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DEVELOPMENT OF SAMURAI – SIMULATION AND
ANIMATION MODEL FOR ROCKETS WITH

ADJUSTABLE ISP

Tadashi Sakai,∗ John R. Olds,† and Kristina Alemany‡

An interplanetary trajectory calculation application SAMURAI - Simulation and

Animation Model Used for Rockets with Adjustable Isp - has been developed.

SAMURAI is written in C++ and calculates transfer trajectories with variable

thrust, variable Isp (VASIMR type) engines as well as conventional constant low

thrust, constant Isp engines and high thrust engines. SAMURAI utilizes a calculus

of variations algorithm to evaluate the thrust history that minimizes the fuel

consumption from one planet to another. A trajectory with a planetary swing-by

can also be calculated. After calculation, a 3D animation of the resulting transfer

trajectory is created and can be viewed with a web browser using VRML. In this

paper, equations and methods used in SAMURAI, and the capabilities of this

application are presented. A few examples including a round trip from Earth to

Mars have been analyzed, and trajectories with variable Isp engines, constant Isp

engines, and high thrust engines are compared.

INTRODUCTION

Currently there are several projects ongoing worldwide relating to rocket engines that can modulate
their Isp. These projects include mechanical tests at ground facilities as well as trajectory simulations
with computers. VASIMR (VAriable Specific Impulse Magnetoplasma Rocket), under development
at the NASA Johnson Space Center, is a well-known example of a rocket engine with a variable Isp

and constant power. There have been several numerical research efforts for VSI, power-limited rocket
(VASIMR-type) trajectory optimization problems [1] [2] [3] [4] [5] [6], each illustrating interesting features
of VSI engines. Conventional low thrust rockets with fixed Isp (such as ion thrusters) are defined as CSI
engines (Constant Specific Impulse engines) in this paper.

To further investigate the characteristics of these engines, an interplanetary trajectory calculation
application SAMURAI has been created to calculate trajectories using several types of engines introduced
above. Because this application not only calculates trajectories with VSI engines, but also calculates
trajectories with conventional CSI engines and high thrust engines, users can compare the results for
these different types of engines and determine which engine is desirable for a mission. This application
also has the capability of calculating swing-by trajectories with one swing-by planet. A 3D animation
of the resulting transfer trajectory is created and can be viewed with a web browser using VRML.

In reality, Isp for VSI engines can not take very high or very low values. Because of physical
constraints such as heat and exhaust velocity, there are upper and lower limits on Isp. In this paper,
two types of VSI engines are considered: an engine whose Isp is constrained by an upper bound, and an
engine whose Isp is unconstrained. Also, for CSI engines, two types of engines are considered: an engine
that is always on throughout the mission, and an engine that has the capability of turning on and off.

∗Graduate Research Assistant, Space Systems Design Laboratory, School of Aerospace Engineering, Georgia Institute of Tech-
nology, Atlanta, GA 30332, Phone: (404)894-7783, E-mail: tadashi sakai@ae.gatech.edu, Student member AAS

†Associate Professor, Space Systems Design Laboratory, School of Aerospace Engineering, Georgia Institute of Technology,
Atlanta, GA 30332, Phone: (404)894-6289, E-mail: john.olds@ae.gatech.edu

‡Graduate Research Assistant, Space Systems Design Laboratory, School of Aerospace Engineering, Georgia Institute of Tech-
nology, Atlanta, GA 30332, Phone: (404)894-7783, E-mail: kristina alemany@ae.gatech.edu

1



The problem to be solved is defined as follows: find a history of control variables (thrust direction and
magnitude) that achieves the minimum fuel consumption of a spacecraft traveling from the departure
planet (initial position and velocity) to the arrival planet (final position and velocity) with a prescribed
flight time. Control variables may have constraints.

Solution methods for this kind of trajectory optimization problem are typically identified as either
direct methods or indirect methods. Direct methods discretize the optimization problem through events
and phases, and the subsequent problem is solved using nonlinear programming techniques. These
techniques include shooting, multiple shooting, and transcription or collocation methods. In the shooting
method, the control history is discretized as a polynomial, with the trajectory variables as functions of
the integrated equations of motion. In the collocation method, the trajectory is discretized over an entire
trajectory as a set of polynomials for both state variables and control variables. Solutions obtained with
these direct methods are generally considered sub-optimal due to the discretization of either the state
or controls, or both.

Indirect methods use calculus of variations techniques to characterize the optimization problem as
a two-point boundary value problem. The optimal control scheme is an indirect method. The optimal
control uses a first variation technique to determine necessary conditions for an optimum, and second
variation techniques are used to determine whether the point is the minimum, the maximum, or a saddle
point [7]. This method involves applying calculus of variations principles and solving the corresponding
two point boundary value problem [8]. Initial estimates of the Lagrange multipliers must be provided,
but since they do not have physical meanings, guessing the initial values of the Lagrange multiplier is
difficult and may lead to problems with convergence.

Each of the above methods has pros and cons: indirect methods are difficult to formulate, whereas
with direct methods, mathematical suboptimal solutions are obtained. In this research, an indirect
method is selected since it calculates an optimal solution rather than a suboptimal solution. The equa-
tions of motion used in this research are not very complicated and can be implemented in the application
without difficulties. Also, there are several excellent literature sources available for programming with
indirect methods [2][6][7][9][10].

In this paper, methods and equations of motion used in the application SAMURAI, and features
of this application are presented. Then the validation with other reliable interplanetary trajectory
calculation applications and an example of its application to a typical interplanetary trajectory are
described.

