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EXTENSION OF A SIMPLE MATHEMATICAL MODEL FOR 
ORBITAL DEBRIS PROLIFERATION AND MITIGATION 

Jarret M. Lafleur* 

A significant threat to the future of space utilization is the proliferation of debris in low 
Earth orbit. To facilitate quantification of trends and the assessment of potential mitiga-
tion measures, this paper extends a previously proposed analytic debris proliferation 
model consisting of two coupled differential equations. Analyzed are the transient and 
equilibrium behavior of the parametric model, leading to assessment of the likely effec-
tiveness of potential debris mitigation measures. Results suggest the current equilibrium 
capacity for intact satellites in low Earth orbit allows for only 25% of the satellites in orbit 
today and presents an average 2.8% per year risk of catastrophic collision for individual 
satellites. Results also suggest that direct removal of debris fragments has the potential to 
add decades or centuries of useful life to low Earth orbit. In addition to providing numeri-
cal results, this paper contributes a simple debris model particularly useful when more 
sophisticated models are unavailable or prohibitively time-consuming to utilize. 

 

INTRODUCTION 
On March 17, 1958, a Vanguard rocket carried aloft a small, 6-inch-diameter instrumented sphere known as Van-

guard 1, becoming America’s second successful attempt at launching a satellite into orbit. Today, Vanguard 1 still or-
bits Earth, approaching as close as 650 km at perigee and reaching as far as 4,000 km at apogee.1 Over the five decades 
that Vanguard 1 has been in orbit, it has been joined by thousands more spacecraft and, more ominously, hundreds of 
thousands of pieces of debris.2,3,4 In densely-populated low Earth orbit (from 200 km to 2000 km altitude), these ob-
jects travel at Earth-relative speeds approaching 8 km/s, meaning collisions can occur at relative speeds up to 16 km/s. 
For comparison, the kinetic energy liberated during a 10 km/s collision with a particle of just a few grams in mass is 
equivalent to that of a hand-held grenade and can destroy a spacecraft.5 Moreover, each collision can produce thou-
sands more pieces of debris, exacerbating the problem. 

With little damping from the Earth’s atmosphere, the on-orbit collection of satellites and debris has increased dra-
matically over the past 50 years. It is estimated that 15,000 objects in low Earth orbit (LEO) are larger than 10 cm in 
diameter and another 100,000 are between 1 cm and 10 cm in diameter, generally considered the threshold for catas-
trophic damage.2,4 These numbers continue to grow. In January 2007, China deliberately destroyed its Fengyun 1C 
weather satellite in an anti-satellite missile test, instantly increasing the amount of on-orbit debris by 25%.4 In February 
2009, headlines were made when Russian and American satellites (Cosmos 2251 and Iridium 33, respectively) collided 
over Siberia, marking the first collision of two intact spacecraft. 

It is easily recognized that, without effective mechanisms to remove debris from LEO, the debris population will 
grow virtually without bound as collisions with debris produce more debris. Debris removal techniques will become 
necessary. This work seeks to model the orbital debris environment with a set of coupled differential equations, search 
for stable solutions, and in a top-down manner assess requirements for future debris removal techniques to be effective. 

Highlights of Previous Mathematical Modeling Efforts 
Multiple approaches exist to modeling the on-orbit debris population. The most accurate approaches involve Monte 

Carlo analysis using the numerical integration and orbit propagation of all objects for which tracking data currently 
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exists. This characterizes efforts undertaken, for example, by the SOCRATES system6, which produce short-term pro-
jections of collisions between individual objects (e.g., to allow satellite operators to perform debris avoidance maneu-
vers). However, this computationally-intensive approach is difficult to extend for long-term prediction and is difficult to 
execute without access to databases of currently tracked Earth-orbiting objects and their orbital elements. 

In contrast, some analysts have approached the problem from a more simplistic standpoint. A seminal paper on the 
topic, written in 1978 by Kessler and Cour-Palais, leveraged modeling techniques used to describe formation of the 
asteroid belt,* developed a single integro-differential equation describing global collision rate as a function of average 
relative velocity, cross-sectional area, and spatial density of objects.7 Fourteen years later, Talent modeled the popula-
tion of orbiting objects with a single differential equation.8 A 1991 paper by Farinella and Cordelli introduced a system 
of two coupled differential equations to describe the scenario; one equation described 
the rate of change of the population of intact satellites (N), and the other described the 
rate of change of the population of debris fragments (n).5 This model is given in Eqs. 
(1)-(2), where A, x, α, and β are constants. 

Reference 5 numerically integrated these equations using several assumptions for 
the coefficients. Results indicated that within 200 years, the number of intact satellites 
in LEO would decrease dramatically due to colli-
sions with debris (see Figure 1), resulting in an 
eventual condition in which any satellites 
launched are quickly destroyed by collisions. 

The work of Reference 5 was later extended 
into various forms (one of which used 150 differ-
ential equations, distinguishing satellites by mass 
and altitude).9,10 However, the general results of 
the original model are accepted as showing good 
agreement with later studies,9,11 and the simpler 
model remains useful for identifying trends, de-
veloping approximations, and establishing instruc-
tive models11. The original model is also useful in 
distinguishing between intact satellites and debris 
fragments (rather than aggregating both into one 
variable). This current work seeks to improve 
upon the original model through changes to its 
two differential equations, by considering issues 
of stability, and by considering effects of debris 
mitigation techniques not originally analyzed. 

Analysis Outline 
This analysis is divided into three steps. The first modifies the model of Reference 5 to include additional effects. 

The second analyzes the equilibrium and stability of the modified model, and the third step uses this model to examine 
effects debris mitigation strategies may have on improving the stability and equilibrium capacity of LEO. 

Step 1: Model Modification. To improve upon the original model of Eqs. (1)-(2), two main modifications are pro-
posed: (1) Separate the A coefficient, which represents the net satellites added to orbit each year, into launch and re-
entry terms, each which has a cyclic variation with time (e.g., with the 11-year solar cycle for re-entry and space indus-
try cycles for launch12) and (2) add N² and n² terms representing collisions between intact satellites (as in the Irid-
ium/Cosmos collision) and between fragments, respectively. Coefficients are estimated for these new terms and up-
dated  and updating the values of coefficients for the model’s original terms. The resulting plot of N and n versus time 
are compared to the original model’s results.  

Step 2: Stability Assessment. Using the updated model, equilibrium points are identified and stability is assessed 
through linearization. A simplified model is developed using nondimensionalization to completely characterize solu-
                                                        
* The theorized exponential growth of orbital debris and consequent destruction of operational satellites has been 
termed Kessler Syndrome, after the first author of this original work.7 
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Figure 1. Predicted numbers of intact satellites (solid line) and 
debris fragments (dashed line) over time, from Reference 5. Note 

differing y-axis scales for solid and dashed lines. 
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tions by two parameters. Simple analytical expressions are developed for equilibrium points and conditions for oscilla-
tory and nonoscillatory stability. Vector fields akin to phase portraits are plotted, and issues of resonance and time-to-
peak are addressed. This step is significant because, with the addition of drag to the model, stable points now exist. 

Step 3: Debris Mitigation Implications. The final step in the analysis examines the implications of this model’s re-
sults on orbital debris mitigation strategy. Common proposals for mitigation strategies involve (1) launching “space 
tugs” to deorbit intact but inoperative spacecraft or (2) launching giant “nets” of aerogel or similar material to catch or 
slow debris fragments. The first strategy indirectly slows the formation of fragments by removing one of their sources, 
while the second strategy has a direct effect on removing fragments from orbit. These methods, as well as others sug-
gested by the data, are examined with an emphasis on estimating effects of practical mitigation measures. 

