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SMALL BODY RECONNAISSANCE BY MULTIPLE SPACECRAFT
VIA DEEP REINFORCEMENT LEARNING

Kento Tomita*, Yuri Shimane†, and Koki Ho ‡

Small-body investigations by spacecraft are one of the most scientifically impor-
tant space exploration missions. Due to the strong uncertainty of the dynamics
around the body, geological surface features, and scientific values of candidate tar-
get sites, these missions require dedicated planning and execution from the ground.
As a study of automated operations for asteroid investigation, this paper investi-
gates how small-body reconnaissance operations could be performed by multiple
spacecraft. By comparing baseline policies with different model parameters and a
policy trained via deep reinforcement learning, we discuss the optimal balance of
exploration and exploitation for our science model.

INTRODUCTION

Studying small bodies, such as asteroids and comets, is crucial to unraveling the formation and
evolution of the solar system, which have motivated many missions for detailed observation. After
the first sample-return of dust particles from comet Wild 2 by Stardust1 in 1999, missions involving
touchdown on the surface of small bodies were conducted by Hayabusa2 (2003), Rosetta3 (2004),
Hayabusa24 (2014), and OSIRIS-REx5 (2016). These missions demonstrated the scientific impact
brought by proximity surveys, and also their operational challenges. Detailed survey and reconnais-
sance of surface cost dedicated planning and execution from the ground, and there is a need for more
advanced autonomy for operations. In this regard, this paper studies how small-body reconnaissance
operations could be performed by multiple spacecraft with deep reinforcement learning.

The advantage of using a distributed, multiple spacecraft architecture for the exploration of small
celestial bodies has been a topic gaining interest since the turn of this century.6 Such architectures
are typically collaborative, potentially hierarchical, and have relatively high autonomy; this makes
them suitable for rapid investigation in-situ, adapting to the a priori unknown environment with lit-
tle or no human involvement in the loop. NASA’s Autonomous Nanotechnology Satellites (ANTS)
concept mission6–8 is one such example, where a distributed system of 1000 picosatellites was to
explore the asteroid main belt. In this architecture, some spacecraft would assume the role of “work-
ers”, conducting scientific observation in-situ, while a smaller number of “coordinator” spacecraft
would determine the overall action of the swarm. This type of organization, otherwise referred to
as “mother-daughter” architectures, has since also been adapted for a more ambitious sample return
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Figure 1: Multi spacecraft reconnaissance operations using the trained RL agents, shown in inertial
frame. Blue, green, yellow trajectories represent each of three different spacecraft in the swarm.
The red lines represent the line-of-sight connecting spacecraft and surface targets. The detailed
results are described in the section on Numerical Analysis.

mission from multiple main-belt asteroids.9 In contrast, studies such as ESA’s Asteroid Population
Investigation and Exploration Swarm (APIES) concept10 consider a swarm constituted by a smaller
number of identical small satellites, deployed once arriving at the asteroid belt.

Recently, a significant number of authors have studied the operational aspect of having multiple
spacecraft in the vicinity of small bodies. For the purpose of motion planning, Bandyopadhyay et
al11 combines a distributed assignment algorithm for the space allocation problem and sequential
convex programming for the trajectory design problem of each spacecraft to demonstrate motion-
planning in a cluttered, time-varying environment. Wang et al12 posed an optimal control problem
of multiple spacecraft that minimizes the fuel consumption while also ensuring no relative drift in
terms of mean orbital elements, as small bodies typically lead to osculating orbital elements due to
strong perturbing forces present. In a similar fashion, Lippe and D’Amico13 leveraged an extended
Kalman filter (EKF) to map the osculating elements to mean relative orbital elements (ROE), which
is then used as part of the control problem to maintain the formation in the mean ROE space. Nallapu
and Thangavelautham14 developed the Automated Swarm Designer for small body observation by
multiple spacecraft by optimizing their attitudes during a flyby.

