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ABSTRACT

This paper presents a method of transforming
aerodynamic datasets generated in Aerodynamic
Preliminary Analysis System (APAS) into parametric
equations which may subsequently be used in a
multidisciplinary design optimization (MDO)
environment for analyzing aerospace vehicles.

APAS is an analysis code which allows the user to
create a simple geometric model of a vehicle and then
calculate the aerodynamic force coefficients of lift,
drag, and pitching moment over a wide range of flight
conditions.  As such, APAS is a very useful tool for
conceptual level vehicle designs since it allows the
force coefficients for a given design to be calculated
relatively quickly and easily.

However, APAS suffers from an outdated user
interface and, because it is tedious to generate a new
dataset during each design iteration, it is quite difficult
to integrate into an MDO framework.  Hence the
desire for a method of transforming the APAS output
into a more usable form.

The approach taken and described in this paper
involves the use of regression analysis techniques and
response surface methodology to accomplish the data
transformation with two goals in mind.  The first goal
was to develop a parametric model for calculating the
aerodynamic coefficients for a single unique geometry.
The second goal was to extend this model to capture

the effects of changes in vehicle geometry.  This paper
presents the results and gives the model developed for
analyzing a sample vehicle for both cases.

NOMENCLATURE

APAS Aerodynamic Preliminary Analysis System
AR wing aspect ratio
Cd coefficient of drag
Cdo coefficient of drag at zero lift
Cl coefficient of lift
Clo coefficient of lift at zero angle of attack
Cm coefficient of pitching moment
HABP Hypersonic Arbitrary Body Program
K parameter relating Cd to Cl

M Mach number
MDO multidisciplinary design optimization
POST Program to Optimize Simulated Trajectories
S lift slope parameter
UDP Unified Distributed Panel
α angle of attack (degrees)
Λ wing leading edge sweep angle (degrees)

INTRODUCTION

Aerodynamic Preliminary Analysis System
(APAS) is an industry-standard tool for calculating
aerodynamic force coefficients for use in the
conceptual design of aerospace vehicles. This tool,
developed by NASA and Rockwell International for
use in the design of the Space Shuttle, is useful for
aerodynamic analysis, but due to it’s highly interactive
nature, it does not lend itself well to an iterative or
optimized overall vehicle design process.

Aerodynamic analysis of a vehicle using APAS
first requires the user to define a geometric model of
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the vehicle.  This is done by specifying various
parameters for individual components such as wings,
fuselages, vertical tails, etc.  For example, wings are
defined by specifying planform area, aspect ratio,
thickness-to-chord ratio, taper ratio, sweep angle and
dihedral; fuselages by specifying length, cross-
sectional area at various points along the longitudinal
axis of the fuselage, and width-to-height ratio of each
defined cross-sections.  Required geometric data is
entered manually via the keyboard with limited
graphical interface.  The process is prone to error and
is difficult to duplicate or repeat accurately.  In
addition, changes to the vehicle configuration require a
new model to be created in APAS because component
geometric parameters cannot be altered at the
keyboard once created.

Analysis in APAS is accomplished by defining
specific flight conditions and vehicle attitude at which
to calculate the aerodynamic force coefficients
(typically lift, drag, and pitching moment).  The
required inputs are Mach number, angle of attack, flap
deflection angle, altitude, skin friction coefficient and
sideslip angle.  For advanced launch vehicles, the user
typically defines a range of 10 - 15 Mach number and
altitude pairs from liftoff to orbit that model the
vehicle’s expected flight path. Aerodynamic
coefficients are then calculated at 8 - 12 angles of
attack (or sideslip angles) for each flight condition.
The result is a very large set of tabular aerodynamic
data (over 100 data points for each coefficient table).
The entire aerodynamic dataset must be regenerated
each time the overall vehicle geometry changes other
than photographically.

Two separate analysis codes  are used to perform
the actual flow calculations.  The first is Unified
Distributed Panel (UDP) which is a vortex paneling
code capable of analyzing subsonic and low
supersonic flow conditions.  The second code is
Hypersonic Arbitrary Body Program (HABP) which,
as the name suggests, is used for hypersonic flow
conditions and is based on local surface inclination
methods in which pressure coefficients are calculated.

APAS is inherently a difficult program to use due
to its outdated user interface and cumbersome
interactive format for creating and modifying a vehicle
model.  For each geometry change, regenerating the
aerodynamic database might take an experienced user

4 - 6 hours. These characteristics make integrating
APAS into a design optimization process wherein the
vehicle geometry is allowed to change very difficult.
Because of this, the valuable analysis capability of
APAS is often under-utilized at the conceptual design
stage of an aerospace vehicle.