MODEL MODIFICATION 
Eqs. (3)-(4) present the proposed modification to the original model of Reference 5. Time is measured in years. 

This modification, which forms the basis for the rest of this paper, is motivated by the desire to incorporate and observe 
the importance of effects not originally accounted for in Reference 5. Note several similarities with the original model: 

� In Eq. (3), note the existence of a positive term a + b sin (ct + d), which is the sinusoidally-varying equivalent 
to the A term in Eq. (1). This term represents the global satellite launch rate to low Earth orbit. 

� In Eq. (3), note the preservation of the xnN term from Eq. (1), representing the reduction in the number of in-
tact satellites due to collisions between intact satellites and debris fragments. 

� In Eq. (4), the use of the coefficient β multiplied by the satellite launch rate is retained, representing the in-
crease in debris due to upper stage separation processes or explosions. 

� In Eq. (4), the use of the coefficient α multiplied by xnN is preserved, representing the increase in debris due 
to the destruction and fragmentation of intact satellites. 

However, inspection of Eqs. (3)-(4) also reveals a number of new terms: 

� In both Eqs. (3)-(4), note negative terms proportional to N and n, respectively. These account for annual re-
entry of objects from orbit. The periodic variation in the characteristic decay time in these terms is due to the 
11-year solar cycle, which produces large density variations in Earth’s thermosphere and exosphere. 

� Eq. (3) contains an additional term, 2yN², representing the number of intact satellites lost per unit time due to 
the collision of two intact satellites (as in the February 2009 Cosmos-Iridium collision). Eq. (4) contains the 
corresponding term γyN², representing the fact that such collisions produce debris fragments. 

� Eq. (4) contains an additional term, 2zn², for the rate of destruction of debris fragments due to the collision of 
two fragments. Here it is assumed such a collision produces debris smaller than the 1 cm threshold. 
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It is worth noting here that, unlike the original model of Reference 5, Eqs. (3)-(4) are not autonomous.  There exist 
explicit time dependencies in the launch and re-entry terms. However, it might be hypothesized that, if the sinusoids do 
not produce resonance, dealing only with average values for these terms may be nearly as accurate and more insightful 
analytically.* This will be tested in Step 2. The remainder of the present section focuses on the estimation of the coeffi-
cients in Eqs. (3)-(4) as well as empirical observations and comparisons involving results of the new model. 

Model Coefficient Estimation 
Global Launch Rate. One update incorporated into this new model is a revised global launch rate for LEO satel-

lites. Using data from Hiriart and Saleh12, this launch rate is illustrated in Figure 2. Notice the large increase in launch 
rate in the early 1960s and a high launch rate through the 1980s. At the end of the Cold War, launch rate decreased 
substantially, with the main exception in the late 1990s with the fielding of the Iridium constellation. 
                                                        
* This will amount to a rudimentary homogenization; future work may consider further development of this aspect. 
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Importantly, the original model of Reference 5 as-
sumed the LEO launch rate would remain 100 satel-
lites per year. This appeared a fair approximation in 
1991, for which the data of Reference 12 shows 83 
satellites launched.* However, today this rate is consid-
erably smaller, averaging 30.5 per year since 2001. 

Another inaccuracy with the launch rate of Refer-
ence 5 is that it is assumed constant. While it is difficult 
to predict satellite launch rates, improvements may be 
made by taking advantage of the recent work of Refer-
ence 12, which highlights the empirical existence of 
cycles in global launch rates. In particular, Reference 
12 found identified 3-year cycles among defense, sci-
ence, and communications satellite launches over the 
past decade.  

 The black line in Figure 3 represents the global 
LEO launch rate since 2001. While Reference 12 util-
ized Fourier transforms, the simplified approach here 
uses a single-frequency sinusoid to capture a 3.3-year 
cycle. The resulting sinusoid is the gray line in 
Figure 3. With R² = 0.65, this model explains recent 
launch rate variations more accurately than a simple 
average and is adopted for this work. The equation for 
the launch rate sinusoid is given in Eq. (5), where LR is 
equivalent to A in the model of Reference 5 and t = 0 is 
referenced to the year 2009. 

 ( ) ( )1680.0935.1sin794.741.31sin ++=++= tdctbaLR  (5) 

Atmospheric Re-entry Rate. One omission in the original model of Reference 5 was the decrease in satellite and 
fragment populations due to atmospheric drag and re-entry. While atmospheric density in LEO is orders of magnitude 
smaller than at Earth’s surface, when integrated over a period of years this drag results in a satellite or fragment trajec-
tory that spirals inward until re-entry and disintegration. Furthermore, the atmospheric density in LEO is substantially 
affected by the 11-year solar cycle, observed consistently since the 17th century.13 Large density increases during solar 
maximum periods have, for example, subtracted years from the lifetimes of the Salyut 7 and Skylab space stations.14  

Figure 4 shows the result of using an atmospheric model15 to compute on-orbit lifetime for intact satellites and de-
bris fragments for solar maximum and minimum conditions. The solid lines in Figure 4 indicate orbital lifetime esti-
mates for a static solar maximum model, and the dashed lines indicate orbital lifetime for solar minimum conditions. 
The difference between the models is substantial: An intact satellite at 800 km altitude has an orbital lifetime of about 
100 years for the solar maximum atmosphere and over 1000 years for solar minimum. 

As shown in Figure 4, the orbital lifetime computed for intact satellites assumes a ballistic coefficient of 110 kg/m², 
an average value for satellites.15, 16 The orbital lifetime for debris fragments assumes a ballistic coefficient of 1.8 kg/m², 
an approximate average value for fragments derived from Reference 17. The ballistic coefficient B, defined as the ratio 
of object mass to the product of reference area and drag coefficient (i.e., B = m/(CDA)), differs significantly for intact 
satellites and fragments because fragments typically have larger surface-area-to-volume ratios. As Figure 4 shows, the 
smaller ballistic coefficient of fragments produces a two-order-of-magnitude reduction in orbital lifetime (helpful from 
the perspective of orbital debris mitigation). For example, at 800 km altitude, the orbital lifetime of an intact satellite is 
about 100 years for solar-maximum conditions, while the orbital lifetime of a fragment is just over one year.  

                                                        
* The data of Reference 12 does not include manned launches, for example, which are short-lived and can reasonably 
be neglected as debris contributors. Reference 12 reports its database is 83.5% complete; if the 83 launches in 1991 is 
corrected by this factor, the data suggest 99 launches in 1991, almost exactly the 100-satellite rate of Reference 5. 
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Figure 2. Global launches to LEO per year since 1960. 
Note the substantial decrease in launch rate after 1991. 
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Figure 3. Global launches to LEO since 2001.   Overlaid 
is a sinusoid model, determined through least-squares fit. 



