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ABSTRACT

Following NASA’s lead in Intelligent Synthesis
Environments, advanced vehicle design communities
are beginning to explore automated, distributed
computing frameworks for integrating disciplinary
analysis tools. These design frameworks allow
collaborative design teams to take advantage of
distributed expertise and existing legacy codes, while
retaining some of the automation and optimization
capability of monolithic synthesis tools and simple
subroutines. A key capability in making these
frameworks a reality will be the ability to integrate and
access contributing analysis codes running on different
computing platforms and in various remote locations.

This paper reports a cross-platform technique for
integrating Microsoft Excel® spreadsheets into UNIX-
based computing frameworks. Specifically, a
combination of UNIX shell scripts, telnet connections
via the Internet, and Applescript® is used to remotely
execute an Excel spreadsheet hosted on a Macintosh®
computer and return results to a executive program
running on a UNIX workstation. Sample scripts and
integration procedures are outlined. Examples are given
in which the technique is used to remotely drive a
launch vehicle costing spreadsheet under the control of
grid search and genetic algorithm optimization
techniques hosted on a UNIX workstation. Advantages
and disadvantages of the present technique are
discussed.

BACKGROUND

NASA is taking a lead role in developing advanced
engineering environments for complex aerospace
systems as part of its Intelligent Synthesis
Environment (ISE) and Collaborative Engineering
Environment (CEE) initiatives. The goals are to reduce
design cycle times, increase the fidelity of information
available early in the design, and reduce life cost of the
system by optimizing the initial design and avoiding
costly design changes during the latter stages of the
process. Key elements of these new initiative are
infrastructures for distributed collaboration, rapid
synthesis and simulation tools, nontraditional analysis
and optimization methods, and immersive simulation
environments1,2. Future infrastructures for distributed
collaboration will take advantage of high speed
networks to link people and computers at
geographically distributed design centers of excellence.
Product Design Centers (PDC) and Concept Design
Centers (CDC) are already being setup at various
NASA field centers as a precursor to this new
collaborative environment.

In today’s conceptual aerospace design
environments, system synthesis is typically performed
by monolithic synthesis codes or by manual iteration
among a group of higher fidelity legacy codes operated
by a team of disciplinary experts. Monolithic
synthesis tools are highly integrated, standalone
programs that contain a number of internal modules or
subroutines for treating each disciplines. While
reasonably fast, monolithic tools do not benefit from
the creative input of a larger design team and typically
make compromises in analysis detail. That is, they are
not truly collaborative. On the other extreme, design
teams operating in a manually iterated synthesis
environment have the advantage of using higher
fidelity legacy codes, but data exchange between

                                                                        
† - Assistant Professor, School of Aerospace

Engineering, Senior member AIAA.
†† -  Graduate Research Assistant, School of Aerospace

Engineering, Student member AIAA.

Copyright ©1998 by John R. Olds and Kimberly B.
Steadman. Published by the American Institute of
Aeronautics and Astronautics with permission.



AIAA 98-4743

2

individual disciplinary analyses is often slow and
cumbersome. For example, finite element structural
analysis and computational fluid dynamics analysis
may be conducted by different engineers on different
computing platforms in different states. As a result,
designs are difficult to fully optimize or even
completely iterate to convergence in some cases.

New computational frameworks for collaborative
design promise to combine the best features of
monolithic synthesis tools and manually iterated
design environments. Small custom pre- and post-
processing codes called ‘wrappers’ are written to
automate much of the data entry and data extraction
from existing (legacy) or new high fidelity disciplinary
analysis tools. Once wrapped, these analysis tools
become ‘agents’ to be integrated into the overall design
framework. Disciplinary experts remain involved in
the design process by setting up analysis tools,
creating and modifying required wrappers, validating
data ranges during the design process, and monitoring
their own analysis results.

Computational frameworks often use scripting and
telnet and remote shell commands via the Internet to
allow the agents to be resident on various computing
platforms and in various geographical locations (e.g.
various NASA field center CDC’s and PDC’s). The
design process can be managed by a World Wide Web-
based or custom executive program that allows the
designer to remotely execute each contributing
analysis, perform multidisciplinary design
optimization, view key data, and monitor the status of
the design process. Taken together the analysis agents,
the executive program, the framework connecting
them, and associated databases and scripts are called a
design architecture. In practice, the terms architecture
and framework are often used interchangeably. Mature,
robust design architectures and frameworks will be a
key component of NASA’s Intelligent Synthesis
Environment. Several research teams and private
companies are actively working in this area.

