AIAA 98-4743

Cross-Platform Computational Technigues
for Analysis Code Integration and
Optimization

J. R. Olds

K. B. Steadman

Space Systems Design Lab
Georgia Institute of Technology
Atlanta, GA

7th AIAA/JUSAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and
Optimization

Sept. 2-4, 1998 / St. Louis, MO

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191

AIAA 98-4743

Cross-Platform Computational Techniques for Analysis Code
Integration and Optimization

Dr. John R. Olds
Kimberly B. Steadmdh
Space Systems Design Laboratory
School of Aerospace Engineering
Georgia Institute of Technology, Atlanta, GA 30332-0150

ABSTRACT

Following NASA's lead in Intelligent Synthesis
Environments,advancedvehicle designcommunities
are beginning to explore automateddistributed
computing frameworks for integrating disciplinary
analysis tools. These design frameworks allow
collaborative designteams to takeadvantage of
distributed expertis@nd existing legacy codes, while
retaining some of the automaticemd optimization
capability of monolithic synthesis tooland simple
subroutines. A key capability in makinghese
frameworks a reality will be the ability to integrate and
access contributing analysiedesrunning ondifferent
computing platforms and in various remote locations.

This paper reports a cross-platfortmchnique for
integrating Microsoft Excel®preadsheetsito UNIX-
based computing frameworks. Specifically, a
combination of UNIX shell scripts, telnebnnections
via the Internetand Applescript® isused toremotely
execute an Excedpreadsheet hosted onviacintosh®
computerand return results to axecutive program
running on aUNIX workstation. Sample scripts and

integration procedures are outlined. Examples are given

in which thetechnique is used toemotely drive a
launch vehicle costing spreadshaatlerthe control of
grid search and genetic algorithm optimization
techniques hosted on a UNWorkstation.Advantages
and disadvantages ofthe present technique are
discussed.

T- Assistant Professor, School of Aerospace

Engineering, Senior member AIAA.
. Graduate Research Assistant, School of Aerospace
Engineering, Student member AIAA.

Copyright ©1998 by John R. Olds and Kimberly B.
Steadman. Published by the American Institute of
Aeronautics and Astronautics with permission.

BACKGROUND

NASA is taking a lead role in developiragivanced
engineering environments for compleaerospace
systems as part of its Intelligent Synthesis
Environment (ISE)and Collaborative Engineering
Environment (CEE) initiatives. The goals areréduce
design cycle times, increase the fidelity of information
available early in the design, and reduce life cost of the
system by optimizing the initiatlesignand avoiding
costly design changes duringpe latter stages of the
process. Key elements of these new initiative are
infrastructures for distributedcollaboration, rapid
synthesis and simulation toolspntraditional analysis
andoptimization methodsand immersive simulation
environment§% Future infrastructures fodistributed
collaboration will take advantage ofhigh speed
networks to link people and computers at
geographically distributed design centers of excellence.
Product Design Center@®DC) and Concept Design
Centers (CDC)are alreadybeing setup at various
NASA field centers as a precursor tthis new
collaborative environment.

In today’'s conceptual aerospace design
environments, system synthesis is typicggrformed
by monolithic synthesigodes or bymanual iteration
among a group of higher fidelitggacycodes operated
by a team of disciplinary expertsMonolithic
synthesis tools are highly integrated, standalone
programs that contain a number of internal modules or
subroutines for treatingeach disciplines. While
reasonablyfast, monolithic tools do nobenefit from
the creative input of targer desigrteamandtypically
make compromises in analysis detail. That is, they are
not truly collaborative. On the other extrenuesign
teams operating in a manualligerated synthesis
environment havethe advantage ofusing higher
fidelity legacy codes,but data exchange between

individual disciplinary analyses i®ften slow and
cumbersome. For example, finite elemestituctural
analysis and computational fluid dynamics analysis
may beconducted by differenéngineers ondifferent

computing platforms indifferent states. As a result,
designs are difficult to fully optimize or even
completely iterate to convergence in some cases.

New computationalframeworks for collaborative
design promise to combine the bedkatures of
monolithic synthesis toolsand manually iterated
design environments. Small customre- and post-
processing codes called ‘wrappers’ arevritten to
automate much of thdataentry and dataextraction
from existing (legacy) or new high fideliisciplinary
analysis tools.Once wrappedthese analysistools
become ‘agents’ to be integrated into the oveatadiign
framework. Disciplinary experts remain involved in
the design process bysetting up analysistools,
creatingand modifying required wrappers, validating
dataranges duringhe design processnd monitoring
their own analysis results.

Computational frameworks often use scripting and
telnetandremote shelcommandsvia the Internet to
allow the agents to beesident ornvarious computing
platformsand in various geographicdbcations (e.g.
various NASAfield centerCDC’s and PDC's). The
design process can be managed Byald Wide Web-
based orcustom executive progranthat allows the
designer to remotely execute each contributing
analysis, perform multidisciplinary ~ design

AIAA 98-4743

of the SSDL isadvancing conceptual design sfpace
systems — particularly reusable launch vehicles — by
developing newdesign-orienteddisciplinary analysis
tools, new design processesyultidisciplinary design
optimization techniques, and computational
frameworks for collaborative desigBraduatestudents
participate in variousspacesystemsdesign projects
(design applications) and take advantage of
collaborative and concurrent engineering methods.

