
(Preprint) AAS 22-795

NONLINEAR SPACECRAFT FORMATION FLYING USING
CONSTRAINED DIFFERENTIAL DYNAMIC PROGRAMMING

Tomohiro Sasaki*, Koki Ho†, and E. Glenn Lightsey ‡

The advancement of spacecraft guidance, navigation, and control (GNC) technol-
ogy is essential for future space systems. This paper contributes to the GNC area
by solving nonlinear unconstrained/constrained multi-spacecraft optimal control
problems using an existing technique of dynamic programming, differential dy-
namic programming (DDP). DDP is a trajectory optimization methodology that
iteratively finds a local optimal control policy around nominal state and control se-
quences. This method is extensively getting attention in Robotics and Aerospace
and is extended to a constrained problem in a recent decade. The constrained
DDP (CDDP) has proven its optimality and displayed satisfactory numerical per-
formance. This paper utilizes this algorithm and simulated spacecraft formation
flying by the Julia Language. Benefiting from the fast computing language, suc-
cessful CDDP spacecraft formation flying simulation results are shown in this pa-
per without using any numerical optimization solvers.

INTRODUCTION

Spacecraft formation flying is getting attention as a key technology for advanced space systems.
This paper refers to formation flying as a set of more than one spacecraft, each following a common
control law.1, 2 In recent decades, several space missions have successfully demonstrated spacecraft
formation flying, such as PRISMA (German Aerospace Center),3 TanDEM-X/TerraSAR-X (Ger-
man Aerospace Center),4 GRACE (NASA and German Aerospace Center),5 ETS-VII (JAXA),6 etc.
These missions have successfully displayed the benefits of formation flying relative to a mission that
would be conducted by a single spacecraft. At present, ambitious formation flying missions are un-
der development, such as mDot (NASA),7 VISORS (multi-university),8 FFSAT (The University of
Tokyo),9 and LISA (ESA and NASA).10 Some spacecraft are currently fulfilling their mission.11, 12

Making further progress in formation flying technology with those missions, future missions that
are not yet known can be anticipated.

Multi-spacecraft formation flying is one of the challenging areas in the spacecraft formation’s
guidance, navigation, and control (GNC). As advantages of multi-spacecraft formation flying over
monolithic spacecraft, it could achieve a more complex mission than that with a single spacecraft.
Furthermore, multi-spacecraft formation flying might be able to compensate for the failure of one
or some spacecraft. However, there are disadvantages to distributed spacecraft systems, such as
increased collision risk and computational cost/complexity. Additionally, designing a strategy for
controlling more than one spacecraft at once is a highly complex problem, but it needs to be solved
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for future ambitious missions. Significant applications of multi-spacecraft formation flying are, for
example, formation de-orbiting, synthesized aperture for the Earth or exoplanets, and distributed
sensing.8–10

In previous literature, many GNC approaches have been developed for solving nonlinear and lin-
ear optimal control problems in the formation flying research area. Here, this paper refers spacecraft
relative motion trajectory optimization problem as an optimal control problem. Those approaches
are mainly divided into two categories: the indirect method13–15 and the direct method.16–18 Direct
methods are more popular for solving nonlinear optimal control problems since indirect methods re-
quire deriving the first-order necessary conditions for optimality. In contrast, direct methods satisfy
their optimality through the direct optimization process.19 Moreover, some of these trajectory opti-
mization approaches can handle safety constraints and fuel consumption. In addition to these offline
trajectory optimization methods, in recent years, model predictive control (MPC) is appealing be-
cause of its capability (or performance) for solving spacecraft optimal control problems.16, 18, 20–22

MPC computes the control policy by solving a finite-horizon optimization problem subject to state
and control constraints regarding current states as initial states. Due to the property of updating con-
trol inputs for actuators, MPC can be a stable and robust controller to nonlinear and linear optimal
control problems.