For the purpose of autonomous navigation, the information collected by members of a swarm may
be combined to augment both the spacecraft state and knowledge of the dynamical environment;
Verisano and Vasile15 demonstrated an improvement in navigation performance through the use of
such data links. Similarly, Stacey et al16 proposed an algorithm that leverages optical observation
of multiple spacecraft via inter-satellite RF communication links to estimate both the states and the
asteroid’s gravitational field, rotational motion, and landmark positions.

Applications of reinforcement learning (RL) in the context of operations around asteroids, albeit
for a single spacecraft, have also been gaining traction. A particular advantage of using RL is due to
its ability to adapt the control law to a dynamics that is unknown ahead of time; this is particularly
suitable for asteroid exploration, where the irregularities of the body may not be known to a great
extent before taking in-situ measurements. Willis et al17 achieve hovering motion over a tumbling
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small body with unknown gravitational parameters through the use of a direct policy search, relying
only on optic flow observables. Such hovering motions, enabled by the relatively high maneuver-
ability in the vicinity of small bodies, are advantageous both for concentrated observation of a target
of interest via a body-fixed hovering, or mapping the entire surface of the body via an inertial-frame
hovering. For the purpose of close-proximity operations, Gaudet et al18, 19 propose a policy map-
ping LIDAR measurements to controls for a 6-degree-of-freedom spacecraft. Federici et al20 apply
a similar policy mapping for an impactor, demonstrating the algorithm on the DART mission sce-
nario. The use of a physics-informed neural-network (PINN)-based gravity model together with RL
has been proposed by,21 where a highly representative gravity model is used for training the RL
agent without compromising on the computational cost for propagating the dynamics. Another no-
table use of an RL architecture, proposed by Piccinin et al,22 aims to improve the surface mapping
efficiency by scheduling the image acquisition process.

This paper focuses on autonomous asteroid reconnaissance operations and studies the perfor-
mance of multiple spacecraft architecture with a policy trained by deep reinforcement learning. We
consider a cooperative sequential decision-making problem where every step, each spacecraft de-
termines which site to investigate in what condition. In a simulated environment, the trained policy
exhibits the sixth best performance with the narrowest performance variation against nine different
baseline policies. By comparing the best and worst policies, we discuss the balance of exploration
and exploitation for our problem.

PROBLEM STATEMENT

The objective of our problem is to maximize the science about the target small body with multiple
spacecraft, assuming the sites of interest are already identified. We assume that a global mapping
phase reveals the location of these sites but their detailed values are still unknown. Through re-
connaissance operations, each spacecraft accumulates knowledge about these sites, under restricted
inter-spacecraft communication. Within a certain mission window, the swarm of spacecraft needs
to cooperate in collecting as much science as possible.

Science Model

The objective function of our problem is the cumulative sum of the science gain. This subsection
details the assumptions of our science model that defines science gains by each reconnaissance
operation, which results in Eq. 4.

Ground Truth Site Values For a given list of sites on a small body, we define a segmented value
distribution (Fig. 2). One reconnaissance operation about a site reveals a part of the segmented value
up to the quality of observation. Specifically, let i ∈ I = {1, 2, 3, ...} denote the site of interest with
I being the set of sites. We define Vi ∈ Rn that represents the value distribution of the site i. For
example, Vi = [0, 10, 0.5] means that the scientific value of site i has three segments whose value
ranges from 0 to 10. Depending on the observation condition, the spacecraft may cover all or part
of the segments and collect their value up to a certain quality.

Property of Reconnaissance We give each reconnaissance operation the property of coverage,
quality, and emission angle. Coverage, c ∈ R, represents how many segments the operation cov-
ered. Quality, q ∈ R, defines the rate of value collection for each segment. Emission angle, θ ∈ R,
is the angle between the surface normal vector and the direction from the surface to the spacecraft.
Coverage, quality, and the emission angle are determined by the mean of the feasible observation
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Figure 2: Concept of small body reconnaissance by multiple spacecraft.

period over the fly-over trajectory. We model the feasibility of observation, coverage, and quality as
the function of the Sun direction and the position of spacecraft and target site by setting minimum
and maximum bounds for slant range, slant angle, and solar incidence angles.