A current research goal at SSDL is develop and
evaluate a computational, collaborative design
architecture forlaunch vehicle design in aesearch
environment. To parallel theeeds offuture design
teams, the SSDL framework will contain
geographically distributed agents, heterogeneous
computing platforms (UNIX, Mac, Wintel)and a
variety of legacycodes(custom Fortrarand C codes,
proprietary executablegnd desktop computer-based
spreadsheets). Aompanionpaper tothis one also
given at this conference (reference 3jescribes the
current state of the SSDérchitecture, includes results
from applicationsexamined to dategnd summarizes a
comparison between aveb-based interfaceand a
custom executive developed elsewhere at Gedrgth
called IMAGE®. The research reported ithe present
paper was anecessary precursor tmany of those
applications.

In the advancedspace vehicle designpommunity,
many engineers rely on Microsoft Excelpreadsheets
to conducttheir disciplinary analyses. Notable among

optimization, view key data, and monitor the status of the disciplines usingExcel spreadsheets areost
the design process. Taken together the analysis agentsgstimation, ground operations,and mass properties

the executive program,the framework connecting
them, andassociated databasasdscriptsare called a
design architecture. In practicthe termsarchitecture
and framework areften usedinterchangeably. Mature,
robustdesign architectureand frameworkswill be a
key component of NASA’s Intelligent Synthesis
Environment. Several research teams and private
companies are actively working in this area.

INTRODUCTION

The SpaceSystems Design Lab (SSDL) at
Georgia Tech is one component of the schoGEnter
for AerospaceSystems Analysis (CASA). Thiocus

estimation. These spreadsheets can bsistom
applications oracceptedtools used throughout the
disciplinary community, and they are almost always
executed onthe analyst's owndesktop personal
computer (either Macintosh® or PC). However,
disciplines such as trajectory optimization,
aerodynamicanalysis, and system-level optimization
are often performed on UNIX workstations.

To integrate Excel spreadsheetsinto future
collaborative design frameworks, a newapper must
be developed and tested that enables cross-platfatan
exchangeThis spreadsheeaigent can subsequently be
used as a‘building block’ in more complex
frameworks. The goal of the presergsearch was

AIAA 98-4743

therefore to develop the required scripts and wrappers to resultant cells. A sample script written in Applescript
demonstrate cross-platform executemd optimization is shown below. It opens Microsoft Excel, opens a

of a typical Microsoft Excelspreadsheetrunning
remotely on a personal computer wheriven by a
UNIX workstation. Since a cross-platfortachnique
for integrating remoteWintel-based PC codes has
already been described byprevious researchefs the
present research only addressedExcel spreadsheets
running on Macintosh computers. The resultant
technique and scripts are describedbelow. Two
example optimization problems are also described.

APPROACH

Our approachdepends orthree keycomponents,
1) Applescript to automate execution of Excel on the
Macintosh, 2)‘Expect’ shell scripting on thdJNIX
workstation to control the data exchangaed 3)Script
Daemon® on the Macintosh taccept a telnet

spreadsheetand returns the value of &ertain cell.
Application keywords appear told type.

tell application "Finder"
activate
select file "Microsoft Exceldf folder "Microsoft
Excel 5"of folder "MS Office"of startup disk
open selection
end tell
tell application "Microsoft Excel"
Activate
Open "Aldrin:Hyperion W&S 20k LEO"
Select Range "R4C3"
set MR to Valueof ActiveCell
setresultto MR
return result
Close ActiveWorkbook
endtell

connection and route Applescript commands (figure 1).

This approachmakes use of existing capabilities, but In the sample script above, the ‘SeleRange’

does requiresome amount of custom programming to commandselects aspecifiedcell of the spreadsheet.
complete the integration. The authors do not suggest Then the et commandassigns the value sumber

that this is the only integratiompproach othe best,
but it has proven useful isubsequentrchitecture
work in the SSDL.

Workstation (UNIX) Macintosh (Mac OS)

M

Internet

Software Req'd :
telnet
expect shell

Software Req'd :
Applescript

Script Daemon
Microsoft Excel

Fig. 1. Cross-platform Framework Investigated

Applescript

Applescript is a scripting language thairisluded
with the Macintosh operating system. It allows the
user to script a series @lommands tocontrol the
operation of scriptable applications,including
Microsoft Excel. Applescriptcommands exist for
opening and closing a givenspreadsheet, changing
workbooks, entering data in individual cells,
recalculating iterativeesults,and extractingdatafrom

contained inthat cell to avariable namespecified in
the script. In thiscase itsets avariable ‘MR’ to the
value of cell ‘R4C3’ (row 4 column 3). Similar
commands can be used to input values into cells.

While the syntax of Applescript is relativebasy
to learn, the task of writing Applescripts msade even
easierthough the use &ee companion utility called
Script Editor. Script Editor has ‘secord’ function that
allows the user to manuallperform an operation
while the ScriptEditor automaticallygenerates the
associatedApplescript code. Oncethe code has been
generated, it can bedited ormodified as necessary in
the Script Editor. Applescriptsan beexecuted in a
line-by-line interpreted fashion (inside Script Editor) or
can be saved as a run-omyecutablemini-application
independent othe Script Editor. Forordinary uses,
Applescripts are resident on alocal Macintosh
computer and are used simplify repetitious tasks on
that same computer.