This paper is built upon recent progress on one of the trajectory optimization techniques, the dif-
ferential dynamic programming (DDP) introduced by Jacobson and Mayne.23 DDP is an offline tra-
jectory optimization methodologies which iteratively finds a local optimal control policy computed
from a nominal state and control trajectories. As the name suggests, DDP is an indirect method
based on Bellman’s principle of optimality, which splits the main optimization problem into smaller
optimization subproblems. It has been shown that DDP displays local quadratic convergence under
some mild assumptions.24 Recent works suggest that DDP can be used for min-max type prob-
lems,25, 26 model predictive control framework,27, 28 and continuous-time formulation.26 Although
the original DDP requires second-order derivatives of the value function, dynamics, and compu-
tational cost, variations of DDP can avoid those difficulties such as the iterative linear quadratic
regulator (iLQR) by linear approximations,29 unscented DDP by the unscented transform,30 and
sampled DDP by the Monte Carlo method.31

Furthermore, more studies have been conducted on constrained DDP problems in recent years.
Constrained DDP is mainly solved through the two distinct approaches: 1) barrier and augmented
Lagrangian method, and 2) active set method. The former directly benefits from the barrier or
augmented Lagrangian functions to transform the nonlinear constrained optimization problem into
the unconstrained optimization problem.32, 33 The latter benefits from the active set method to take
into account for nonlinear constraints once active constraints are identified at each time step.34 The
hybrid method of those algorithms is already reported.35 Finally, the primal-dual interior-point DDP
(IPDDP) is developed,36 which utilizes a primal-dual interior-point method and proved quadratic
convergence properties. This paper utilizes IPDDP under the achievement of Pavlov et.al.’s work.

This paper is organized as follows: The dynamical system of relative motion is described in
the first section. The backgrounds of DDP and CDDP are presented in the second section. Finally,
numerical simulation results of spacecraft formation flying using differential dynamic programming
are shown in the last section.
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BACKGROUNDS

Dynamical System

As shown in Figure 1, two different coordinate frames need to be defined to appropriately solve an
optimal control problem for spacecraft relative motion around the Earth. At first, the Earth-centered
inertial frame (ECI) coordinate frame is defined to locate the position of the chief spacecraft. The
ECI frame is an inertially fixed coordinate frame, and its center is located at the center of the Earth.
The î direction points toward the vernal equinox, the k̂ direction points toward the North pole,
and the ĵ direction completes the right-handed coordinate frame. Thus, ĵ is perpendicular to the
other two directions. Next, Hill frame is defined to locate the position of the deputy spacecraft
with respect to the chief spacecraft. Hill frame is a locally fixed coordinate frame, and its center
is located at the center of the chief spacecraft. The x̂ direction is aligned with the chief position
vector pointing away from the Earth, the ẑ direction is aligned with the angular momentum vector,
and the ŷ direction completes the right-handed coordinate frame. Conventionally, x̂, ŷ, ẑ directions
are called the radial, along-track, and cross-track directions. The angular velocity of Hill frame is
defined as follows:

ω = ωxx̂+ ωzẑ (1)

where ωx is the rotation rate about the radial direction, and ωz is the rotation rate about the cross-
track direction.

Figure 1. ECI and LVLH frames

In this paper, the multi-agent nonlinear optimal control problem in the chief and multi-deputy
systems is defined as well. Thus, the j-th deputy spacecraft state in the LVLH frame is given
by xj = [xj , yj , zj , ẋj , ẏj , żj ]

T. The nonlinear equation of relative motion for the j-th deputy
spacecraft is defined as:37

ẋj = f(œ,xj ,uj) (2)

where œ = [r, vx, hang, i,Ω, θ]
T are the orbital elements of the chief orbit, r is the magnitude of

the position vector, vx is the magnitude of the radial velocity vector, hang is the magnitude of the
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specific angular momentum, i is the inclination, Ω is the right ascension of the ascending node, and
θ is the argument of latitude. The equation of motion for the chief spacecraft is defined as

œ̇ = f chief(œ,uchief) (3)

Note that Equation (4) is a function of its dynamics, the dynamics of the chief spacecraft, and the
control input. The following optimal control problem is constructed upon two assumptions. The
first assumption is that we only design deputy control inputs, i.e. uchief = 0. The second assumption
is that the chief orbital elements and deputy states are known without error.