INTRODUCTION

The Space Systems Design Lab (SSDL) at
Georgia Tech is one component of the school’s Center
for Aerospace Systems Analysis (CASA). The focus

of the SSDL is advancing conceptual design of space
systems — particularly reusable launch vehicles — by
developing new design-oriented disciplinary analysis
tools, new design processes, multidisciplinary design
optimization techniques, and computational
frameworks for collaborative design. Graduate students
participate in various space systems design projects
(design applications) and take advantage of
collaborative and concurrent engineering methods.

A current research goal at SSDL is to develop and
evaluate a computational, collaborative design
architecture for launch vehicle design in a research
environment. To parallel the needs of future design
teams, the SSDL framework will contain
geographically distributed agents, heterogeneous
computing platforms (UNIX, Mac, Wintel), and a
variety of legacy codes (custom Fortran and C codes,
proprietary executables, and desktop computer-based
spreadsheets). A companion paper to this one also
given at this conference (reference 3) describes the
current state of the SSDL architecture, includes results
from applications examined to date, and summarizes a
comparison between a web-based interface and a
custom executive developed elsewhere at Georgia Tech
called IMAGE4. The research reported in the present
paper was a necessary precursor to many of those
applications.

In the advanced space vehicle design community,
many engineers rely on Microsoft Excel® spreadsheets
to conduct their disciplinary analyses. Notable among
the disciplines using Excel spreadsheets are cost
estimation, ground operations, and mass properties
estimation. These spreadsheets can be custom
applications or accepted tools used throughout the
disciplinary community, and they are almost always
executed on the analyst’s own desktop personal
computer (either Macintosh® or PC). However,
disciplines such as trajectory optimization,
aerodynamic analysis, and system-level optimization
are often performed on UNIX workstations.

To integrate Excel spreadsheets into future
collaborative design frameworks, a new wrapper must
be developed and tested that enables cross-platform data
exchange. This spreadsheet agent can subsequently be
used as a ‘building block’ in more complex
frameworks. The goal of the present research was
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therefore to develop the required scripts and wrappers to
demonstrate cross-platform execution and optimization
of a typical Microsoft Excel spreadsheet running
remotely on a personal computer when driven by a
UNIX workstation. Since a cross-platform technique
for integrating remote Wintel-based PC codes has
already been described by previous researchers5, the
present research only addressed Excel spreadsheets
running on Macintosh computers. The resultant
technique and scripts are described below. Two
example optimization problems are also described.

APPROACH

Our approach depends on three key components,
1) Applescript to automate execution of Excel on the
Macintosh, 2) ‘Expect’ shell scripting on the UNIX
workstation to control the data exchange, and 3) Script
Daemon® on the Macintosh to accept a telnet
connection and route Applescript commands (figure 1).
This approach makes use of existing capabilities, but
does require some amount of custom programming to
complete the integration. The authors do not suggest
that this is the only integration approach or the best,
but it has proven useful in subsequent architecture
work in the SSDL.

Software  Req’d :
telnet
expect shell

Workstation (UNIX) Macintosh (Mac OS)

Software  Req’d :
Applescript
Script Daemon
Microsoft Excel

Internet

Fig. 1. Cross-platform Framework Investigated

Applescript

Applescript is a scripting language that is included
with the Macintosh operating system. It allows the
user to script a series of commands to control the
operation of scriptable applications, including
Microsoft Excel. Applescript commands exist for
opening and closing a given spreadsheet, changing
workbooks, entering data in individual cells,
recalculating iterative results, and extracting data from

resultant cells. A sample script written in Applescript
is shown below. It opens Microsoft Excel, opens a
spreadsheet, and returns the value of a certain cell.
Application keywords appear in bold type.

tell application "Finder"
activate
select file "Microsoft Excel" of folder "Microsoft
  Excel 5" of folder "MS Office" of startup disk
open selection

end tell
tell application "Microsoft Excel"

Activate
Open "Aldrin:Hyperion W&S 20k LEO"
Select Range "R4C3"

 set MR to Value of ActiveCell
set result to MR
return  result
Close ActiveWorkbook

end tell

In the sample script above, the ‘Select Range’
command selects a specified cell of the spreadsheet.
Then the ‘set’ command assigns the value or number
contained in that cell to a variable name specified in
the script. In this case it sets a variable ‘MR’ to the
value of cell ‘R4C3’ (row 4 column 3). Similar
commands can be used to input values into cells.

