convergence is reached with the original POST input

setup; big jumps are observed for the values of

optimum criterion, ctha.

Re-run the POST input file with the latest

control variable values.

Each sequence node is assigned the backward-
chaining process knowledge, explained previously.
This node is considered complete only when the top
goal, “Solution Found,” within it is achieved (i.e.,
when POST successfully converges with this
particular input file).

Each time a sequence node is completed (i.e.,
POST converges and solution is found), the system
traverses the linked list backward and pops off the
node containing information on the previous problem
setup. From this, CLIPS recreates the POST input
setup and runs it with the control variable values
obtained from the latest converged POST run. This
process of modifying and recreating POST input files
continues until the original problem formulation is
reached and converged, completing the expert
system’s task.

Context Organization

The context, or data structure, for this expert
POST system must be organized such that it works
well with the process knowledge. Object templates
were created to handle the types of information
needed by the system. For example, a template
called “POST-input-setup” stores important
information about the problem setup. It contains
attributes such as ndepvr (the number of dependent
variables involved in the problem), nindvr (the
number of control variables), dt (integration step),
etc. Each object also contains an attribute called
input_ID, which identifies it as an object belonging to
a particular sequence node. In most cases, this
attribute can serve as the primary key (i.e., it is
sufficient to uniquely identify the object). The
variable and parameter names used by POST (e.g.
ndepvr, P2, ctha, etc.) are retained in the CLIPS

AIAA 99-0110

6

context. Furthermore, every effort is made to
separate input and derived (output) data.

Domain Knowledge

The collection of domain knowledge to be used
in the CLIPS-POST system can be categorized
according to the sub-problem it addresses. For
example, the rules needed for reading and writing
POST input files are contained within “Files Parsed”
node and can be activated only when this goal is
active. On the other hand, the rules that check on the
behavior of the objective function are sectioned
within “Objective Function Converging” node.

The main sources for this domain knowledge
are the authors’ own experiences. Additionally,
several colleagues in the field who have extensive
experience with solving airbreathing ascent
trajectories with POST were also interviewed for
their expertise. A sampling of the captured heuristics
is listed in Table 1. All of the knowledge can be
represented in the form of IF (condition) THEN
(conclusion/action). If a certain combination of facts
exist, then a specified course of action takes place.

Computing Environment

Both CLIPS and POST are compiled on a
Silicon Graphics Octane with operating system IRIX
6.4. This workstation runs on a R10000/250 MHz
IP30 processor. Installing the two programs on the
same machine eases automation of the CLIPS-POST
interactions. Thus the user, having setup the problem
in POST, can run the expert POST system simply by
running the CLIPS program and supplying the input
file name at the prompt.

PROTOTYPE EVALUATION

The CLIPS-POST prototype was tested on
several airbreathing vehicles. The parameters for
these reference vehicles, as summarized in Table 2,
are fixed along with the engine and aerodynamic
models. The results vary in terms of the number of
required iterations, computer processing time and the
computed optimal value. The computing
requirements depend on the complexity of the
problem (i.e., the number of variables and events

involved) and the quality of the initial values for the
control variables. Furthermore, this type of trajectory
optimization is nonlinear and, if not constrained
properly, is not unimodal. Thus, depending on the
starting point used, the solution found may only be a
relative (local) extremum.

Table 2. Summary of test vehicle parameters

Vehicle
Parameters

Hyperion Argus SSTO1

Gross Wt (lbs)
Initial T/W
Rocket Ispvac (s)
Sref (ft2)

824,500
0.7
462
6300

653,800
0.7
462
3004

1,000,000
1.1
460
4500

Description of Hyperion

Figure 3 shows a rendering of Hyperion as it
orbits the earth. This advanced single-stage-to-orbit
(SSTO) fully reusable launch vehicle is the product
of investigation by graduate students of the Space
Systems Design Laboratory (SSDL) at Georgia
Institute of Technology. The mission for this un-
piloted HTHL (horizontal take-off horizontal
landing) concept is to deliver 20 klb of payload to
Space Station orbit (220 nmi circular orbit at 51.6°
inclination) from Kennedy Space Center.