DIFFERENTIAL DYNAMIC PROGRAMMING

This section introduces the concept and derivation of differential dynamic programming (DDP)
and the concept and derivation of interior-point constrained differential dynamic programming (IP-
CDDP).

Unconstrained Differential Dynamic Programming

Firstly, an optimal control problem is defined. A nonlinear dynamical system that is described by
the following discrete-time differential equation is considered .

xk+1 = f(xk,uk) (4)

where xk ∈ Rn, u ∈ Rm denote the state and control input at time step k, respectively. f :
Rn ×Rm → Rn denotes the nonlinear state transition function. We assume that this state transition
function f is twice differentiable. A trajectory {X,U} is a sequence of states X = [x0,x1, . . .xN ]
and corresponding control inputs U = [u0,u1, . . .uN−1] satisfying Equation (4). The finite-
horizon total cost over the horizon N is given by the sum of running cost ℓ(x,u) : Rn × Rn → R
and terminal cost ϕ(x) : Rn → R as

J (x0,U) = ϕ (xN ) +
N−1∑
k=0

ℓ (xk,uk) (5)

where it is assumed that ℓ(x,u) and ϕ(x) are twice differentiable. It is aimed to find an optimal
control trajectory that minimizes the cost function under an unconstrained optimal control problem

min
U

J(X,U) = min
U

[
ϕ (xN ) +

N−1∑
k=0

ℓ (xk,uk)

]
subject to xk+1 = f(xk,uk)

(6)

Here the value function is define , which is the minimum cost-to-go at each state and time:

Vk(xk) = min
uk

[
ϕ (xN ) +

N−1∑
k=0

ℓ (xk,uk)

]
(7)

Using Bellman’s principle of optimality, the sequence of optimal control problems can be expressed
as

Vk(xk) = min
uk

[ℓ(xk,uk) + Vk+1(xk+1)] (8)
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with the boundary condition

VN = ϕ(xN ) (9)

Now the nonlinear optimal control problem is defined.

Next, the algorithm of DDP is introduced. DDP iteratively finds a local optimal control sequence
by solving the nonlinear optimal control problem defined above. At each iteration step, DDP exe-
cutes two steps: 1) backward pass; 2) forward pass, about the nominal state and control trajectories
{X,U}. In the backward pass, the value function is quadratically approximated about given nom-
inal trajectories to find optimal deviations of nominal trajectories. In the forward pass, new state
and control trajectories are produced based on the deviations. This set of processes is repeated until
given convergence.

Backward pass We define an action-value function Q(x,u) : Rn × Rm → R as

Qk(xk,uk) = ℓ(xk,uk) + Vk+1(xk+1) (10)

This Q function can be quadratically approximated around the nominal trajectory {X,U}:

Q(x̄+ δx, ū+ δu) ≈ Q(x̄, ū) +

[
Qx

Qu

]T [
δx
δu

]
+

1

2

[
δx
δu

]T [
Qxx Qxu

QT
xu Quu

] [
δx
δu

] (11)

where δx and δu are the deviations about the nominal trajectories. For the notation simplicity,
the time step indices are neglected from now on, and the subscripts indicate the gradient operator,
i.e. ∇xQ = Qx. The derivatives of the action-value function Q are given by

Qx = ℓx + fT
xV

′
x (12)

Qu = ℓu + fT
uV

′
x (13)

Qxx = ℓxx + fT
xV

′
xxfx + V ′

x · fxx (14)

Qxu = ℓxu + fT
xV

′
xxfu + V ′

x · fxu (15)