 5 

With atmospheric drag effect now quantified via orbit lifetime, this work utilizes the approach of Reference 9, 
which models the rate of change of orbiting satellites as a function of the number of current satellites divided by a time 
constant τ. This time constant is the orbital lifetime of the satellites (implying that if 1000 satellites are on-orbit and each 
has a 1000-year orbital lifetime, it the expected decay and re-entry rate is one satellite per year).* 
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Figure 4. Expected orbital lifetime for intact satellites (B = 110 kg/m², left) and debris fragments (B = 1.8 kg/m², 
right). These lifetimes are computed assuming a static atmosphere at the indicated solar maximum or minimum level. 
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Figure 5. Current Distribution of Trackable Active (left) and Inactive (right) Objects in LEO. 
                                                        
* This assumption has some limitations, for example, if there are surges in launch rate. In the previous example, had all 
1000 satellites been launched in the same year, all would re-enter 1000 years later rather than one per year. However, 
this assumption is reasonable if the satellite population exhibits a diversity of launch dates. Another limitation of this 
assumption is that it does not account for reboost orbit maintenance maneuvers. This is accurate for debris fragments 
and inactive spacecraft but is not always true for active spacecraft (in which case this assumption would produce opti-
mistic estimates in terms of debris mitigation, since spacecraft in the model deorbit more quickly than those in reality). 
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For this analysis, two such τ parameters are required, representing the average orbital lifetime for intact satellites 
and for debris fragments. To determine these parameters, the orbital lifetimes from Figure 4 are weighted by the distri-
bution of objects at different orbital altitudes and averaged. The current distribution of active trackable LEO objects4 is 
applied to the intact satellites (with B = 110 kg/m²), and the current distribution of inactive trackable LEO objects4 is 
applied to the debris fragments (with B = 1.8 kg/m²). These distributions are shown in Figure 5. This average is com-
puted for both solar maximum and solar minimum conditions. At solar maximum, the average orbital lifetime of intact 
satellites is found to be τintact = 3,990 years and the average lifetime of debris fragments is found to be τdebris = 46.9 years. 
At solar minimum, the average orbital lifetime of intact satellites is found to be τintact = 24,840 years and the average 
lifetime of debris fragments is found to be τdebris = 322.8 years. 

To account for the time-varying nature of τ due to the 11-year solar cycle, a sinusoid is used. The period of the sinu-
soid is set to 11 years, and the phase shift is set to match the predicted 2013 solar maximum (with t = 0 indicating the 
year 2009). The amplitude and average values are selected to match the values of τdebris and τintact at solar maximum and 
minimum. The resulting models for τdebris and τintact are shown in Eqs. (6)-(7): 

 ( ) ( )9996.05712.0sin430,10420,14sinint −−=++= tkhtgfactτ  (6) 

 ( ) ( )9996.05712.0sin9.1379.184sin −−=++= tkhtqpdebrisτ  (7) 

Collision Terms. The final revision to the model of Reference 5 is addition of terms accounting for collisions 
among intact spacecraft and among fragments. Following the modeling strategy of Reference 5, this work approxi-
mates collision probabilities in the manner that the gas dynamics community approximates collision rates among 
molecules. In particular, collision frequency ξ for a single molecule A with other molecules 
is the product of effective cross-sectional area σ, molecular velocity v, and number of mole-
cules n per unit volume V, shown in Eq. (8) (cf. Reference 18).  

If collisions of interest are between molecules of different types (e.g., colli-
sions of molecule type A with type B), the total collisions per unit time is ξ multi-
plied by the number of A molecules in the system, given by ΞAB in Eq. (9). If 
collisions of interest are between like molecules, the total collision rate ΞAA is as 
shown in Eq. (10) (cf. Reference 18). Note that cross-sectional area is computed 
using the average diameter of the two molecules of interest, so σAB ≠ σAA. 

For objects in LEO, this formulation is conducive to collision rate approxi-
mations with minimal information. Cross-sectional area is estimated by approximating satellites as spheres with a 2.2 
m diameter based on average diameters from 26 satellites.1,15,19,20,21,22,23,24 Fragments are optimistically modeled as 
spheres of 1 cm diameter, the smallest fragments likely to cause catastrophic damage. As a result, intact-intact object 
collisions use σNN = 14.9 m², intact-debris collisions use σNn = 3.77 m², and debris-debris collisions use σnn = 3.14 cm². 

Average velocity is estimated based on weighted averages of satellite circular orbit speed, which varies from 6.89 
km/s at 2000 km altitude to 7.77 km/s at 200 km altitude. For intact satellites, these speeds are weighted by the distribu-
tion of active spacecraft from Figure 5, yielding an average speed of 7.39 km/s. For debris fragments, these speeds are 
weighted by the distribution of inactive tracked objects from Figure 5, yielding an average speed of 7.36 km/s. For the 
case of intact-debris collisions, the velocity used is the average of these two, or 7.37 km/s. 

The relevant volume in this application is the volume of the 200-2000 km orbital shell, calculated by subtracting 
the volumes of the inner and outer spheres. This yields V = 1.27 × 1012 km³. 

The annual per-fragment and per-satellite collision probabilities x, y, and z that result when these values are substi-
tuted in Eq. (10) are given in Eqs. (11), (12), and (13). Note that, since ΞNN and Ξnn represent the frequency of collisions 
among like object types (intact satellites and fragments), each colli-
sion results in the loss of two objects. This is accounted for by a 
multiplicative factor of two in the appropriate places in Eqs. (3)-(4). 
Also, note that the independently-calculated 6.895 × 10-10 yr-1-
fragment-1 value for x shows reasonable agreement with the 3 × 10-

10 yr-1-fragment-1 value assumed by Reference 5, which had been 
founded on a similar gas-dynamics-based estimate. 

V

vnσξ =  (8) 

V

vnn BAAB
AB

σ=Ξ  
(9) 

V

vnAAA
AA 2

2σ=Ξ  (10) 

nNxnNNn
1010895.6 −×==Ξ  (11) 

292 10369.1 NyNNN
−×==Ξ  (12) 

2142 10869.2 nznnn
−×==Ξ  (13) 
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As an additional check, it is straightforward to convert these Ξ-values to annual collision probabilities. Based on 
this data, the current annual probability of collision with a debris fragment for an intact satellite is Pn = xn0, where n0 is 
the current number of fragments (of >1 cm diameter) in orbit. In this work, n0 is estimated at 110,400,2,4,25 yielding Pn = 
7.61 × 10-5 per year, which is in reasonable (and somewhat optimistic) agreement with altitude-dependent 10-5 to 10-2 
annual LEO collision probability estimates from Reference 15. Additionally, the annual probability of collision with an 
intact satellite can be computed as PN = 2yN0, where N0 is the current number of intact satellites in orbit. Here, N0 is 
estimated at 4,650,25 yielding PN = 1.27 × 10-5 per year, which is also in reasonable agreement with corresponding alti-
tude-dependent 10-6 to 10-3 annual LEO collision probability estimates from Reference 15. 

The final parameters to estimate are the empirical fragmentation parameters β, α, and γ. The parameter β represents 
the average number of fragments released per launch. These fragments primarily consist of unintended post-launch 
propellant tank explosions, but this also includes discarded components such as shrouds, lens covers, and separation 
devices. This study retains Reference 5’s original estimate of β = 70. 

The parameter α represents the average number of fragments produced from the collision of debris with an intact 
satellite. This number is empirical, and this study retains Reference 5’s original estimate of α = 10,000. Related to α is 
the new parameter γ, representing the average number of fragments produced from the collision of two intact satellites. 
Empirical evidence for this is scarce; based on the 2009 Iridium-Cosmos collision, this is estimated at γ = 56,000.26  

Summary of Coefficients. Table 1 summarizes all terms developed here, applicable to Eqs. (3)-(4).  

Table 1. Summary of Coefficient and Initial Condition Point Estimates. 

Coefficient 
Point 

Estimate 
Units 

 
Coefficient 

Point 
Estimate 

Units 

a 31.41 satellites / year  x 6.895×10-10 year -1 · fragment -1 
b 7.794 satellites / year  y 1.369×10-9 year -1 · satellite -1 
c 1.935 radians / year  z 2.869×10-14 year -1 · fragment -1 
d 0.1680 radians  α 10,000 fragments / satellite 
f 14,420 years  β 70 fragments / satellite 
g -10,430 years  γ 56,000 fragments / satellite 
h 0.5712 radians / year     
k -0.9996 radians  N0 4,650 satellites 
p 184.9 years  n0 110,400 fragments 
q -137.9 years     

 

Results of the Nominal Model 
Before proceeding with stability analysis of the new model, this study first examines the model’s behavior in the 

time domain. The black lines in Figure 6 show the behavior of the new model over a 500-year period, the time span 
used by Reference 5.* Gray lines show data reproduced from Reference 5, starting from 1991 (the date of Reference 5). 