While the syntax of Applescript is relatively easy
to learn, the task of writing Applescripts is made even
easier though the use a free companion utility called
Script Editor. Script Editor has a ‘record’ function that
allows the user to manually perform an operation
while the Script Editor automatically generates the
associated Applescript code. Once the code has been
generated, it can be edited or modified as necessary in
the Script Editor. Applescripts can be executed in a
line-by-line interpreted fashion (inside Script Editor) or
can be saved as a run-only executable mini-application
independent of the Script Editor. For ordinary uses,
Applescripts are resident on a local Macintosh
computer and are used to simplify repetitious tasks on
that same computer.

The standard set Applescript commands are fairly
complete and the majority of Excel functions can be
accessed via those Applescript commands. For more
difficult operations, a third-party commercial product
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called PreFab Player® adds additional functionality to
Applescript. The authors have found PreFab Player
necessary to execute several functions in the newest
version of Microsoft Excel (e.g. accessing Excel’s
built-in Solver tool or typing individual keystrokes).
PreFab Player is a background application that can be
activated from within Applescript to perform a variety
of intricate menu, button, and keyboard commands.

Expect Shell Scripting

The ‘Expect’ subsystem is a free command shell
available for UNIX workstations similar to the more
standard k shell or c shell. It can either be a command
line interface to the workstation, or can be used as a
UNIX scripting language. Unlike other more common
shells, Expect (as the name implies) has the built-in
ability to wait for certain prompts or text strings, and
then respond with a return string or character. Hence it
is well suited to scripting a process that typically
requires some user interface (e.g. a login process or a
text based analysis tool with several prompts). A
sample Expect script is given below. It logs onto a
remote Macintosh using a telnet process, then sends a
set of Applescript commands, and writes a result to an
output file.

#!/usr/bin/expect –f
set infile “ssdl.inp”
source $infile
spawn –noecho telnet $mac_host

expect {Username}
send $user\n”
stty -echo
expect {Password*}
expect -timeout 1
send “$password\n”
stty –echo

expect {>*}
send “tell application \”Microsoft Excel\”\n”
send “…more Applescript commands…\n”
expect {>*}
send “$result_abbr\n”

set result “[lrange $expect_out(buffer) 1 1]”
puts $outfile_id “$result”
send “/quit\n”

In this script, string variables in $bold are
defined in the input control file, ssdl.inp. The pairs of
‘expect’ and ‘send’ commands serve as listen and
respond commands throughout the remote telnet
session. After the script is remotely executed on the
Macintosh computer, the desired result variable is
forced to be echoed to the Expect script buffer where it
is captured and written to an output file. This script
can be saved as a text file and executed from the
command line of a UNIX workstation by typing its
filename.

Script Daemon (for the Macintosh)

As discussed earlier, Applescript works well on a
local Macintosh, but for the cross-platform
environment envisioned in the current research, a way
was needed to compose Applescript commands on the
UNIX workstation and then send them to the Mac for
execution. A small piece of software called [Peter’s]
Script Daemon does exactly that. Script Daemon is
available on the Internet for public download from a
variety of Macintosh users group sites. It is a small
application that runs in the background on a networked
Macintosh. It monitors the telnet port for connection
attempts and validates the user with a username and
password (the same username and password that allows
owner-level access to Appleshare functions). Once a
remote user is logged in, Script Daemon accepts
Applescript commands and can access any scriptable
application that has been loaded into memory. The
following non-Applescript commands are also accepted
by the Script Daemon6.

/HELP - list the commands
/EXEC - allows you to enter a multi-line

Applescript script. A period (.) typed on a line
by itself signals the end of the script.

/QUIT - closes the telnet connection

In particular, the /EXEC command allows multi-line
scripts to be ‘collected’ by Script Daemon one line at a
time until a single period (.) is set on a line by itself.
At that point, the entire script is executed and the
outputs are returned. The result is completely remote
operation of a Macintosh Excel spreadsheet from any
host computer (anywhere on the Internet) that can
initiate a telnet connection.
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Integrating the Components

For the UNIX-Macintosh framework described
here, a set of Applescript commands are first created
for Excel to serve as a template for remote execution.
The disciplinary expert in charge of the spreadsheet-
based analysis often provides this file based on his or
her normal data entry tasks. The template Applescript
file is then transferred to the UNIX workstation and
integrated into the Expect script. Input variable values
(originally just dummy placeholders in the
Applescript) are replaced with input variable names
that will be    dynamically       replaced        with       new       numerical
input        data    as the design progresses. Once this
preparatory work is complete, cross-platform execution
of the spreadsheet is possible. The Applescript and
Expect scripts are pre- and post-processing wrappers
for the Excel spreadsheet. Taken together, they serve as
a remote agent for disciplinary analysis.

