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SMALL BODY RECONNAISSANCE BY MULTIPLE SPACECRAFT
VIA DEEP REINFORCEMENT LEARNING

Kento Tomita*, Yuri Shimane†, and Koki Ho ‡

Small-body investigations by spacecraft are one of the most scientifically impor-
tant space exploration missions. Due to the strong uncertainty of the dynamics
around the body, geological surface features, and scientific values of candidate tar-
get sites, these missions require dedicated planning and execution from the ground.
As a study of automated operations for asteroid investigation, this paper investi-
gates how small-body reconnaissance operations could be performed by multiple
spacecraft. By comparing baseline policies with different model parameters and a
policy trained via deep reinforcement learning, we discuss the optimal balance of
exploration and exploitation for our science model.

INTRODUCTION

Studying small bodies, such as asteroids and comets, is crucial to unraveling the formation and
evolution of the solar system, which have motivated many missions for detailed observation. After
the first sample-return of dust particles from comet Wild 2 by Stardust1 in 1999, missions involving
touchdown on the surface of small bodies were conducted by Hayabusa2 (2003), Rosetta3 (2004),
Hayabusa24 (2014), and OSIRIS-REx5 (2016). These missions demonstrated the scientific impact
brought by proximity surveys, and also their operational challenges. Detailed survey and reconnais-
sance of surface cost dedicated planning and execution from the ground, and there is a need for more
advanced autonomy for operations. In this regard, this paper studies how small-body reconnaissance
operations could be performed by multiple spacecraft with deep reinforcement learning.

The advantage of using a distributed, multiple spacecraft architecture for the exploration of small
celestial bodies has been a topic gaining interest since the turn of this century.6 Such architectures
are typically collaborative, potentially hierarchical, and have relatively high autonomy; this makes
them suitable for rapid investigation in-situ, adapting to the a priori unknown environment with lit-
tle or no human involvement in the loop. NASA’s Autonomous Nanotechnology Satellites (ANTS)
concept mission6–8 is one such example, where a distributed system of 1000 picosatellites was to
explore the asteroid main belt. In this architecture, some spacecraft would assume the role of “work-
ers”, conducting scientific observation in-situ, while a smaller number of “coordinator” spacecraft
would determine the overall action of the swarm. This type of organization, otherwise referred to
as “mother-daughter” architectures, has since also been adapted for a more ambitious sample return
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Figure 1: Multi spacecraft reconnaissance operations using the trained RL agents, shown in inertial
frame. Blue, green, yellow trajectories represent each of three different spacecraft in the swarm.
The red lines represent the line-of-sight connecting spacecraft and surface targets. The detailed
results are described in the section on Numerical Analysis.

mission from multiple main-belt asteroids.9 In contrast, studies such as ESA’s Asteroid Population
Investigation and Exploration Swarm (APIES) concept10 consider a swarm constituted by a smaller
number of identical small satellites, deployed once arriving at the asteroid belt.

Recently, a significant number of authors have studied the operational aspect of having multiple
spacecraft in the vicinity of small bodies. For the purpose of motion planning, Bandyopadhyay et
al11 combines a distributed assignment algorithm for the space allocation problem and sequential
convex programming for the trajectory design problem of each spacecraft to demonstrate motion-
planning in a cluttered, time-varying environment. Wang et al12 posed an optimal control problem
of multiple spacecraft that minimizes the fuel consumption while also ensuring no relative drift in
terms of mean orbital elements, as small bodies typically lead to osculating orbital elements due to
strong perturbing forces present. In a similar fashion, Lippe and D’Amico13 leveraged an extended
Kalman filter (EKF) to map the osculating elements to mean relative orbital elements (ROE), which
is then used as part of the control problem to maintain the formation in the mean ROE space. Nallapu
and Thangavelautham14 developed the Automated Swarm Designer for small body observation by
multiple spacecraft by optimizing their attitudes during a flyby.