Figure 3. Artist’s rendering of Hyperion

Hyperion utilizes five LOX/LH2 ejector
scramjet RBCC engines as its primary propulsion.
The vehicle operates in ejector mode up to Mach 2,
where transition to ramjet mode begins. At Mach 3 it

AIAA 99-0110

7

intercepts a 2000 psf dynamic pressure boundary and
the vehicle airbreathes (ramjet/scramjet mode) up to
Mach 10 while maintaining this q limit. The switch
to rocket mode occurs at Mach 10.

The trajectory optimization problem involves
maximizing the vehicle burnout weight at the end of
the simulation. The POST input setup begins at take-
off and ends as the vehicle reaches the 50 nmi x 220
nmi insertion orbit. The independent (control)
variables are relative pitch angles to control vehicle
attitude before and after the constant q phase.

Result for Hyperion

Several CLIPS-POST runs for Hyperion were
conducted with various combinations of initial
control variable values. All successfully converged
but only two are presented in this paper. A summary
of these computations is given in Table 3.

“Test 1” was one case where with the original
input setup, the changes in the control parameters
made by POST produced no change in the state
parameters. CLIPS modified wopt (Rule 39 in
Table 1) and re-ran POST, which yielded a successful
convergence. To juxtapose the CPU requirements of
the integrated system and those of individual POST
runs, a timing device was setup. The execution of the
three POST files themselves, in this case, took a total
runtime of 263.14 seconds. This difference of less
than 82 seconds was the time required for CLIPS to
set up the problems, to run POST, to parse the files,
to decide on the appropriate modification and, finally,
to recognize that a solution had been found.

For “Test 2,” POST was given a set of initial
guesses for the control variables, with which the
program fails to converge initially (the P 2 value
obtained is very large). CLIPS’ inference engine
applied several rules that eventually guided POST to
convergence. It first turned POST to target-only
mode and reduced the number of constraints by
removing from the problem those that go into effect
after the constant dynamic pressure phase (Rule 2 in
Table 1). This allowed POST to concentrate on
achieving and maintaining the constant q path. When
POST still failed to reach convergence with this
simplified problem setup, CLIPS changed some of
the pitch control angles to help the trajectory find the
dynamic pressure boundary (Rule 3).

Once POST converged this simplified problem,
the resulting control values were used as initial points
for the original problem. This process was repeated
and terminated because there was no improvement on
the objective value as observed by CLIPS. Here, the
inference engine applied Rule 39: Although the final
ctha value does not meet the optimum criteria of
being greater than or equal to 89.9°, if the objective
value improves very little, then consider the problem
solved.

Figure 4. Dynamic pressure and altitude profiles for

optimized Hyperion trajectory (Test 1).

Figure 5. Relative pitch angle histories for optimized

Hyperion trajectory.

The discrepancy between the optimum burnout
weights computed from the two Hyperion test cases
is less than 0.5%. Figure 4 plots the calculated
dynamic pressure and altitude profiles from “Test 1.”
“Test 2” produced similar trajectory plots. The
resulting final pitch control angles differ slightly but
have the same general trend, as shown by Figure 5.

2500

2000

1500

1000

500

0 -1

0

1

2

3

4

d
yn

a
m

ic
 p

re
ss

u
re

 (
p

sf
)

a
lt

it
u

d
e

 (
ft

)

x105

0 200 400 600 800 1000
time (s)

altitude
dyn. press.

0 200 400 600 800 1000
time (s)

-10

0

10

20

30

re
la

ti
ve

 p
it

ch
 (

d
e

g
)

Test 1
Test 2

AIAA 99-0110

8

Description of Argus

Under NASA’s Highly Reusable Space
Transportation (HRST) program, a study was
conducted at Georgia Tech’s SSDL on the highly
reusable SSTO launch vehicle concept called Argus
[8]. Figure 6 depicts an illustration by Pat Rawlings
featured in reference 9. Argus uses a magnetically-
levitated sled and track system, the Maglifter, to
provide take-off velocity of 800 fps. The main
propulsion system consists of two RBCC engines
(LOX/LH2 supercharged ejector ramjet). The
engines operate similarly to those of Hyperion, in that
they progressively move from supercharged ejector
to fan-ramjet to ramjet modes. One difference is that
Argus does not have scramjet capability and thus, it
airbreathes only until Mach 6. At this point, the
vehicle performs a pull-up maneuver and transitions
to rocket mode. It continues its ascent to a 50nmi x
100 nmi insertion orbit at 28.5° inclination.