Multidisciplinary Design Optimization Effort

In conceptual design, the order of execution of the
various disciplines is typically similar to what is shown
in Figure 1, below.  Here the design structure matrix
serves to organize the flow of information from one
discipline to another.  The “inputs” from propulsion to
trajectory optimization, for example, are shown as
lines above and to the right of the boxes, and the
“outputs,” or feedback, are shown as lines below and
to the left of the boxes.

Trajectory

Aerodynamics

Propulsion

Weights &
Sizing

Operations

Economics

Aeroheating

Figure 1 – Design Structure Matrix

Overall vehicle layout and configuration is
determined at the aerodynamic design and analysis
stage, whereupon propulsion, trajectory, aeroheating
and weights and sizing are carried out in a tightly
coupled, iterative process.  Aerodynamics is typically
left out of the loop once initial analysis has been
performed due to the time constraints involved in
recreating geometric models in APAS.  Once the
aerodynamic analysis has been done, the vehicle is
only permitted to scale up or down photographically
which ensures that the non-dimensional aerodynamic
force coefficients remain unchanged.  Although this
facilitates a rapid design process, it does not contribute
to an overall optimized vehicle design since the
aerodynamic coefficients are set at the beginning of the
process and not allowed to vary as design knowledge
increases.

In order to alleviate some of the problems
associated with APAS, to make better use of its
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capabilities, and to facilitate its integration into an
MDO environment, this research project was
undertaken with two goals in mind.  The first goal was
to develop a method of transforming APAS datasets
into a parametric model for calculation of the
aerodynamic coefficients for a single unique geometry,
and the second goal was to extend this method to
capture the effects of changes in vehicle geometry.

Using the parametric equations to approximate a
vehicle’s aerodynamics and the change in
aerodynamics with change in geometry, a gradient-
based optimizer would be able to determine the
optimum geometric parameters given a desired
objective function.  For example, the methods outlined
below were used to capture the effect of changing the
wing aspect ratio.  An optimizer could then vary the
aspect ratio and determine the force coefficients
according to the parametric equations rather than
requiring actual APAS analysis of several manually-
created models each with a unique aspect ratio.
Extended to several geometric parameters, this would
reduce the time and effort required to optimize a
conceptual-level vehicle design.

One example of an optimization tool is NASA’s
Program to Optimize Simulated Trajectories (POST),
a tool commonly used to perform the trajectory
analysis and optimization for aerospace vehicles.
POST requires as inputs the APAS tables of lift, drag
and moment at specific Mach numbers, which it uses
in calculating drag losses and lift forces along the
vehicle’s trajectory.  In calculating the lift and drag
forces throughout the trajectory, POST interpolates
between explicit data points given in the aerodynamic
tables as needed.

Given the parametric model developed here, the
aerodynamic tables may be replaced with parametric
equations.  This will allow POST to internally
calculate the force coefficients at run-time as opposed
to repeatedly “looking up” values in a table, reducing
CPU time.  In addition, POST may use its internal
optimization routines to vary the geometric parameters
for which the parametric model was developed and
calculate the optimum values of those parameters for a
given objective function (such as minimum vehicle dry
weight).

Use of the parametric model would thus provide a
method of rapidly performing multiple design
iterations in which vehicle geometry is changed,
essentially bringing aerodynamics back “in the loop,”
i.e. including APAS analysis within a multi-
disciplinary design optimization environment.

DEVELOPMENT OF MODEL

Test Vehicle

For this research effort, a representative aerospace
vehicle designed by a team of graduate students at
Georgia Tech was used as a test vehicle.  This vehicle,
named Polaris, is a rocket-powered reusable
commercial launch vehicle designed for the space
tourism market.   It has a winged body configuration
allowing horizontal take-off and landing, a fuselage
fineness ratio of 8, swept wing (leading edge sweep
angle = 55°) with an aspect ratio of 1.86, and single
vertical tail.  A three-dimensional CAD model of the
vehicle was produced using the I-DEAS solid
modeling package.  This model is shown in Figure 2.