OPTIMIZATION PROBLEMS

Without Terminal Constraints on State Variables

Consider the dynamic system described by the following nonlinear differential equations§:

x = ḟ [x(t), u(t), t], x(ti) given, ti ≤ t ≤ tf , (1)

where x(t), a n-vector function, is determined by u(t), a m-vector function. Suppose we wish to choose
the history of control variables u(t) to minimize the performance index, J (scalar), of the form

J = φ[x(tf ), tf ] +
∫ tf

ti

L[x(t), u(t), t] dt (2)

where φ[x(tf ), tf ] is a scalar function that will be minimized, and L[x(t), u(t), t] is the Lagrangian. For

§A table of notation can be found at the end of this paper.
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convenience, define a scalar function H as follows:

H[x(t), u(t), t] = L[x(t), u(t), t] + λT (t)f [x(t), u(t), t]. (3)

Then, to find a control vector function u(t) that produces a stationary value of the performance index
J , the following differential equations must be solved:

ẋ = f(x, u, t) (4)

λ̇ = −
(

∂f

∂x

)T

λ−
(

∂L

∂x

)T

(5)

∂H

∂u
= 0 or

(
∂f

∂u

)T

λ +
(

∂L

∂u

)T

= 0. (6)

With Terminal Constraints on State Variables

If q components of the state vector x(t) are prescribed at tf , the following variation of u(t), δu(t) is
used to decrease J :

δu = −k

{
∂L

∂u
+ [p + νR]T

∂f

∂u

}
(7)

where k is a positive scalar constant and p is a n-component vector and R is a n× q matrix:

ṗ = −
(

∂f

∂x

)T

p−
(

∂L

∂x

)T

(8)

pj(tf ) =

{
0, j = 1, · · · , q

(∂φ/∂xj)|t=tf
, j = q + 1, · · · , n

(9)

Ṙi = −
(

∂f

∂x

)T

Ri (10)

Rij(tf ) =

{
0, i 6= j

1, i = j, j = 1, · · ·n (11)

and
ν = −Q−1g, (12)

where Q is a q × q matrix and g is a q-component vector:

Qij =
∫ tf

ti

RT

(
∂f

∂u

)(
∂f

∂u

)T

R dt, i, j = 1, · · · , q, (13)

gi =
∫ tf

ti

RT ∂f

∂u

[(
∂f

∂u

)T

p +
(

∂L

∂u

)T
]

dt, i = 1, · · · , q. (14)

Inequality Constraints on Control Variables

Suppose that there is an inequality constraint on the system:

C(u(t), t) ≤ 0 (15)

where u(t) is the m-component control vector, m ≥ 2, and C is a scalar function. For example, for a
requirement that the Isp be less than or equal to 30,000 sec, C is expressed as C = Isp − 30, 000 ≤ 0. If
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we define the Hamiltonian with a Lagrange multiplier µ(t) as

H = λT f + L + µT C, (16)

the necessary condition on H is

Hu = λT fu + Lu + µT Cu = 0 (17)

and µ

{
≥ 0, C = 0,

= 0, C < 0.
(18)

The positivity of the multiplier µ when C = 0 is interpreted as the requirement that the gradient of the
original Hamiltonian (λT fu +Lu) be such that improvement can only occur by violating the constraints.

The differential equations for costate vectors are

λ̇T (t) = −∂H

∂x
= −∂L

∂x
− λT ∂f

∂x
− µT Cx = −∂L

∂x
− λT ∂f

∂x
. (19)

Therefore, Eqn. 5 can be used to calculate costate vectors because C is not a function of x. Boundary
conditions should be chosen so that the initial and terminal constraints for state variables are satisfied.

Bang-off-bang Control

This type of control is applied to the fixed-time, minimum-fuel problem with constrained input
magnitude. For example, a CSI rocket that can turn its engine on/off as needed would obey this control
law. Consider a problem with the following linear system[10].

ẋ = Ax + Bu (20)

Assume that the fuel used in each component of the input is proportional to the magnitude of that
component. Then the cost function to be minimized is

J(ti) =
∫ tf

ti

m∑

i=1

ci|ui(t)|dt, (21)

where ci is a component of a m-vector C = [c1 c2 · · · cm]T and ui(t) is a component of a m-vector
|u(t)| = [|u1| |u2| · · · |um|]T . Suppose that the control is constrained as

|u(t)| ≤ 1 ti ≤ t ≤ tf . (22)

The Hamiltonian is
H = CT |u|+ λT (Ax + Bu) (23)

and according to the Pontryagin’s minimum principle, the optimal control must satisfy

CT |u∗|+ (λ∗)T (Ax∗ + Bu∗) ≤ CT |u|+ (λ∗)T (Ax∗ + Bu) (24)

for all admissible u(t). (∗) denotes optimal quantities. This equation can be reduced to

CT |u∗|+ (λ∗)T Bu∗ ≤ CT |u|+ (λ∗)T Bu. (25)
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If we assume that all of the m components of the control variables are independent, then

|u∗i |+
(λ∗)T biu

∗
i

ci
≤ |ui|+ (λ∗)T biui

ci
, (26)

where bi are the columns of B. Since

|ui| =
{

ui, ui ≥ 0
−ui, ui ≤ 0

(27)

we can write the quantity we are trying to minimize by selection of ui(t) as

qi(t) = |ui|+ bT
i λui

ci
=

{(
1 + bT

i λ/ci

) |ui|, ui ≥ 0(
1− bT

i λ/ci

) |ui|, ui ≤ 0
(28)

Fig. 1 shows the relationship between qi and � �
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Figure 1: Bang-off-bang Control: Choosing

Control to Minimize qi.

bT
i λui for ui = 1, ui = 0, and ui = −1. When
−1 < ui(t) < 1, qi(t) takes on values inside the
shaded area. Therefore, if we neglect the singular
points (bT

i λ/ci = 1 or -1), the control can be
expressed as

ui(t) =





1, bT
i λ/ci < −1

0, −1 < bT
i λ/ci < 1

−1, 1 < bT
i λ/ci.