Figure 6. Argus by Pat Rawlings

The trajectory simulation problem for Argus is
also to maximize the vehicle burnout weight. The
mission is to deliver 20 klb of cargo autonomously to
low earth orbit. The constant dynamic pressure
trajectory flown is at 1500 psf.

Result for Argus

In addition to varying the initial control variable
setting, Argus was also tested several different take-
off attack angles (α ’s). In “Test 1,” the vehicle left
the Maglifter with 7.5° angle of attack. As shown in
Table 3, the initial control values given allowed
POST to obtain successful convergence unaided by

CLIPS. The CPU requirement for the one POST run
was 118.8 seconds. In cases such as this, CLIPS
simply matched the conditions for Rule 1 listed in
Table 1 and terminated the process.

For “Test 2,” Argus initially was given a take-
off attack angle of 15° and initial control values that
produce a flight profile in the infeasible region.
CLIPS simplified the setup by constraint elimination
(Rule 2), which resulted in singularity of the
sensitivity matrix of one of the dependent variables.
This is typically due to lack of controls to affect the
wing normal force constraint violated during take-off.
CLIPS remedied this problem by reducing the take-
off α (Rule 37). The CLIPS-POST system obtained
the final converged trajectory by a combination of
lowering take-off angle and simplifying the problem
setup. The CLIPS-POST system terminated when it
converged the original problem with a reduced take-
off α of 10.935°, after a total of 13 POST runs.

Figure 7. Dynamic pressure profiles for optimized Argus

trajectories

Figure 8. Angle of attack histories for optimized Argus

trajectories

0 200 400 600 800 1000
time (s)

d
yn

a
m

ic
 p

re
ss

u
re

 (
p

sf
)

0

500

1000

1500

2000

Test 1
Test 2

0 200 400 600 800 1000

a
n

g
le

 o
f

a
tt

a
ck

 (
d

e
g

)

t ime (s)

-10

0

10

20

30

Test 1
Test 2

AIAA 99-0110

9

The resulting dynamic pressure profiles for the
two test cases are shown in Figure 7. The lower take-
off angle of attack of “Test 1” caused a higher jump
in dynamic pressure experienced before the constant
q segment. Figure 8 illustrates that the angle of
attack profiles computed by POST for the two test
cases are very similar. The biggest discrepancy was
found in the beginning of the trajectories, where the
take-off values differed by 3.435°.

The integrated CLIPS-POST system achieved
successful convergence for all tested cases (given a
usable nominal trajectory). The discrepancies
between all of the computed optimal values were on
the order of less than 0.5%.

Description of SSTO1

The integrated CLIPS-POST system was also
tested with a generic SSTO sample POST input deck,
referred herein as SSTO1. This winged-body vehicle
is powered with pure rockets, eliminating the need
for a constant q segment during its ascent flight.
Again, the trajectory problem is to maximize the final
vehicle weight.

The trajectory simulation begins with a vertical
take off of the single stage vehicle and ends when it
reaches the 50 nmi x 100 nmi x 28.5° insertion orbit.

The control (independent) parameters given to POST
are two inertial pitch rates and the time at which
transition between these rates occur. The orbital
destination is specified by providing POST with the
desired final altitude and inertial velocity. The
parameters for this SSTO are given in Table 2.

Result for SSTO1

Solving the trajectory problem for this vehicle
required less computing time than Hyperion o r
Argus. This is as expected, since the setup for SSTO1
is much simpler, involving fewer control variables
and fewer constraints.

For “Test 1” of SSTO1, POST was given good
initial guesses for its control variables, allowing it to
reach convergence with the original setup. However,
CLIPS applied Rule 40 and re-ran the problem
without seeing any more improvements.

With the original input setup in “Test 2a,”
POST was able to satisfy the constraints but not the
optimization criteria, because no change in state was
observed by POST. The CPU time for this first
POST run is 3330.0 seconds. CLIPS then changed
the weighting factor, wopt, for the optimization
variable (Rule 38) and terminated the process when it
could not further improve the objective value. The
total CPU time was 3764.1 seconds.

Table 3. Summary of test results.

