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GEOMETRIC INITIAL ORBIT DETERMINATION FROM BEARING
MEASUREMENTS

Timothy Duff*, Michela Mancini†, Anton Leykin‡, and John A. Christian§

Initial orbit determination (IOD) from only bearing measurements is a classical problem in
astrodynamics. The classical solutions of Gauss, Laplace, and others can solve this problem
with three bearing measurements collected at known times. In this work, we apply concepts
from algebraic geometry to investigate purely geometric solutions to this same problem. It is
shown that five optical sightings at unknown times may be used to determine the orbit of an
unknown spacecraft. The solution only requires knowledge that the spacecraft is following a
conic orbit, with no need for any orbit propagation as part of the IOD process.

INTRODUCTION

Initial orbit determination (IOD) is one of the classical problems in astrodynamics. The problem has
attracted the attention of many notable mathematicians—including Gauss [1], Laplace [2], and Gibbs [3]—
whose algorithms are still in widespread use hundreds of years later. The various classical IOD algorithms
address different IOD scenarios. Each different IOD scenario has its own set of unique assumptions about
the information available for the orbit reconstruction. Some examples are highlighted in Table 1.

What is unique about the Gibbs solution (amongst the classical algorithms) is that it is purely geometric.
Specifically, it finds the 3D conic that passes through three known points in space—without any need for
explicitly knowing the time at which the orbiting object resided at those three points. Similar geometric solu-
tions have also been identified for the velocity-only IOD problem through use of the orbital hodograph [4]. To
our knowledge, no such purely geometric solution exists for the angles-only scenario. Popular algorithms—
including those of Gauss [1], Laplace [2], Gooding [5], and others [6]—all require the explicit use of time
to propagate the body between specific points on the orbit (corresponding to the bearing measurements).
Therefore, in this work we apply concepts from algebraic geometry to produce a purely geometric solution
to the angles-only IOD problem. More specifically, we formulate the IOD problem in terms of solving a
multivariate polynomial system of equations. Solving these equations for 5 observations (or 3 in the case of
a circular orbit) reduces estimating the unknown orbital parameters to checking finitely many candidates.

Table 1. Comparison of some common IOD problem formulations.

Gauss, Laplace,
Double-R, & Gooding Lambert Gibbs Hodograph This Work

Observation type Angles Position Position Velocity Angles
Number of observations 3 2 3 3 3 or 5
Explicit use of time Y Y N N N
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DISK QUADRICS AND POLYNOMIAL CONSTRAINTS FROM LINES-OF-SIGHT

In this section, we consider the representation of a space conic in terms of its disk quadric, along with a
few basic related notions from projective geometry. After reviewing different parameterizations of the disk
quadric, we translate line-of-sight observations into the polynomial constraints used in our approach to IOD.

Suppose we have a spacecraft in an unknown orbit that we wish to estimate. Under the assumption of
classical two-body motion, the spacecraft will move along a path that is a conic section. The plane of this
conic section is constrained to pass through the origin, though its orientation is unknown. Moreover, one of
the conic section’s foci must lie at the origin.

Now, suppose we have a set of n observations of this particle from n different observers in general position.
Each observation consists of the bearing (i.e., the direction) from the observer’s location to the particle’s
location. Thus, we have a set of n lines, with each line passing through the conic formed by the spacecraft
orbit and one of the observer points. This is illustrated in Fig. 1.

Figure 1. Illustration of geometry. The points Oi represent the observers’ position
and the lines the observed lines.

A 3D conic may be described in many ways. For instance, it may be represented as the intersection
of a plane with a quadric surface, e.g. a cone or an ellipsoid. A less cumbersome description is the dual
representation of the conic, which describes its locus of tangent planes. In two dimensions this is sometimes
called the conic envelope, and in 3D it is usually called the disk quadric [7]. The reader interested in additional
details on quadrics is directed to Refs. [7], [8], and [9].

Since it is both convenient and natural to work with homogeneous coordinates, we will regard a plane in
space as a subset of the three-dimensional projective space P3. A plane in P3 may be represented either in
primal terms, in which case the points on the plane are vectors in the column span of a 4 ˆ 3 matrix, or in
dual terms as the left-nullspace of 4 ˆ 1 matrix π. Similarly, a line in P3 may be represented in primal terms
as the column span of a 4ˆ2 matrix, or in dual terms, in which case the planes containing the line are vectors
in the column span of a 4 ˆ 2 matrix.

The disk quadric may be represented by a rank-deficient 4 ˆ 4 matrix Q˚. In dual terms, a plane π lies on
the disk quadric if and only if

πT Q˚π “ 0. (1)

Equation (1) describes a surface in three-dimensional dual projective space. Intuitively, this surface may be
viewed as an ellipsoid that has been flattened into the shape of a pancake.

An Elliptical Orbit as a Disk Quadric

We will begin by relating the disk quadric Q˚ to more commonly used orbital elements. Therefore, we have
an orbit whose perifocal frame is given by the orthonormal basis vectors tp, q,wu. We choose the convention
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where p points from the origin (located at the center of the gravitating body) to the orbit periapsis and where
w is normal to the orbit plane (in the direction of the angular momentum vector). The unit vector q completes
the right-handed system.