The standardset Applescriptommandsare fairly
completeandthe majority of Excel functiongan be
accessediia those Applescript commands. Forore
difficult operations, athird-party commercialproduct

called PreFab Player@ddsadditionalfunctionality to
Applescript. The authordiave foundPreFab Player
necessary to execute sevef@hctions in thenewest
version of Microsoft Excel (e.gaccessing Excel's
built-in Solver tool or typingindividual keystrokes).
PreFab Player is backgroundapplication thatcan be
activated from within Applescript to performvariety
of intricate menu, button, and keyboard commands.

Expect Shell Scripting

The ‘Expect’ subsystem is dree commandshell
available for UNIXworkstations similar to thenore
standard k shell or shell. It can either be @ommand
line interface tothe workstation, ocan be used as a
UNIX scripting language. Unlike other more common
shells, Expect (as the name implies) has thdlt-in
ability to wait for certainprompts or text strings, and
then respond with a return string dnaracter. Hence it
is well suited to scripting a proceskat typically
requiressome useimterface(e.g. a loginprocess or a
text basedanalysis tool with several prompts). A
sample Expect script is given below. It logs onto a
remote Macintosh using a telnet process, thamds a
set of Applescript commands, and writes a result to an
output file.

#!/usr/bin/expect —f

set infile “ssdl.inp”

source S$infile

spawn —noecho teln@mac_host

expect {Username}
send$usenn”

stty -echo

expect {Password*}
expect -timeout 1
send $passwordn”
stty —echo

expect {>*}

send “tell application \"Microsoft Excel\"\n"
send ‘..more Applescript command¥n’.
expect {>*}

send ‘$result_abbn\n”

set result “[Irange $expect_out(buffer) 1 1]"
puts $outfile_id “$result”
send “/quit\n”

AIAA 98-4743

In this script, stringvariables in $bold are
defined in the input control file, ssdl.inp. The pairs of
‘expect’ and ‘send’ commands serve aBsten and
respond commandghroughout the remote telnet
session After the script is remotelyexecuted on the
Macintosh computer, thalesired result variable is
forced to be echoed to the Expect schpffer where it
is captured angvritten to an output file. This script
can besaved as dext file and executedrom the
commandine of a UNIX workstation by typing its
filename.

Script Daemon (for the Macintosh)

As discussecarlier, Applescript works well on a
local Macintosh, but for the cross-platform
environment envisioned in thaurrent research, a way
was needed tacompose Applescript commands on the
UNIX workstationandthen sendthem to theMac for
execution. A smallpiece of softwarecalled [Peter’s]
Script Daemondoesexactly that. Script Daemon is
available on the Internet for publdownloadfrom a
variety of Macintosh users grougites. It is a small
application that runs in the background onetworked
Macintosh. It monitors the telnet port febnnection
attemptsand validatesthe user with ausername and
password (the same username and passthatdallows
owner-level access to Appleshdtections). Once a
remote user is loggedh, Script Daemon accepts
Applescript commandsind can accessny scriptable
application that hadeen loadedinto memory. The
following non-Applescript commands are alsccepted
by the Script Daemdn

/HELP - list the commands

/EXEC - allows you to enter a multi-line
Applescript script. Aperiod (.) typed on aline
by itself signals the end of the script.

/QUIT - closes the telnet connection

In particular, the /EXECcommandallows multi-line
scripts to be ‘collected’ by Script Daemon one line at a
time until a single period (.) is set on a line by itself.
At that point, theentire script isexecuted and the
outputsare returnedThe result is completelyemote
operation of a Macintosh Excspreadsheefrom any
host computer(anywhere onthe Internet) that can
initiate a telnet connection.

Integrating the Components

For the UNIX-Macintosh framework described
here, a set of Applescritommandsare first created
for Excel to serve as @mplate for remote execution.
The disciplinary expert ircharge ofthe spreadsheet-
basedanalysis ofterprovidesthis file based orhis or
her normaldataentry tasks. The templa#gpplescript
file is thentransferred tothe UNIX workstation and
integrated into the Expect script. Inpdriable values
(originally just dummy placeholders in the
Applescript) are replacedwith input variable names
that will be dynamicallyreplacedwith new numerical
input data as the design progressesOnce this
preparatory work is complete, cross-platform execution
of the spreadsheet ipossible. The Applescript and
Expect scriptsare pre-and post-processingvrappers

AIAA 98-4743

analysis tool called CABAM was used as the
spreadsheanodel. In the first application, modified
Expect script wasised toperform afull factorial grid
search of four key price values in CABA#Id record

the results. In the second case, the CABAM agent was
‘called” from within a Genetic Algorithm (GA)
program on the workstation to optimize the sdoe
price values.