Map State To compute the collected science, we define a map state M(a) = {Mi(a)}i∈I , where
a ∈ A denotes a spacecraft or the ground station and A represents the union of the ground station
and the set of spacecraft. The map state of spacecraft a for a site i is represented as Mi(a) =
{Ṽi(a), Qi(a), Ti(a), Hi(a)}. Ṽi(a) ∈ Rn represents the collected site value for each segment of
the site i. Qi(a) ∈ Rn records the highest reconnaissance quality for each segment. Ti(a) stores a
unique set of the emission angles of observation for each segments and Hi(a) ∈ Rn represents the
variation of the emission angles for each segments for site i. The variation of the emission angles
for each segment is calculated as an entropy. Suppose indices j represent each segment of site i
and indices k(j) denotes each of the unique emission angles of observation for the segment j of site
i. We can describe Ti(a) and Hi(a) as Ti(a) = {Ti,j(a)}i = {θi,j,k(a)} and Hi(a) = {hi,j(a)}i
where hi,j ∈ R. Then the variation of the emission angles are,

hi,j = −
∑
k

1

n(j)
log2

(
1

n(j)

)
= log2 (n(j)) (1)

where n(j) is the number of unique emission angles for segment j of site i. Note that emission
angles are grouped by 10 degrees interval, so the number of unique emission angles per segment
can be as large as eight because the emission angle are in the interval of [0, 90) in degree. Therefore,
the maximum entropy per segment is three.

Updating Map State Each reconnaissance operation for site i updates the map state of the ob-
server spacecraft about the observed site i, Mi(a), and that of ground station, Mi(g), where g
represents the ground station. Suppose the reconnaissance operation has the property of coverage,
c, quality, q, and emission angle, θ. Then, the segments to be updated are randomly chosen whose
number is proportional to c. Any chosen segment of Qi(a) and Qi(g) whose value is less than q is

4



updated to be q, and the rest remains the same. Similarly, if any chosen segment of Ti(a) and Ti(g)
adds the emission angle θ in the set unless it has been registered. The entropy Hi(a) and Hi(g)
are then updated. The collected value, Ṽi are updated by multiplying the true site value Vi and the
observation quality Qi for each segment:

Ṽi(a)← Vi ⊙Qi(a) + ϵ (2)

where ⊙ is an element wise multiplication and ϵ ∈ Rn is the observation noise. Note that for the
ground station, this noise is set zero:

Ṽi(g)← Vi ⊙Qi(g). (3)

As an example, let’s consider a site value of Vi = [0, 10, 0.5]. By the reconnaissance with the
property of c = 0.7, q = 0.5, and θ = 20 deg, the map state at t = t1 is updated as follows:

Mi(t = t1) = {Ṽi = [0, 1.0, 0], Qi = [0.5, 0.1, 0],

Ti = [[10, ], [5, ], ∅], Hi = [0, 0, 0]}
Mi(t = t2) = {Ṽi = [0, 5.0, 0], Qi = [0.5, 0.5, 0],

Ti = [[10, 20], [5, ], ∅], Hi = [1, 0, 0]}

Science Gain The science gain brought by each reconnaissance operation is computed based on
the collected site value Ṽi(g) and the entropy of the emission angles Hi(g) of the ground station.
Let rsci denote the science gain by the reconnaissance for site i in the step from time t = t1 to
t = t2, then

rsci =
∑
j

ṽi,j(g, t2) (1 + hi,j(g, t2))

−
∑
j

ṽi,j(g, t1) (1 + hi,j(g, t1))
(4)

where vi,j and hi,j represents the value, Ṽi(g), and the emission angle entropy, Hi(g), for j segment
of site i, respectively. To maximise the science gain Eq. 4, each spacecraft need to visit a site with
high scientific value that has not been collected much while maximising the variation of emission
angles of observation expressed by the entropy. It is important to take the balance of exploration
and exploitation among the swarm of spacecraft. Here exploitation is to increase the variation of
emission angles, Hi, for the site with high estimated value, Ṽi, and exploration is to visit the site
with less collected value irrespective of the estimated site value.