Hyperion Argus SSTO1

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2b

Total CPU Time (s) 348.3 3026.6 152.9 1101.9 88.0 515.4

No. of Modifications 1 6 0 6 1 1

Total No. of POST Runs 3 13 1 13 3 3

Final Constraint Error, P2

Initial POST Run 1.525E-01 6.915E+17 1.564E-01 8.391E+04 3.740E-01 3.785E-02

Final POST Run 3.721E-01 1.200E-02 --- 7.717E-01 3.740E-01 3.785E-02

Final Opt. Indicator, ctha

Initial POST Run 89.83° --- 89.90° --- 89.9° ---

Final POST Run 90.0° 88.66° --- 89.97° 90.0° 90.0°

Final Opt. Value, Wburnout (lbs)

Initial POST Run 163,562.06 97,481.05 114,796.54 113,243.00 122,715.44 122,382.57

Final POST Run 163,596.17 163,993.92 --- 114,878.83 122,715.44 122,382.57

AIAA 99-0110

10

“Test 2a” produced a final burnout weight of
98,494.34 lbs. This gives a very significant
difference of almost 20% from that of “Test 1.” This
can be explained by the fact that the problem is not
properly constrained.

A re-testing (“Test 2b”) was conducted by
adding another constraint to the SSTO1 problem,
namely final orbital inclination of 28.5°. The initial
control values of “Test 2a” was used. The results of
“Test 1” and “Test 2b” are presented in Table 3. As
shown, a difference in optimum value of less than
0.5% was obtained.

Figure 9. Flight profiles for optimized SSTO1 trajectories

Figure 10. Inertial pitch angle histories for optimized

SSTO1 trajectories

Figure 9 illustrates the vehicle’s ground tracks
for “Test 2a” and “Test 2b.” As shown, the final
orbits are different for these two cases, where one is
inclined at 28.5° while the other is at 151.5° (a
retrograde orbit). The constraints involving the final
altitude and velocity were satisfied in both

trajectories. Figure 10 compares the inertial pitch
angles of the two vehicles (the final inertial roll and
yaw angles are 0° for both cases).

CONCLUSION

Summary

The techniques used by expert POST users are
not procedural in nature. Much of the rules are
heuristics and require symbolic reasoning. Thus this
problem is not algorithmic and the implementation of
the expertise in a knowledge-based environment is an
appropriate choice, as proven by the prototype
developed in this research work. Successful
convergence was obtained for all tested cases,
demonstrating the robustness of the integrated
system. The prototype’s versatility to work with
different types of trajectory problem has also been
confirmed with the results for SSTO1.

Furthermore, this expert POST system can
prove to be a very valuable tool to the trajectory
analyst of a space vehicle conceptual design team.
The time and cost savings per design cycle will easily
outweigh the overhead (more CPU time and memory
requirements) of CLIPS integration. Especially,
when the vehicle design undergoes major changes, it
is often the case that POST will have difficulties
converging to a solution. This CLIPS-POST system
provides the capability to automatically produce a
solution without consuming the analyst’s time. In
addition, the CLIPS interface can be used by an
engineer who is familiar with the capabilities of
POST but who is not necessarily an expert user,
either as a means of training or simply as a front-end
to POST. Note that all interactions with CLIPS were
by means of the input and output files, thus requiring
no modification to the original programming of
POST.

Future Considerations

There are still many additions that can improve
the performance of the current system. The prototype
developed here is fairly robust in its present state.
The executions of POST are done directly from
within CLIPS using the system command. This
delivers the call to execute POST to the operating
system and suspends CLIPS processes as it waits for

Test 2a
Test 2b

32

36

la
ti

tu
d

e

28

24

longitude
-95 -92 -89 -86 -83 -80 -77 -74 -71 -68

150

100

50

0

-50

-100

-150
0 100 200 300 400 500

time (s)

Test 2a
Test 2b

in
e

rt
ia

l
p

it
ch

 (
d

e
g

)

AIAA 99-0110

11

POST to finish the run. This task can perhaps be
done in a more sophisticated manner, by taking
advantage of process controls, such as fo rk ,
provided by the system. This can give CLIPS the
capability to check the status of a POST run so that a
decision can be made whether to continue or
terminate the process (i.e., if no improvement is made
with the current run), ultimately to save computing
time.