Both problemsrequiredsome amount of custom
Expect programming on th&NIX workstation, but
the CABAM spreadsheetnd the Applescript part of
the wrapper remainedhe same in both cases. It
typically took even a skilled programmer Z36urs to
configure the wrapper scripts for each applicatibimis
custom setup time is a minodrawback of the
proposed integration technique.

for the Excel spreadsheet. Taken together, they serve as

a remote agent for disciplinary analysis.

To executehe spreadsheetgent from theUNIX
workstation, the usesimply createsthe input file
(here, ssdl.inp) with theappropriatehost, username,
passworddata aswell as thecurrent values of the
design variables to be remotelgntered into the
spreadsheeflhe Expect script is theexecuted from
the UNIX command line. Expect opens a telnet
session to the Macintosh (specifically, the Script
Daemon application)sendsthe individual Applescript
lines from the template (while substituting any new
variable values),waits for Excel to perform the
analysis, and collects the results theg¢ returned. The
spreadsheet results are then available inotitput file
on the workstation. If the number of inpudriables is
limited, the Expect scriptan be modified toaccept
inputs directly from thecommandine (e.g.“runscript
400 4.5 1500 6.75"). Alternately, thExpect script
can be called as an agent itaggerand more complex
collaborative architecture — evenom a web-based
executive.

APPLICATIONS

To test and evaluate the integration methods
proposed on a relevanproblem, two sample
frameworks were createdlThe disciplinary analysis
modeled in both cases was the launch vehicleclifde
cost and economics discipline. An existiBgcel-based

CABAM

CABAM (Cost and Business Analysiodule) is
an Excel spreadsheet tool developed at Georgia Tech to
perform life cycle cost and revenuesimulations for
advancedlaunch vehicle concepgts Like other cost
modelsused inadvanceddesign, it usesveight-based
cost estimating relationships to determine much of the
non-recurring cost. Facilities, operationscosts,
financing costs are all determined using cost
estimating algorithms. To determine potent@tenue,
CABAM combines a user-input pricing strategy with
price-elastic traffic models to determittee number of
flights the vehicle flies and theevenue peflight. The
cost streamandthe revenuestreamare combined and
(aftertaxesare assessed) used to prelliey economic
indicators forthe simulation like Internal Rate of
Return (IRR), Net Preser¥alue (NPV), breakeven
year, and maximum debt.

CABAM requires anumber of initial inputssuch
as vehicle component weights, complexitgctors,
financing ratesand debt-to-equity fundingatios. Once
the cost analyst as set up CABAM for a givaanch
vehicle, a typical task is to adjust the pricistgategy
to maximize the economigerformance (typically
maximum IRR). Increasing the launch prices offered to
the market stifles market growthnd loses market
share to competitiorDecreasindaunch priceseduces
profit margin foreachflight. Selecting the begtrices
is a discipline-level optimization problem within

CABAM. As discussed in reference The gradient-
based built-in Solver tool in Microsoft Excdbes not
perform well for globally optimizing the pricesithin

CABAM due to thediscreteand non-smoothnature of
the optimization space. For example,very small

change in the price of delivering a poundpalyload to
orbit can result in an discontinuoaBange inrequired
vehicle fleet size from 3 to 4 vehicles.

The CABAM modelused inthis optimization is
customized forthe Argus vehicle. Argus is a next
generation launch vehiclavith Maglifter launch
assist. The Maglifter is a magneticallgvitatedtrack
andsledthat provides800 fps of horizontal velocity
launch assist at takeoffArgus has two rocket-based
combined-cycleengines for main propulsioand uses
lightweight materials and subsystems. Argus is
capable of deliverin@0,000 Ib. to lowearthorbit, or
11,100 Ib. to thdnternational Spac&tation orbit. It

can also be configured with a crew transport module to

deliver 6 passengers to the Space Station (fig. 2).

Fig. 2. Argus Launch Vehicle

The ArgusCABAM model is set up to accefuur
different prices corresponding to the fadifferent price
elastic market models it isapable of addressing. They

include government cargo, government passenger,
commercial cargoand commercial passenger rates.

Becausehey all affecttotal flight rate, theprices are
highly interrelated. Note that the commercaadU.S.
government markets forargo and passengers/tourists
are treatedseparately becauske governmentarkets
arerelatively lessprice-elasticchan futurecommercial
markets. Pricesreassumed to be per pound cdrgo

AIAA 98-4743

Table 1. Price Ranges of Interest fangus

Market Price Range

$1300 - 1850 ($/Ib.)
$6 - 9(Bpassenger)
$700 — 1200 ($/Ib.)
$0.3 - 1.3 M ($/passenger)

government cargo
government passenger
commercial cargo

commercial passenger

Grid Search

The grid search is asimple brute force
optimization strategy. levaluates evergombination

of the chosen design variables within a given range and

resolution (i.e. a fulfactorial search)While expected
to be very computational inefficient, thexhaustive
grid search issimple to progranand bysearching the
entire design space insructuredway, there is ahigh
confidence infinding a true, globaloptimum rather
than a local optimum. This is an important
consideratiorgiven the known non-smoothature of
the CABAM model.Oncethe region of theoptimum
IRR is found using thegrid searchthe resultcan be
locally fined tuned using Excel's built-in Solver
optimizer.