(29)

This is called a bang-off-bang control law.

EQUATIONS OF MOTION

From rocket propulsion fundamentals and using Newton’s law for a variable mass body, the equation
of motion of a spacecraft is

m~̈r = ṁ~c + m~g (30)

where ~c is the exhaust velocity, and ṁ is mass flow rate. This equation of motion is expressed in
Cartesian coordinates by a set of differential equations for a position vector ~r and a velocity vector ~V .
The spacecraft’s mass is also obtained by a differential equation for the mass m.

f =




~̇r

~̇V
ṁ


 =




~V

−µ~r/r3 + ~T/m
−T 2/2PJ


 (31)

In order to minimize fuel consumption, the thrust vector ~T should be appropriately controlled throughout
the trajectory. ~T is the only variable that can be controlled and is expressed by a control vector ~u. The
expression for ~u is defined for each different type of problem shown in the subsequent few pages. ~u is
defined so that each problem is solved most effectively. Note that ṁ, PJ , Isp, and T have the following
relationship:

PJ = − T 2

2ṁ
(32)

T = −ṁg0Isp (33)
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VSI – No Constraints on Isp

For this problem, control variables are the same as the components of the thrust vector.

~u =




u0

u1

u2


 =




Tx

Ty

Tz


 (34)

Then the equations of motion are

f =




ẋ
ẏ
ż
u̇
v̇
ẇ
ṁ




=




u
v
w

−µx/r3 + Tx/m
−µy/r3 + Ty/m
−µz/r3 + Tz/m

−(T 2
x + T 2

y + T 2
z )/2PJ




. (35)

This type of problem can be solved with the method explained in the subsection on VSI Constrained
Isp in the section SAMURAI.

VSI – Inequality Constraints on Isp

For this type of problem, the following control variables are used:

~u =




u0

u1

u2

u3


 =




lx
ly
lz
T


 (36)

where T is the magnitude of thrust, lx, ly, lz are the direction cosines of the direction of thrust in the
inertial frame, and are subject to l2x + l2y + l2z = 1. Then the equations of motion are

f =




~̇r

~̇V
ṁ


 =




~V

−µ~r/r3 +~lT/m
−T 2/2PJ .


 (37)

. The Hamiltonian of this system is

H = ~λr · ~V − µ

r3
~λV · ~r +~l · ~λV T/m− λmT 2/2PJ

= ~λr · ~V − µ

r3
~λV · ~r − λm

2PJ

(
T −

~l · ~λV PJ

mλm

)2

+
(~l · ~λV )2PJ

2m2λm
. (38)

According to the Pontryagin’s maximum principle, the thrust vector must be selected in such a manner
so as to maximize H at each instant of time. Therefore, we choose ~l parallel to ~λV . Then ~l and T are
expressed as

~l =
[
lx ly lz

]T = ~λV /λV , ~λV =
[
λu λv λw

]T (39)

T =
PJλV

mλm
(40)
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. The vector ~l is called the primer vector[12]. The equations of motion and the control vector are

f =




ẋ
ẏ
ż
u̇
v̇
ẇ
ṁ




=




u
v
w

−µx/r3 + lxT/m
−µy/r3 + lyT/m
−µz/r3 + lzT/m

−T 2/2PJ




, ~u =




u0

u1

u2

u3


 =




lx
ly
lz
T


 . (41)

Therefore, solving this type of problem is the same as finding the Lagrange multipliers.

CSI – Continuous Thrust

For continuous thrust, the propellant mass is proportional to the

X

Y

Z

T

F
I

Figure 2: In-plane Thrust

Angle η and Out-of-plane

Thrust Angle ξ in the Iner-

tial Frame.

time of flight. That means that if the thrust magnitude is the same
for any two missions with the same times of flight, the fuel require-
ments are the same. The problems dealt with in this research are
fixed time problems, so the propellant mass cannot be used as the
performance index. For this type of problem, the following perfor-
mance index is used:

J = (u(tf )− utarget)
2 +(v(tf )− vtarget)

2 +(w(tf )− wtarget)
2 (42)

and the terminal constraints are

ψ =




x(tf )− xtarget

y(tf )− ytarget

z(tf )− ztarget


 = 0. (43)

Because the thrust magnitude is fixed, there are two control vari-
ables.

~u =
[
u0

u1

]
=

[
η
ξ

]
(44)

Then the equations of motion are

f =




ẋ
ẏ
ż
u̇
v̇
ẇ
ṁ




=




u
v
w

−µx/r3 + T cos η cos ξ/m
−µy/r3 + T sin η cos ξ/m
−µz/r3 + T sin ξ/m

−T 2/2PJ




. (45)

CSI – Bang-off-bang Control

For this type of problem, the thrust level is restricted so that it can take either the maximum value
(Tmax) or the minimum value (0). Because T = 2PJ/c, the Hamiltonian can be expressed as follows
using the primer vector.

H = ~λr · ~V − µ

r3
~λV · ~r + T

(
~l · ~λV /m− λm/c

)

= ~λr · ~V − µ

r3
~λV · ~r + T S (46)
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where S is the switching function
S = ~l · ~λV /m− λm/c (47)

. To maximize the Hamiltonian, we choose the thrust level according to the switching function.