For the purpose of autonomous navigation, the information collected by members of a swarm may
be combined to augment both the spacecraft state and knowledge of the dynamical environment;
Verisano and Vasile15 demonstrated an improvement in navigation performance through the use of
such data links. Similarly, Stacey et al16 proposed an algorithm that leverages optical observation
of multiple spacecraft via inter-satellite RF communication links to estimate both the states and the
asteroid’s gravitational field, rotational motion, and landmark positions.

Applications of reinforcement learning (RL) in the context of operations around asteroids, albeit
for a single spacecraft, have also been gaining traction. A particular advantage of using RL is due to
its ability to adapt the control law to a dynamics that is unknown ahead of time; this is particularly
suitable for asteroid exploration, where the irregularities of the body may not be known to a great
extent before taking in-situ measurements. Willis et al17 achieve hovering motion over a tumbling
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small body with unknown gravitational parameters through the use of a direct policy search, relying
only on optic flow observables. Such hovering motions, enabled by the relatively high maneuver-
ability in the vicinity of small bodies, are advantageous both for concentrated observation of a target
of interest via a body-fixed hovering, or mapping the entire surface of the body via an inertial-frame
hovering. For the purpose of close-proximity operations, Gaudet et al18, 19 propose a policy map-
ping LIDAR measurements to controls for a 6-degree-of-freedom spacecraft. Federici et al20 apply
a similar policy mapping for an impactor, demonstrating the algorithm on the DART mission sce-
nario. The use of a physics-informed neural-network (PINN)-based gravity model together with RL
has been proposed by,21 where a highly representative gravity model is used for training the RL
agent without compromising on the computational cost for propagating the dynamics. Another no-
table use of an RL architecture, proposed by Piccinin et al,22 aims to improve the surface mapping
efficiency by scheduling the image acquisition process.

This paper focuses on autonomous asteroid reconnaissance operations and studies the perfor-
mance of multiple spacecraft architecture with a policy trained by deep reinforcement learning. We
consider a cooperative sequential decision-making problem where every step, each spacecraft de-
termines which site to investigate in what condition. In a simulated environment, the trained policy
exhibits the sixth best performance with the narrowest performance variation against nine different
baseline policies. By comparing the best and worst policies, we discuss the balance of exploration
and exploitation for our problem.

PROBLEM STATEMENT

The objective of our problem is to maximize the science about the target small body with multiple
spacecraft, assuming the sites of interest are already identified. We assume that a global mapping
phase reveals the location of these sites but their detailed values are still unknown. Through re-
connaissance operations, each spacecraft accumulates knowledge about these sites, under restricted
inter-spacecraft communication. Within a certain mission window, the swarm of spacecraft needs
to cooperate in collecting as much science as possible.

Science Model

The objective function of our problem is the cumulative sum of the science gain. This subsection
details the assumptions of our science model that defines science gains by each reconnaissance
operation, which results in Eq. 4.

Ground Truth Site Values For a given list of sites on a small body, we define a segmented value
distribution (Fig. 2). One reconnaissance operation about a site reveals a part of the segmented value
up to the quality of observation. Specifically, let i 2 I = f1; 2; 3; :::g denote the site of interest with
I being the set of sites. We define Vi 2 Rn that represents the value distribution of the site i. For
example, Vi = [0; 10; 0:5] means that the scientific value of site i has three segments whose value
ranges from 0 to 10. Depending on the observation condition, the spacecraft may cover all or part
of the segments and collect their value up to a certain quality.

Property of Reconnaissance We give each reconnaissance operation the property of coverage,
quality, and emission angle. Coverage, c 2 R, represents how many segments the operation cov-
ered. Quality, q 2 R, defines the rate of value collection for each segment. Emission angle, � 2 R,
is the angle between the surface normal vector and the direction from the surface to the spacecraft.
Coverage, quality, and the emission angle are determined by the mean of the feasible observation
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