Using the integratiotechniques discusseabove,
the grid searchapplication is implemented as follows
(Fig. 3). The basicExpect script structure was
modified to contain founestedoops toincrement the
four price variables ovethe range ofinterest. At the
center ofthe nestedloop, an Applescript template is
updatedwith the latestprice variable valuesind sent
line-by-line to a host Macintosland CABAM (via
telnet and Script Daemon). With Applescript, the new
pricesare enteredihto CABAM, the resultant IRR is
calculated,and the IRR result isreturned to Expect
script running on th&JNIX workstation. Thecurrent
price variablesandthe IRR are written to a textfile
and the loop continues. The final output fileill
contain the results of all combinations of tfaur
design variables. To sawene, theactual telnet and
user login process iplaced beforghe nestedoops in
Expect so thespreadsheet ikeft openduring the grid

delivered to space station in the cargo cases or price persearch. Afterthe loops are completed, the telnet

passenger inthe case of the passengermissions.
Previous trailand error methods havedentified the
price rangesshown in Table 1 toyield the most
attractive IRR’s folArgus

session to théac is closed. Depending ahe speed
of the Macintosh used, the process sending four
prices to the CABAM agenand returning the result
may take 2 to 8 seconds. The authams awarethat

AIAA 98-4743

this is not the most straightforward or the fastest way andremoves some of the ‘worst’ chromosonfesm

to implement a grid search on an Excel spreadgfaet the population. The population size will stay constant
example, a Visual Basic® program was also written so some designsill appeammore than once. During
directly in Excel to perform the same task), but one of crossover, the genetic algorithm will pick tvdesigns

the goals of this implementation was demonstrate
the cross-platform integratioand execution of the
agent, and to validate it for future, more complex
collaborative frameworks.

Grid Search

: CABAM
expect scrip

P

* Telnets to Macintosh
* Updates CABAM with new values of design variabjes
* Gets the IRR and stores it in an output file

Fig. 3. Grid Search with CABAM
Genetic Algorithm

The GeneticAlgorithm (GA) is a more complex
global optimizationmethodthat is designed to work
similar to Darwin's theory of survival of the fittest. It
is hypothesizedthat the GA will more efficiently

explore the CABAM price design space and arrive at an

IRR solution similar to thatproduced bythe grid
search, but in a much shortéme. GA begins with a
randomset of candidatdocations in thedesign space.
In this case, thecandidatelocationsare made up of
randomcombinations of the four market pricésach
limited to its preferred range from Table 1). Tihéial
candidatescomprise a ‘population’ of candidates.
Typical population sizes for a problem this size is
10 — 30 different candidate§'his value does not
changethroughout an optimization. Thgrocess of a
Genetic Algorithm is to successively improve the
members of the population over a numbesiafulated
‘generations’. GA consists dhree operationthat are
executed in order on given population tocreate the
new, improved population ofcandidatedesigns. The
processesre reproduction, crossoveand mutation.
These processemre performed in &inary space in
which the truevariable valuesare mapped tdinary
values and these binary valuesare concatenated
together to form ‘chromosome strings’.

Reproduction is the processhere the genetic
algorithm duplicatessome of the ‘best’ chromosomes

from the intermediatepopulation and make two new
unique designgrom the two parents. This idone by
splicing substrings of theparent chromosomes
together to form the new chromosomes thatl
hopefully be bettedesignpoints thaneither of the
parents. The probability fasrossover oftwo designs
to occur is generally fairly higlotherwise theparents
are passed tothe next intermediate population
unchanged)Mutation is a purelyrandomprocess. A
small number of binary digits in thehromosome
string will be randomly changed toensurethat all
possible combinations in the binary string will be
representedThe probability for mutation taccur is
usually a very low number so as to try notctiange
the population too much.

Oncethis final operation is complete, the new
generation of chromosomes is mapped back tartlee
variable valuesand the CABAM agent isused to
determinethe best current candidatedesign in the
population (highest IRR). Then the processeigeated
for the next generation. The number génerations
performed isusually predeterminedtypically 5 - 20).
Each generatiouses approximately one call to the
CABAM agent per member ofthe population
(duplicatepoints arenot recalculated)and due to the
random nature of the GA, the entire process is usually
restartedtwo additional times with a new initial
population. So the number of times tl&ABAM
agent iscalled in a GA search igpproximately 3 *
population size * number of generations.

Note that GAoperates on discrete datiscretized
design variables whenhey are mapped tobinary
chromosomes. So like thgrid searchthe continuous
price variablesare converted to discretepresentations
over the range of interest. The resolution of the
discretization process is controlled the Nbit setting
in the genetialgorithm. Nbits is the number dfits
used to storeachvariable(i.e. thereare 2*'S number
of discretizedvalues inclusivelybetweenthe high and
low range limits for each variable). This directly
affects the number of distinct ‘steps’ or values a
variable camattain. The GA resultare very sensitive
to this setting and the population size.

The genetic algorithnecodeusedfor this study is
written in Fortran and runs on a UNIX machine. It was
written by PeterGagethen of Stanford University’.
The parameters fothe GAareset by the user in the
'‘genalg.inp' file.Here the usercan change variables
such as the population size, number of bits, and
number of generations.