{
when S > 0, T = Tmax

when S < 0, T = 0
(48)

The equations of motion and the control vector are the same as the VSI constrained case.

f =




ẋ
ẏ
ż
u̇
v̇
ẇ
ṁ




=




u
v
w

−µx/r3 + lxT/m
−µy/r3 + lyT/m
−µz/r3 + lzT/m

−T 2/2PJ




, ~u =




u0

u1

u2

u3


 =




lx
ly
lz
T


 (49)

High Thrust

T

0

on

off

S

on

Figure 3: Switching Function and

Switching Times for Bang-Off-

Bang Control.

When a high thrust propulsion system (mostly chemical)
is used, burn time is ususally very short compared to the en-
tire mission duration. At the beginning of the mission the
spacecraft fires an engine to gain enough velocity to reach the
target planet, and once it approaches the target planet, it
burns again for either an orbital insertion or a landing. This
burn process can be simulated with two instantaneous burns
at the beginning and at the end, and the rest of the time the
spacecraft is assumed to obey Newton’s law. Therefore a high
thrust trajectory can be solved without integrating the equa-
tions of motion once we know positions of the planets. The

Gauss problem (or Lambert’s problem) solves such a trajectory.

The Gauss problem is defined as follows: Find ~v1 and ~v2 from a given ~r1, ~r2, the time of flight t from
~r1 to ~r2, and the direction of motion. The two vectors ~r1 and ~r2 uniquely define the plane of the transfer
orbit unless they are collinear and in opposite directions(∆ν = π, ∆ν is the angle between ~r1 and ~r2),
and the relationship between the four vectors ~r1, ~r2, ~v1, and ~v2 are expressed by two scalar functions, f
and g, and their time derivatives as follows:

~r2 = f~r1 + g~v1 (50)

~v1 =
~r2 − f~r1

g
(51)

~v2 = ḟ~r1 + ġ~v1 (52)

where

f = 1− r2

p
(1− cos∆ν) (53)

g =
r1r2 sin∆ν√

µp
(54)

ḟ =
√

µ

p

(1− cos∆ν)
sin∆ν

(
1− cos∆ν

p
− 1

r1
− 1

r2

)
(55)

ġ = 1− r1

p
(1− cos∆ν). (56)
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Figure 4: Schematic Diagram of Forming of Gravity Assist Maneuver.

The methods to solve the Gauss problems are described in several references such as Bate, Mueller, and
White [14].

Swing-by

The use of a swing-by is a technique that is referred to as a “gravity assist”[16], and is used to
reduce the propulsive velocity budget. Suppose that the position and velocity of the spacecraft in the
heliocentric coordinate system (~r h

sc1 and ~V h
sc1) are known at time t1. The spacecraft enters the sphere of

influence of a swing-by body whose position in the heliocentric coordinates is ~r h
pl1 = ~rpl(t1) and velocity

is ~V h
pl1 = ~Vpl(t1) as shown in Fig. )[15]. The coordinates are transferred from heliocentric coordinates

to planetocentric coordinates and the position and velocity vector of the spacecraft with respect to the
swing-by planet(~r pl

sc1 and ~V pl
sc1) are obtained.

~r pl
sc1 = [x1 y1 z1]T = R[h → pl](~r h

rc1 − ~r h
pl1), |~r pl

sc1| = rSOI (57)
~V pl

sc1 = [u1 v1 w1]T = R[h → pl](~V h
rc1 − ~V h

pl1) (58)

Here rSOI is the radius of the planetary sphere of influence (SOI) and R[h → pl] is the transformation
matrix from heliocentric coordinates to planetocentric coordinates at this moment.

The gravity assist maneuver results in a rotation of the

r
1

r
2

v
1

v
2

0

-

Figure 5: Swing-by: Inside the

SOI.

spacecraft velocity vector after hyperbolic flyby of the planet.
The angle of rotation of the spacecraft velocity is

φ = 2arctan
µpl

βv2∞
. (59)

To determine the coordinates of the spacecraft “exit” point
on the sphere of influence, the following relationships are used
and shown in Fig.):

φ∗ = π + φ− 2γ; γ = arcsin
β

rSOI
. (60)

Here µpl is the gravitational parameter of the swing-by planet,
v∞ = (v2

1−2µpl/r1)1/2 is the hyperbolic excess velocity of the
spacecraft with respect to the swing-by planet, and beta is
the impact parameter. Because there is no propulsive energy
added to the spacecraft inside the SOI, v∞ = |~V pl

sc1| = |~V pl
sc2|.
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Note that the following restriction may be imposed on β:

β ≥ βmin = rpmin

√
1 +

2µpl

rpminv2∞
, (61)

where rpmin is the minimum admissible distance in the periapsis of the swing-by parabola and is deter-
mined by

rpmin = rpl + hatm (62)

where rpl is the radius of the planet and hatm is the height of the atmosphere if one exists.

With the above expressions for φ and φ∗, the coordinates of the spacecraft exit point from the sphere
of influence, ~r pl

sc2 = [x2 y2 z2]T , and the coordinates of the spacecraft velocity in the planetocentric
coordinate system, ~V pl

sc2 = [u2 v2 w2]T , can be written as:

~r pl
sc2 =




x2

y2

z2


 = Ω(φ∗)~r pl

sc1 = Ω(φ∗)




x1

y1

z1


 (63)

~V pl
sc2 =




u2

v2

w2


 = Ω(φ)~V pl

sc1 = Ω(φ)




u1

v1

w1


 (64)

. The transformation matrix Ω is written as

Ω =




hxhx(1− cos φ) + cos φ hxhy(1− cos φ)− hz sin φ hzhx(1− cos φ) + hy sinφ
hxhy(1− cosφ) + hz sin φ hyhy(1− cosφ) + cos φ hyhz(1− cosφ)− hx sinφ
hzhx(1− cos φ)− hy sin φ hyhz(1− cosφ) + hx sin φ hzhz(1− cos φ) + cos φ


 (65)

where [hx, hy, hz] are the unit vector of angular momentum, ~r pl
sc1 × ~V pl

sc1/|~r pl
sc1 × ~V pl

sc1|.