Figure 2 - Polaris launch vehicle

APAS Analysis

The aerodynamic analysis for the test vehicle was
performed for a sub-orbital trajectory.  The flight path
was assumed to follow a trajectory from sea level to an
altitude of about 250,000 feet, from Mach 0.3 at liftoff
to Mach 18.0 at altitude.  APAS was used to calculate
the force coefficients for fourteen particular Mach
numbers in the specified range, at nine angles of attack
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for each Mach number, ranging from -15 degrees to
+15 degrees.   Thus a total of 126 data points for each
force coefficient were obtained for use in the basic
model.  From this dataset, parametric equations were
developed to calculate lift and drag as a function of
Mach number.

Additional models of Polaris were generated in
APAS in which the wing aspect ratio was varied.  In
this case, analysis was performed for models with wing
aspect ratios of 1.5, 2.0 and 2.5 (in addition to the 1.86
AR wing).  In total, 504 data points were generated for
each force coefficient in order to carry out the
regression analysis.

The appropriate form of the equations used to
calculate lift and drag coefficients may be seen by
plotting Cl vs. angle of attack and Cl vs. Cd (drag
polar).  These plots are shown for the test vehicle at
three different Mach numbers: 0.3, 1.5 and 8.0.

Lift Curve Slope

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-15 -10 -5 0 5 10 15

Angle of Attack (deg.)

L
if

t 
C

o
ef

fi
ci

en
t

Mach 0.3

Mach 1.5

Mach 8.0

Figure 3 - Lift Curve Slope

Drag Polar
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Figure 4 - Drag Polar

As indicated in the plot of lift curve slope (Figure
3), the relationship between lift and angle of attack is
nearly linear for a given Mach number, hence the
following equation applies:

           Cl = Clo + S * α            (1)

where Clo is the lift coefficient at an angle of attack of
zero degrees, S is the lift slope curve parameter and α
is the angle of attack (either degrees or radians may be
used in the regression; here angles in radians were
used).

For a given Mach number, the relationship
between lift and drag is non-linear, and the shape of
the curves in the graph above suggests the use of an
equation of the form:

           Cd = Cdo + K * Cl
2            (2)

or, alternately:

           Cd = Cdo + K1 * Cl
 + K2 * Cl

2 (3)

where Cdo is the drag coefficient corresponding to zero
lift condition and K, K1 and K2 are parameters.

In these two equations, the constants Clo, Cdo, K,
and S expected in a conventional single Mach number
analysis are replaced with quadratic or cubic
polynomial equations that vary these coefficients with
Mach number, M. For example, the equation relating
K as a function of Mach number may take the form,

K = K(M) = β0 + β1*M + β2*M2 (4)

Similar polynomial equations can be determined
for Clo, Cdo and S.  In this way, the simple relationships
of equations (1) and (2) can be extended to model the
entire flight regime.

The second goal of this research was to extend the
multivariable regression analysis technique described
above to include geometric variables in the parametric
equations. For example, an equation was derived to
calculate Cl and Cd over the entire flight regime as a
function of the wing aspect ratio.  APAS was used to
generate tables of lift and drag coefficients for three
different aspect ratios. Then, using the basic
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relationships in equations (1) and (2), a new version of
equation (4) was determined having the form,

K(M) = β0 + β1*M + β2*AR + β3*M*AR + β4*AR2+β5*M2 (5)

where AR represents wing aspect ratio. Quadratic
polynomial equations such as this are commonly used
in regression analysis to capture the first and second
order effect of each variable as well as the interaction
effect between the two variables.

Regression Analysis

To develop the desired parametric equations,
methods of regression analysis were used to model the
datasets generated in APAS.  Specifically, the Least
Squares method was employed to determine the
relations between Mach number, lift and drag.  The
APAS data was imported into a Microsoft Excel
spreadsheet and the regression analysis was carried out
using Excel’s built-in regression tool.

Equations of the form of (1) and (2) (and equation
(3) when including both first and second order terms
produced more accurate results) were derived for the
set of Cl and Cd coefficients corresponding to each
Mach number at which the test vehicle was analyzed in
APAS.  In other words, a regression was done at each
Mach number with α as the independent variable and
Cl and Cd as response variables.  From this, values of
Clo, Cdo, S and K were obtained at each Mach number.

The values of Clo, Cdo, S and K were then used to
perform a new regression for each of these parameters
against Mach number, i.e. using Mach number as the
independent variable and K and S as response
variables.  This regression permitted the determination
of suitable equations describing the relationship
between these four parameters and Mach number.