To execute the spreadsheet agent from the UNIX
workstation, the user simply creates the input file
(here, ssdl.inp) with the appropriate host, username,
password data as well as the current values of the
design variables to be remotely entered into the
spreadsheet. The Expect script is then executed from
the UNIX command line. Expect opens a telnet
session to the Macintosh (specifically, the Script
Daemon application), sends the individual Applescript
lines from the template (while substituting any new
variable values), waits for Excel to perform the
analysis, and collects the results that are returned. The
spreadsheet results are then available in the output file
on the workstation. If the number of input variables is
limited, the Expect script can be modified to accept
inputs directly from the command line (e.g. “runscript
400 4.5 1500 6.75”). Alternately, the Expect script
can be called as an agent in a larger and more complex
collaborative architecture — even from a web-based
executive.

APPLICATIONS

To test and evaluate the integration methods
proposed on a relevant problem, two sample
frameworks were created. The disciplinary analysis
modeled in both cases was the launch vehicle life cycle
cost and economics discipline. An existing Excel-based

analysis tool called CABAM was used as the
spreadsheet model. In the first application, a modified
Expect script was used to perform a full factorial grid
search of four key price values in CABAM and record
the results. In the second case, the CABAM agent was
‘called’ from within a Genetic Algorithm (GA)
program on the workstation to optimize the same four
price values.

Both problems required some amount of custom
Expect programming on the UNIX workstation, but
the CABAM spreadsheet and the Applescript part of
the wrapper remained the same in both cases. It
typically took even a skilled programmer 2-6 hours to
configure the wrapper scripts for each application. This
custom setup time is a minor drawback of the
proposed integration technique.

CABAM

CABAM (Cost and Business Analysis Module) is
an Excel spreadsheet tool developed at Georgia Tech to
perform life cycle cost and revenue simulations for
advanced launch vehicle concepts7. Like other cost
models used in advanced design, it uses weight-based
cost estimating relationships to determine much of the
non-recurring cost. Facilities, operations costs,
financing costs are all determined using cost
estimating algorithms. To determine potential revenue,
CABAM combines a user-input pricing strategy with
price-elastic traffic models to determine the number of
flights the vehicle flies and the revenue per flight. The
cost stream and the revenue stream are combined and
(after taxes are assessed) used to predict key economic
indicators for the simulation like Internal Rate of
Return (IRR), Net Present Value (NPV), breakeven
year, and maximum debt.

CABAM requires a number of initial inputs such
as vehicle component weights, complexity factors,
financing rates and debt-to-equity funding ratios. Once
the cost analyst as set up CABAM for a given launch
vehicle, a typical task is to adjust the pricing strategy
to maximize the economic performance (typically
maximum IRR). Increasing the launch prices offered to
the market stifles market growth and loses market
share to competition. Decreasing launch prices reduces
profit margin for each flight. Selecting the best prices
is a discipline-level optimization problem within
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CABAM. As discussed in reference 7, the gradient-
based built-in Solver tool in Microsoft Excel does not
perform well for globally optimizing the prices within
CABAM due to the discrete and non-smooth nature of
the optimization space. For example, a very small
change in the price of delivering a pound of payload to
orbit can result in an discontinuous change in required
vehicle fleet size from 3 to 4 vehicles.

The CABAM model used in this optimization is
customized for the Argus vehicle. Argus is a next
generation launch vehicle with Maglifter launch
assist8. The Maglifter is a magnetically levitated track
and sled that provides 800 fps of horizontal velocity
launch assist at takeoff. Argus has two rocket-based
combined-cycle engines for main propulsion and uses
lightweight materials and subsystems. Argus is
capable of delivering 20,000 lb. to low earth orbit, or
11,100 lb. to the International Space Station orbit. It
can also be configured with a crew transport module to
deliver 6 passengers to the Space Station (fig. 2).