Looking first at the upper plot in Figure 6, it is worth noting that the revised model predicts substantially fewer in-
tact satellites in LEO at the peak. The original model predicts a peak population of 14,500 in the year 2137, while the 
revised model predicts a peak population of 6,900 in the year 2108. The two models agree in the year 2021, but as will 
be shown in more depth later, the lower global launch rate in the revised model (the only positive term in the dN/dt 
equation) causes a slower rise and a smaller peak. It is also important to recognize that while the original model predicts 
a continuously declining population, the revised model indicates a recovery period beginning in the late 23rd century 
which appears to equilibrate at a level of 1100 intact satellites.  

The lower plot in Figure 6 shows the proliferation in the number of >1 cm debris fragments with time. Here, differ-
ences between the original and revised models are even more striking: The two models agree closely until the mid-22nd 
century. However, because the original model of Reference 5 included no atmospheric drag, the gray line continues 
                                                        
* These plots result from numerically integrating Eqs. (3)-(4) using MATLAB’s ode45 with 10-6 relative tolerance. 
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upward without limit. In contrast, the 
black line appears to overshoot equilib-
rium and then decay. Oscillations in this 
line are due to the 11-year solar cycle. At 
the peak in 2210, there are 64.7 million 
fragments in LEO, over 500 times as 
many as exist today. At this level, the 
average probability of collision with a 
debris fragment in LEO becomes 4.5% 
per year, compared to 0.0076% per year 
today. With a 4.5% annual risk, a new 
satellite can be expected to be destroyed, 
on average, 22 years after launch. 

It might be hypothesized that some 
terms in Eqs. (3)-(4) have negligible con-
tributions to the on-orbit satellite and de-
bris population within the timeframe con-
sidered in this study. In an effort to em-
pirically identify negligible contributors to 
the system’s behavior, Figure 7 displays 
the relative contributions to the dN/dt and 
dn/dt terms as a function of time. The 
upper plot in Figure 7, for example, shows 
the relative magnitudes of the four terms 
in Eq. (3) over time. The fifth curve, col-
ored black, shows the sum of the first 
four. Notice that the light-gray solid line 
and darker gray dashed line dominate the 
plot, while the light-gray dashed line and 
darker gray solid line are virtually zero for 
all time. This indicates that collisions be-
tween intact satellites and orbit decay of 
intact satellites are negligible effects, 
while behavior of the intact satellite popu-
lation is governed primarily by launch rate 
and collisions with debris. 

The lower plot of Figure 7 shows the relative magnitudes of the five terms in Eq. (4) over time. The sixth curve, 
colored black, shows the sum of these. Notice that the darker gray dashed line and darker gray solid line dominate the 
plot, while the light-gray solid line, light-gray dashed line, and black dashed line are virtually zero for all time. This 
suggests that the number of orbiting debris fragments is governed primarily by orbit decay and collisions between in-
tact spacecraft and debris fragments.  

ASSESSMENT OF EQUILIBRIUM AND STABILITY 
Several interesting and useful implications of the revised model can be observed through analysis of the system’s 

equilibrium points. The results generated thus far suggest that for the particular selection of the 18 parameters for this 
model, the number of intact satellites in LEO gradually converges to approximately 1100 and the number of debris 
fragments converges to 40 million. This suggests the existence of a stable equilibrium point, but it provides no informa-
tion about how this equilibrium point varies or whether it remains stable for different values of the 18 parameters. The 
following discussion addresses these questions. 

Equilibrium with Sinusoids Removed 
To identify equilibrium points, it is necessary to simplify Eqs. (3)-(4) of the revised model into an autonomous set 

of ordinary differential equations. This requires the removal of the sinusoidal forcing terms in launch rate and re-entry 
rate. Unfortunately, as visible in Figure 7, these terms are not small in all cases. As noted earlier, the effects of launch 
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Figure 6. Comparison of the revised model with the original model of 
Reference 5.  The steady-state oscillations visible in the lower plot of the 

revised model correspond to solar cycle oscillations. 
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rate on dn/dt and re-entry rate on dN/dt are 
relatively small, but the effects of launch 
rate on dN/dt and re-entry rate on dn/dt are 
substantial. In removing these terms, it is 
assumed the average launch and re-entry 
rates are adequate in describing the sys-
tem’s behavior. 

Equations (14)-(15), which omit the si-
nusoidal forcing terms (by setting b = g = q 
= 0), are plotted as the dashed gray lines in 
Figure 8. Notice that this model and the 
baseline revised model of Eqs. (3)-(4), 
shown by the solid black lines, agree 
closely for the first 100 years of the simula-
tion. The end behavior is also qualitatively 
the same. In both models, the number of 
intact satellites in LEO peaks in the early 
22nd century, reaches a low in the late 23rd 
century, and then recovers slightly. Both 
models also show that the number of debris 
fragments peaks in the early 23rd century 
and gradually declines to an equilibrium. 
Quantitatively, however, the final values of 
n and N are discrepant by about 50%. 

To compensate for this discrepancy, 
the average time constant for orbital debris 
re-entry is modified to p = 130 years (in-
stead of p = 184.9 years). The resulting 
system response, shown as the solid gray 
line in Figure 8, shows satisfactory agree-
ment with the baseline model, and this new 
value for p will be used for the remainder 
of this paper in instances where sinusoidal 
terms are removed. 

Figure 9 shows the direction field in the n vs. N phase 
space corresponding to the simplified model of Eqs. (14)-
(15), with p = 130 years. The black line is the path from the 
N0 = 4,650 and n0 = 110,400 initial conditions. Note the 
equilibrium point near N = 1100 and n = 40 million. 

To find the exact coordinates (N*, n*) of the equilibrium 
point, dN/dt and dn/dt in Eqs. (14)-(15) may be set to zero. Setting dN/dt = 0 and solving for n* yields Eq. (16). Setting 
dn/dt = 0 and solving for N* using the quadratic formula yields Eq. (17). Importantly, the square root term in Eq. (17) 
must be larger than αxn* if one of the N* solutions is to be positive and meaningful. The smaller root of N* is negative 
and non-physical. 

Solving using the positive root of N* yields N* = 1107.9 and n* = 41.015 million. Note that this corresponds well 
to the equilibrium in Figure 9. No other physically meaningful equilibria appear to exist. 

As is clear from Eqs. (16)-(17), 
the analytic expressions for the 
equilibrium point coordinates are 
complicated. Stability analysis 
would introduce further complica-
tion. As will be shown in the next 
section, these expressions can be 
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Figure 7. Relative contributions of terms in the revised model. The  
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simplified by dropping small terms without 
significant loss of fidelity. Stability behavior 
is then analyzed for the simplified system. 

Equilibrium and Stability for a 
Simplified System 

The goal of this section is to analyze a 
model that demonstrates similar characteris-
tics to the original model but is simple 
enough to yield useful analytical expres-
sions for equilibrium and stability behavior. 
To accomplish this, earlier discussion re-
garding contributors to dN/dt and dn/dt is 
leveraged. Recall that in Figure 7, dN/dt was 
negligibly affected by collisions between 
and orbit decay of intact satellites. Thus, in 
the simplified model of Eq. (18), these terms 
are removed (or equivalently, y → 0 and f 
→ ∞). Recall also that dn/dt was negligibly 
affected by launch rate, collisions between 
satellites, and collisions between fragments. 
As a result, the simplified model of Eq. (19) 
neglects the latter two of these terms (or 
equivalently sets y = 0 and z = 0). The βa 
term is retained for later analysis of policies 
to improve the orbital debris situation. 