If the orbit has a semimajor axis of a and eccentricity of e, then the distance from the origin (which must
lie at one of the ellipse foci) to the orbit geometric center is given by c “ ea. Likewise, we recall that the
semiminor axis b is related to a and c according to a2 “ b2 ` c2. Thus, in the perifocal frame, one may write
the ellipse as

px ` cq2

a2
`

y2

b2
“ 1, (2)

or, equivalently,
b2x2 ` 2b2cx ` b2c2 ` a2y2 ´ a2b2 “ 0. (3)

Collecting terms, we may write

b2x2 ` a2y2 ` 2b2cx ` b2pc2 ´ a2q “ 0, (4)

b2x2 ` a2y2 ` 2b2cx ´ b4 “ 0. (5)

In homogeneous coordinates xT 9 rx, y, 1s, this last equation is equivalent to

xT Cx “ 0, (6)

where C is a nonzero 3 ˆ 3 matrix given up to scale:

C 9

»

–

b2 0 b2c
0 a2 0
b2c 0 ´b4

fi

fl . (7)

If C describes the conic locus of the orbit, then C˚
9 C´1 describes the conic envelope (lines tangent to the

conic in the orbit plane). Therefore, recalling a2 “ b2 ` c2,

C˚
9 C´1

“

»

–

1{a2 0 c{pa2b2q

0 1{a2 0
c{pa2b2q 0 ´1{pa2b2q

fi

fl 9

»

–

1 0 c{b2

0 1 0
c{b2 0 ´1{b2

fi

fl . (8)

The objective now is to relate the conic envelope to the disk quadric (a type of quadric envelope). To do
this, we recall from Ref. [10] the relation

Q˚
9 HC˚HT (9)

where, in this case, one may compute H as the 4 ˆ 3 matrix

H “

„

p q 03ˆ1

0 0 1

ȷ

. (10)

Performing the requisite multiplications gives a disk quadric of

Q˚
9 HC˚HT (11)

“

„

p q pc{b2qp
p1{b2q 0 p´1{b2q

ȷ

»

–

pT 0
qT 0

01ˆ3 1

fi

fl (12)

“

„

ppT ` qqT pc{b2qp
pc{b2qpT p´1{b2q

ȷ

. (13)

Thus,

Q˚
9

„

ppT ` qqT pc{b2qp
pc{b2qpT p´1{b2q

ȷ

“

„

I3ˆ3 ´ wwT pc{b2qp
pc{b2qpT p´1{b2q

ȷ

. (14)
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Consequently, the 4ˆ4 matrix Q˚ describing the disk quadric consists of two scalars (b and c, which describe
the size and shape of the orbit in the perifocal plane) and the two orthonormal vectors that span the perifocal
plane (p and q). Since p and q are orthonormal, we have the three constraints

pT p “ qT q “ 1, pT q “ 0. (15)

The two parameterizations of Q˚ from Eq. (14) and the three constraints from Eq. (15) were also given in
Ref. [11]. The difficulty with these specific ways of writing Q˚ is that they require different treatment for
an elliptical orbit (when the direction of p is well-defined) and for a circular orbit (when the direction of p is
not well-defined). Thus, we introduce a third parameterization of Q˚ that avoids this deficiency. Specifically,
define the vector g “ pc{b2qp, which is well-defined for both elliptical and circular orbits. We observe, in the
limit as e Ñ 0, that c Ñ 0 and g Ñ 03ˆ1. Therefore, we may parameterize the disk quadric as

Q˚
9

„

I3ˆ3 ´ wwT g
gT p´1{b2q

ȷ

, (16)

where the parameters w, g, b satisfy the two constraints

wT w “ 1, wT g “ 0. (17)

Thus, because of its benefits for near-circular orbits, the parameterization of Q˚ from Eq. (16) is used in the
developments that follow.

Observation Lines and Tangent Planes

Recall that a plane in P3, represented by π P R4ˆ1, is tangent to Q if and only if

πT Q˚π “ 0. (18)

Observed lines ℓ1, . . . , ℓn Ă P3 must lie within the unknown tangent planes π1, . . . ,πn, obtained geomet-
rically as the join of each observed line with the corresponding tangent line in the orbit plane. Each πi

constructed in this way is the unique plane in Q˚ that contains ℓi. This can be appreciated in Fig. 2.

Figure 2. Representation of the planes π1,π2,π3 of the disk quadric containing three
observed lines from the three observers O1, O2 and O3.

Each observed line ℓi may be described in primal coordinates as the column space of the 4 ˆ 2 matrix
„

xi ui

1 0

ȷ

. (19)
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Here xi P R3 gives the coordinates of the observer point Oi and ui P R3 is a bearing measurement. The
bearings, in noiseless scenarios, are unit vectors pointing from observers towards points on the orbit.

