
(Preprint) AAS 22-747

LIDAR ODOMETRY FOR LUNAR TERRAIN RELATIVE
NAVIGATION

Carl De Vries*, John Christian†, Michael Hansen‡, and Tim Crain§

Future missions to the lunar surface are expected to make use of LIDAR sen-
sors for navigation during landing. This is especially true when the lunar landing
must be accomplished under lighting conditions that are undesirable for camera-
based navigation. Moreover, when local maps of the lunar terrain are also poor or
unavailable to the lander in real-time, concepts from LIDAR odometry (LO) are
highly relevant. This work develops an algorithmic framework for LO suitable for
supporting future lunar exploration missions.

INTRODUCTION

Recent years have seen an increased interest in both lunar exploration and the development of
a lunar economy. This interest has spawned numerous spacecraft development programs by gov-
ernment space agencies, academia, and the commercial sector. These lunar exploration activities
possess a variety of technical challenges, with autonomous navigation being one of the most diffi-
cult tasks. Moreover, while the challenges of autonomous navigation are many, this is especially
true for landing. This work addresses the use of LIDAR sensors for terrain relative navigation
(TRN) during a lunar landing over a poorly mapped region of the Moon.

There are a variety of approaches and sensing technologies that could be used for lunar TRN,
and many of these approaches have been studied for some time.1 If solar illumination is available
and reliable, there are many advantages for using conventional cameras as the primary TRN sensor.
When the terrain is well-mapped, it is often possible to match observed image features to cataloged
features in a map—as was done on OSIRIS-REx2 and with the Mars Perseverance Rover’s Lander
Vision System (LVS).3, 4 It is also possible to observe and match explicit geological features, such
as craters.5 When the terrain is not well-mapped, much can be done with camera-based visual
odometry (VO),6 though this comes as the cost of a loss of absolute scale. Concepts from VO
are the fundamental idea behind the TRN algorithms used for the Mars Exploration Rovers,7 the
Mars Ingenuity helicopter,8 and the upcoming IM-1 lunar lander mission.9, 10 However, if a landing
must be performed when lighting is poor, then camera-based navigation systems may not be able to
reliably detect and match surface features.

One of the great advantages of LIDAR systems11 is that they carry their own illumination source,
and thus do not depend on solar illumination. This sometimes makes LIDARs preferable to cameras
for night-time landings or for landing in lunar polar regions. LIDARs also have the advantage

*Graduate Student, Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30364.
†Associate Professor, Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30364.
‡Nova-C Navigation Lead, Intuitive Machines, Houston, TX 77058.
§Chief Technology Officer, Intuitive Machines, Houston, TX 77058.

1



of explicitly measuring range (whereas absolute range may only be inferred from TRN camera
images by matching observed landmarks to a map). However, TRN with LIDARs is not a panacea.
Indeed, there are numerous challenges associated with 3D point cloud registration—either between
a measured point cloud and a topographic map (the 3D equivalent to the OSIRIS-REx and Mars
Perseverance LVS mentioned above) or between two measured point clouds (the 3D equivalent to
the VO methods used on MER, Mars Ingenuity, and IM-1). Since this work is interested in landing
over poorly mapped terrain, the discussions that follow will focus on the latter of these two cases—
the so-called LIDAR odometry (LO) problem.

This work develops an approach to estimate a spacecraft’s translation using LIDAR point clouds
generated at two different positions. This is achieved by matching features which exist in both of the
observed point clouds, and so the vehicle’s motion must be small enough that considerable overlap
exists in the two LIDAR measurement sets. Moreover, since the point cloud registration is based on
3D geometry, it is assumed that the terrain has sufficient relief to generate high-quality keypoints
with unique feature descriptors.