Usually the duration of the spacecraft inside the SOI, ∆t, is assumed to be zero. This is possible
because normally ∆t is very small compared to the entire mission duration.

SAMURAI

Using all of the techniques introduced through the last section, a numerical analysis software ap-
plication SAMURAI was developed in C++. As explained earlier, SAMURAI simulates interplanetary
trajectories with different types of propulsion systems.

Capabilities

The engine types SAMURAI can deal with are as follows:

• VSI engine type I (variable thrust and variable Isp, no limit for Isp)
• VSI engine type II (variable thrust and variable Isp, with an upper limit for Isp)
• CSI engine type I (constant thrust and constant Isp, continuous burn)
• CSI engine type II (constant thrust and constant Isp, bang-off-bang control)
• High thrust engine (idealized instantaneous burn)

Fig. shows examples of thrust histories for these engines. A VSI engine type I can modulate its
thrust and Isp without limit. Without an upper limit, the Isp for this type of engine may sometimes
reach very high values, such as several hundred thousand seconds. This is impossible to achieve in reality
because there are physical constraints on such an engine. For a VSI type II engine, users can specify an
upper limit for Isp in order to simulate such a constraint. For both VSI engine types, the power is fixed
at its maximum level. Note that imposing an upper limit on Isp is the same as imposing a lower limit
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Figure 6: Examples of Thrust Histories.

on the thrust. A CSI type I engine operates with a given thrust magnitude throughout the mission, so
total fuel consumption is proportional to the time of flight. SAMURAI calculates the minimum thrust
level while satisfying the target conditions. A CSI type II engine can turn its power on and off to avoid
unnecessary fuel consumption, resulting in a bang-off-bang control. Users need to input the thrust level
of the engine so that the switching times will be calculated. The high thrust engine modeled in this
research is a representative engine that fires for infinitesimally small amounts of time at departure and
arrival. Users need to specify the value of Isp.

For these different types of engines, SAMURAI calculates a control history (thrust direction and
magnitude) that minimizes the fuel consumption for a given time of flight and given endpoint conditions
(position and velocity vectors). Users can specify the endpoint conditions with the following options:

• If users would like to use the actual ephemeris data of the planets, the departure date, time of
flight, ID number of the departure planet, and ID number of the arrival planet should be input.
From the departure date and time of flight, planets’ positions and velocities are calculated using
the ephemeris data.

• If users would like to create their own planets, positions and velocities of departure and arrival
points and time of flight are required. These values are directly used as the endpoint conditions.

In addition to calculating the trajectory for one value of the departure date and time of flight,
SAMURAI has the ability to conduct a grid search with these two parameters by specifying the range
of each parameter. Then SAMURAI finds the best launch date and time of flight for the given initial
and final conditions. SAMURAI can also calculate swing-by trajectories with one swing-by planet.

Flow and Schemes

Fig. shows the flow chart of SAMURAI. First, the input data such as the number of time steps, jet
power, initial mass, and upper limit for Isp are read from an input file. The departure date and the arrival
date are then set and the planets’ positions are calculated. Once the positions of the departure and arrival
planets are set, the high thrust trajectory calculation is performed using the Gauss method. With this
calculation, velocities at both endpoints VHTini and VHTfin

are obtained. These values can be interpreted
as the velocities required to travel between these two planets without any additional propulsive force.
Users can input the maximum C3’s (

√
C3 = V∞) at departure and arrival to simulate the excess velocity

V∞ at each planet. The spacecraft’s possible maximum velocities at two endpoints are calculated with
this value and the planets’ velocities (Vpl): Vini = Vpl ini +V∞ ini and Vfin = Vpl fin +V∞ fin. If the
maximum Vini ≥ VHTini at departure and the maximum Vfin ≥ VHTfin

at arrival, we do not need to
calculate low thrust trajectories because the spacecraft reaches the target without any propulsive force.
The results from the Gauss problem will be the answer in this case (See Fig. ). If Vini < VHTini or
Vfin < VHTfin

or both, then the computation of a low thrust trajectory is required. With the input
value of C3 and the direction of motion of the spacecraft, Vini and Vfin are calculated and are used as
endpoint conditions for optimization.

When the trajectory does not do a swing-by maneuver, SAMURAI calculates the thrust history that
minimizes the fuel consumption. For an optimization with a swing-by, a more complicated process is
required as shown in Fig. . The first phase of the trajectory from the departure planet to the swing-by
planet is calculated with a guessed value of the final velocity at the swing-by planet. At the SOI, the
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swing-by planet’s velocity is subtracted from the final velocity at the swing-by planet in the Heliocentric
coordinates and then converted into the planetocentric incoming velocity. This incoming velocity is
used as the initial velocity of the hyperbolic trajectory inside the SOI. The calculation of the trajectory
inside the SOI is executed to compute the outgoing planetocentric velocity. This outgoing velocity is
then converted back into the Heliocentric velocity and the swing-by planet’s velocity is added. ∆V is
calculated if needed and is added to the spacecraft velocity. Using this velocity as the initial velocity of
the second phase, an optimization is executed from the swing-by planet to the target planet. The overall
fuel consumption for the swing-by trajectory is minimized by adjusting the incoming velocity and the
entry point at the swing-by planet. Therefore, an iterative process is required until the minimum-fuel
trajectory is obtained.

With the above process, the minimum-fuel

�
�
�

�
�
�

required

dV

input C
3

C
3 

(1) C
3
 (2)

Input C3 (1): Low thrust calculation is required(input C3 is used).

Input C3 (2): Low thrust calculation is not required(dV is zero).