Action Space and Trajectory Design

Over the mission window, each spacecraft need to optimize its choice of 1) departure time, 2)
target site, 3) periapsis altitude, and 4) solar incidence angle for their reconnaissance, under the
trajectory restrictions as follows. We consider two types of trajectories; Sun-terminator orbits for
the parking orbit and flyby trajectories for the reconnaissance operations, referencing the OSIRIS-
REx reconnaissance trajectory design.23 Sun-terminator orbits are near circular orbit on the Sun-
terminator plane. We consider the spacecraft stay in the parking orbit unless it performs reconnais-
sance operations. For the reconnaissance, the spacecraft leaves to a trajectory that flies over the
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Figure 3: Sample reconnaissance trajectory.

target site latitude at a designated solar incidence angle. Depending on the phase of the small body
rotation and parking orbit, the angle and range conditions for the observation change. Then the
fly-over trajectory returns to the parking orbit. Thus, the fly over trajectory is identified by choice
of departure time, periapsis altitude, and target site. Figure 3 shows the examples of trajectories
considered. To reduce the collision risk, each spacecraft is assigned to an initial parking orbit with
a different radius. We also restrict only one spacecraft that operates reconnaissance at a time.

COOPERATIVE RECONNAISSANCE AGENT

This paper investigates and compare the performance of two types of agents for the cooperative
asteroid investigation. The first agent adopts a model-free deep reinforcement learning algorithm
called Proximal Policy Optimization24 (PPO). The second agent is a handcrafted baseline agent
with a rule-based policy. Note that the baseline agent, unlike the RL agent, simulates reconnaissance
operation for every candidate to explicitly use feasible observation time and delta-v required in their
policy.

Proximal Policy Optimization

Proximal policy optimization is an online policy gradient method for reinforcement learning. It
optimizes a parameterized policy function by gradient descent to maximize an objective tied to
cumulative episode reward. PPO restricts the resulting difference of the surrogate objective by one
step of the policy gradient, and in tern enables multiple-step minibatch updates more safely. This
objective is called clipped surrogate objective, which is defined as

LCLIP = E
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
, (5)

where θ is the parameter of policy function and rt(θ)Ât represents the advantage of the parameter
being θ than the old value. To compute Ât, we need to approximate value function too and often the
value function and policy function share some parameters. The objective then includes the terms
for the value function, which result in

LT = Êt

[
LCLIP (θ)− c1L

V F
t (θ) + c2S[π]

]
, (6)
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where c1, c2 are coefficients, and S denotes an entropy bonus to ensure sufficient exploration, and
LV F
t is a squared-error loss for the value function.

We train a single policy network by PPO used for all of the spacecraft. The definition of output
action and input observation are described in the followings.

Action Space As described in subsection , the action space for each spacecraft consists of 1)
departure time, 2) target site, 3) periapsis altitude, and 4) solar incidence angle for their reconnais-
sance. Since the choice of the target site is discrete, this study makes all the other actions also
discrete for a simpler implementation. For the first item of action, the departure time, every time
step agent makes the decision if it goes reconnaissance or not. For the other actions, agent picks
from the given list depending on the environment configuration.

Observation Space To make optimal decisions, ideally, the spacecraft needs to know for each
target 1) the relative position, 2) your map state of science, and 3) other spacecraft’s map state of
the science. Although we give complete information for the first item, for the other two information,
we restrict their knowledge; to reduce the input dimension for your own map state, and to limit the
communication between spacecraft for other spacecraft’s map state. Table 1 shows the observation
space for each spacecraft.

Table 1: Observation space for the RL agent. ni represents the number of target sites.

Variable Size
Position of spacecraft 3
Target position 3ni

Estimated value* ni

Cumulative coverage* ni

Mean quality* ni

Mean entropy of emission angle* ni

Number of visits by other spacecraft ni

∗ These values are based on the map state Mi.