SPACECRAFT AND LUNAR SURFACE GEOMETRY

Consider a spacecraft passing above the lunar surface equipped with a LIDAR sensor as illustrated
in Figure 1. The onboard LIDAR captures 3D point clouds of the surface as it moves along it’s
trajectory. To describe the geometry of this scenario, begin by defining rIk as the location of the
LIDAR in a Moon-centered inertial frame (e.g., coordinate axes aligned with ICRF) at time tk. This
is a convenient starting point since most navigation filters estimate the vehicle state in an inertial
frame. Now, since the LIDAR is observing the lunar surface, it is necessary to know the LIDAR’s
position relative to the Moon. Thus, defining TI

Mk
as the transformation from the inertial frame to a

Moon-fixed frame at time tk, we see that

r(Mk)k = TI
Mk

rIk (1)

Now, define s as the Moon-relative change in position between two successive times,

sMk
= r(Mk)k − r(Mk−1)k−1

= TI
Mk

rIk − TI
Mk−1

rIk−1
(2)

Let p(i) be the position of an arbitrary point on the lunar surface relative to the center of the Moon.
Also, let ℓ(i) be the position of this same point on the lunar surface relative to the LIDAR sensor. In
any consistent frame, it follows that

p(i) = r + ℓ(i) (3)

For TRN applications, it is helpful to express this problem in the MCMF frame. Moreover, since
ℓ(i) comes from the LIDAR it is natively expressed in the LIDAR frame. Consequently, we may
write

p(i)Mk
= TI

Mk
rIk + TLk

Mk
ℓ
(i)
Lk

(4)

or, equivalently,
TI
Mk

rIk = p(i)Mk
− TLk

Mk
ℓ
(i)
Lk

(5)

Direct use of this expression requires knowledge of the LIDAR orientation relative to the MCMF
frame. Access to this attitude transformation is usually a good assumption for a lunar lander with
a star tracker, where the vehicle’s inertial attitude TI

Bk
is known. Then, if the LIDAR’s orientation

2



relative to the vehicle’s frame TBk
Lk

is also known, we may directly compute the transformation
between the MCMF and LIDAR frames.

Substituting the result into Eq. (2) for times tk−1 and tk yields

sMk
=

(
p(i)Mk

− TLk
Mk

ℓ
(i)
Lk

)
−
(

p(i)Mk−1
− TLk−1

Mk−1
ℓ
(i)
Lk−1

)
(6)

Assuming the observed surface point p(i) is stationary on the lunar surface (as is the case for most
natural features), then its MCMF position is fixed for all time and p(i)M = p(i)Mk

= p(i)Mk−1
. Hence,

sMk
= TLk−1

Mk−1
ℓ
(i)
Lk−1

− TLk
Mk

ℓ
(i)
Lk

(7)

LIDAR DATA PRE-PROCESSING

In this work, the LIDAR measurement is assumed to be a 3D point cloud consisting of n points
expressed in the LIDAR frame, {ℓ(i)Lk

}nk
i=1. If these points are generated by a scanning LIDAR, it is

likely that they are not in a regular grid pattern. If two such point clouds exist, {ℓ(i)Lk−1
}nk−1

i=1 and

{ℓ(i)Lk
}nk
i=1, then our objective is to find the LIDAR sensor translation that shifts the first point cloud

onto the second.

It is possible to find this translation by working directly with the 3D point cloud data, either
through aligning the point clouds as a whole (e.g., with ICP12 or TEASER13) or by matching 3D
feature descriptors (e.g., with feature histograms14 or other techniques15). However, working with
an unstructured point clouds or irregular meshes constructed from these point clouds, is algorithmi-
cally complicated, computationally expensive, and not usually necessary for this application. It is
usually easier to resample the terrain observations into an elevation map on a 2D grid.

Figure 1. Multiple view geometry of a fixed landmark from a single translating spacecraft.

3



The LIDAR pre-processing starts by determining the projection plane and the proper reference
frame to represent the point clouds in for the projection. A regular grid is then formed in the
projection planes and 2D images are generated by appropriately sampling the LIDAR points in the
2D grid structures. After features are matched in the 2D image, the corresponding 3D points are
constructed, and then a process to identify and reject incorrect matches is applied.