Figure 8: Input C3 and ∆V requirements.

trajectory for a given time of flight starting with
Vini and ending with Vfin is obtained. But we
may improve this trajectory by adjusting these
endpoint velocities while keeping the time of flight
fixed. This is done by adjusting the direction
of motion of the spacecraft with respect to the
planet. Therefore the above process is iterated
by adjusting the direction of motion of the space-
craft at the departure and arrival planets until
the fuel consumption is minimized.

When the actual ephemeris of planets is used,
a grid search may be conducted to find the best
launch opportunity and the time of flight that
minimizes the fuel consumption over a range of
departure dates and times of flight.

After all of the above processes are finished, a VRML file that draws a 3D animation is created.

VSI Unconstrained Isp. The computation method to obtain the histories of the control variables for an
unconstrained problem is presented below. This method is called the first-order gradient algorithm[7].

1. Estimate a set of control variable histories, u(t).
2. Integrate the system equations ẋ = f(x, u, t) forward with the specified initial conditions x(ti) and

the control variable histories from Step 1. Record x(t), u(t), and ψ[x(tf )].
3. Determine a n-vector of influence functions p(t), and a n × q matrix of influence functions, R(t),

by backward integration of the influence equations, using x(tf ) obtained in Step 2 to determine
the boundary conditions.

ṗ = −
(

∂f

∂x

)T

p−
(

∂L

∂x

)T

; pi(tf ) =

{
0 i = 1, . . . , q,

(∂φ/∂xi)t=tf
i = q + 1, . . . , n,

(66)

Ṙ = −
(

∂f

∂x

)T

R; Rij(tf ) =

{
1, i = j, i = 1, . . . n,

0, i 6= j, j = 1, . . . q.
(67)
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4. Simultaneously with Step 3, compute the following integrals:

Iψψ =
∫ tf

ti

RT ∂f

∂u
W−1

(
∂f

∂u

)T

R dt [(q × q)-matrix] (68)

IJψ = IT
ψJ =

∫ tf

ti

(
pT ∂f

∂u
+

∂L

∂u

)
W−1

(
∂f

∂u

)T

R dt [q-row vector] (69)

IJJ =
∫ tf

ti

(
pT ∂f

∂u
+

∂L

∂u

)
W−1

[(
∂f

∂u

)T

p +
(

∂L

∂u

)T
]

dt (70)

where W is a m×m positive-definite matrix and IJJ is a scalar.
5. Define δψ = −εψ[x(tf )], 0 < ε ≤ 1 such that the next nominal solution is closer to the desired

values ψ[x(tf )] = 0. Then determine ν from ν = −[Iψψ]−1(δψ + IψJ ).
6. Repeat Steps 1 through 6, using an improved estimate of u(t), where

δu(t) = −[W (t)]−1

[
∂L

∂u
+ [p(t) + R(t)ν]T

∂f

∂u

]T

. (71)

Stop when ψ[x(tf )] = 0 and IJJ − IJψI−1
ψψIψJ = 0 to the desired degree of accuracy.

VSI Constrained Isp. To solve constrained VSI problems, an initial guess for the Lagrange multiplier
λ(ti) is required in order to estimate the control vector at initial time. For VSI type II calculations,
the results from VSI type I are used. This is because the thrust histories are similar to each other for
unconstrained arcs, and the Lagrange multipliers obtained in VSI type I calculations can be used as an
initial guess for VSI type II calculations.

The following steps are taken to obtain the results for VSI type II engines:

1. Calculate a trajectory for VSI type I.
2. Obtain the Lagrange multipliers ~λ at initial time ti from the previous step.
3. From ~x and ~λ, calculate the control variables:

~l = [lx ly lz]T = ~λV /λV , T =
PJλV

mλm
. (72)

4. Integrate ẋ and λ̇ forward from ti to final time tf with the control variables obtained in the Step
3: ∫ tf

ti

ẋdt,

∫ tf

ti

λ̇dt (73)

5. Check if the resulting x(tf ) satisfies the terminal constraints ψ(tf ) = 0.
6. If not, return to Step 3 with the new values of λ(ti). λ(ti) should be chosen so that it satisfies

ψ(tf ) = 0 AND minimizes the performance index J . Powell’s method is used to estimate the next
λ(ti).

7. Iterate until J is minimized and ψ(tf ) = 0 is satisfied with the desired degree of accuracy.

CSI Continuous Thrust. The CSI type I problem (continuous thrust) is not a constrained problem.
The control variables are now only two (in-plane thrust angle and out-of-plane thrust angle), hence it is
simpler to optimize than the VSI type I problem that has three control variables (thrust magnitude and
two angles). For constant thrust problems, the optimizer cannot find a solution if the thrust magnitude
is not sufficient to reach the target. For example, if a trajectory from Earth to Pluto is desired with a
time of flight of 1 year, Isp of 100,000 sec, and 1 kW of jet power, then the optimizer cannot find the
answer because the thrust level is too low. On the other hand, a trajectory from Earth to Mars with a
300-day time of flight, 3,000 sec of Isp and 50 MW of jet power is more than what is required.
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SAMURAI finds the minimum thrust level while satisfying the terminal conditions using an iterative
process. If the thrust level of the current iteration is not enough to reach the target, the thrust level
of the next iteration is made a little bit larger than the current value. On the other hand, if starting
with too much thrust, the thrust level of the next iteration is made a little bit smaller than the current
iteration. The process is iterated until the minimum thrust level that satisfies the terminal conditions
is found.