Nominally, thegenetic algorithm program is set
up to find the minimum of analgebraic objective
function. The objective function ignteredinto the
‘goalga.f’ input file. Our goal was toreplace the
algebraic objective function with a call to t&GABAM
agent. Changes to the original goalga.f filere made
so that it issues a UNIX system call.

The new objective function system call listed
below. It writes the command 'gaa b ¢ d' to thelX
command line. Values for the four price variabiiesn
Table 1 are stored in the genetic algorithmvasables
a, b, ¢, and d. Sthe commandcalls a short script

named ga which in turn runs the Expect script ga.e and

passes it the new values for the fquice variables.

ga.e subsequently accesses CABAM on the Macintosh.

write(cmd, *) 'ga ', a, b, ¢, d
call system(cmd)

open(UNIT = 23, FILE
STATUS ='0OLD")

read(23, *) tmp

print*, tmp

close(23)

objective = 1 - tmp

'/tmp/goalga.out’,

Note that the IRR is actuallgtored inthe variable
‘tmp’ in this code.Since the GA is set to minimize
‘objective’, the last line converts maximum IRR
problem into a minimumobjective problem for the
GA (knowing that IRR is notexpected toexceed
100%).

The ga.e script thaipdatesCABAM and returns
the IRR is amodified version of the Expect script
listed earlier. The script takes the new values of the
four design variables from the gaript, telnets to the
Macintosh, updates CABAM with the new values, and
returns the newlRR to the GA as theobjective

AIAA 98-4743

function value(Fig. 4). Theagent includegshe main

file that drives the process, ga.e; a file that contains all
the input parameters such as the Macintosh hostname,
username, password, etc.; and a text file that rgads

in that contains the Applescript templatemmands
that drive the spreadsheet. The ga.e script assumes that
the correct spreadsheet is alreadypen on the
Macintosh. This wagdone to save executiortime.
However, unlike the grid search case, the telnet session
was opened and closed for ed@ABAM function call.
Future refinements in the scripts will attemptréduce
execution time and avoid unnecessary telnet calls.

GA Expect script

» Generates new values

for 4 design variables * Telnets to Mac

» Updates CABAM
¢ Returns IRR to GA

Fig. 4. Genetic Algorithm with CABAM Agent

Running the genetic algorithm with tt@ABAM

agent calculating the objective function tbemmand

is as simple as running the GA by itself (igpe
‘rungen’ at thedJNIX commandline). The GA then
runs through the desired number of generagioahtries

to optimize the four market prices. Information about
optimization such as population history, bdssigns,
and execution time are available in output files
generated by the GA Fortran code.

RESULTS

The techniquesliscussedibovewere implemented
on networkedcomputers at Georgia Tech. ThRENIX
Expect scriptsand GA codewere run on a Sun
SparcServerrunning SUNOS 5.4.The Macintosh
scripts were run on aPowerMac 7200/90 running
MacOS 7.6.1 (thismachine is relatively slow by
today’'s standardslCABAM was run under Microsoft
Excel versions.0 for the Macintosh. ScripDaemon
version 1.0.0 was alsased. ThelRR results listed
below correspond to anArgus launch vehicle
configuration from November, 1997nd reflect the
weights, complexity factors, and economic
assumptions used by SSDL cost analysts at that time.

Table 2. Price Ranges for Grid Search

Price Range Increment
Gov. Cargo $1300 - $1850 $50
Gov. Passenger $6-9M $0.5 M
Comm. Cargo $700 — 1200 $50
Comm. Passenger $0.3-13 M $0.1 M

Grid Search Results

The grid searchmplementationusedthe variable
rangesandresolutions shown in Table 2 faach of
the four price variables. Recall that thed search is a
full factorial andtests every combination of thefour
prices within the range. In thiscase, themethod
examined12*7*11*11 = 10,164 combinations! The
entire processook 1,420 minutegnearly 24 hours)
once startedThis corresponds t@bout 8 seconds per
CABAM execution.

The 10,164 resultsnd the correspondingprice
inputs for each case werescorded in alarge five-
column text file. That file was sorted to list the results
by IRR in descending orderThe four highest IRR
results are shown in Table 3. The high®dR results
from the grid search areslightly above 27.8% and
come from the same general region of finee design
space(limited by the grid searchresolution). Infact,
there are nearly 20 designs in thgrid searchthat
produce IRR’s above 27.8%. In contrast, poor
locations in thisratherlimited design spaceesult in
IRR’s of only 23.9%.Increases inRR of 0.1% are
considered significant in this problem.

As mentioned earlier, théuilt-in gradient-based
Solver tool inExcel can beused to fine-tune these
results within a local regioand typically improves
the IRR by 0.1% - 0.2%bove the resultshown.