Constructing the Reference Plane for LIDAR Gridding

There are at least two reasonable ways to construct a reference plane for the gridding of measured
LIDAR data. The first is to grid the data in the sensor frame, which results in a depth map (this
happens automatically if the LIDAR happens to be a Flash LIDAR). The second is to grid the data
on a reference plane tied to the local terrain (e.g., the Moon’s local horizontal), which results in an
elevation map. This work chooses to grid the data on an estimate of the terrain-anchored reference
plane.

There are a few different ways one might compute the reference plane. Two such ways are
discussed here. The first way is to assume the terrain relief is small as compared to the spatial extent
of the point cloud, which tends to be a good assumption at large altitudes and a poor(er) assumption
at low altitudes. The second way is to use knowledge of the spacecraft’s global location above the
Moon to construct the local horizontal. Each of these approaches are now discussed in more detail.

Best Fit Plane The best fit plane may be constructed directly from the LIDAR scan points {ℓ(i)Lk
}nk
i=1.

To do this, first write the point ℓ(i)Lk
in homogeneous coordinates (a point in P3),

ℓ̄
(i)
Lk

∝

[
ℓ
(i)
Lk

1

]
(8)

Now, the point ℓ̄(i)Lk
∈ P3 lies in the plane πLk

∈ P3 when

πT
Lk
ℓ̄
(i)
Lk

= 0 (9)

It is therefore possible to estimate the best fit plane in the least squares sense as

(
ℓ
(1)
Lk

)T
1(

ℓ
(2)
Lk

)T
1

...
...(

ℓ
(nk)
Lk

)T
1


πLk

= 0nk×1 (10)

This is a null-space problem and the solution for π may be found via the singular value decomposi-
tion (SVD).

Since everything is in the LIDAR frame, the sensor boresight is along the z-axis by convention.
The intersection of this direction with the plane πLk

may be found analytically. Begin by expressing
the z-axis in Plücker coordinates as

Lz ∝


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 (11)

4



Recall that the intersection point x̄ ∈ P3 of a line described by the Plücker matrix L with a plane
π ∈ P3 is given by x̄ ∝ Lπ. Thus, the intersection of the LIDAR boresight direction with the plane
is the point xLk

∈ R3 given by

[
xLk

1

]
∝ LzπLk

=


0
0

−π4
π3

 (12)

which is the same as

xLk
=

 0
0

−π4/π3

 (13)

Moreover, we can compute the plane normal vector nLk
∈ R3 as

nLk
∝ SπLk

(14)

where S = [I3×3, 03×1]. We choose the scaling ∥nLk
∥ = 1 and select the sign such that nT

Lk
k < 0.

This makes the normal vector point towards the LIDAR sensor (out of the lunar surface).

Local Horizontal from Filter State It is possible to construct the local horizontal using the filter’s
current state and knowledge of the LIDAR sensor’s attitude. If we assume that the spacecraft altitude
is small as compared to the radius of the Moon (a good assumption for the final phases of landing
considered here), then the local horizontal is perpendicular to the position vector.

Thus, to begin, we may express the local horizontal in the inertial frame according to

πIk ∝
[

nIk

−RM

]
(15)

where nIk = rIk/∥rIk∥ is the plane normal (unit vector in MCI direction of the spacecraft) and RM

is the radius of the Moon.