The resulting simplified model is shown 
in Eqs. (18)-(19), and a comparison of the 
solution of the simplified model to the base-
line model without sinusoidal forcing (Eqs. 
(14)-(15)) is shown in Figure 10. Note the 
similarity of Eqs. (18)-(19) to the original 
model of Reference 5 in Eqs. (1)-(2). In 
effect, by starting with a complicated model 
and neglecting terms based on their relative 
contributions, this analysis has independ-
ently confirmed the basic model of Reference 5 – but with one key excep-
tion. The new model contains a negative term in the dn/dt equation due to the 
orbital decay of fragments. This term introduces an equilibrium point which, 
as will be shown, in most cases is asymptotically stable. This significantly 
changes the character of the end behavior of the solution. 

Nondimensionalization. As is clear from Eqs. (18)-(19), 
the simplified model contains a total of five terms describing 
dN/dt and dn/dt. There are three variables in the system (N, n, 
and t), so a nondimensionalization scheme can be selected to 
produce a system that can be completely described by two 
parameters. Solving for appropriate normalizing parameters 
yields the system in Eqs. (20)-(23). Using the parameters in 
Table 1 (except with p = 130 years as discussed earlier), χ = 
3.660 and ρ = 0.007. Both χ and ρ are unitless. Parameter χ, 
which characterizes the severity of the debris scenario, con-
sists entirely of quantities (x, a, p, and α) that produce a less 
desirable debris scenario when increased. The “debris ratio” 
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Figure 8. Comparison of model behavior with sinusoidal forcing 
(solid black line), without sinusoidal forcing (dashed gray line), and  

without sinusoidal forcing but with a modified  
p coefficient (solid gray line). 
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parameter ρ is the ratio of average debris released 
per launch to average debris released during a 
collision between a fragment and satellite. 

The variables M, m, and s (nondimensional 
versions of N, n, and t) are all of an order of mag-
nitude between 0.10 and 10 for the solution using 
the baseline initial conditions. For example, M0 = 
N0/(ap) = 1.138, m0 = n0/(pβa) = 0.3861, and smax 
= tmax/p = 3.85. Note that the small value of χρ (= 
0.0256) explains the initial linear growth in the 
number of intact satellites, visible in Figure 10. 
As Eq. (20) shows, if χρ is zero, dM/ds = 1 and 
this growth is exactly linear. 

Determination of Equilibrium Points. From 
the simplified equations above, it is straightfor-
ward to solve for equilibrium points. Setting 
dM/ds and dm/ds to zero yields Eqs. (24)-(26). 
Inserting χ = 3.660 and ρ = 0.007 yields M* = 
0.2713 and m* = 143.9, the only equilibrium 
point of the system. Translating into dimensional 
quantities N* and n* yields N* = 1107.9 satellites 
and n* = 41.120 million fragments. These values 
are almost identical to those from the more com-
plicated model from Eqs. (14)-(15). 

In the case of ρ << 1, which is reasonable on 
physical grounds and given the baseline ρ = 0.007 
value, the formulas for N* and n* simplify further 
to the versions denoted after the “~” symbol in 
Eqs. (25)-(26).* In this case, N* = 1115.7 satel-
lites and n* = 40.834 million fragments, which is 
still very close to the values from the higher-
fidelity model. 

 Interestingly, Eqs. (25)-(26) show the equi-
librium value of M is almost entirely governed by 
χ, and the equilibrium value of m is entirely gov-
erned by ρ. This is convenient, although care 
should be taken in interpreting this result. For example, χ is proportional to launch rate a and M* is roughly propor-
tional to 1/χ, so doubling launch rate roughly halves M*. However, this does not necessarily halve N* since N* has 
been normalized by the product of launch rate and characteristic fragment orbit decay time. The result is that, while M* 
does halve when a is doubled, N* does not change. Thus, it is worth emphasizing, for example, that greater values of M 
translate into greater values of N only when all parameters remain constant. 

As Eq. (25) shows, the equilibrium value of N is primarily governed by the intact-fragment collision probability x, 
the characteristic fragment orbit decay time p, and the number of fragments created per collision α. The number of 
fragments produced per launch β plays a small role if it is much smaller than α. Equation (26) shows the equilibrium 
value of n is primarily governed by the characteristic fragment orbit decay time p, global launch rate a, and the number 
of fragments created per collision α. As in Eq. (25), the number of fragments produced per launch β plays a small role if 
it is much smaller than α. Interestingly, note launch rate plays no role in setting the equilibrium value of N. Equally 
surprising, the collision probability x plays no role in determining the equilibrium value of n. 

                                                        
* Throughout the rest of this work, “~” indicates a limit as ρ (or β, where appropriate) approaches zero. This is identical 
to the limit as Q, which will be introduced as Q = ρ + 1, approaches unity. 

 

Figure 9. Direction field of the no-sinusoid model. The stable 
equilibrium point is shown as well as the path traced with the  

actual initial conditions (the solid black line). 
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Stability of the Equilibrium Point. 
With the equilibrium point of the simpli-
fied system identified, an important ques-
tion to address is whether the point is sta-
ble and, if so, under what conditions. To 
address this, the system is linearized about 
the equilibrium point. The eigenvalues of 
the linear system are given in Eq. (27), 
where Q = ρ(1+1/ρ) to simplify notation. 
For ρ << 1, Q ~ 1 and for ρ > 0, Q > 1. 

Stability for χ > 0 and Q ~ 1. The most 
important observation from Eq. (27) is 
that, due to the -4χQ term, the square root 
term is always smaller than the (χQ + 1 - 
1/Q) term to the left of the square root if χ 
> 0 and Q > 0. Because of this and the fact 
that (χQ + 1 - 1/Q) is positive and preceded 
by a negative sign, both eigenvalues are 
guaranteed to be negative. No positive 
values of χ or Q (or ρ) can cause instabil-
ity. This covers most scenarios since both 
χ and Q are generally positive quantities. 

 Equation (28) approximates the ei-
genvalues of the linear system under the 
assumption that Q ~ 1. This equation re-
veals more clearly that, although the ei-
genvalues can never be positive, they can 
take complex values if 0 < χ < 4. 

Figure 11 illustrates the behavior of the 
system in the m vs. M phase space for 
scenarios in which χ = 3.660 is decreased 
or increased by a factor of 10 (with ρ fixed 
at 0.007). The left plot shows oscillatory 
behavior and the right plot does not, as 
expected from the 0 < χ < 4 condition. The 
χ = 3.660 behavior is well illustrated by 
Figure 9, though this case is close to χ = 4 and 
the oscillatory behavior is only slight. If trans-
lated into a change in launch rate (since χ is 
directly proportional to a), the implication is that an increase in launch rate by 
just 3 satellites per year would remove the oscillatory behavior; that is, the 
baseline scenario is only borderline oscillatory. 

An additional note regarding stability for this system arises because of the potential oscillatory behavior for 0 < χ < 
4. It may be recalled that the simplified model does not include the effects of sinusoidal forcing, which raises the ques-
tion of whether these terms could produce resonance. While linear stability analysis does not apply far from the equilib-
rium point, it is possible to examine the resonance issue in the area of the equilibrium point. 