The set of knowledge already imbedded in this
CLIPS-POST prototype is not at all comprehensive.
The rules relied on by expert POST users in
generating a usable nominal trajectory have not been
implemented. Also, the heuristics for analyzing the
resulting trajectory, if encoded into CLIPS, may
allow for automatic checking of the solution.
Different types of trajectory problems utilize
different sets of heuristics. The current system
contains approximately 90% of existing knowledge
for converging airbreathing vehicle trajectories. But
only ~10% of existing rules for solving direct ascent
of a pure rocket vehicle, for example, has been
encoded in the prototype developed here. Perhaps
the test case for SSTO1 can be improved further.
Other types of trajectory problems are orbital
maneuvers and planet reentry.

A potential utilization for an integrated CLIPS-
POST system not explored in this research work is
for finding the global optimum, or at least for finding
better optimal value. The results for S S T O 1
especially can demonstrate that often many relative
extrema exist, if the problem has not been properly
constrained. The expert system can be encoded to
explore a variety of design points, for example by
grid search method, keeping the trajectory that
produces the best objective function value.

Figure 11. Integrated design framework

Finally, the integration of the CLIPS-POST
system within an automated design framework is left
for future work. Using the CLIPS front-end to POST
within a computing architecture described in
reference 10 (either using web-based or UNIX
interfaces) can be very beneficial, investing relatively
the same amount of effort, if not less, as compared to
simply integrating POST to the framework. Figure
11 graphically depicts an example of this integrated
design framework where automatic execution of
several analysis codes can be performed by one user,
typically a system analyst. Disciplinary experts are
involved off-line to guide the solution and can be
geographically located at multiple sites.
Furthermore, the analysis codes can be mounted on
different types of computer platforms.

ACKNOWLEDGEMENTS

The authors would like to thank Laura
Ledsinger and Peter Bellini for sharing their POST
expertise. John Bradford supplied vehicle
information for Hyperion and Argus.

REFERENCES

1. AIAA Technical Committee for MDO, “Current
State of the Art of Multidisciplinary Design
Optimization,” AIAA White Paper, approved by
AIAA Technical Activities Committee,
Washington, D.C., September 1991.

2. Thurston, D. L. and Carnahan, J. V., “Intelligent
Evaluation of Designs for Manufacturing Cost,”
Chapter 17, Concurrent Engineering:
Automation, Tools, and Techniques, edited by
Kusiak, A., John Wiley & Sons, New York,
1993.

3. Marx, W. J., Schrage, D. P., and Mavris, D. N.,
“An Application of Artificial Intelligence for
Computer-Aided Design and Manufacturing,”
International Conference on Computational
Engineering Science, Mauna Lani, HI, July
1995.

4 . Wesley, L. P. and Lee, J. D., “Toward an
Integrated CFD Expert System Environment,”

AIAA 99-0110

12

AIAA 98-1005, 36th Aerospace Sciences
Meeting and Exhibit, Reno, NV, January 1998.

5. Brauer, G. L., Cornick, D. E., and Stevenson, R.,
Program to Optimize Simulated Trajectories
(POST), Final Report for NASA contract NAS1-
18147, Martin-Marietta Corp., September 1990.

6 . Giarratano, J. C. and Riley, G. D., Expert
Systems: Principles and Programming, Third
Edition, PWS Publishing Company, Boston,
1998.

7 . Olds, J. R. and Budianto, I. A., “Constant
Dynamic Pressure Trajectory Simulation with
POST,” AIAA 98-0302, 36th Aerospace Sciences
Meeting and Exhibit, Reno, NV, January 1998.

8. Olds, J. R. and Bellini, P. X., “Argus, a Highly
Reusable SSTO Rocket-Based Combined Cycle
Launch Vehicle with Maglifter Launch Assist,”
AIAA 98-1557, 8th International Space Planes
and Hypersonic Systems and Technologies
Conference, Norfolk, VA, April 1998.

9 . Mankins, J. C., “Lower Costs for Highly
Reusable Space Vehicles,” Aerospace America,
March 1998, pp. 36 – 42.

10. Acton, D. E. and Olds, J. R., “Computational
Frameworks for Collaborative Multidisciplinary
Design of Complex Systems,” AIAA 98-4942,
7th AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysis and Optimization, St.
Louis, MO, September 1998.