If the inertial boresight is bIk = TLk
I k then the Plücker matrix is,

Lb ∝
[
[(rIk × bIk)×] −bIk

bTIk 0

]
(16)

and the intersection of the boresight and the reference plane is[
xIk
1

]
∝ LbπIk (17)

Finally, we may convert the relevant quantities to the LIDAR sensor frame

nLk
= TI

Lk
nIk (18)

xLk
= TI

Lk
(xIk − rIk) (19)

5



Transforming LIDAR Observations to Elevation Observations

With the reference plane defined using one of the methods above, the next step is to transform the
LIDAR observations into a frame attached to this reference plane. To perform this transformation
requires a new reference frame be defined. We choose to place the origin of this reference frame at
the location where the boresight pierces the plane. We also choose to define the frame’s orthonormal
basis by the unit vectors {x̂, ŷ, ẑ}. These may be expressed in the frame Lk as

ẑ ∝ nLk
and ŷ ∝ ẑ ×

10
0

 and x̂ ∝ ŷ × ẑ (20)

Thus, the transformation from the LIDAR frame to the terrain relative frame is given by

TLk
Hk

=

x̂T

ŷT

ẑT

 (21)

Finally, each of the measured LIDAR points {ℓ(i)Lk
}nk
i=1 may be re-expressed in the terrain relative

frame as

h(i)
(Hk)k

= TLk
Hk

(ℓ
(i)
(Lk)k

− xLk
) =

h
(i)
xk

h
(i)
yk

h
(i)
zk

 (22)

Orthographic Projection onto a Pixel Grid

While it is possible to dynamically size the image, practical constraints on memory and speed
make it desirable to simply pick an image size. Here we choose a square image of size N × N ,
where N is a designed parameter selected by the algorithm developer ahead of time.

The mapping of the LIDAR scan points to their corresponding pixel coordinates is illustrated in
Figure 2. The first step is to determine the scaling from units of length to units of pixels. This is
achieved by first finding the extent LIDAR scan values,

∆x = max
[
{h(i)xk}

nk
i=1

]
−min

[
{h(i)xk}

nk
i=1

]
(23)

∆y = max
[
{h(i)yk}

nk
i=1

]
−min

[
{h(i)yk}

nk
i=1

]
(24)

Since we are constructing a square grid of N × N pixels, the conversion from units of length to
pixels may be computed as

α = N/max[∆x,∆y] (25)

Moreover, if we expect the [0, 0] pixel to be at the hypothetical minimum values of the LIDAR scan,
the image center lies at pixel coordinates

uo = −α min
[
{h(i)xk}

nk
i=1

]
(26)

vo = −α min
[
{h(i)yk}

nk
i=1

]
(27)

6



Hence, we may convert any LIDAR scan point to a pixel coordinate ofu(i)v(i)

1

 =

α 0 uo
0 α vo
0 0 1


h

(i)
xk

h
(i)
yk

1

 (28)

with a corresponding height of
h(i) = kTh(i)

Hk
= h

(i)
zk (29)

where k is a unit vector along the ẑ direction perpendicular to the reference plane. To compact
notation, define the matrix K as

K =

α 0 uo
0 α vo
0 0 1

 (30)

The points [u(i), v(i)] are not generally integers and do not evenly cover the square image space.
Thus, some pixels will contain no LIDAR scan points, some will contain only one scan point, and
some will contain many scan points. To construct an elevation image, I(u, v), one may loop through
all the measurements and accumulate the data while also creating a visibility mask as described in
Algorithm 1. We may ignore the pixels in the image where M(u, v) = 0.

Feature Matching and Extracting the 3D Location

Assuming sufficient terrain relief is present, 2D feature descriptors (e.g. SURF,16 SIFT,17 ORB,18

KAZE19) can be used to detect elevation map features and match them. These types of feature
descriptor encode the structure of pixel intensities in the neighborhood about a keypoint in the
image. The keypoint pixel coordinates for m corresponding features are given by {u′(j)

k }mj=1.

Mapping a 2D feature’s keypoint location to a 3D position requires the surface elevation, h′(j)k ,
at that point which can be obtained from biliner interpolation of the elevation map. Bilinear in-
terpolation requires that the keypoint is surrounded by four populated pixels (non-zero elements
in the visibility mask). The subset of pixels which can be interpolated are found in the erosion
of the visibility mask using an appropriate structuring element.20 Simply put, a pixel is included

Figure 2. The orthographic projection mapping a LIDAR point onto a gridded reference plane.