A dual representation of the line ℓi is given by any full-rank 4 ˆ 2 matrix Ai such that

AT
i

„

xi ui

1 0

ȷ

“ 02ˆ2. (20)

Many choices are possible for the matrix Ai giving the dual representation of ℓi. In the next subsection, we
explain two methods—one algebraic, the other numerical—by which a suitable Ai may be directly computed
from observations. Once we are given the matrix Ai, the tangent plane πi may be written as

πi “ Aici (21)

for some nonzero 2 ˆ 1 vector ci. Substituting this expression into equation (18) yields

cTi AT
i Q˚Aici “ 0. (22)

The vector ci, which depends on the unknown tangent plane, may be eliminated from this equation to obtain
a constraint depending only on the observed line and the unknown entries of the disk quadric: namely,

det
`

AT
i Q˚Ai

˘

“ 0. (23)

Thus, each of the observed lines ℓ1, . . . , ℓn places a constraint on the 3D conic that is polynomial in the
entries of Ai and Q˚. These are the basic constraints from which we may determine the unknown orbit.

Dual representation of an observed line

The dual representation of the line ℓi is given by the matrix Ai. To express Ai algebraically in terms of the
observer vector xi and the bearing vector ui, it is convenient to partition the primal matrix into two square
blocks, S1,S2 P R2ˆ2:

„

xi ui

1 0

ȷ

“

„

S1

S2

ȷ

. (24)

Assuming the observations xi,ui are sufficiently generic, then both S1 and S2 will be invertible. Thus,
application of Eq. (20) allows us to parameterize Ai as

AT
i “

“

A1
1 ´A1

1 S1 S´1
2

‰

, (25)

where A1
i may be chosen to be any invertible 2 ˆ 2 matrix. Write xi “

“

xi,1 xi,2 xi,3

‰T
and ui “

“

ui,1 ui,2 ui,3

‰T
. Noting that detS2 “ u3,, we find it convenient to make the choice A1

1 “ u3 I2ˆ2.
Using these conventions we compute

A1
i S1 S´1

2 “

„

xi,1 ui,1

xi,2 ui,2

ȷ „

0 ´ui,3

´1 xi,3

ȷ

“

„

´ui,1 xi,3ui,1 ´ xi,1ui,3

´ui,2 xi,3ui,2 ´ xi,2ui,3

ȷ

, (26)

and hence

Ai “

»

—

—

–

ui,3 0
0 ui,3

ui,1 ui,2

xi,1ui,3 ´ xi,3ui,1 xi,2ui,3 ´ xi,3ui,2

fi

ffi

ffi

fl

. (27)

A numerical alternative to the dual representation given by (27) may be obtained from the singular value
decomposition (SVD) of the transposed primal matrix,

„

xTi 1
uT
i 0

ȷ

“ UiΣVT
i “ Ui

»

—

—

–

σi,1 0
0 σi,2

0 0
0 0

fi

ffi

ffi

fl

“

vi,1 vi,2 vi,3 vi,4
‰T

.
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Thus, since Ai must lie in the null space of the transposed primal matrix, we may select Ai using the last two
columns of Vi,

Ai “
“

vi,3 vi,4
‰T

. (28)

ORBIT DETERMINATION VIA POLYNOMIAL SYSTEM SOLVING

Formulation as a polynomial system of equations

If we take a scaling factor of 1 in the parameterization of Q˚ given in equation (16), the 7 unknown orbital
parameters w, g, b will be solutions to a system of 2 ` n equations given by (17) and (23) for i “ 1, . . . , n.
For sufficiently generic observations, we expect that when 7 “ 2 ` n, or n “ 5, this system of equations
will have finitely many solutions. In fact, we expect the number of solutions to be constant if we count over
the complex numbers. Such a “number conservation” principle may be viewed as a generalization of the
fundamental theorem of algebra, which treats the case of a single polynomial in a single unknown. A formal
statement in the language of algebraic geometry may be found, for instance, in Ref. [12, Theorem 2.29].

In the preceding paragraph, the precise meaning of the phrase “sufficiently generic” is that the vector of
all observations

“

xT1 | ¨ ¨ ¨ |xT5 | uT
1 | ¨ ¨ ¨ |uT

5

‰

P R30 lies outside of an appropriately-defined discriminant locus.
This discriminant locus is analogous to the commonly-known discriminant of a quadratic equation, but very
difficult to describe explicitly (e.g., see [13, Sec. 3.1] for an example with two unknowns.)

To see an example which is not sufficiently generic, we may consider any 5 observations from any
perfectly-circular orbit. In this case, the true orbit satisfies g “ 0 and the corresponding solution is sin-
gular; that is, the 7 ˆ 7 Jacobian matrix of the system evaluated at this solution is rank-deficient. Such a
singular solution may be difficult to estimate accurately with standard numerical methods. The same is true
for the nearly-singular solutions arising from the practical case of nearly-circular orbits.

On the other hand, if we enforce the constraint of a circular orbit by requiring that w “ 0, then n “ 3
observations suffice to recover the orbit up to finitely many possibilities. Under this circular model, we obtain
another system of polynomial equations, from which we may compute the remaining orbital parameters
w, b. Such a model has the advantage of needing fewer observations, and may potentially give a reasonable
approximation of the true orbit in the nearly-circular case.

We summarize the two different orbit models, the associated polynomial systems, and how many solutions
they have for generic data in Proposition 1.

Proposition 1.

1. For n “ 5 generic observations pxi,uiq
5
i“1, the elliptical model given by equations (17) and (23) for

i “ 1, . . . , 5 has a total of 66 complex solutions in the unknown matrix Q˚, each lifting to 4 solutions
p˘w, g,˘bq in terms of the parameterization (16).