Table 3. Top Grid Search Results

G. Cargo G. Pass. C. Cargo C. Pass. IRR
$1650 $9 M $800 $0.7 M 27.86%
$1650 $7 M $800 $0.8 M 27.85%
$1650 $8 M $800 $0.8 M 27.85%
$1700 $8 M $800 $0.7 M 27.84%

AIAA 98-4743

Here,starting Solver at the topesign improved the
IRR to 28.06% while changing the fouespective
launch prices td51642.1, $9.423 M, $799.99, and
$0.725 M. It is interesting to note that starting Solver
at the other three top designs always improved the IRR
to nearly28%, but no twocases resulted ithe same
optimized solution for the four prices — although the
most dominant termg¢ommercial carggrice, stayed
very close to $799.99 in all cases. Starting the Solver
at the top design was the ordgsethat resulted in the
Government passenger price increastmgyond the
rangesdefinedfor grid search.The non-unique Solver
solutions underscorethe non-smoothnature of this
particular analysis.

While the long execution time ithis application
is certainly cause fosome concern, the scripts and
wrappersdeveloped bythis research workeavell. One
can only speculate at the amount of timevauld take
for a human analyst to type end recordlL0,164 price
combinations! Regarding the cross-platform execution,
the authordhave found by experiendbat the method
is subject tocertain pitfalls. For example, if the
Internet connection to either théNIX machine or the
Macintosh isinterrupted duringexecution, then the
process will fail. Due to the relatively intensive CPU
requirementsthe Macintosh cannot basedfor other
purposes duringthe execution. Evenbackground
applications such as automatic enwibcks should be
suspendedEarly in our implementation, thessvents
were found to be the source of occasiatahdropouts
or corrupted data beingturned andvritten to the text
file for the affected price combination. Of courtiggse
isolated cases could always tepeatedmanually and
typed into the IRR text output file. Igeneralthough,
our experiencewith the grid searchapplication was
very satisfactory.

Genetic Algorithm Results

The GA implementatiorrepresents a casehere
the CABAM agent is integrated with a true
optimization process running onWNIX workstation.
Here, onegoal is to evaluatethe operation of the
CABAM agent within thisframework. Asecondgoal
is to improve on theerformance otthe grid search
method.

AIAA 98-4743

Table 4. Genetic Algorithm Results

Case Pop Size Nbits Gener. G.Cargo G. Pass. C. Cargo C. Pas8estIRR Time (min)
1 10 10 $1535 $8.14 M $843 $0.87 M 27.69% 69
2 10 4 10 $1593 $9.0 M $800 $0.83 M 27.83% 69
3 10 8 10 $1701 $8.18 M $814 $0.66 M 27.80% 69
4 10 4 5 $1593 $9.0 M $800 $0.83 M 27.83% 35
5 20 8 10 $1645 $8.21 M $829 $1.03 M 27.81% 149

Five separaterun caseswere performedvith the
GA, with varying population size, the level of
discretization(Nbits), and the number ofgenerations
performed. Each GA case was repeated three tivites
different randomstarting populations. Thehance of
crossover waset at 70%andthe chance ofmutation
was set at 10%. The best results freath of these
cases are shown in Table 4.

Note that Nbits creates"?* — 1 resolutior'steps’
for each pricevariable ranggrom Table 1 (allfour

4. While the authors believe that Nbits = 3slghtly
marginal for this problem, thedifferences in IRR
between thé\bits = 4and 8caseswvas notconsidered
significant. Bothwere adequatdut higher values for
Nbits are believed to result in diminishing returns.

A sensitivity test on number ofjenerations
(Gener.) in case 4 resulted the exactsamesolution
in only five generations thatase 2 found after 10
generations! In general, a larger population size allows
a smaller number of generations, but practice a

variables are discretized to the same number of steps inbalance must be struck between the two. Settitiger

GA). For example, when Nbits = 4, the resolution on
the governmentargo pricewill be $36.67 and the
resolution on commercialargo pricewill be $33.33.
This is roughly comparable to the resolutiexamined

in the grid search and is the discretizaticsed in cases

2 and 4.Cases land 3 arerelatively lessand more
finely resolved, respectively. Adlbits is increased,

GA can address even finer resolutions over the range of

interest. Increasingthe resolution in thegrid search
would quickly become prohibitive.

While the primary goal of thisesearchwas to
demonstrate the utility of the cross-platform
integration procedurefor a representativeproblem,
therewere severalinterestingGA-specific results also
obtained. For example, all of the results shown in
Table 4arevery close to the besRR obtainedwith
the grid searchput wereobtained in a fraction of the
time — less than 10% in some cases. Thidrige
even though thedditionaltelnet sessionsicrease the
CABAM agent runtime to over 15seconds per
function call. The GA was certainly proven to be a
more efficient search mechanism.

Nbits (resolution) wadcreasedrom 3 to 4 to 8

between cases 1 — 3. Surprisingly, the best result was

not at the finest resolution, but wimind atNbits =

10

variabletoo low is unwise. In thizase, thdact that
the entire GA isrepeatedhreetimes helpseduce the
possibility of immature’ final populations.However
despite the time savings, the authorsave more
confidence inthe settings incase 2for a general
problem of this type.

The final case, case 5, is a ‘brditece’ casewith
a high resolution and a relatively large population size.
While the computational timeloubles to over two
hours, the results do not improve oase 2.Clearly,
we havereached goint of diminishing returnsLike
the grid search, GA is probably bested toperform a
coarse search for the most attractive price region, to be
followed upwith a gradient-basednethod to fine-tune
the results.Here, starting Excel's Solver from the
price point produced in case 2 results in an
improvement in IRR to 28.04%Corresponding prices
are $1561, $9.423 M, $799.99and $0.891 M
respectively. As in therid search,the non-smooth
nature of the design space is very evident. SeyeicH
combinationsproducenearly the samdigh IRR. As
before, the dominant term is commeratalrgo price
and is always near $800 at the optimum.