7



Algorithm 1 Pseudocode to construct an elevation map

1: procedure [I,M ] = GRIDSCAN({h(i)
Hk

}nk
i=1, N )

2: compute K ▷ Eq. (30)
3: allocate M = 0N×N

4: allocate I = 0N×N

5: for i = 1 to nk do
6: compute [u(i), v(i)] ▷ Eq. (28)
7: compute u = ⌊u(i)⌋ and v = ⌊v(i)⌋
8: I(u, v) = I(u, v) + h(i)

9: M(u, v) = M(u, v) + 1

10: for i = 0 to N − 1 do
11: for j = 0 to N − 1 do
12: if M(i, j) > 0 then
13: I(i, j) = I(i, j)/M(i, j)

14: return [I,M ]

in the erosion when the structuring element is centered on the pixel and all the other pixels in the
structuring element correspond to non-zero mask pixels. A simple 3x3 square structuring element
is sufficient to perform bilinear interpolation. In fact, the erosion will always underestimate the true
valid region regardless of the size or shape of the structuring element selected. Corrections are not
made to reclaim the missing region for two reasons. First, the size of the missing region is negli-
gible compared to the remaining erosion. Second, the region of support used to generate the 2D
feature descriptors is likely to be larger than the missing region. In practice it may be prudent to se-
lect a larger structuring element to intentionally reject keypoints near the edge. Now, the keypoints
contained in the erosion can be interpolated are given by the set {u′(q)

k }mq=1.

For bilinear interpolation, we require the u-v components of the four pixels surrounding a given
keypoint, u′(q)

k , are

u
′(q)−
k = ⌊u′(q)k ⌋ and u

′(q)+
k = ⌈u′(q)k ⌉ and v

′(q)−
k = ⌊v′(q)k ⌋ and v

′(q)+
k = ⌈v′(q)k ⌉ (31)

which are used to look-up the elevations corresponding to each pixel in the image

h
′(q)
1,k = I(u

′(q)−
k , v

′(q)−
k ) (32)

h
′(q)
2,k = I(u

′(q)−
k , v

′(q)+
k ) (33)

h
′(q)
3,k = I(u

′(q)+
k , v

′(q)−
k ) (34)

h
′(q)
4,k = I(u

′(q)+
k , v

′(q)+
k ) (35)

The pixels in the image are unit width simplifying the bilinear interpolation to

h′(q) =
[
u
′(q)+
k − u

′(q)
k u

′(q)
k − u

′(q)−
k

] [h′(q)1,k h
′(q)
2,k

h
′(q)
3,k h

′(q)
4,k

][
v
′(q)+
k − v

′(q)
k

v
′(q)
k − v

′(q)−
k

]
(36)

8



which estimates the elevation. The matched keypoints can be mapped to the terrain relative frame
using K−1 h

′(q)
xk

h
′(q)
yk

1

 =

 1
α 0 −u0

α

0, 1
α

−v0
α

0, 0 1


u′(q)k

v
′(q)
k

1

 = K−1

u′(q)k

v
′(q)
k

1

 (37)

and the feature location is constructed from the elevation map as

h′(q)
Hk

=

h
′(q)
xk

h
′(q)
yk

h′(q)

 (38)

Finally, the feature location in the LIDAR frame is obtained by rearranging Eq. (22) as

ℓ
′(q)
(Lk)k

= THk
Lk

h′(q)
Hk

+ xLk
(39)

which is the form required to compute the LIDAR translation in Eq. (7).