Reward For each reconnaissance operation, the agent takes the reward defined by the weighted
sum of the scientific gain for the entire system (Eq. 4) and delta-v cost for the reconnaissance. Let
wsci > 0, wdv < 0 represents the coefficient for the science gain and delta-v cost, respectively.
Then the reward is described as

r = wscirsci + wdvdv. (7)

Baseline Agent

As a baseline, we consider an agent with a rule-based policy. Note that this baseline agent uses
additional information than shown in the RL agent. Specifically, every time step, the baseline agent
simulates reconnaissance operation for each site to compute the feasible surface observation time
and delta-v required. The rule-based policy takes the input shown in Table 2. We consider three
parameters to define the rule-based policy; minimum observation time, tmin, maximum delta-v,
dvmax, and maximum number of visits by others, nmax. The algorithm of the baseline agent is
shown in Algorithm 1.

The baseline agent first checks if the minimum number of visits by others among all sites, denoted
by nmin, is less than the given nmax. If this condition is violated, it updates nmax to nmax ×
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⌊nmin/nmax⌋. Next, it screens the reconnaissance operation for each site by the thresholds of
tmin, dvmax, and nmax to obtain feasible targets. If there is any site never visited among the feasible
target, pick this target. If all the feasible targets have been visited at least once, it chooses to visit
the site with the highest estimated value. If none of the sites meets the three thresholds, then stay in
the parking orbit for that time step.

Table 2: Observation space for the baseline agent. Here ni represents the number of target sites.

Variable Size
Feasible observation time ni

Delta-V required ni

Estimated value* ni

Number of visits by other spacecraft ni

∗ These values are based on the map state Mi.

Algorithm 1 Baseline agent policy

Input: tmin, dvmax, nmax

Set of target sites, I ,
Set of altitudes, Ra,
Set of solar incidence angles, S

Output: Action
Action← No Go ▷ Initialize action
vbest← 0 ▷ Initialize best site value
nmin← The minimum number of visits for all sites by others
nmax← nmax(1 + ⌊nmin/nmax⌋) ▷ Adjust if all sites are visited more than nmax times by
others
For: i, ra, s ∈ I ×Ra × S do ▷ Iterate for all actions

tobs, dv← f(i, ra, s) ▷ Simulate observation time and delta-v
Fetch ni, the number of visits by others for site i
if tobs > tmin and dv < dvmax then

if Site i is never visited by yourself then
Action← {Go, i, ra, s}
break

else if ni < nmax then ▷ If i is visited by others less than nmax times
if v(i) > vbest then ▷ If i has the highest estimated value

vbest← v(i) ▷ Update best value
Action← {Go, i, ra, s}

end if
end if

end if
end For:
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NUMERICAL ANALYSIS

Simulator Configuration

To train the RL agent and to demonstrate the performance of the agents, we built a randomized
asteroid reconnaissance environment. This paper, as an example, uses the asteroid Bennu whose
parameter is shown in Table 3. We demonstrate the results where we have three spacecraft and 12
target sites with three options for reconnaissance altitudes and two for solar incidence angles. The
details of the environment parameters are shown in Table 4.

Table 3: Asteroid parameters.25, 26

Parameter Value
Name 101955 Bennu
GM, km3/s2 4.8904e− 9
C20 −0.05812
C22 0.00320
Diameter, km 0.482
Rotation period, h 4.296061

Table 4: Environment parameters.

Parameter Values
Time step, h 1
Maximum total number of reconnaissance 72
Number of spacecraft 3
Initial parking orbit radius, km 0.9, 1.0, 1.1
Initial fuel, km/s 0.1
Number of target sites 12
Mean site value 1, 1, 1, 3, 3, 3, 5, 5, 5, 7, 7, 7
Standard deviation of site value 1, 1, 1, 1, 2, 3, 1, 3, 5, 1, 5, 7
Observation noise (Eq. 2), 1-σ 0.03
Altitudes for reconnaissance, km 0.2, 0.4, 0.6
Solar incidence angles for reconnaissance, deg −45, 45

Results and Discussion

The main objective of our problem is to maximize the collected science.