Quu = ℓuu + fT
uV

′
xxfu + V ′

x · fuu (16)

where the prime symbol indicates the next time step, i.e. V ′
x = Vk+1(xk+1) and ”·” denotes the

tensor dot product. The last terms of Qxx, Qxu, Quu capture nonlinear changes of the dynamics.
Thus, those terms can be neglected when the algorithm pursues faster convergence by disregarding
nonlinear solution fidelity. In this case, DDP is called iterative Linear-Quadratic-Regulator (iLQR).
iLQR has an advantage on numerical performance since calculations of the nonlinear terms are
tensor operations, which are highly computationally expensive with complex dynamics and high-
dimensional states. Once the derivatives of the action-value function are stored, the action-value
function can be explicitly minimized with respect to the control deviation δu given by

δu∗ =argmin
δu

Q(x+ δx, u+ δu) = k +Kδx (17)

with k = −Q−1
uuQu, K = −Q−1

uuQux (18)
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Here, k is the feed-forward gain matrix and K is the feedback gain matrix. Lastly, the optimal
control deviation can be plugged into Equation (11)

Vx = Qx +KTQuuk +KTQu +QT
uxk (19)

Vxx = Qxx +KTQuuK +KTQux +QT
uxK (20)

The backward pass begins from evaluating the value function at the terminal step and proceeds
backward in time.

Forward pass After successfully completing the backward pass, the algorithm proceeds to the
next step, the forward pass. New trajectories are propagated by updating the nominal state and
control trajectories based on information on the optimal control deviation in Equation (18). Thus,
we obtain the following update formula:

xnew
0 = x0 (21)

unew
k = uk + γ kk +Kk(x

new
k − xk) (22)

xnew
k+1 = f(xnew

k , unew
k ) (23)

where γ is a backtracking search parameter and set to be an appropriately small number, and then
it is iteratively reduced. Finally, this backward-forward process is repeated until the locally optimal
trajectory is converged.

Constrained Differential Dynamic Programming

The CDDP algorithm extends the standard unconstrained DDP to take into account the effect
of inequality constraints. This paper follows the interior-point CDDP introduced by Pavlov et. al
(2021). The constraints in CDDP should be twice continuously differentiable and are a function of
state or/and control. Then the original unconstrained optimal control problem is transformed into:

min
U

J(X,U) = min
U

[
ϕ (xN ) +

N−1∑
k=0

ℓ (xk,uk)

]
subject to xk+1 = f(xk,uk)

c(xk,uk) ≤ 0

(24)

where c(x,u) : Rn × Rm → Rd is twice continuously differentiable constraint function. Using
Bellman’s principle of optimality, the sequence of optimal control problems can be expressed as

Vk (xk) = min
uk s.t. c(x,u)≤0

[ℓ (xk,uk) + Vk+1 (xk+1)] (25)

with the boundary condition

VN = ϕ(xN ) (26)

Here, the existing minimax DDP technique25, 36 is introduced to transform the original sequential
minimization problems into sequential minimax problems as follows:

Vk (xk) = min
uk

max
λk≥0

[L (xk,uk,λk) + Vk+1 (xk+1)] (27)
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where L(xk,uk,λk) : Rn × Rm × Rd → R is the Lagrangian function defined as

L(xk,uk,λk) = ℓ(xk,uk) + λT
k c(xk,uk) (28)

with the corresponding Lagrange multiplier λ ∈ Rd. As the standard DDP finds an optimal solu-
tion, CDDP iteratively finds a local optimal control sequence by solving the constrained nonlinear
optimal control problem defined above. At each iteration step, DDP executes two steps: 1) back-
ward pass; 2) forward pass, about the nominal state, control, and Lagrange multiplier trajectories
{X,U ,Λ}. In the backward pass, the value function is quadratically approximated about given
nominal trajectories to find optimal deviations of nominal trajectories. In the forward pass, new
state, control, and Lagrange multiplier trajectories are propagated based on the deviations. This set
of processes is repeated until given convergence. The feasibility is ensured in the forward pass.
Note that CDDP does not always have an initial feasible trajectory, unlike the standard DDP. This
paper assumes that the initial feasible trajectory is given, however, the interior-point CDDP can deal
with the initial infeasible trajectory. The inquisitive reader can find the detail in proof of optimality
regarding the interior point DDP in Reference 36