Robust Feature Matching Between Images

We can expect a subset of the correspondences to be mismatched during the feature matching
process, and these incorrect correspondences must be removed to produce an accurate translation
estimate.21 Since the landmarks on the lunar surface are fixed with respect to the body, the true
feature matches will have the same apparent motion. A simple test is to hypothesize a model for
the correct feature translation and then determine which of the remaining feature matches fit the
model. The pairs which fit the model are geometrically consistent and these inliers are added to the
consensus sent for the given hypothesis. One hypothesis is generated by computing the translation
for each pair of matched features

d′(q)(Lk)k
= ℓ

′(q)
(Lk)k

− TLk−1

Lk
ℓ
′(q)
(Lk−1)k−1 (40)

and it’s added to the matched feature locations from the tk−1 point cloud. The result is compared
to the expected matched feature location from the tk point cloud. If the error, computed as the
Euclidean distance, of the two points is within a tolerance then, the matched feature pair is accepted
as an inlier for the given hypothesis. The hypothesis with the largest consensus set is selected, and
the inliers for the consensus set are used to estimate the LIDAR translation using Eq. (7).

LIDAR ODOMETRY SIMULATION

The LO framework is evaluated using synthetic LIDAR scans generated along a reference lunar
descent trajectory. Scans are simulated by ray casting from a an assumed sensor location onto
a synthetic terrain mesh. The LO algorithm’s performance is then quantified by estimating the
LIDAR’s translation from only the scan measurements.

LIDAR scans are generated from synthetic terrain because current digital terrain maps (DTMs),
such as those from SELENE22 or the Lunar Reconnaissance Oriter (LRO),22, 23 do not contain ad-
equate resolution at low altitudes. The synthetic terrain in Figure 3 was created in Blender by
Intuitive Machines to simulate scans for low altitude descent trajectories. A Python script generates

9



a LIDAR scan with a triangle pattern and the point cloud is generated by casting each LIDAR ray
onto the surface mesh. Neither motion blur from the spacecraft motion nor measurement errors are
incorporated in the synthetic scans.

Figure 3. A synthetic lunar DEM was created to simulate LIDAR measurements
within the Blender environment. The synthetic DEM shown here was created by
Justin Westmoreland and Lillian Hong of Intuitive Machines.

LIDAR scans are generated along a reference trajectory for Intuitive Machines’ IM-1 mission.
While the IM-1 mission will not utilize LO techniques, LIDAR measurements are assumed to start
near the same altitude as other sensors in the IM-1 hazard detection and avoidance (HDA) suite.10

While processing the scans, the best fit plane is used to generate elevation maps with a grid reso-
lution of 512x512 cells. The SURF feature descriptor is used to match features, and an error of 1
meter is used for a robust geometric constraint.

Three LO examples from the descent trajectory are shown in Figures 4, 5, and 6. Each image
shows the elevation maps for a pair of scans with the robust matches overlaid on top. The spacecraft
translation distance for each image pair is approximately 62 meters with the maximum altitude
change of 7 meters. The first elevation map in each pair is shown on the left, and the second
is shown on the right. Black pixels indicate a grid locations that do not contain any LIDAR scan
measurements.

Each pair of elevation maps show robust feature matches tend to lie along regions with significant
terrain relief. The number of robust matches for each image pair are tabulated in Table 1 along with
the number of matched SURF features and interpolated features. The translation error is less than
1% for all three test cases.

In general, image pairs with more feature matches will also have a larger number of robust feature
matches. Many of the SURF matches are adjacent to cells without any LIDAR data (black pixels)
meaning the features can’t be interpolated. The stripes of black pixels in the images are due to
both the triangle scan pattern and the elevation map grid resolution. The elevation map resolution
is the only algorithm parameter which can eliminate this effect so selecting an appropriate value
to support the data is crucial. Note that the LIDAR ground sample distance (GSD) increases with
altitude. Thus, if the grid resolution is fixed throughout flight, then the limiting case corresponds to

10



Figure 4. Robust feature matches overlayed on the elevation maps for the first test case.

Figure 5. Robust feature matches overlayed on the elevation maps for the second test case.