As discussed above, two separate codes, UDP and
HABP, are used in conjunction with APAS to
calculate the force coefficients for the subsonic and
hypersonic regimes.  Unfortunately, neither one is well
suited for the transonic regime.  UDP, a code based on
a vortex panel method and slender body theory, is
valid for linearized subsonic and low supersonic flow.
HABP is valid for hypersonic flow, essentially for
speeds above Mach 4, since it is based on various

impact methods such as Newton’s sine squared law.
Thus, the region between Mach 2 and Mach 4 is
difficult to model accurately with APAS.  Typically,
UDP is used up to about Mach 1.5 - 2.0, and HABP is
used above Mach 2.0 to essentially “split the
difference.”

Also, in order to model the mathematical
discontinuity that occurs at Mach 1, two separate
parametric models were developed.  A complete set of
parametric equations was derived for subsonic flow
and a second set was derived for Mach numbers
greater than 1.0.  The resulting equations for each flow
regime are given below.

RESULTS

Basic Geometry over Mach Number Range

The equations developed for Polaris in the
subsonic flow regime using the regression analysis
techniques are as follows:

Subsonic Flow

Clo = 0.153 – 0.006*M + 0.01*M2            (6)
Cl = Clo + S * α             (7)
S = 2.293 – 0.666*M + 1.071*M2            (8)
Cdo = 0.014 - 0.0002*M – 0.0016*M2            (9)
K1 = -0.047 - 0.003*M +0.005*M2          (10)
K2 = 0.177 + 0.005*M - 0.011*M2          (11)
Cd = Cdo + K1*Cl + K2*Cl

2          (12)

The efficiency of each of these equations is shown
graphically below in Figures 5 - 9.  In each plot, the
actual data points generated in APAS are shown in
bold lines and the fitted curves are shown in dashed
lines.

The coefficient of determination, R2, is also
shown for each curve fit.  The coefficient of
determination is an indicator of the measure of
variability in the response variable that is accounted
for by the predictor variable(s), and thus provides a
measure of the validity of the regression model used.
A coefficient of determination equal to one indicates a
perfect fit of the equation to the data (all data points
fall on the regression line) and a value equal to zero
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indicates no relation whatsoever between the response
variable and predictor variable(s).
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Figure 5 – Clo Curve Fit
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Figure 6 - Cdo Curve Fit
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Figure 7 – S Parameter Curve Fit
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Figure 8 - K1 Parameter Curve Fit
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Figure 9 – K2 Parameter Curve Fit

As the plots show, excellent curve fits were
obtained for all of the parameters as a function of
Mach number.  This indicates that the regression
model used accurately represents the APAS tabular
data and provides a means of accurately calculating the
aerodynamic coefficients for the test vehicle.

 The equations developed for the test vehicle in
the supersonic flow regime are the following:

Supersonic Flow

Clo = 0.214 – 0.082*M + 0.008* M2 – 0.0002*M3  (13)
Cl = Clo + S * α           (14)
S = 3.214*M-0.639          (15)
Cdo = 0.04 – 0.005*M + 0.0002*M2          (16)
K = -0.291 + 0.396*M – 0.029*M2 + 0.0007*M3  (17)
Cd = Cdo + K * Cl

2          (18)
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The curve fit for each of these equations is shown
graphically below.
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Figure 10 - Clo Curve Fit
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Figure 11 – Cdo Curve Fit
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Figure 12 – S Parameter Curve Fit
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Figure 13 – K Parameter Curve Fit

As the above plots show, excellent curve fits were
obtained for the S and K parameters in the supersonic
flow model.  However, it was somewhat difficult
fitting a curve to the lift and drag coefficient data due
to the different manner in which these values are
calculated in UDP and HABP.  The break in the data
at Mach 2 where the analysis tool used changes from
UDP to HABP is obvious.

For example, the jump in Cdo at Mach 2 that is
seen in Figure 11 is not an actual reflection of
conditions encountered in flight, but simply a result of
the different analysis method employed by the tool.  In
this case in particular, the smooth fitted curve may
actually give a more accurate reflection of flight
conditions.

Lift Coefficient Curve Fit Error
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Figure 14 – Lift Coefficient Error

The error between the fitted curves and explicit
APAS data was determined also in order to evaluate
the accuracy of the parametric equations. The error in
lift and drag coefficients at both subsonic and
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supersonic flow conditions  is graphically illustrated in
Figures 14 and 15.

Drag Coefficient Curve Fit Error
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Figure 15 – Drag Coefficient Error

As may be seen in the above plots, the curve fits
for subsonic flow velocities are extremely accurate.

The error between the fitted data and APAS data is on
the order of 1% at a given data point.  The results for
supersonic flow conditions are also quite accurate for
lift coefficient.  The supersonic drag coefficient curve
fit is less accurate, with most of the error occurring
primarily at negative angles of attack.