Backward Pass Define an action-value function Q(x,u,λ) : Rn × Rm × Rd → R as

Qk(xk,uk,λk) = Lk(xk,uk,λk) + Vk+1(xk+1) (29)

The quadratically approximated Q function around the nominal trajectory {X,U ,Λ} is given by

Q(x+ δx,u+ δu,λ+ δλ) ≈ Q(x,u,λ) +

Qx

Qu

Qλ

T δxδu
δλ


+

1

2

δxδu
δλ

T Qxx Qxu Qxλ

QT
xu Quu Quλ

QT
xλ QT

uλ Qλλ

δxδu
δλ


(30)

The derivatives of the action-value function Q are given by

Qx = Lx + fT
xV

′
x (31)

Qu = Lu + fT
uV

′
x (32)

Qxx = Lxx + fT
xV

′
xxfx + V ′

x · fxx (33)

Qux = Lux + fT
uV

′
xxfx + V ′

x · fux (34)

Quu = Luu + fT
uV

′
xxfu + V ′

x · fuu (35)

Qλ = Lλ = c (36)

Qλx = Lλx = cx (37)

Qλu = Lλu = cu (38)

Qλλ = 0 (39)
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Now the approximated action-value function is plugged into Equation (27). Then, the minimization
problem can be explicitly solved with respect to the control deviation δu as

Qu +Quxδx+Quuδu+QT
λuδλ = 0 (40)

On the other hand, the inner maximization problem can also be solved by taking the first-order
derivative. It results in the following equation

(λ+ δλ)⊙ (Qλ +Qλxδx+Qλuδu) = 0 (41)

where ⊙ is the element-wise Hadamard product. Ignoring the second-order terms and adding the
perturbation vector µ, the following parametric system can be obtained:

[
Quu Qus

diag(λ)Qsu diag(c)

] [
δu
δλ

]
= −

[
Qu

diag(λ)c+ µ

]
−
[

Qux

diag(λ)Qsx

]
δx (42)

The solution to Equation (42) is given by

[
k K
h H

]
=

[
Quu Qus

diag(λ)Qsu diag(c)

]−1 [
Qu Qux

diag(λ)c+ µ diag(λ)Qλx

]
(43)

Here, k is the feed-forward gain matrix for control policy, K is the feedback gain matrix for
control policy, h is the feed-forward gain matrix for the Lagrange multiplier, H is the feedback
gain matrix for the Lagrange multiplier. Lastly, the derivative of the value function can be written
as

Vx = Q̂x +KTQ̂uuk +KTQ̂u + Q̂T
uxk (44)

Vxx = Q̂xx +KTQ̂uuK +KTQ̂ux + Q̂T
uxK (45)

where

Q̂x = Qx −Qxsdiag(C)−1(diag(λ)c(x,u) + µ) (46)

Q̂u = Qu −Qusdiag(C)−1(diag(λ)c(x,u) + µ) (47)

Q̂xx = Qxx −Qxsdiag(C)−1diag(λ)Qλx (48)

Q̂xu = Qxu −Qxλdiag(C)−1diag(λ)Qλu (49)

Q̂uu = Quu −Quλdiag(C)−1diag(λ)Qλu (50)

The backward pass in CDDP also begins from evaluating the value function at the terminal step and
proceeds backward in time.
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Forward Pass After successfully completing the backward pass, the algorithm proceeds to the
next step, the forward pass. New trajectories are propagated by updating the nominal state, control,
and the multiplier trajectories based on information on the parametric solution in Equation (43).
Hence, we obtain the following update formula:

xnew
0 = x0 (51)

unew
k = uk + γ kk +Kk(x

new
k − xk) (52)

λnew
k = λk + γ hk +Hk(x

new
k − xk) (53)

xnew
k+1 = f(xnew

k , unew
k ) (54)

where γ is a backtracking search parameter and set to be an appropriately small number, it is
then iteratively reduced. Note that unlike the DDP algorithm, the CDDP algorithm should satisfy
cnew(x,u) < 0 and λnew > 0 at each time step. Finally, this backward-forward process is repeated
until the locally optimal trajectory is converged.