2. For n “ 3 generic observations pxi,uiq
3
i“1, the circular model given by equations (23) for i “ 1, . . . , 3,

plus the additional constraints
wT w “ 1, g “ 0, (29)

has a total of 12 complex solutions in the unknown matrix Q˚, each lifting to 4 solutions p˘w, 0,˘bq
in terms of the parameterization (16).

The claims appearing in Proposition 1 regarding the number of solutions may be readily verified using any
one of the standard methods for solving polynomial systems, such as Gröbner bases (see [14, Ch. 2] for an
overview), or polynomial homotopy continuation [15]. In our experiments, we solve the systems associated
to either model using an implementation of the latter method provided by the software package NAG4M2 [16]
in the computer algebra system Macaulay2 [17]. We give an overview of homotopy continuation in the
next subsection.

Remark 1. For different choices of real parameters pxi,uiq
n
i“1, the systems appearing in Proposition 1 may

have one or more real solutions. For either of our two models, the precise notion of “real solution” turns out
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to depend on which quantities are considered as unknowns. For example, the real disk quadric given by

Q˚
“

»

—

—

–

3{2 12 0 1
1{2 3{2 0 0
0 0 1 0
1 0 0 ´1

fi

ffi

ffi

fl

can only be lifted to the complex-valued parameters

wT “ p˘i{
?
2q

“

1 1 0
‰

, gT “
“

1 0 0
‰

, b “ ˘1.

Solving polynomial systems with parameter homotopies

Numerical homotopy continuation is a general method which can be used to solve polynomial systems,
such as those appearing in Proposition 1. The essential idea underlying the method is as follows: since the
roots of polynomials vary continuously with their coefficients, we can use a system whose solution set is
known (the start system) to solve some other system in the same class of systems (the target system) by
estimating how the solutions change (path-tracking) as we deform one system into another. We use a short
example to illustrate the main ideas.

Example 1. To solve the target system in two variables X “
“

x y
‰T

given by

F1pXq “
“

´x3 ` 2x ` 1 ´y2 ` x ` 1
‰T

“ 0,

we may use the well-known total-degree start system [15, Sec. 8.4.1]

F0pXq “
“

x3 ´ 1 y2 ´ 1
‰T

“ 0,

and the straight-line homotopy

HpX; tq “ p1 ´ tq F0pXq ` tF1pXq “ 0,

The 6 start solutions have the form
“

e2πik{3 ˘1
‰T

for k “ 1, 2, 3. Each determines an initial value for a
solution path Xptq, defined for t near 0, which satisfies HpXptq; tq “ 0. For this particular homotopy, each
solution path is defined for all t P r0, 1s, and each value Xp1q gives one of the six target solutions. For
instance, if Xp0q “

“

1 1
‰T

, then Xp1q «
“

.246,´.712
‰T

.

The choice of the start system is an important factor when implementing any homotopy continuation
method. Usually, we want a start system that is general enough to solve any possible target system com-
ing from a specific application. Another important factor when choosing a start system is its specificity, or
the number of start solutions. Different choices of start systems are compared in Ref. [15, Ch. 8], where
a basic tradeoff is identified: a start system that is easy to describe and solves a large class of systems will
typically require tracking more paths. For example, if the total-degree start system is used to solve an instance
of the elliptical model, this requires tracking 45 ¨ 22 “ 4096 paths. This should be compared with the optimal
number of 66 established by Proposition 1. If the total degree homotopy was to be used to solve the elliptical
model, then we would need to track 4096´ 66 “ 4030 divergent solution paths with |Xptq| Ñ 8 as t Ñ 1´.

In contrast to the total degree homotopy, parameter homotopies [18] allow us to track, under reasonable
assumptions, the optimal number of paths. Since “most” instances of the systems in Proposition 1 will
have the same number of solutions, any randomly-chosen instance may, in principle, be chosen as a start
system. Parameter homotopies may be used in a general setting where we have a system FpX;Pq “ 0,
with as many equations as unknowns, which depends polynomially both on the unknowns X and certain
parameters P depending on the observations. For the systems of interest to us, there is some flexibility in
how these parameters are chosen. One simple choice is that the target parameters P1 P R8n consist of all dual
coordinates of all n lines—that is, P1 P R40 for the elliptical model, and P0 P R24 for the circular model.
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Alternatively, using equation 27, we may directly encode the observer and bearing vectors into a parameter
vector P1 P R6n—that is, P1 P R30 for the elliptical model, and P1 P R18 for the circular model. The
following description of parameter homotopies applies equally well to either choice.