Like the grid searchimplementation, the use of
the proposed technique to integrate sheeadsheento

a UNIX-basedoptimization process was successful. In

this case, the custom setppcess waslightly more

AIAA 98-4743

ACKNOWLEDGEMENTS

complex and time consuming (modifying the GA
objective function to call the remote CABAM agent),
but not excessive. Setup time for a skillgdgrammer
was on the order of 4 — 6 hours.

This researchwas partially supportedunder a

NASA Marshall SpaceFlight Center STTR in
cooperatatiorwith InternationalSpaceSystems,Inc.
Partial support was alsprovided by NASA Langley
ResearchCenter under cooperative agreement number

SUMMARY

The primary goal of thisesearchwas todevelop,

implement, and test a cross-platformtechnique for

integrating remote Microsoft Excel®readsheetssed
for disciplinary analysis on Macintoshpersonal
computers withexecutive programsand optimizers

NCC1-229.

The authors wish tcacknowledgethe work of
David Acton in helping develop key scripting
techniques and procedures in suppotthis work. The
work of graduatestudents Jeff Whitfieldand ‘Mike’
HosungLee in developinghe CABAM cost model
and making it available forthis research isalso

resident on UNIX workstations. The proposed
technigue makes use of Expect scripting onUWh&x
machine, Applescript® on the Macintosh to
manipulate cells in thespreadsheetsand Script
Daemon® on the Macintosh teceive Applescripts
via an Internet connection (telnet). Whil¢his
technique isnot particularly fast, it preserves the
distributed, collaborative naturethought to be
important to futureadvanceddesignenvironments. In
addition, the method has theflexibility to
accommodate a range dpreadsheet-basednalysis
tools already in use in theadvancedspace vehicle
design community.

To test theproposedintegrationtechniques on a
relevant problem, this study createdmeadsheet agent
for advancedlaunch vehicle cost analysissing an
existing Excel-spreadsheet (CABAM)and several
custom scriptwrappers. Twosimple cross-platform
frameworks were created withe new remote agent to
optimize theproposed market prices for aulvanced
launch vehicle. An exhaustivgrid search hosted on
the UNIX machinemadeuse of the CABAM agent to
perform a full-factorial search over 10,000 mangete
combinations. A genetic algorithm was alssed to
optimize the same agerandshowed efficiencygains
in terms ofreducedsearchtime. Results from both
methods subsequentlybenefited from fine-tuning
within a local region using gradient-base@ptimizer.
Except for some limited robustnesand speed
concerns, theproposed cross-platformintegration
techniques were considered successful in these
applications.

11

appreciated.

=

REFERENCES

Goldin, D. S., “Tools for Going Faster &
Farther,”ASEE Prism September, 1998, pp. 30
— 36.

Noor, A. K., Venneri, S. L., Housner, M., and
Peterson, J.C., “A Virtual Environment for
Intelligent Design,” Aerospace America April,
1997, pp. 28 — 35.

Acton, D. E. and Olds, J. R. “Computational
Frameworks for Collaborative Multidisciplinary
Design of Complex Systems,” AIAA 98-4942" 7
AIAA/USAF/NASA/ISSMO Symposium on
Multidisciplinary Analysisand Optimization, St.

Louis, MO, September 2-4, 1998.

Hale, M.A., Craig, J.l., “Techniques for
Integrating Computer Programs intd®esign
Architectures,” AIAA 96-4166, & AIAA/
NASA/ISSMO Symposium orMultidisciplinary
Analysis and Optimization, Bellevue, WA,
September 4-6, 1996.

Moore, A. A., Braun, R. D., Powell, R. W., and
Qualls, G. D., “Determination of Optiméalaunch
Vehicle Technology Investment Strategies During
Conceptual Design,AIAA 96-4091, & Annual
AIAA/NASA/ISSMO Symposium on Multi-
disciplinary Analysisand Optimization, Bellevue,
WA, September 4-6, 1996.

Lewis, Peter N., Script Daemon v1.0.0
Documentation, 1993.

Lee, H. and Olds, J. R., “Integration of Cost
Modeling and Business Simulation into
Conceptual Launch Vehicle DesignAIAA 97-
3911, 1997AIAA Defense and Space Programs
Conference & Exhibit, Huntsville, AL,
September 23-25, 1997.

Olds, J. R.andBellini, P. X., "Argus, a Highly
Reusable SSTCRocket-BasedCombined Cycle
Launch Vehiclewith Maglifter Launch Assist,"
AIAA 98-1557, AIAA 8" International Space
Planes and Hypersonf8ystemsand Technologies
Conference, Norfolk, VA, April 1998.

Gage, P.and Kroo, I., “A Role for Genetic
Algorithms in a Preliminary Design
Environment," AIAA 93-3933, AIAA Aircraft
Design, Systems and Operations Meeting,
Monterey, CA, August 1993.

12

AIAA 98-4743