Regularization

To guarantee numerical convergence, Quu must be positive definite over the trajectory. In partic-
ular, a regularization scheme introduced in Reference 34, 38 is employed in this paper. The scheme
is as follows:

Qxx = Lxx + fT
x(V

′
xx + ν1In)fx + V ′

x · fxx (55)

Qux = Lux + fT
u(V

′
xx + ν1In)fx + V ′

x · fux (56)

Quu = Luu + fT
u(V

′
xx + ν1In)fu + V ′

x · fuu + ν2Im (57)

where ν1 and ν2 are positive regularization parameters. Those parameters play the role of the
Levenberg-Marquardt parameter. The value ν1 pushes the new trajectory back to the previous tra-
jectory, improving solution trajectories’ robustness. On the other hand, the value ν2 directly keeps
Quu to be positive definite and makes the control input variations gradual changes.

SIMULATION RESULTS

This section presents numerical simulation results of the spacecraft’s optimal control problem
given the dynamical system. There are two types of simulation cases 1) unconstrained case and 2)
constrained case. Each case includes two spacecraft formations and four spacecraft formations. The
initial orbital elements for the chief spacecraft is defined as æ = [a, e, i,Ω, ω,M ] = [6871 km,
0.001, 98 deg, 10 deg, 10 deg, 10 deg]. The time step and length are set to dt = 10 s and tN = 1080.
The DDP and CDDP simulation results are compared with an existing optimal control algorithm,
sequential convex programming (SCP) referring literature.18, 39 All algorithm is implemented using
the Julia Language. The SCP algorithm utilized the Julia Language’s JuMP.jl, a modeling package.
The CDDP performance is improved using the Julia Language’s ForwardDiff.jl.40 The computa-
tional performance is measured by BenchmarkTools.jl.
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For the simulation, the terminal and running cost functions are defined in a quadratic form:

ϕ(x) = xTR1x

ℓ(u) = uTR2u
(58)

where R1 and R2 are weight matrices given by

R1 =

[
10−1 I3 03×3

03×3 102 I3

]
R2 = 106 I3

(59)

Chief and Single Deputy System

First, a single chief and single deputy system is tested to learn a property of the algorithm conver-
gence. The initial and final conditions of the deputy spacecraft are shown in Table 1. The terminal
condition is applied as the terminal cost.

Table 1. Initial and Final Conditions

Parameter Initial value Final value

x m -94 -38
y m 68 27
z m 34 14
ẋ m/s 0.379 0.015
ẏ m/s 0.209 0.083
ż m/s 0.104 0.042

Unconstrained Case First, we consider an unconstrained spacecraft formation flying problem
for the purpose of obtaining general performance of the algorithms. Note that inactive control
constraints are added to CDDP and SCP for better numerical stability. The DDP algorithm is also
implemented as a reference. The results of unconstrained trajectories are shown in Figure 2. All
trajectory approaches the final position however, the CDDP (DDP) trajectory is slightly different
from the SCP one. The transitions of cost over the iteration are shown in Figure 3. The cost for all
three significantly decreases within a few iterations. Table 2 shows the fuel cost for all trajectories.
The fuel cost for both the CDDP and DDP trajectories was 0.077 m/s, while the cost for the SCP
trajectory was 0.12 m/s. Finally, Table 3 shows the benchmark performance of CDDP, DDP, and
SCP algorithms. It results that CDDP’s performance time is approximately five times faster than
SCP’s.