In general, the parameter values P1 encoded by a set of observations specify the target system FpX;P1q “ 0
of the parameter homotopy. If there are m parameter values, ie P1 P Rm, then the start system should also
be a m ˆ 1 vector P0. For the start system FpX;P0q “ 0, we are given a pre-computed set of d P t12, 66u

complex solutions X1p0q, . . . ,Xdp0q whose coordinates are the unknown orbital elements which are pairwise-
inequivalent up to the sign-symmetries described in Proposition 1. To extend these start solutions to solution
paths X1ptq, . . . ,Xdptq, we “deform” the start system into the target system via the parameter homotopy

HpX;P, tq “ FpX; tP1 ` p1 ´ tqP0q “ 0. (30)

Each solution path Xptq is an implicit function of t satisfying (30) and the nonlinear ODE system

dH
dX

dX
dt

`
dH
dt

“ 0. (31)

This ODE, together with one of the start solutions Xip0q, gives an initial value problem for an unknown
solution path Xiptq satisfying (30). Numerical integration methods allow us to estimate Xiptq for t P r0, 1s.
In practice, we approximate a solution path using numerical/predictor corrector methods. If Xiptq is known
within some tolerance for some t P r0, 1s, then a “predictor step” (typically the standard fourth-order Runge-
Kutta method) uses (31) to find an initial estimate for Xipt ` ∆tq for some step-size ∆t. This estimate is
subsequently refined by a “corrector step” using one or more iterations of Newton’s method.

A key property of parameter homotopies is that, under mild hypotheses, they are globally convergent with
probability-one. The following key properties of the parameter homotopy (30) are consequences of a more
general parameter continuation theorem [15, Theorem 7.1.1]. We specialize this general result to our case of
particular interest. For sufficiently generic (and hence, almost all) pP0,P1q, we have:

1. Each start solution Xip0q extends to a solution path Xiptq which is smooth for all t P r0, 1s.

2. Every solution to the target system may be obtained up to sign-symmetry from the endpoint Xip1q of
some solution path Xiptq.

At this point, it is worth pointing out key differences between homotopy continuation, a global root-finding
method, from a more standard local approach like Newton’s method. In Newton’s method, we would pick
a single “start solution” X, then compute iterates X Ð X ´ FpX;P1q until some convergence condition is
satisfied, yielding a single solution to the target system FpX;P1q “ 0. In practice, this may suffer if X is not
sufficiently close to a target solution.

In homotopy continuation, “start solutions” instead refer to solutions to the start system FpX;P0q “ 0
which have been pre-computed. There is no requirement that these start solutions be “close” to solutions of
the target system, nor that the start and target parameters be close in the space of all parameters. As long
as the pre-computed start parameters P0 P Cm are sufficiently generic, all start solutions can be numerically
continued from t “ 0 to t “ 1. Thus, we can compute all solutions to the target system FpX;P1q “ 0,
provided that the target parameters P1 are also sufficiently generic.

Usually, choosing random complex numbers for the start parameters P0 will be sufficient to ensure that
all isolated solutions of the target system specified by P1 can be computed. As such, the choice of start
parameters, provided that they are sufficiently random, may be expected to have relatively little impact on
the accuracy of the computed target solutions. Here, “accuracy” may be defined in one of two ways: either,
in the noiseless setting, the distance between a “ground truth” target solution and the approximation that is
computed by homotopy continuation, or by the distance from the noiseless ground truth to a solution after
noise is introduced. Generally, we expect the former quantity to be small, while the latter quantity depends
on the amount of noise and the problem formulation. In either case, there is no clear, simple criterion for
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picking a “good” start system that may lead to more accurate results. However, there are some properties

of the start parameters that we can aim to optimize. For instance, if the Jacobian matrices
dH
dX

pXip0q;P0q

are well-conditioned for each of the start solutions Xip0q, then for each solution path we can expect the
predictor/corrector steps to be more accurate when t is near 0. With this in mind, our choice of start system
was based on generating several different sets of parameters P0 at random, with coordinates drawn uniformly
from the complex unit circle, computing a complete set of solutions for each system, and selecting the system
whose maximum condition number over all solutions was smallest. To solve the parametric systems in each
model for an initial set of parameters, we used an approach based on monodromy, which works well in
tandem with parameter homotopies and can naturally exploit the four-fold symmetry in solutions. We refer
to [19, 20, 21] for more details about this approach.

In our implementation, we use the numerical formula 28 to determine the parameters representing the
dual coordinates of each line-of-sight observation. Before solving, we rescale all distance measurements into
units of earth-radii, which has the typical effect of making the entries of Q˚ comparable in magnitude. We
use the default path-tracker settings in NAG4M2, except that a minimum stepsize of ∆t “ 1 ˆ 10´16 is used.
Additionally, we handle (infrequent) cases of path failure for t « 1 using Cauchy’s endgame for estimating
singular solutions [15, Ch. 10].

EXPERIMENTS

Throughout our experiments, we consider an orbit with known parameters, the ground-truth solution,
represented as the disk quadric Q˚. All distances are computed in units of earth-radii so that the entries of Q˚

are comparable in magnitude. To estimate the ground-truth from the d solutions computed by the homotopy
continuation solver, represented by disk quadrics xQ˚

1 , . . . ,
xQ˚
d , we take the closest solution

xQ˚
“ argmin

yQ˚
1 ,...,yQ˚

d

|| xQ˚
i ´ Q˚

||2, (32)

where || ‚ ||2 denotes the ℓ2 Hermitian vector norm on the complex vector space of 4ˆ4 symmetric matrices,

||Q˚
|| “

d

ÿ

1ďiďjď4

|Q˚
i,j |2.