Table 5 and Fig. 4 shows the mean and distribution of final collected science of over 10 random
episodes, respectively. We have nine baseline agents with different model parameters and one RL
agent. The baseline agents have wide variations of performance depending on the parameter of
nmax and tmin. The RL agent’s performance ranks sixth against all the nine baseline agents. It also
shows that the variance of the collected science is the smallest for the RL agent.

Figure 5 shows the collected science over steps and the relationship between step and time for
the RL agent and the best and worst baseline agents, in the sense of mean final collected science.
The step-to-time relation is not constant because any reconnaissance operation is considered one
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Table 5: Average final collected science over 10 random episodes. The arguments of baseline
corresponds to (nmax, tmin), respectively. The unit for tmin is seconds. dvmax are set 0.001 km/s
for all the baseline agent.

Rank Agent Science
1 Baseline(1, 0) 28.8
2 Baseline(1, 1800) 27.8
3 Baseline(5, 3600) 25.4
4 Baseline(1, 3600) 23.7
5 Baseline(10, 3600) 22.5
6 RL 21.1
7 Baseline(10, 0) 19.6
8 Baseline(10, 1800) 19.4
9 Baseline(5, 0) 18.8
10 Baseline(5, 1800) 18.3

Figure 4: Distributions of final collected science over 10 random episodes. Ten agents are sorted in
terms of the average final collected science. The arguments of baseline corresponds to (nmax, tmin),
respectively. The unit for tmin is seconds. dvmax are set 0.001 km/s for all the baseline agent.

step. If no spacecraft is going reconnaissance, the default time step of 3600 seconds is taken. You
can see the RL agent takes more steps before reaching the maximum reconnaissance operations
of 72 steps than the other baseline agents. This means that the RL agent often chooses not going
reconnaissance, unlike the other baseline agents. This difference in total number of steps also
explains that the RL agent outperforms the worst baseline agent in collecting science although they
have similar step-to-science ratio.

Figure 5 also shows that the best baseline agent increases the gap from the other two in the steps
between 30 to 40. To study the cause of the gap increase, we further look into the distribution of
collected value and entropy, which are the two main factors of the science gain of Eq. 4.

Figure 6 shows the distribution of collected value and entropy over four different steps. Note
that the entropy represents the variation of the emission angles. Each row from top to bottom
represents the best baseline, the worst baseline agent, and RL, respectively. The top row of Fig. 6
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(A) (B)

Figure 5: (A) Collected science over steps and (B) relationship between step and time for the RL
agent and the best and worst baseline agents. The step-to-time relation is not constant because any
reconnaissance operation is considered as one step. If no spacecraft is going reconnaissance, the
default time step of 3600 seconds are taken.

Figure 6: Comparison of the distribution of collected value and entropy over four different steps
among three different policies.

shows that the trend of distribution switches from steps 30 and 40. Until step 30, the best baseline
agent lets every spacecraft collect new values instead of increasing entropy. From step 40, the best
baseline agent allows each spacecraft to increase the variety of sites where larger values are already
collected. In step 70, the best agent successfully increases the ground science with high value and
high entropy by increasing the points on the top right. On the other hand, the worst baseline agent,
shown in the bottom row of Fig. 6, increases the variation of emission angles from step 10. The RL
agent have denser distribution in the low-entroy segment. This means the RL policy weights more
on exploration of value-increase than exploitation of entropy-increase, compared with the baseline
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agents.

CONCLUSION

This paper formulated a small body reconnaissance operation problem by multiple spacecraft and
studied the performance of rule-based policies and a policy trained by deep reinforcement learning
(RL). The rule-based policies result in a wide variation of performance depending on the choice of
their parameters. The policy trained via RL performs outperforms baseline policies for four different
parameter cases and performs less than five other parameter cases. We studied the exploration and
exploitation trade-off for different policies and the RL policy exhibited more weight on exploration
compared to our baseline policies. Future work will increase the fidelity of the dynamics and the
uncertainty of the input for each agent with further investigation of the resulting policies.
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