Control Constraints Case Next, we consider a control-limited spacecraft formation flying prob-
lem. This case is designed to find the proper nature of constrained optimal control. The control
constraint is set to umax = 4 × 10−6 m/s2 and umin = −4 × 10−6 m/s2. When the control con-
straints are applied, the CDDP trajectory differs from the SCP trajectory as shown in Figure . The
CDDP trajectory rendezvous with the chief spacecraft and then approaches the final position. Figure
5 shows the control inputs history. The CDDP and SCP control sequences are similar to each other.
Both control sequences are applied with a burn-burn scheme. The fuel cost for the CDDP and DDP
trajectories was 0.074 m/s, whereas the cost for the SCP trajectory was 0.075 m/s as shown in
Table 4. The benchmark performance of the CDDP algorithm was 14.8 s, whereas the benchmark
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Figure 2. Unconstrained Trajectories: (left) Along-track and Radial plane; (right)
Along-track and Cross-track plane

Figure 3. Cost Transitions

Table 2. Total ∆V Cost

Method Total ∆V (m/s)

CDDP 0.077
SCP 0.12

DDP (Ref) 0.077

Table 3. Benchmark Performance

Method Benchmark Time (s)

CDDP 8.68
SCP 41.3

DDP (Ref) 3.63
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performance of the SCP algorithm was 140 s. The performance difference between CDDP and SCP
becomes larger when the constraints are applied.

Figure 4. Control Limited Trajectories

Figure 5. Control Inputs History: (left) CDDP; (right) SCP

Table 4. Total ∆V Cost

Method Total ∆V (m/s)

CDDP 0.074
SCP 0.075

Table 5. Benchmark Performance

Method Benchmark Time (s)

CDDP 14.8
SCP 140

Control and State Constraints Next, we consider a more complex problem. The control con-
straints and a state safe constraint are designed. Due to obvious performance differences, the SCP
trajectory is not propagated. The safe state constraint is defined as:

39−
√
x2 + y2 ≤ 0 (60)

It implies that the constrained trajectory never intrudes into a circle with a radius of 39 m around the
chief spacecraft. The resulting trajectory is shown in Figure 6. The CDDP trajectory was pushed off
apart from the chief spacecraft and lay on the edge of the safe constraint. Due to the control limit and
severe safe constraint, the terminal position error results in a larger value than the control limited
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case. Figure 7 shows the control input history. Since the trajectory does not strictly reach the final
position, it saves control inputs. The fuel cost for this trajectory was 0.052 m/s. The benchmark
performance was 46.1 s. Compared to the control-limited case, the benchmark gets worse. This is
because algorithm descending was very slow when the algorithm computes the trajectory around
the safe constraint.

Figure 6. Control and State Constrained trajectories

Figure 7. Control and State Constrained Control Input History

Single-Chief and Triple-Deputy System

Finally, we consider a multi-spacecraft constrained (control and state) problem. The initial and
final conditions of deputy spacecraft are shown in Table 6 The control constraint is set to umax =
4× 10−6 m/s2 and umin = −4× 10−6 m/s2. The safe constraint distance is set to 25 m. Collision
avoidance constraints between each deputy are not considered since they might break the feasible
initial solution assumption. Figure 8 shows the CDDP trajectories of deputies under control and
state constraints. All trajectory approaches their final state. The deputy # 2 trajectory lies on the
state constraint, while the other two are free from the state constraint. Since the safe constraints
between deputies are not applied, the deputies are very close to each other at some time steps.
Figure 9 shows the multi-spacecraft control input history.
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Table 6. Initial and Final Conditions

Deputy # #1 #2 #3

Parameter Initial value Final value Initial value Final value Initial value Final value

x m -94 -38 85 28 -43 -26
y m 68 27 -61 -20 -180 -87
z m 34 14 85 -10 -99 -43
ẋ m/s 0.38 0.015 -0.034 -0.011 -0.10 -0.048
ẏ m/s 0.21 0.083 -0.19 -0.063 0.097 -0.059
ż m/s 0.10 0.042 -0.034 0.031 0.052 -0.029