We measure the error in the estimate of Q˚ given in (32) with an absolute error:

∆Q˚ “ || xQ˚
´ Q˚

||2, (33)

Additionally, we will compare the ground-truth classical orbital elements pa, e, i,Ω, ωq to their estimates
ppa, pe,pi, pΩ, pωq. Here Ω denotes the longitude of the mean. However, since Q˚ remains unchanged with respect
to variations of the sign of w, determining Ω P r0, 2πs requires the knowledge of the direction of motion. For
this reason, its values will be restricted to the interval r0, πs in this application, but determining the correct
interval is immediate once the direction of motion is known.

We use the following error measures:

∆a “ a ´ pa

∆e “ e ´ pe,

∆i “ p180{πq ¨ θpi,piq

∆Ω “ p180{πq ¨ θpΩ, pΩq,

∆ω “ p180{πq ¨ θpω, pωqq,

(34)

where θ measures the signed difference between the two angles.
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Scenario 1: a nearly-circular orbit

Since most orbits of interest are nearly circular, we chose a nearly-circular orbit as a first test case for the
performance of this purely geometric method. Specifically, we choose the orbit traveled by the satellite of the
AQUA mission [22]. Its orbital elements can be found in Table 2.

Table 2. Orbital elements of the AQUA satellite.
a e i Ω ω

7080.6 km 0.0015 98.20˝ 95.21˝ 120.48˝

We obtained simulated observer data considering observations gathered by three ground stations rotating
with the Earth at different times. Five of the selected observations are represented in Fig. 3.

Figure 3. Five observations gathered by three ground stations for the AQUA orbit.

The 10 observers are given in geocentric coordinates, in units of Earth radii, by

“

x1| ¨ ¨ ¨ | x10

‰

«

”

.238 .327 .399 .179 .238 ´.485 ´.006 ´.089 ´.128 ´.186
´.733 ´.913 ´.789 ´.980 ´.733 .764 .997 .989 .672 .247
.637 .243 .467 .087 ´.637 ´.426 .078 .122 .729 .951

ı

.

A corresponding set of unit-length bearings is obtained from known points along the AQUA orbit:

“

u1| ¨ ¨ ¨ | u10

‰

«

´

´.226 ´.587 ´.443 ´.381 ´.343 .281 ´.288 ´.014 .619 .722
´.755 ´.495 ´.451 ´.486 ´.645 ´.958 .053 .907 .776 ´.624
´.616 ´.641 ´.775 ´.786 .683 .060 ´.956 ´.421 ´.122 .298

¯

.

The ground-truth disk quadric Q˚ for AQUA is

Q˚
«

„ .0284 ´.0885 .1406 .0002
´.0885 .9919 .0128 ´.0007
.1406 .0128 .9797 .0012
.0002 ´.0007 .0012 ´.8114

ȷ

. (35)

Since the eccentricity of AQUA is e “1.5 ˆ 10´3, we might expect that the circular model gives a rea-
sonable approximation to the ground-truth. Thus, to obtain a preliminary assessment of the feasibility of
using parameter homotopies for this IOD scenario, we considered both the circular and elliptical models.
In this experiment, 100 random observer-bearing correspondences were sampled, from a total 120 “

`

10
3

˘

possibilities for the circular model and 252 “
`

10
5

˘

for the elliptical model, and the corresponding polynomial
systems appearing in Proposition 1 were solved. Average runtimes and errors for this experiment are reported
in Table 3. For the circular model, we do not report the argument of periapsis ω since it is undefined.

Table 3 shows that the homotopy solvers for both models run on the order of less than a second. The
difference in runtimes by a factor of roughly 5 is due largely to the fact that there are 66{12 “ 5.5 times as
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Table 3. Average solver runtime and errors on noiseless AQUA data.
model avg. runtime avg. ∆Q˚ avg. ∆a avg. ∆e avg. ∆i avg. ∆Ω avg. ∆ω

circular 0.13 s 2.2 ˆ 10´3 2.4 km 1.5 ˆ 10´3 2.8 ˆ 10´2° ´1.3 ˆ 10´1° -

elliptical 0.67 s 2.1 ˆ 10´12 ´2 ˆ 10´3 km 1.2 ˆ 10´9 3.8 ˆ 10´6° ´1.6 ˆ 10´6° ´8.8 ˆ 10´5°

many paths to track in the elliptical model vs the circular model. Additionally, we used a very conservative
value of 1 ˆ 10´16 for the minimum value of the predictor/corrector stepsize ∆t, so as to guard against
potential failures when tracking solution paths. This is a particular concern for the ground-truth solution,
since the orbit is nearly-circular.

Under the elliptical model, Table 3 shows that we can recover the ground-truth AQUA orbit, from noiseless
observations, with high accuracy on average. Errors under the circular model are uniformly higher, but still
reasonably small. Figure 4 compares the error distributions for ∆Q˚,∆a,∆i, and ∆Ω between both models.
Note that ∆e is constant for the circular model. When interpreting these results in the noiseless case, it is
important to note that the elliptical model, despite providing much smaller errors, will have nearly-singular
solutions for nearly-circular orbits like AQUA. As a result, the circular model may sometimes be preferable
in such situations.