Based on Eq. (28), the most negative value that χ² - 4χ can take is -4. Thus, the largest possible imaginary part of 
the eigenvalue λ is ± i. As a result, the highest possible frequency of a sinusoid for the local homogeneous solution is 1 
radian per nondimensionalized time unit s. This corresponds to a dimensional frequency of 0.00769 radian/year, or 
equivalently an 817-year period. Thus, given an unfortunate value of χ, resonance is locally possible if a sinusoidal 
forcing function exists with a period of 817 years or more. It is impossible for periods shorter than this (e.g., the 11-year 
solar cycle and 3.3-year launch cycle periods). 
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Figure 10. Comparison of model behavior without sinusoidal 
forcing and with p = 130 years (gray line), and without  

negligible terms (black line). 











−


 −+±


 −+−= Q

Q
Q

Q
Q χχχλ 4

1
1

1
1

2

1
2

  (27) 

( )χχχλ 4
2

1
~ 2 −±−  (28) 



 13 

              

Figure 11. Direction fields of the simplified model with χ = 0.366 (left) and χ = 36.6 (right). Note the oscilla-
tory behavior for the case in which 0 < χ < 4. Also note that the axes of the plots have different limits. 

General Stability. While the discus-
sion above applies to most practical sce-
narios, some interest in stability may exist 
for special cases outside of the χ > 0 and 
Q ~ 1 regime. Based on Eq. (27), 
Figure 12 shows the equilibrium point’s 
behavior over a wider range of χ and ρ. 
Black lines indicate the boundaries be-
tween stable and unstable regions and 
gray lines indicate the boundaries between 
oscillatory and non-oscillatory regions. As 
expected, the χ > 0, ρ > 0 region is entirely 
stable, and the baseline equilibrium point 
is near the oscillation boundary, which 
crosses the ρ axis at χ = 4. 

One reason this general stability might 
be of interest is if effective launch rate 
becomes negative, would representing 
implementation of a program for actively 
deorbiting more satellites than are 
launched per year. In this case, χ < 0, and 
if ρ > -1 the equilibrium point becomes unstable. Another reason this general stability might be of interest is if an orbital 
fragment collection program were implemented to make β < 0 such that |β| is comparable to α (if |β| << α , the Q ~ 1 
approximation still holds). In this case, the equilibrium point could also become unstable if ρ becomes negative enough 
to cross the curved black line in Figure 12. 

Time to Peak as a function of χ and ρ. The final point in this section is based on a practical consideration. While 
equilibrium and stability are analytically interesting and helpful, they deal with the final state of the system and shed 
little light on the time dimension of the problem. In the case of orbital debris proliferation in LEO, it may take hundreds 
of years to approach equilibrium. In all cases studied so far, however, a catastrophic event – the peak and sudden de-
crease of intact orbiting satellites – occurs well before long-term equilibration. 

Figure 13 illustrates this concept for a family of solutions with varying values of χ but identical initial conditions 
(M0 = 1.138, m0 = 0.3861) and values of ρ (ρ = 0.007). Note in the upper plot that the time at which the number of satel-
lites in LEO peaks (i.e., Mmax) decreases as χ increases. This is not captured by equilibrium considerations. 

One advantage of the simplified model in this work is that it completely describes the dynamics of the changes in N 
and n (or M and m) in terms of two parameters rather than the five in the simplified [dimensional] model. That is, speci-
fication of χ and ρ (plus initial conditions) determines a unique solution. Using the standard M0 = 1.138, m0 = 0.3861 
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initial conditions used throughout this work, 
these unique solutions have been computed 
for a range of χ and ρ values, shown in 
Figure 14. For example, in the upper plot the 
gray star indicates that the nondimensional 
time at which the baseline case reaches its 
maximum satellite population is s = 0.8. Us-
ing p = 130 years, this translates into t = 104 
years, plotted in the lower plot. 

Note also that time to peak decreases as χ 
increases. For example, if χ increases to χ = 7, 
the nondimensional time to peak is halved to s 
= 0.4. Such an increase in χ could occur by 
doubling x, a, or α, or by multiplying p by 
1.414. If the increase in χ is due to the dou-
bling of x, a, or α, the dimensional time to 
peak becomes t = 52 years. If the increase is 
due to a change in p, this changes both χ and 
the scaling relationship between s and t (since 
s = t/p). In this case, the dimensional time to 
peak becomes t = 74 years. This illustrates the 
use of Figure 14 for conducting sensitivity 
analysis and first-order trade studies. Note 
that, while χ is the dominant parameter gov-
erning this time-to-peak metric, the slopes in 
the contours of Figure 14 illustrate that the 
parameter ρ is still important. 

IMPLICATIONS FOR ORBITAL 
DEBRIS MITIGATION 

With a new model now available and 
thoroughly examined, the obvious question 
becomes: What can the model tell us about 
how to improve the future of orbital debris 
proliferation? This section addresses this ques-
tion in three parts. First, strategies for improving the equilibrium state are discussed. Second, strategies for extending 
the time-to-peak metric are discussed. Third, the results of a simulation are shown in which modest improvements are 
made as discussed in the first two discussions. 

 Discussion in this section will be guided by the simplified model presented above. As a result, focus will be on the 
following five parameters, and particularly on the first two: 

� Effective Launch Rate (a) is one of the most easily modified by government policies and programs. Reduc-
ing this number could occur by reducing the number of satellites placed in orbit per year (e.g., launch a few 
large instead of multiple smaller satellites) or by actively deorbiting intact satellites. 

�  Fragments per Launch (β) is also susceptible to domestic and international policy and has indeed been de-
creasing as policies have been introduced to vent excess propellant from upper stages after launch (reducing 
the likelihood of an upper stage explosion). This parameter also accounts for anti-satellite missile tests, the 
debris from which is effectively averaged over the launches between tests. It can also account for actively 
deorbiting fragments (for example, through masses of aerogel deployed by dedicated “sweeper” spacecraft4). 

� Intact-Fragment Collision Probability (x) is difficult to change, although Eqs. (9)-(10) provide some in-
sight into how this might be done. While average speed is largely determined by orbital mechanics and the 
volume of the LEO belt is fixed, satellites could be made smaller to reduce cross-sectional area. Additionally, 
if active collision avoidance is employed, this would manifest itself through reductions in x. For example, if 
10% of collisions with debris could be both predicted and avoided, x would be effectively reduced by 10%. 
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Note, however, that any such reduction on x mathematically applies to all intact satellites and not just those 
that are currently active and controllable. 

�  Average Fragment Orbital Lifetime (p) is also difficult to change, but theoretically could be accomplished 
if debris fragments are changed to have larger cross-sectional areas or lower mass, are distributed more to-
ward lower altitudes, or are subjected to larger atmospheric densities. For example, some creative proposals 
have included locally heating the atmosphere to produce high-density bulges out to satellite altitudes.4 

�  Fragments per Intact-Fragment Collision (α) is a third parameter difficult to change. However, this might 
be modified if satellites are manufactured with structures or shielding designed to fracture into fewer pieces. 

 Note that these are the only parameters that appear in the simplified model and are the primary means of influenc-
ing orbital debris proliferation. As shown earlier, the other eleven parameters in Eqs. (3)-(4) are unimportant for de-
scribing equilibrium or time-to-peak behavior. 

Sustainability: Improving the Equilibrium State 
The first question this model can help answer is how the equilibrium state (the number of satellites and fragments 

in LEO) can be improved through action by governments, satellite manufacturers, and satellite users. While equilib-
rium is reached only after a long period of 
time, it is useful as an indicator of the sustain-
ability of use of LEO. 