Figure 6. Robust feature matches overlayed on the elevation maps for the third test case.

11



the highest altitude at which LIDAR measurements are expected to be captured.

Table 1. Summary of feature correspondences and translation error for three test cases.

Case 1 Case 2 Case 3

Matched Features 109 98 74
Interpolated Features 67 75 57
Robust Matches 48 46 34
Translation Percent Error (%) 0.15 0.09 0.23
True translation (m) 62.8 62.8 62.1

CONCLUSIONS

LIDAR odometry (LO) is well suited to provide terrain relative navigation (TRN) measurements
for future missions which expect poor surface lighting conditions. A framework for LO was devel-
oped and it is general enough to work regardless of the LIDAR scan pattern. Sufficient scan overlap
and significant terrain relief are required to detect opportunistic features using popular feature de-
scriptors. The LO algorithm performance was demonstrated using three pairs of synthetic LIDAR
scans along the descent segment of the IM-1 lunar reference trajectory. The examples provided
indicate the framework is capable of estimating spacecraft translations for real-time applications.

REFERENCES

[1] A. E. Johnson and J. F. Montgomery, “Overview of Terrain Relative Navigation Approaches for Precise
Lunar Landing,” 2008 IEEE Aerospace Conference, 2008, pp. 1–10, 10.1109/AERO.2008.4526302.

[2] R. D. Olds and et al., “The Use of Digital Terrain Models for Natural Feature Tracking at Asteroid
Bennu,” The Planetary Science Journal, Vol. 3, 2022, 10.3847/PSJ/ac5184.

[3] A. Johnson and et al., “Mars 2020 Lander Vision System Flight Performance,” AIAA SciTech Forum,
No. AIAA 2022-1214, 2021, 10.2514/6.2022-1214.

[4] Y. Cheng, A. Ansar, and A. Johnson, “Making an Onboard Reference Map From MRO/CTX Im-
agery for Mars 2020 Lander Vision System,” Earth and Space Science, Vol. 8, No. 8, 2021,
10.1029/2020EA001560.

[5] J. Christian, H. Derksen, and R. Watkins, “Lunar Crater Identification in Digital Images,” The Journal
of the Astonautical Sciences, Vol. 68, 2021, pp. 1056–1144, 10.1007/s40295-021-00287-8.

[6] D. Scaramuzza and F. Fraundorfer, “Visual Odometry [Tutorial],” IEEE Robotics Automation Magazine,
Vol. 18, No. 4, 2011, pp. 80–92, 10.1109/MRA.2011.943233.

[7] Y. Cheng, J. Goguen, A. Johnson, C. Leger, L. Matthies, M. Martin, and R. Willson, “The Mars explo-
ration rovers descent image motion estimation system,” IEEE Intelligent Systems, Vol. 19, No. 3, 2004,
pp. 13–21, 10.1109/MIS.2004.18.

[8] D. S. Bayard, D. T. Conway, R. Brockers, J. Delaune, L. Matthies, H. F. Grip, G. Merewether, T. Brown,
and A. M. San Martin, “Vision-Based Navigation for the NASA Mars Helicopter,” AIAA SciTech Forum,
No. AIAA 2019-1411, 2019, 10.2514/6.2019-1411.

[9] J. A. Christian, L. Hong, P. McKee, R. Christensen, and T. P. Crain, “Image-Based Lunar Terrain
Relative Navigation Without a Map: Measurements,” Journal of Spacecraft and Rockets, Vol. 58, No. 1,
2021, pp. 164–181, 10.2514/1.A34875.

[10] G. Molina, M. Hansen, J. Getchius, R. Christensen, J. A. Christian, S. Stewart, and T. Crain, “Visual
Odometry for Precision Lunar Landing,” AAS Guidance, Navigation, & Control Conference, No. AAS
22-113, 2022.