Wing Aspect Ratio

The techniques discussed above were applied to
changing the aspect ratio of the test vehicle’s wing.
Three additional models were created in APAS, all
identical except for aspect ratio. Aspect ratios of 1.5,
2.0 and 2.5 were used, and parametric equations were
then developed to calculate Clo, Cdo, Cl, Cd, S, K1 and
K2 as a function of wing aspect ratio and Mach
number.  The resulting equations are shown here:

Subsonic Flow
 Clo = 0.11 – 0.013*M + 0.028*AR – 0.0003*M*AR + 0.0063*AR2 + 0.0234*M2                      (19)
 Cdo = 0.104 – 0.005*M + 0.002*AR – 0.0001*M*AR - 0.0004*AR2 + 0.0027*M2                                 (20)
 S = -0.664 – 1.606*M + 2.413*AR + 0.429*M*AR - 0.46*AR2 + 1.046*M2                 (21)
 K1 = -0.049 + 0.0023*M + 0.029*AR - 0.002*M*AR - 0.005*AR2 + 0.004*M2                        (22)
 K2 = 0.62 – 0.018*M - 0.34*AR + 0.014*M*AR + 0.058*AR2 - 0.018*M2                 (23)

Supersonic Flow
 Clo = 0.099 – 0.022*M - 0.013*AR – 0.0002*M*AR + 0.004*AR2 + 0.001*M2                         (24)
 Cdo = 0.047 – 0.071*M + 0.016*AR + 0.0002*M*AR - 0.0006*AR2 + 0.0004*M2                      (25)
 S = 0.747 – 0.339*M + 1.752*AR - 0.051*M*AR - 0.263*AR2 + 0.018*M2                 (26)
 K1 = -0.026 - 0.0005*M + 0.012*AR - 0.002*M*AR - 0.002*AR2 + 0.00001*M2                 (27)
 K2 = 0.268 + 0.262*M - 0.291*AR - 0.002*M*AR + 0.057*AR2 - 0.01*M2         (28)

The accuracy of the above in the subsonic flow
regime is again very good.  However, the error of the
supersonic equations is considerable for the lift
coefficients.  This is shown in Figures 16 and 17,
where the force coefficients were calculated using an
aspect ratio of 2.0.  The error between fitted data
points and APAS data points for lift coefficients was
as high as 38%.  In contrast, the accuracy of the
equations are good for supersonic drag coefficients,
with the error between a given fitted data point and the
corresponding APAS data point being about 11% on
average.  This is an interesting result given that the
drag coefficients are calculated from the lift
coefficients.

FUTURE WORK

Work is currently underway to develop a tool that
would automatically carry out the regression analysis
on APAS datasets.  This tool will be written in Fortran
and will allow the user to supply an APAS output file
as an input, then receive a set of parametric equations
as output.  The Fortran code will use the regression
model (i.e. equations of the form shown above)
developed through this research effort.  The Fortran
code will rely on matrix operations and manipulation
to determine the coefficients (S, K1, K2, βo, β1, etc.) in
each of the parametric equations.
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Lift Coefficient Curve Fit Error

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

-15 -10 -5 0 5 10 15

angle of attack

C
l

M0.6 f it

M0.6 APAS

M6 fit

M6 APAS

Figure 16 - Lift Coefficient Error
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Figure 17 - Drag Coefficient Error

Once complete, this tool will  be used to perform
optimization studies of a reusable launch vehicle,
Hyperion, designed at Georgia Tech.  Hyperion is a
horizontal take-off, horizontal landing, advanced
aerospace vehicle using rocket-based combined cycle
engines.  The aerodynamic regression tool will
specifically be used to determine the optimum nose
cone angle of the vehicle.

SUMMARY

This research has demonstrated that aerodynamic
datasets generated in APAS for a given aerospace
vehicle may be successfully reduced to a set of
parametric equations through methods of linear
regression.  While the resulting accuracy of the

parametric equations is very good for dataset
transformations involving force coefficients as a
function of Mach number only, the accuracy of the
equations generated by fitting force coefficients as a
function of Mach number and a specific geometric
parameter (wing aspect ratio in this case) is less
accurate.  It appears from this research that regression
analysis is perhaps not applicable to the latter case, at
least not using a regression model of the form of
equation (5).  Further research would be required to
determine a more suitable model, perhaps using
additional predictor variables, in order to obtain
parametric equations whose accuracy is within an
acceptable error range.
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