CSI Bang-Off-Bang. Finding the solution for CSI type II (bang-off-bang) requires finding the switching
times, and the switching times are determined by the sign of the switching function. As shown previously,
the switching function is a function of the Lagrange multipliers. Therefore, for CSI type II problems,
an initial guess for the Lagrange multipliers is required to start the calculation. This is similar to the
VSI type II case. The following steps are taken:

1. Calculate a trajectory for VSI type I.
2. Obtain the Lagrange multipliers ~λ at initial time ti from the previous step.
3. From ~λ(t0), calculate the control variables u(t0) at initial time:

u = [u0 u1 u2 u3]T = [lx ly lz T ]T , l = [lx ly lz]T = ~λV /λV (74)

T is determined by the sign of the switching function.

S = ~l · ~λV /m = λm/c (75)

If S is positive, T is the prescribed value, and if S is negative, T = 0.
4. Integrate ẋ and λ̇ forward from ti to final time tf . Control variables need to be calculated as the

time step proceeds. Control variables for the next step can be calculated by the equations in the
previous step.

5. Check if the resulting x(tf ) satisfies the terminal constraints ψ(tf ) = 0.
6. If not, return to step 3 with the new values of λ(ti). λ(ti) should be chosen so that it satisfies

ψ(tf ) = 0 AND minimizes the performance index J . Powell’s method is used to estimate the next
λ(ti).

7. Iterate until J is minimized and ψ(tf ) = 0 is satisfied with the desired degree of accuracy.

The switching function method described above only estimates the solution, and the terminal con-
straints are not usually satisfactorily met. More computation is required by increasing the burn time
step by step. For example, suppose that the total time step is 300 steps, and the switching function
estimates switching times as the 50th and 250th steps. If the terminal condition is not satisfactory, that
means more burn time is needed. The first switching time should be greater than 50, and the second
switching time should be smaller than 250. Therefore, using steps 50 and 250 as initial guesses for the
switching times, the burn time is increased one by one until the terminal constraints are satisfied.

Input and Output

SAMURAI calculates a transfer trajectory between two planets with or without a swing-by. As
stated previously, in addition to the trajectory between the actual planets, users can make up their own
planetary bodies and calculate the transfer trajectory for these planets. The mandatory input data is
as follows:

• Option ID number (represents engine type)
• Planet’s position and velocity are defined with either one of the following:

– Coordinates of positions and velocities of planets in the Cartesian coordinates.
– ID number for planets (3 for Earth, 4 for Mars, etc.)

• Departure date (yyyy/mm/dd) if actual planets are used
• Time of flight (days)
• Jet power (W)
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• Initial mass (kg) at the edge of the SOI
• Maximum allowable Isp for VSI type II
• Isp for CSI type II and high thrust

In addition to the above input data, users can also specify other parameters such as the maximum
number of iterations and the tolerance for terminal conditions.

Output from SAMURAI is the following:

• History of state variables (x, y, z, u, v, w, m)
• History of control variables (thrust magnitude and direction)
• VRML file

Thrust direction is expressed by two angles in the spacecraft-centered coordinates. α is the in-plane
thrust angle and β is the out-of-plane thrust angle (see Fig. ). X, y, and z axes of the spacecraft-centered
coordinates are defined as follows:

~x = ~r/|~r| (76)

~z = ~r × ~V /|~r × ~V | (77)
~y = ~z × ~x (78)

where ~r and ~V are the position and velocity vectors of spacecraft.

Validation and Verification

In order to validate SAMURAI, several analyses have been performed and the results with SAMURAI
are compared to the results with other existing reliable interplanetary trajectory calculation programs.
There are no applications to calculate general VSI trajectories. Therefore, validation for CSI engines
and high thrust engines are performed. IPREP is used to compare the results for high thrust, and
ChebyTOP is used for CSI trajectories.

Validation of High Thrust with IPREP. IPREP (Interplanetary PREProcessor) is a rapid grid-search
optimizer, created by Martin Marietta Astronautics, on launch and arrival windows, minimum ∆V or
mass optimization. IPREP is widely used to estimate ∆V for high thrust trajectories. To compare the
results with SAMURAI and the results with IPREP, transfer trajectories are calculated from Earth to
Venus, Mars, and Jupiter. Times of flight are set to 200 days for Venus transfer, 360 days for Mars
transfer, and 500 days for Jupiter transfer. Twelve departure dates are considered: the first day of the
month in the year 2000. Figs. to show the ∆V requirements (at departure and arrival, and total)
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calculated with SAMURAI and IPREP. They show that the results obtained by SAMURAI match well
with the results obtained by IPREP.

Validation of CSI with ChebyTOP. ChebyTOP (Chebyshev Trajectory Optimization Program) is an
analysis tool developed by Boeing that enables the user to rapidly conduct a parametric analysis and
optimization of interplanetary missions employing electrically propelled spacecraft. To compare the
results from SAMURAI and ChebyTOP, transfer trajectories from Earth to Mars are analyzed for CSI
type I and type II engines with the following assumptions: 1,000 kg initial mass, departure date of June
1, 2018, and 120-day TOF.

CSI type I The results obtained using SAMURAI are as follows: the maximum Isp that satisfies the
target conditions is 11,372 sec when the jet power is 100 kW, and the resulting final mass is 833.25 kg.
When the same trajectory was calculated using ChebyTOP with an input Isp of 11,372 sec, the resulting
jet power requirement was 99.434 kW, and the final mass was calculated as 834.21 kg. Fig. 13 illustrates
the calculated trajectory. Although ChebyTOP does not output the history of the thrust direction, this
figure shows that the path obtained with SAMURAI is very close to that obtained with ChebyTOP.