[11] J. A. Christian and S. Cryan, “A Survey of LIDAR Technology and its Use in Spacecraft Relative
Navigation,” AIAA Guidance, Navigation, and Control (GNC) Conference, 2013, 10.2514/6.2013-4641.

[12] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,” Proceedings Third Interna-
tional Conference on 3-D Digital Imaging and Modeling, 2001, pp. 145–152, 10.1109/IM.2001.924423.

[13] H. Yang, J. Shi, and L. Carlone, “TEASER: Fast and Certifiable Point Cloud Registration,” IEEE Trans-
actions on Robotics, Vol. 37, No. 2, 2021, pp. 314–333, 10.1109/TRO.2020.3033695.

12



[14] A. Rhodes, J. Christian, and T. Evans, “A Concise Guide to Feature Histograms with Applications
to LIDAR-Based Spacecraft Relative Navigation,” Journal of Astronautical Sciences, Vol. 64, 2017,
pp. 414–445, 10.1007/s40295-016-0108-y.

[15] R. Spezialetti, S. Salti, L. Di Stefano, and F. Tombari, “3D Local Descriptors—from Handcrafted to
Learned,” 3D Imaging, Analysis and Applications, 2020, pp. 319–352, 10.1007/978-3-030-44070-1 7.

[16] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust Features (SURF),” Computer
Vision and Image Understanding, Vol. 110, No. 3, 2008, pp. 346–359. Similarity Matching in Computer
Vision and Multimedia, https://doi.org/10.1016/j.cviu.2007.09.014.

[17] D. E. Lowe, “Distnictive Image Features from Scale-Invariant Keypoints,” International Journal of
Computer Vision, Vol. 60, 2004, pp. 91–110, 10.2514/2.4988.

[18] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alternative to
SIFT or SURF,” 2011 International Conference on Computer Vision, 2011, pp. 2564–2571,
10.1109/ICCV.2011.6126544.

[19] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “KAZE Features,” Computer Vision – ECCV 2012
(A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, eds.), Berlin, Heidelberg, Springer
Berlin Heidelberg, 2012, pp. 214–227.

[20] R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image Analysis Using Mathematical Morphology,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 4, 1987, pp. 532–
550, 10.1109/TPAMI.1987.4767941.

[21] F. Fraundorfer and D. Scaramuzza, “Visual Odometry : Part II: Matching, Robustness, Optimiza-
tion, and Applications,” IEEE Robotics Automation Magazine, Vol. 19, No. 2, 2012, pp. 78–90,
10.1109/MRA.2012.2182810.

[22] M. Barker, E. Mazarico, G. Neumann, M. Zuber, J. Haruyama, and D. Smith, “A new lunar digital ele-
vation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera,” Icarus, Vol. 273,
2016, pp. 346–355, https://doi.org/10.1016/j.icarus.2015.07.039.

[23] D. E. Smith, M. T. Zuber, G. A. Neumann, F. G. Lemoine, E. Mazarico, M. H. Torrence, J. F. McGarry,
D. D. Rowlands, J. W. Head III, T. H. Duxbury, O. Aharonson, P. G. Lucey, M. S. Robinson, O. S.
Barnouin, J. F. Cavanaugh, X. Sun, P. Liiva, D.-d. Mao, J. C. Smith, and A. E. Bartels, “Initial observa-
tions from the Lunar Orbiter Laser Altimeter (LOLA),” Geophysical Research Letters, Vol. 37, No. 18,
2010, https://doi.org/10.1029/2010GL043751.

13


	Introduction
	Spacecraft and Lunar Surface Geometry
	LIDAR Data Pre-Processing
	Constructing the Reference Plane for LIDAR Gridding
	Best Fit Plane
	Local Horizontal from Filter State

	Transforming LIDAR Observations to Elevation Observations
	Orthographic Projection onto a Pixel Grid
	Feature Matching and Extracting the 3D Location
	Robust Feature Matching Between Images

	LIDAR Odometry Simulation
	Conclusions