Throughout the following discussion, it is 
assumed β << α so the equilibrium point is 
negligibly affected by β. That is, it is assumed 
the number of fragments created per launch 
(or destroyed per launch, if β < 0*) is much 
smaller than the number of fragments created 
per collision between a fragment and a satel-
lite. Recall the baseline value for β/α is 0.007 
and that worldwide mitigation efforts have in 
general reduced this number by reducing β. 
Thus, β << α is a reasonable assumption, pro-
vided anti-satellite tests (which would effec-
tively increase β) remain uncommon. 

Increasing Equilibrium Satellite Capacity. 
One measure of the sustainability of LEO 
satellite operations is the total long-term (equi-
librium) capacity for intact satellites. In terms 
of the model in this study, this is represented 
N*, an approximate formula for which is 
shown in Eq. (25). While there is no clear 
ideal long-term value of N*, some insight can 
be gained by solving for the conditions re-
quired to make N* equal to the number of 
intact satellites in orbit today (N0 = 4650, from 
Table 1). In other words, what conditions 
would need to exist to make the current num-
ber of intact satellites sustainable? 

Figure 15 shows N* as a function of x and 
pα. Note that, according to Eq. (25), the only 
parameters that have a significant influence on 
N* are x, p, and α; however, as noted earlier, 

                                                        
* The case β < 0 with |β| not much smaller than α (e.g., for a massive debris fragment cleanup effort) is discussed later. 
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these three parameters are difficult to change. As 
Figure 15 shows, if it were impossible to change 
these three parameters from their nominal values 
in Table 1, the equilibrium number of intact 
satellites in LEO would be about 1100, less than 
25% of the number in orbit today.  

Perhaps the most easily envisionable way of 
influencing N* is through changing x, the annual 
per-fragment probability of collision for an intact 
satellite. As mentioned earlier, this may most 
easily be influenced by changing the cross-
sectional area of satellites. Figure 15 shows that 
if the current number of intact satellites is to be 
the equilibrium value, x must be reduced to 1.6 × 
10-10 to 2.1 × 10-10 per year per fragment, de-
pending on whether pα remains the same or is 
reduced by 20% (for example, by reducing both p and α by approximately 10%), respectively. This corresponds to a 
reduction in effective cross-sectional area from 3.77 m² to between 0.87 m² and 1.15 m². This translates into reducing 
satellite length scales by roughly a factor of two and thus reducing volume by a factor of 8 while presumably retaining 
the same functionality. Clearly this could be a daunting task. The alternative of reducing x by a factor of four through 
active collision avoidance is equally daunting; even if collisions could somehow be avoided for all 560 active satellites 
in LEO,4 there would still be over 4,000 inactive satellites (88% of the population) for which no control is available. 

 While it may be daunting to meet this goal on x completely, there is still benefit to small reductions. For example, 
if the typical 2.2 m diameter assumed earlier is reduced by 2 cm 
(about 1%), N* increases by about 12 satellites. This suggests devel-
opment efforts aimed at miniaturization may be helpful from an or-
bital debris risk perspective. A more formal statement on this is given 
by the partial derivative ∂N*/∂x in Eq. (31). 

 Minimizing Equilibrium Collision Probability. A second measure of sustainability is the equilibrium probability of 
collision for intact satellites. This metric is perhaps more important than the intact satellite equilibrium capacity because 
it defines the minimum level of risk tolerance individuals or organizations must have in order to decide to use satellites 
over other alternative methods of communication, reconnaissance, or remote sensing, for example. 

 This equilibrium annual collision probability, 
Pcoll*, is proportional to n* through Eq. (32), de-
rived from the gas-dynamics-based Eq. (9). 

 Figure 16 shows Pcoll* plotted as a function of 
a and pα.* Cross-sectional area, average orbital velocity, and LEO volume are assumed fixed. The vertical line in the 
figure shows the nominal setting of a based on Table 1. The intersection of this line with the black pα line indicates that 
the nominal equilibrium collision probability is 2.8% per year; if pα can be reduced by 20% (the light gray line), this 
changes slightly to 2.3% per year. For context, this corresponds to a 20-25% probability of collision (and corresponding 
loss of satellite) within 10 years and a 29-34% probability within 15 years, well within the expected lifetimes of many 
satellites. This represents a substantial risk well above risks that already exist for failure due to component malfunc-
tions, and it is questionable whether such a risk would support the continued use of satellites for many applications. 

The horizontal line in Figure 16 shows the typical failure rate of LEO satellites after 1 year in orbit (0.93% per year, 
derived from Reference 14)† and can be considered currently accepted by the satellite industry. If the industry might 
accept an orbital debris collision risk on par with the risk of all other failures, this number serves as an estimate for an 

                                                        
* Note that this collision probability is inherently averaged over all of the LEO volume. 
† The model used to generate this estimate is a Weibull distribution model with infant mortality, so this 0.93% per year 
estimate is on the high side of a currently acceptable failure rate. 
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Figure 15. Equilibrium number of intact satellites in LEO 
as a function of x and pα. 

( ) αβα pxpxx

N
22

1
~

1 −
+

−=
∂
∂ ∗

 (31) 

( ) ασαβσσ
pa

V

v
pa

V

v
n

V

v
P NnNnNn

coll ~* +== ∗  (32) 



 17 

appropriate Pcoll* target. As Figure 16 shows, 
this would require reduction of the global LEO 
launch rate to 10-13 satellites per year. This 
could involve reducing the number of satellites 
launched or, for example, continuing to launch 
31 per year but actively deorbiting 18-21 satel-
lites per year. Either change is substantial. 

 Similar to the previous section, it is instruc-
tive to take the partial derivative of Eq. (32) 
with respect to a. This expression, in Eq. (33), 
indicates ∂Pcoll*/∂a is constant with a. For the 
nominal values of σNn, v, V, p, and α used 
throughout this study, the this derivative is 
∂Pcoll*/∂a = 0.000898 yr-1. Thus, for every 11-
satellite launch rate reduction (or, alternatively, 
every 11 satellites deorbited per year), the equi-
librium annual probability of collision is reduced by nearly 1%. 

Buying Time: Delaying Time-to-Peak 
As the previous section indicated, creating an acceptable 

equilibrium state would require substantial changes to the annual satellite launch rate or size of satellites in the LEO 
population. Ultimately, these changes may be necessary since equilibrium will eventually be reached. However, a rea-
sonable question is whether the time-to-peak (the time before the “crash” in intact satellites) can be delayed while tech-
nology development and policy efforts are undertaken to solve the equilibrium problem. 

For the following discussion, the baseline model with no sinusoidal forcing and p = 130 years is used (Eqs. (14)-
(15)). Since negative values of a and β are considered, an additional rule was added to the MATLAB numerical inte-
gration to set dN/dt = 0 if N ≤ 0 and dn/dt = 0 if n ≤ 0 to avoid negative numbers of satellites and fragments. 

Figure 17 shows how time-to-peak changes as launch rate and debris per launch, the two most easily changeable 
parameters, are varied over a reasonable range. The baseline case defined by the nominal parameters in Table 1 is 
marked by the gray star. This indicates 
that the current peak in the number of 
intact satellites in LEO occurs in about 
97 years, or in the year 2106.* If β is 
held constant and a is decreased, time-
to-peak increases until a = 19 satel-
lites/year, at which point time-to-peak 
is 100 years. As a is further decreased 
and launch rate becomes very low, 
time-to-peak decreases until a = 0, at 
which point the maximum population 
of intact satellites is maximum at t = 0 
since no satellites are being launched 
(and some are being destroyed by de-
bris). Thus, decreasing a locally has 
little effect on delaying time-to-peak. 
In partial derivative terms, for every 
launch avoided (or satellite deorbited) 
per year, 3 months are added to the 
time-to-peak. 