Fig. 2. Argus Launch Vehicle

The Argus CABAM model is set up to accept four
different prices corresponding to the four different price
elastic market models it is capable of addressing. They
include government cargo, government passenger,
commercial cargo, and commercial passenger rates.
Because they all affect total flight rate, the prices are
highly interrelated. Note that the commercial and U.S.
government markets for cargo and passengers/tourists
are treated separately because the government markets
are relatively less price-elastic than future commercial
markets. Prices are assumed to be per pound of cargo
delivered to space station in the cargo cases or price per
passenger in the case of the passenger missions.
Previous trail and error methods have identified the
price ranges shown in Table 1 to yield the most
attractive IRR’s for Argus.

Table 1. Price Ranges of Interest for Argus

Market Price Range

government cargo $1300 - 1850 ($/lb.)

government passenger $6 - 9 M ($/passenger)

commercial cargo $700 – 1200 ($/lb.)

commercial passenger $0.3 - 1.3 M ($/passenger)

Grid Search

The grid search is a simple brute force
optimization strategy. It evaluates every combination
of the chosen design variables within a given range and
resolution (i.e. a full factorial search). While expected
to be very computational inefficient, the exhaustive
grid search is simple to program and by searching the
entire design space in a structured way, there is a high
confidence in finding a true, global optimum rather
than a local optimum. This is an important
consideration given the known non-smooth nature of
the CABAM model. Once the region of the optimum
IRR is found using the grid search, the result can be
locally fined tuned using Excel’s built-in Solver
optimizer.

Using the integration techniques discussed above,
the grid search application is implemented as follows
(Fig. 3). The basic Expect script structure was
modified to contain four nested loops to increment the
four price variables over the range of interest. At the
center of the nested loop, an Applescript template is
updated with the latest price variable values and sent
line-by-line to a host Macintosh and CABAM (via
telnet and Script Daemon). With Applescript, the new
prices are entered into CABAM, the resultant IRR is
calculated, and the IRR result is returned to Expect
script running on the UNIX workstation. The current
price variables and the IRR are written to a text file
and the loop continues. The final output file will
contain the results of all combinations of the four
design variables. To save time, the actual telnet and
user login process is placed before the nested loops in
Expect so the spreadsheet is left open during the grid
search. After the loops are completed, the telnet
session to the Mac is closed. Depending on the speed
of the Macintosh used, the process of sending four
prices to the CABAM agent and returning the result
may take 2 to 8 seconds. The authors are aware that
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this is not the most straightforward or the  fastest way
to implement a grid search on an Excel spreadsheet (for
example, a Visual Basic® program was also written
directly in Excel to perform the same task), but one of
the goals of this implementation was to demonstrate
the cross-platform integration and execution of the
agent, and to validate it for future, more complex
collaborative frameworks.

Grid Search
expect script

CABAM

• Telnets to Macintosh
• Updates CABAM with new values of design variables
• Gets the IRR and stores it in an output file 

Fig. 3. Grid Search with CABAM

Genetic Algorithm

The Genetic Algorithm (GA) is a more complex
global optimization method that is designed to work
similar to Darwin's theory of survival of the fittest. It
is hypothesized that the GA will more efficiently
explore the CABAM price design space and arrive at an
IRR solution similar to that produced by the grid
search, but in a much shorter time. GA begins with a
random set of candidate locations in the design space.
In this case, the candidate locations are made up of
random combinations of the four market prices (each
limited to its preferred range from Table 1). The initial
candidates comprise a ‘population’ of candidates.
Typical population sizes for a problem of this size is
10 – 30 different candidates. This value does not
change throughout an optimization. The process of a
Genetic Algorithm is to successively improve the
members of the population over a number of simulated
‘generations’. GA consists of three operations that are
executed in order on a given population to create the
new, improved population of candidate designs. The
processes are reproduction, crossover, and mutation.
These processes are performed in a binary space in
which the true variable values are mapped to binary
values and these binary values are concatenated
together to form ‘chromosome strings’.

Reproduction is the process where the genetic
algorithm duplicates some of the ‘best’ chromosomes

and removes some of the ‘worst’ chromosomes from
the population.  The population size will stay constant
so some designs will appear more than once. During
crossover, the genetic algorithm will pick two designs
from the intermediate population and make two new
unique designs from the two parents. This is done by
splicing substrings of the parent chromosomes
together to form the new chromosomes that will
hopefully be better design points than either of the
parents. The probability for crossover of two designs
to occur is generally fairly high (otherwise the parents
are passed to the next intermediate population
unchanged). Mutation is a purely random process. A
small number of binary digits in the chromosome
string will be randomly changed to ensure that all
possible combinations in the binary string will be
represented. The probability for mutation to occur is
usually a very low number so as to try not to change
the population too much.