To illustrate our proposed method of orbit determination on an example from the nearly-circular case, we
now focus on a particular set of observers and bearings which appear in Fig. 3, corresponding to columns
1, 4, 5, 6, 9 in the observer and bearing matrices above. Under the elliptical model, 44 of the 66 complex
solutions in recovered by the solver give a real-valued disk quadric. However, only 3 of these real disk
quadrics can be lifted to real-valued orbital parameters pw, g, bq (see Rem. 1.) These real solutions are given,
modulo the four-fold sign ambiguity, by

X1 « r ´1.00 ´.033 ´.022 .001 .310 ´.527 ´1.136 s ,

X2 « r ´.970 ´.111 .216 .033 ´.068 .112 1.171 s ,

X3 « r ´.986 ´.090 .143 .000 ´.001 .001 ´1.110 s .

(36)

The solution X3 corresponds to the ground-truth. To rule out the additional real solution, a sixth line coming
from the observation px2,u2q may be used. Evaluating the left-hand side of equation (23) for this line at both
solutions X1 and X2 gives residual errors of 3.9ˆ 10´3, 4.6ˆ 10´4, and 6.2ˆ 10´16, respectively. Thus, the
solution X3 gives the best fit to the sixth observation.

Applying the circular model to this same example (with observations 1, 5, and 6), there are now 6 real
solutions up to sign ambiguity in the nonzero parameters pw, bq. However, all 5 original observations may now
be used to remove the 7 extraneous solutions. Evaluating the residuals of constraints (23) on these additional
solutions as with the elliptical model allows us to distinguish the correct solution. Another comparison
between the ground-truth and the extraneous solutions may be obtained by computing the distance from each
of the five estimated orbit points to the orbital plane. For the three observations used in the homotopy solver
these distances all equal b, but these distances may be significantly different for the two unused observations.
For each of the 6 real solutions, we may compute the variance of the set of three distances comprised of b and
the unused observations. One of these values is 1ˆ 10´9, and the rest are on the order of 1ˆ 10´3 or higher.
This strongly signals the best approximation of the ground-truth solution, which is given by

X «
“

´.986 ´.090 .142 0 0 0 ´1.109
‰

.

Scenario 2: an elliptical orbit

As a second test case, we consider an orbit traveled by one of the Magnetospheric Multiscale Spacecrafts
(MMS) [23]. This is a highly-elliptical orbit, whose orbital elements we report in Table 4.
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Figure 4. Distribution of ∆Q˚,∆a,∆i,∆Ω for noiseless observations from AQUA,
with the circular model shown on the left and the elliptical model shown on the right.
Note the significantly smaller scales for the elliptical model.
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Table 4. Orbital elements of one of the MMS satellites.
a e i Ω ω

83519.02 km 0.9082 28.50° 357.84° 298.22°

Figure 5. Five observations of the MMS satellite made by three ground stations.

Like the previous scenario, 10 observations were obtained with three ground stations on the Earth’s surface,
and we evaluated the runtime and accuracy on 100 noiseless observations. The summary statistics shown in
Table 5 and Fig. 6 demonstrate that the solver for the elliptical model is efficient and highly accurate in all
cases. Note that we do not consider the elliptical model.

Table 5. Average solver runtime and errors on noiseless MMS data.
model avg. runtime avg. ∆Q˚ avg. ∆a avg. ∆e avg. ∆i avg. ∆Ω avg. ∆ω

elliptical 0.56 s 3.0 ˆ 10´14 2 ˆ 10´1 km 2.6 ˆ 10´7 5.4 ˆ 10´5° ´2.8 ˆ 10´7° ´4.1 ˆ 10´4°

Figure 5 shows 5 of the 10 line-of-sight observations for MMS. We use these observations in our Monte
Carlo study of noisy observations. Solving the elliptical model yields 11 real solutions in this case, 10 of
which can be easily excluded by examining the residuals of a sixth line. With a view towards the model
selection problem when the shape of the orbit is not known a priori, we also considered what would happen
if we solved the circular model for three of these observations. In this short experiment, 4 of the resulting 12
solutions turned out to be real. However, we obtained a strong signal of model mismatch by computing the
variances of the estimates of b, which resulted in a value greater than 1 for each solution.

Noisy observations and comparison with other methods

To test the robustness of the homotopy solvers to noise under various scenarios, we consider the following
noise model. For each bearing vector u, a noisy perturbation ũ is given by

ũ “ u ` ϵ (37)

where ϵ „ Np0,Rq. That is, ϵ is zero-mean Gaussian noise with covariance following the so-called QUEST
measurement model (QMM) [24, 25]

R “ ErϵϵT s “ σ2
`

I3ˆ3 ´ uuT
˘

, (38)

where σ is the standard deviation of the bearing error in radians. Note that R is a 3ˆ 3 matrix of rank 2, with
a null space in the direction of u. This means that ϵ lies in the plane normal to u. If ϵ is small, then ũ remains
a unit vector to first order.
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Figure 6. Error distribution of estimated Q˚ and orbital elements for noiseless obser-
vations from AQUA.
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For both the AQUA scenario depicted in Fig. 3 and the MMS scenario in Fig. 5, we ran a Monte Carlo
simulation under the noise model described above with 10K runs and σ “ 1 1 bearing noise. We compared
the results obtained by homotopy continuation with those provided by an implementation of the Double-R
method [6]. To initialize the double-R iteration, we used an initial guess of half of the true values of the radius
of the position for the MMS satellite and 1/4 of the true slant range for AQUA.