                                                        
* Since the no-sinusoid model of Eqs. (14)-(15) is used to generate the results of Figure 17, the nominal time-to-peak is 
slightly discrepant from the full model of Eqs. (3)-(4). This is the reason for the 2106 vs. 2108 year disagreement. 
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Turning to the situation where a is held constant and β is decreased appears much more fruitful. Decreasing β to 
zero (i.e., eliminating debris release per launch, or destroying as much debris as is generated per launch) brings time-to-
peak to 103 years. In partial derivative terms, for every debris fragment not released per launch, one month is added to 
time-to-peak. Decreasing β beyond this, time-to-peak is delayed to 120 years once β = -110. Such a value for β would 
require the deployment of systems that are able to “sweep up” 110 debris fragments for every launch of the year. A 
critical point is reached once β = -190. Here, time-to-peak rises to over 200 years. Physically, this occurs because at 
about β = -190, the fragment population is entirely “cleaned up” at a rate of βa = 5,970 fragments per year for 60 years. 
Then, for several decades the fragment population remains zero until the intact satellite population rises enough for the 
intact-intact collision rate to exceed the maximum “clean up” rate; at this point, the fragment population grows, precipi-
tates additional collisions, and eventually peaks. 

One surprising outcome of this time-to-peak analysis is that, unlike the equilibrium discussion in which β had neg-
ligible influence and a presented the primary means of reducing long-term risks, the opposite is true. In terms of time-
to-peak, a has a minor influence while β presents a potential solution. Further, values of β required for centuries of 
time-to-peak extension remain within the |β| << α regime assumed for the simple equilibrium equations earlier. 

Example Modest Improvements 
The previous sections have highlighted three means of improving the equilibrium and time-to-peak characteristics 

of the debris proliferation problem:  reduction in satellite size (to reduce x) , reduction in global launch rate (a), and 
reduction in fragments released per launch (β).  While these primary mechanisms can be tweaked in many ways, pre-
sented here is a scenario illustrating the implementation of reasonably ambitious policies for orbital debris mitigation 
using the model of Eqs. (3)-(4). Here, x is set to 5.585 × 10-10 yr-1·frag-1 and y is set to 1.109 × 10-9 yr-1·sat-1, representing 
a 10% reduction in satellite characteristic 
length dimensions. The a and b launch rate 
parameters are set to ⅔ of their original values, 
representing policies encouraging ⅓ of satel-
lite owners to deorbit their satellites at the end 
of their useful lives. Thus, a = 20.94 satel-
lites/year and b = 5.196 satellites/year. Finally, 
β is reduced by half (to β = 35), representing 
policies encouraging further limits on launch-
related debris. Recognizing that such changes 
take time to implement, the simulation only 
begins using the new constants after the year 
2019 (at t = 10 years), in close agreement with 
the assumption of Reference 27. 

Figure 18 shows the result of implement-
ing these coefficient changes in the nominal 
model of Eqs. (3)-(4). In the top plot, note that 
the peak number of intact satellites occurs in 
the year 2134, 26 years after the original 
model, and the “crash” following the peak 
takes about 40 years longer. Additionally, the 
equilibrium value of the improved-policy 
model is slightly higher. In the bottom plot, 
the ramp to the peak amount of debris is 
slower in the improved-policy version, the 
peak itself is about 20% lower, and the equi-
librium value is about 25% lower, all reflect-
ing lower probabilities of collision for intact 
satellites. Overall, this illustrates how modest 
changes to the parameters of the model, for 
example through debris mitigation policies, 
can substantially delay or reduce the prolifera-
tion of orbital debris. 
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CONCLUSION 
In summary, this work has extended the model of orbital debris proliferation proposed by Reference 5 while retain-

ing the original model’s simple two-equation form. The new model includes effects such as atmospheric drag and colli-
sions between intact satellites, and coefficients have been re-estimated based on current data. Analysis of this new 
model reveals that although Reference 5 accounted for most major effects, a critical term was missing, namely the re-
duction in orbiting fragments due to atmospheric drag. This significantly changes the character of orbital debris prolif-
eration from one of unbounded growth to one of eventual equilibrium. Moreover, analysis has shown that this equilib-
rium point, which did not exist previously, is stable for most practical values of model parameters. Thus, the debris 
problem becomes less one of bounding the growth of debris and more one of ensuring an acceptable equilibrium. 

Without any changes, the current equilibrium state allows only 25% of the intact satellites in orbit today and pre-
sents a 2.8% per year risk of catastrophic collision for individual satellites. Methods for improving this equilibrium state 
have been explored. Two promising options appear to be reducing launch rate (or increasing deorbit rate) and reducing 
satellite size. While the reductions required to bring the equilibrium satellite capacity and equilibrium collision prob-
ability to acceptable levels appear too drastic to be immediately practical, the analysis did suggest small changes in 
these parameters could provide significant gains. For every centimeter decrease in the average satellite length scale, 
about 6 satellites are added to the LEO equilibrium satellite capacity. For every 11 satellites actively deorbited (or not 
launched) per year, equilibrium collision probability for individual satellites is reduced by 1% per year. 

With this said, although equilibrium considerations are important because they describe the eventual fate of the 
LEO satellite population, another important consideration is whether the characteristic “crash” in the satellite popula-
tion can be delayed while technology development or other policies are implemented. Examination of this time-to-peak 
metric shows that changes from the current launch rate have a minimal effect on the baseline 97-year time-to-peak, 
while reductions in the average amount of debris placed into orbit per launch can have a substantial effect. In particular, 
if 190 pieces of debris or more are collected per launch, time-to-peak could be extended by centuries. This makes a 
potentially compelling case for the development of spacecraft to catch (or actively deorbit) pieces of debris at the rate of 
5,900 pieces per year (i.e., 190 fragments for each of 31 launches per year). While not an easy task, “catch rates” in the 
hundreds or low thousands of fragments per year do not seem impossible. However, regardless of whether such space-
craft become a reality, reductions in orbital fragments released per launch appear more cost-effective in the short term. 
For every satellite actively deorbited (or for every launch avoided) per year, time-to-peak is extended by 3 months. 
According to the data shown here, this same 3-month extension can also be obtained by releasing just three fewer 
fragments per launch. While further investigation is required, technology development in this area may be justified. 

One danger of the results presented here is that they predict the “crash” in the satellite population will happen in 
roughly 100 years, which might seem to imply the problem should be a low priority. However, all simulations in this 
work have exhibited this “crash”, followed by a high level of risk and low satellite capacity in the aftermath. Orbital 
debris is a strategic threat to the global space infrastructure, and the space industry’s management of the situation will 
be largely a function of the preparations made and policies implemented decades prior to the event itself. 

It is important to note that this study has limitations. For example, this study did not explicitly distinguish between 
orbital bands, some of which have higher satellite and fragment densities than others. The focus here was on the overall 
properties of LEO orbital debris proliferation, in order to identify trends, key dependencies, and approximate estimates. 
For instance, orbital bands with high satellite and fragment densities will likely experience higher annual collision 
probabilities than the average values used here for all of LEO. Also, this work has assumed continuous variables and 
equations when in reality satellite launches and collisions are discrete events. Additionally, the use of “space-sweeping” 
satellites might also be modeled more accurately in the future; for example, it is likely that the “catch rate” would de-
crease as more fragments are caught, since the fragments would become increasingly more difficult to find. Finally, a 
useful next step in this model’s development would be a rigorous validation against higher-fidelity simulations. 

Overall, this work has employed a variety of analytical tools on the practical – and globally critical – problem of 
long-term debris proliferation in low Earth orbit. It is hoped some of the ideas, methods, and results in this work will 
find use in the broader community and provide guidance to help inform future decisions on debris mitigation policies 
and technology investments. 
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