Once this final operation is complete, the new
generation of chromosomes is mapped back to the true
variable values and the CABAM agent is used to
determine the best current candidate design in the
population (highest IRR). Then the process is repeated
for the next generation. The number of generations
performed is usually predetermined (typically 5 - 20).
Each generation uses approximately one call to the
CABAM agent per member of the population
(duplicate points are not recalculated), and due to the
random nature of the GA, the entire process is usually
restarted two additional times with a new initial
population. So the number of times the CABAM
agent is called in a GA search is approximately 3 *
population size * number of generations.

Note that GA operates on discrete or discretized
design variables when they are mapped to binary
chromosomes. So like the grid search, the continuous
price variables are converted to discrete representations
over the range of interest. The resolution of the
discretization process is controlled by the Nbit setting
in the genetic algorithm. Nbits is the number of bits
used to store each variable (i.e. there are 2Nbits number
of discretized values inclusively between the high and
low range limits for each variable). This directly
affects the number of distinct ‘steps’ or values a
variable can attain. The GA results are very sensitive
to this setting and the population size.
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The genetic algorithm code used for this study is
written in Fortran and runs on a UNIX machine. It was
written by Peter Gage then of Stanford University9.
The parameters for the GA are set by the user in the
'genalg.inp' file. Here the user can change variables
such as the population size, number of bits, and
number of generations.

Nominally, the genetic algorithm program is set
up to find the minimum of an algebraic objective
function. The objective function is entered into the
‘goalga.f’ input file. Our goal was to replace the
algebraic objective function with a call to the CABAM
agent. Changes to the original goalga.f file were made
so that it issues a UNIX system call.

 The new objective function system call is listed
below. It writes the command 'ga a b c d' to the UNIX
command line. Values for the four price variables from
Table 1 are stored in the genetic algorithm as variables
a, b, c, and d. So the command calls a short script
named ga which in turn runs the Expect script ga.e and
passes it the new values for the four price variables.
ga.e subsequently accesses CABAM on the Macintosh.

write(cmd, *) 'ga ', a, b, c, d
call system(cmd)

open(UNIT = 23, FILE = '/tmp/goalga.out',
STATUS = 'OLD')

read(23, *) tmp
print*, tmp
close(23)
objective = 1 - tmp

Note that the IRR is actually stored in the variable
‘tmp’ in this code. Since the GA is set to minimize
‘objective’, the last line converts a maximum IRR
problem into a minimum objective problem for the
GA (knowing that IRR is not expected to exceed
100%).

The ga.e script that updates CABAM and returns
the IRR is a modified version of the Expect script
listed earlier. The script takes the new values of the
four design variables from the ga script, telnets to the
Macintosh, updates CABAM with the new values, and
returns the new IRR to the GA as the objective

function value (Fig. 4). The agent includes the main
file that drives the process, ga.e; a file that contains all
the input parameters such as the Macintosh hostname,
username, password, etc.; and a text file that ga.e reads
in that contains the Applescript template commands
that drive the spreadsheet. The ga.e script assumes that
the correct spreadsheet is already open on the
Macintosh. This was done to save execution time.
However, unlike the grid search case, the telnet session
was opened and closed for each CABAM function call.
Future refinements in the scripts will attempt to reduce
execution time and avoid unnecessary telnet calls.

GA Expect script

• Telnets to Mac
• Updates CABAM
• Returns IRR to GA

• Generates new values
for 4 design variables

Fig. 4. Genetic Algorithm with CABAM Agent

Running the genetic algorithm with the CABAM
agent calculating the objective function the command
is as simple as running the GA by itself (i.e. type
'rungen' at the UNIX command line). The GA then
runs through the desired number of generation and tries
to optimize the four market prices. Information about
optimization such as population history, best designs,
and execution time are available in output files
generated by the GA Fortran code.

RESULTS

The techniques discussed above were implemented
on networked computers at Georgia Tech. The UNIX
Expect scripts and GA code were run on a Sun
SparcServer running SUNOS 5.4. The Macintosh
scripts were run on a PowerMac 7200/90 running
MacOS 7.6.1 (this machine is relatively slow by
today’s standards). CABAM was run under Microsoft
Excel version 5.0 for the Macintosh. Script Daemon
version 1.0.0 was also used. The IRR results listed
below correspond to an Argus launch vehicle
configuration from November, 1997, and reflect the
weights, complexity factors, and economic
assumptions used by SSDL cost analysts at that time.
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Grid Search Results

The grid search implementation used the variable
ranges and resolutions shown in Table 2 for each of
the four price variables. Recall that the grid search is a
full factorial and tests every combination of the four
prices within the range. In this case, the method
examined 12*7*11*11 = 10,164 combinations! The
entire process took 1,420 minutes (nearly 24 hours)
once started. This corresponds to about 8 seconds per
CABAM execution.