CSI type II For a trajectory with a CSI type II engine, Isp is set to 5,000 sec. For SAMURAI, jet
power was 91.23 kW, the first switching time (t1) was day 14.4, and the second switching time (t2) was
day 103.2. The resulting final mass was 787.5 kg. For ChebyTOP, jet power was 91.23 kW, t1 was day
13.3 and t2 was day 102.0. The resulting final mass was 794.9 kg. This trajectory is shown in Fig. 14.
Again, the trajectories with SAMURAI and ChebyTOP are similar.
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The validation conducted in this section shows that SAMURAI is precise enough to conduct general
trajectory calculations for CSI engines and high thrust engines.

VRML. The Virtual Reality Modeling Language (VRML) can be used to craft three-dimensional virtual
worlds on the internet. With a text file as an input file, VRML draws many types of objects as well
as animations. In this research, trajectories are drawn with VRML for easy visualization. SAMURAI
outputs a file that is used as a VRML input file. A three-dimensional trajectory is drawn on a web
browser with the thrust direction vectors shown at several points along the trajectory.

It is sometimes difficult to choose the departure date or time of flight. If a user chooses a bad
combination of these two values, the calculation will not converge. Because this drawing displays the
positions of departure and arrival planets, it is helpful to determine when to depart and what time of
flight to choose.

EARTH-MARS ROUND TRIP EXAMPLE

An example of the possible application of SAMURAI is a round trip from Earth to Mars. A grid
search for the departure date from Earth is performed for a 10-year search range starting Jan. 1, 2010.
Times of flight for both outbound and inbound legs are limited to less than or equal to 120 days. The
departure date from Mars is determined so that the total fuel consumption is minimized. The jet power
of the engine is assumed to be 10 MW for all engines. The initial mass at Earth is 100 MT, and the
initial mass at Mars is fixed to 80 MT. Table shows the resulting departure dates, times of flight, and
the fuel consumption (∆V for high thrust). Zero C3 is assumed at both departure and arrival for all
cases. This table shows that, among VSI and CSI engines, VSI type I (unlimited Isp) requires the
smallest amount of fuel. The VSI type II engine in this example has an upper limit on Isp of 30,000
sec (and therefore a lower limit on thrust at 67.99 N). The CSI type I engine is a fixed Isp engine with
continuous burn, and for the outbound leg the required thrust level is 179.35 N for a 120-day transfer.
For the inbound leg, TOF is 112 days if the same thrust level as the outbound leg is used. The CSI
type II engine is a fixed Isp engine with the capability of switching on and off. For this example 5,000
sec of Isp is assumed when the engine is on. The engine is fired twice (at departure and arrival) for each
of outbound and inbound legs.

Table 1: Minimum Fuel Round Trip from Earth to Mars for Various Thruster Types.

Outbound (Earth → Mars) Inbound (Mars → Earth) Total
Departure TOF Fuel Departure TOF Fuel Time Fuel

date (day) (kg) date (day) (kg) (day) (kg)
VSI type I 06/03/2018 120 12,758 08/04/2020 120 9,437 913 22,195
VSI type II 06/03/2018 120 12,916 08/04/2020 120 9,615 913 22,531
CSI type I 06/01/2018 120 16,675 07/29/2020 112 15,589 901 32,264
CSI type II 06/01/2018 120 20,357 08/03/2020 120 17,079 914 37,436
High thrust 06/03/2018 120 (9.65) 08/05/2020 120 (10.34) 914 (19.99)

For high thrust, ∆V is shown in parenthesis.

Fig. 15 shows the resulting trajectories drawn with VRML for a VSI type II engine. Arrows along
the trajectory show the direction and the magnitude of the thrust vector. Larger thrust is required near
departure and arrival for both legs to accelerate the spacecraft to begin and end the transfer.

CONCLUSION

SAMURAI (Simulation and Animation Model Used for Rockets with Adjustable Isp), an interplan-
etary trajectory calculation application, calculates transfer trajectories with variable thrust, variable
Isp (VASIMR-type) engines as well as conventional constant low thrust, constant Isp engines and high
thrust engines. SAMURAI utilizes a calculus of variations algorithm to evaluate thrust history that
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Figure 15: VRML Drawing of Round Trip from Earth to Mars with a VSI Type II Engine.

minimizes the fuel consumption from one planet to another. A trajectory with a planetary swing-by can
also be calculated.

The results from SAMURAI have been compared with results from existing interplanetary trajectory
calculation application. This validation shows that SAMURAI is precise enough to conduct general
trajectory calculations for CSI engines and high thrust engines.

A few examples of trajectory simulation including a round trip from Earth to Mars have been
analyzed. The final example showed that VSI type I is the most effective among VSI and CSI engines.
Specifically, a VSI type I engine requires the least amount of fuel among VSI and CSI engines. This
result should be true for any mission because the results of VSI type II and CSI type I and II are subsets
of the results of VSI type I that has the more freedom than other engine types. More analyses must still
be performed to further substantiate the above statement.

NOTATION

~g Acceleration of gravity (g0: at sea level)
H Hamiltonian
J Cost function
~l Primer vector
m Mass of the spacecraft
PJ Jet power
~r Spacecraft position vector (= [x y z]T )
S Switching function
~T Spacecraft thrust vector (= [Tx Ty Tz]T )
~x State vector
~u Control vector
~V Spacecraft velocity vector (= [u v w]T )
α In-plane thrust angle in the spacecraft-fixed frame
β Out-of-plane thrust angle in the spacecraft-fixed frame
∆ν True anomaly difference between Earth and the target planet
η In-plane thrust angle in the inertial frame
λm Lagrange multiplier for spacecraft mass
~λr Lagrange multiplier vector for spacecraft position
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~λV Lagrange multiplier vector for spacecraft velocity
µ Gravitational constant
φ Turn angle of spacecraft due to swing-by
ξ Out-of-plane thrust angle in the inertial frame
ψ Terminal constraints
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