Figure 8. Multi-spacecraft Control and State Constrained trajectories

Figure 9. Multi-spacecraft Control and State Constrained Control Input History
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CONCLUSION

The multi-spacecraft formation flying problem with control and state constraints is solved using a
CDDP algorithm. The problem is set up to satisfy a twice differentiable condition on the dynamics
model, terminal function, and cost function. The CDDP algorithm iteratively finds a local optimal
control policy around nominal state, control, Lagrange multiplier sequences. At each iteration step
CDDP executes two step: backward pass and forward pass. In order to include the effect of con-
straints in the minimization problem at the backward pass, the minimization problem is transformed
into a min-max problem. Then, local optimal deviations of control and Lagrange multiplier can be
obtained. After completing the backward pass, new trajectories are propagated in the forward pass.
The set of processes is repeated until convergence.

The simulation results of spacecraft formation flying showed successful convergence of optimal
control and constraint satisfaction. As a result, the CDDP benchmark performance was faster than
the benchmark performance of the SCP algorithm. The simulation results of multi-spacecraft for-
mation flying also showed successful convergence of optimal control and constraint satisfaction.

A future research direction is applying the CDDP algorithm in a predictive control setting to gain
the fast and robust trajectory optimization property. To avoid the collision of deputy spacecraft, state
constraints between deputies should be considered in future research. A constraint margin should
also be considered for a safe spacecraft formation flying mission.
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APPENDIX: EQUATIONS OF MOTION OF THE CHIEF AND DEPUTY

We define a constant for the dynamics model as

kJ2 =
3J2µR

2
e

2
(61)

where µ is the Earth’s gravitational constant, J2 is the second zonal harmonic coefficient of the
Earth, and Re is the Earth’s equatorial radius.

The chief equations of motion can be described as follows:37

ṙ = vx (62)

v̇x = − µ

r2
+

h2

r3
− kJ2(1− 3 sin2 i sin2 θ)

r4
(63)

ḣ = −kJ2 sin
2 i sin 2θ

r3
(64)

Ω̇ = −kJ2 sin 2i sin 2θ

2hr3
(65)

i̇ = −2kJ2 cos i sin
2 θ

hr3
(66)

θ̇ =
h

r2
+

2kJ2 cos
2 i sin2 θ

hr3
(67)

The deputy equations of motion can be described as follows:
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ẍj = 2ẏjωz − (η2j − ω2
z)xj + αzy − zωxωz − (ζj − ζ) sin i sin θ − r(η2j − η2)− ux,chief + uxj

(68)

ÿj = −2ẋjωz + 2żjωx − xjαz − y(η2j − ω2
z − ω2

x) + zjαx − (ζj − ζ) sin i cos θ − uy,chief + uyj
(69)

z̈j = −2ẏjωx − xjωxωz − yjαx − zj(η
2
j − ω2

x)− (ζj − ζ) cos i− uz,chief + uzj (70)

where

ζ =
2kJ2 sin i sin θ

r4
(71)

ζj =
2kJ2rjZ

r5j
(72)

η2 =
µ

r3
+

kJ2
r5

− 5kJ2 sin
2 i sin2 θ

r5
(73)

η2j =
µ

r3j
+

kJ2
r5j

−
5kJ2 sin

2 i sin2 θr2jZ
r7j

(74)

rj =
√

(r + xj)2 + y2j + z2j (75)

rrZ = (r + xj) sin i sin θ + yj sin i cos θ + zj cos i (76)

ωx = −kJ2 sin 2iθ

hr3
+

r

h
uz,chief (77)

ωz =
h

r2
(78)

αx = ω̇x = −kJ2 sin 2i cos θ

r5
+

3vxkJ2 sin 2i sin θ

r4h
−

8k2J2 sin
3 i cos i sin2 θ cos θ

r6h2
(79)

αz = ω̇z = −2hvx
r3

− kJ2 sin
2 i sin 2θ

r5
(80)
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