The 10,164 results and the corresponding price
inputs for each case were recorded in a large five-
column text file. That file was sorted to list the results
by IRR in descending order. The four highest IRR
results are shown in Table 3. The highest IRR results
from the grid search are slightly above 27.8% and
come from the same general region of the price design
space (limited by the grid search resolution). In fact,
there are nearly 20 designs in the grid search that
produce IRR’s above 27.8%. In contrast, poor
locations in this rather limited design space result in
IRR’s of only 23.9%. Increases in IRR of 0.1% are
considered significant in this problem.

As mentioned earlier, the built-in gradient-based
Solver tool in Excel can be used to fine-tune these
results within a local region and typically improves
the IRR by 0.1% - 0.2% above the results shown.

Here, starting Solver at the top design improved the
IRR to 28.06% while changing the four respective
launch prices to $1642.1, $9.423 M, $799.99, and
$0.725 M. It is interesting to note that starting Solver
at the other three top designs always improved the IRR
to nearly 28%, but no two cases resulted in the same
optimized solution for the four prices — although the
most dominant term, commercial cargo price, stayed
very close to $799.99 in all cases. Starting the Solver
at the top design was the only case that resulted in the
Government passenger price increasing beyond the
ranges defined for grid search. The non-unique Solver
solutions underscore the non-smooth nature of this
particular analysis.

While the long execution time in this application
is certainly cause for some concern, the scripts and
wrappers developed by this research worked well. One
can only speculate at the amount of time it would take
for a human analyst to type in and record 10,164 price
combinations! Regarding the cross-platform execution,
the authors have found by experience that the method
is subject to certain pitfalls. For example, if the
Internet connection to either the UNIX machine or the
Macintosh is interrupted during execution, then the
process will fail. Due to the relatively intensive CPU
requirements, the Macintosh cannot be used for other
purposes during the execution. Even background
applications such as automatic email checks should be
suspended. Early in our implementation, these events
were found to be the source of occasional data dropouts
or corrupted data being returned and written to the text
file for the affected price combination. Of course, these
isolated cases could always be repeated manually and
typed into the IRR text output file. In general though,
our experience with the grid search application was
very satisfactory.

Genetic Algorithm Results

The GA implementation represents a case where
the CABAM agent is integrated with a true
optimization process running on a UNIX workstation.
Here, one goal is to evaluate the operation of the
CABAM agent within this framework. A second goal
is to improve on the performance of the grid search
method.

Table 2. Price Ranges for Grid Search

Price Range Increment

Gov. Cargo $1300 - $1850 $50

Gov. Passenger $6 - 9 M $0.5 M

Comm. Cargo $700 – 1200 $50

Comm. Passenger $0.3 - 1.3 M $0.1 M

Table 3. Top Grid Search Results

G. Cargo G. Pass. C. Cargo C. Pass. IRR

$1650 $9 M $800 $0.7 M 27.86%

$1650 $7 M $800 $0.8 M 27.85%

$1650 $8 M $800 $0.8 M 27.85%

$1700 $8 M $800 $0.7 M 27.84%
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Five separate run cases were performed with the
GA, with varying population size, the level of
discretization (Nbits), and the number of generations
performed. Each GA case was repeated three times with
different random starting populations. The chance of
crossover was set at 70% and the chance of mutation
was set at 10%. The best results from each of these
cases are shown in Table 4.

Note that Nbits creates 2Nbits – 1 resolution ‘steps’
for each price variable range from Table 1 (all four
variables are discretized to the same number of steps in
GA). For example, when Nbits = 4, the resolution on
the government cargo price will be $36.67 and the
resolution on commercial cargo price will be $33.33.
This is roughly comparable to the resolution examined
in the grid search and is the discretization used in cases
2 and 4. Cases 1 and 3 are relatively less and more
finely resolved, respectively. As Nbits is increased,
GA can address even finer resolutions over the range of
interest. Increasing the resolution in the grid search
would quickly become prohibitive.