Figure 7 compares the results of our purely geometric approach to Double-R for the MMS orbit. The
top-left panel shows that our method estimates the matrix Q˚ more accurately. This behavior is reflected
in the superior estimation of the semi-major axis, where our maximum error of 2000 km is smaller than
the maximum error provided by Double-R, (relative error of 3% against the 6% produced by Double-R.) Our
method also provides a better estimates of eccentricity (maximum relative error of 0.53% against 1.18% ) and
inclination, whose maximum error is comparable with that of Double-R but has significantly less variance.
Concerning the estimation of the argument of periapsis, the two methods have comparable performance. The
only orbital element which is recovered more accurately by Double-R is the longitude of the node. Still, the
maximum relative error for Ω provided by our geometric approach is only 0.3%.

Figure 7. Comparison between the errors produced by the method described in this
work and the Double-R iteration method for the MMS orbit under 1 arcmin of noise.

For the AQUA scenario, a comparison of Double-R and our results obtained using the circular model is
shown in Fig. 8. The figure shows that Double-R is generally more accurate. Nevertheless, the errors in
the solution for our approach are small and concentrated—sufficiently so that this method is likely a good
candidate for initializing a Precise Orbit Determination algorithm. We note, however, that the estimates
produced by the circular model are biased, most likely due to model mismatch. For comparison, the results
produced by applying the elliptical model in presence of noise are represented in Fig. 9. Errors for the
elliptical model in this case are appreciably larger than for the circular model. This behavior is expected
due to the ground-truth solution being nearly-singular. Unlike the circular model, the results for the elliptical
model no longer show any discernible bias.

CONCLUSION

This work develops a purely geometric method for solving the angles-only initial orbit determination (IOD)
problem, using only the assumption that the unknown orbit is a conic. Our method is unique in comparison
to existing angles-only methods which all, to the best of our knowledge, require propagating the orbit and
thus explicitly rely on a dynamical model and on time. Our new method is also immune to various problems
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Figure 8. Comparison between the results obtained using the circular model and the
Double-R iteration method for the AQUA orbit under 1 arcmin of noise.

affecting the determination of the time-of-flight of an orbiting object between two positions. Standing out
among these problems is the light time-of-flight: for our method to work, it is sufficient that the line of
observation passes through any point on the orbit, and it is not necessary that the body physically passes
through the line-of-sight at the time of observation. The extent to which the measured times of flight may
differ from the true values depends on the distance of the observed object and is therefore may not always be
predictable, especially if no information is available about the orbit.

Experiments demonstrate that our method achieves accuracy that is comparable to, and sometimes better
than, one of the standard IOD methods. An attractive feature of using homotopy continuation to solve for
the unknown conic Q˚ in equations (23) is that it gives a truly global method—no initial guess is required
whatsoever. In an additional set of (unreported) experiments, we witnessed for some configurations that
the Double-R iteration may have a strong dependence on the initial guesses for the radii. Moreover, poor
initialization in general may prevent this method from converging at all. Thus, our approach be used not only
as a standalone IOD solver, but also shows potential as a method for providing initial guesses for parameters
used by other methods. Such an initialization scheme may increase the accuracy or probability of convergence
for these other existing methods.

The experiments also suggest several avenues for further study and improvement of our method. For in-
stance, the source of bias for the circular model, witnessed in Fig. 9, should be more thoroughly investigated.
It is also important to address the model selection problem of deciding between circular and elliptical model
when the orbit shape is unknown a priori. It would be of interest to experiment with other formulations of
the problem, which conceivably might allow us to treat the circular and elliptical cases more uniformly. As
it stands, a simple approach to model selection would be to try both methods, and then attempt to validate
or reject the circular model using the two leftover observations. We have indicated various strategies for
implementing such an approach, but more work should be done to test whether they are generally viable. On
a similar note, we recall n “ 5 (or n “ 3) observations generally only suffice to determine Q˚ up to finitely
many possibilities, since the systems in Proposition 1 may have several real solutions (with the exact number
depending on scenario specifics). We addressed two simple strategies for ruling out “false solutions” using
additional observations which would be worthwhile to test further in future work.
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Figure 9. Errors in the estimation of the Q˚ matrix and of the orbital elements
applying the elliptical model in the AQUA orbit scenario.

17



ACKNOWLEDGMENTS

The work of T. Duff was supported by the National Science Foundation (NSF) Mathematical Sciences
Postdoctoral Research Fellowship (DMS-2103310). The work of M. Mancini and J. Christian was partially
supported by the Air Force Office of Scientific Research under the Space University Research Initiative
(grant FA95502210092, managed by Dr. Stacie Williams and Dr. Fariba Fahroo). The work of A. Leykin
was partially supported by NSF DMS-2001267. The authors greatly appreciate the support of our sponsors.

REFERENCES

[1] C. F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientum. Hamburg:
F. Perthes and I.H. Besser, 1809.
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