While the primary goal of this research was to
demonstrate the utility of the cross-platform
integration procedure for a representative problem,
there were several interesting GA-specific results also
obtained. For example, all of the results shown in
Table 4 are very close to the best IRR obtained with
the grid search, but were obtained in a fraction of the
time — less than 10% in some cases. This is true
even though the additional telnet sessions increase the
CABAM agent runtime to over 15 seconds per
function call. The GA was certainly proven to be a
more efficient search mechanism.

Nbits (resolution) was increased from 3 to 4 to 8
between cases 1 – 3. Surprisingly, the best result was
not at the finest resolution, but was found at Nbits =

4. While the authors believe that Nbits = 3 is slightly
marginal for this problem, the differences in IRR
between the Nbits = 4 and 8 cases was not considered
significant. Both were adequate, but higher values for
Nbits are believed to result in diminishing returns.

A sensitivity test on number of generations
(Gener.) in case 4 resulted in the exact same solution
in only five generations that case 2 found after 10
generations! In general, a larger population size allows
a smaller number of generations, but in practice a
balance must be struck between the two. Setting either
variable too low is unwise. In this case, the fact that
the entire GA is repeated three times helps reduce the
possibility of ‘immature’ final populations. However
despite the time savings, the authors have more
confidence in the settings in case 2 for a general
problem of this type.

The final case, case 5, is a ‘brute force’ case with
a high resolution and a relatively large population size.
While the computational time doubles to over two
hours, the results do not improve on case 2. Clearly,
we have reached a point of diminishing returns. Like
the grid search, GA is probably best used to perform a
coarse search for the most attractive price region, to be
followed up with a gradient-based method to fine-tune
the results. Here, starting Excel’s Solver from the
price point produced in case 2 results in an
improvement in IRR to 28.04%. Corresponding prices
are $1561, $9.423 M, $799.99, and $0.891 M
respectively. As in the grid search, the non-smooth
nature of the design space is very evident. Several price
combinations produce nearly the same high IRR. As
before, the dominant term is commercial cargo price
and is always near $800 at the optimum.

Like the grid search implementation, the use of
the proposed technique to integrate the spreadsheet into

Table 4. Genetic Algorithm Results

Case Pop Size Nbits Gener. G. Cargo G. Pass. C. Cargo C. Pass.Best IRR Time (min)

1 10 3 10 $1535 $8.14 M $843 $0.87 M 27.69% 69

2 10 4 10 $1593 $9.0 M $800 $0.83 M 27.83% 69

3 10 8 10 $1701 $8.18 M $814 $0.66 M 27.80% 69

4 10 4 5 $1593 $9.0 M $800 $0.83 M 27.83% 35

5 20 8 10 $1645 $8.21 M $829 $1.03 M 27.81% 149
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a UNIX-based optimization process was successful. In
this case, the custom setup process was slightly more
complex and time consuming (modifying the GA
objective function to call the remote CABAM agent),
but not excessive. Setup time for a skilled programmer
was on the order of 4 – 6 hours.

SUMMARY

The primary goal of this research was to develop,
implement, and test a cross-platform technique for
integrating remote Microsoft Excel® spreadsheets used
for disciplinary analysis on Macintosh personal
computers with executive programs and optimizers
resident on UNIX workstations. The proposed
technique makes use of Expect scripting on the UNIX
machine, Applescript® on the Macintosh to
manipulate cells in the spreadsheets, and Script
Daemon® on the Macintosh to receive Applescripts
via an Internet connection (telnet). While this
technique is not particularly fast, it preserves the
distributed, collaborative nature thought to be
important to future advanced design environments. In
addition, the method has the flexibility to
accommodate a range of spreadsheet-based analysis
tools already in use in the advanced space vehicle
design community.

To test the proposed integration techniques on a
relevant problem, this study created a spreadsheet agent
for advanced launch vehicle cost analysis using an
existing Excel-spreadsheet (CABAM) and several
custom script wrappers. Two simple cross-platform
frameworks were created with the new remote agent to
optimize the proposed market prices for an advanced
launch vehicle. An exhaustive grid search hosted on
the UNIX machine made use of the CABAM agent to
perform a full-factorial search over 10,000 market price
combinations. A genetic algorithm was also used to
optimize the same agent, and showed efficiency gains
in terms of reduced search time. Results from both
methods subsequently benefited from fine-tuning
within a local region using a gradient-based optimizer.
Except for some limited robustness and speed
concerns, the proposed cross-platform integration
techniques were considered successful in these
applications.
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