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Large ballistic coefficient entry vehicles are required to achieve more ambitious
exploration goals at Mars. These trajectories exhibit several characteristics that
make successful landings difficult including low altitude deceleration and inabil-
ity to decelerate under parachute. One promising mission architecture involving
propulsive supersonic descent and landing is proposed as a candidate for future
high ballistic-coefficient vehicles. This paper will investigate guidance options
for precision landing using hypersonic bank-angle steering and thrust vector con-
trolled propulsive descent. First, a numerical predictor-corrector guidance algo-
rithm is applied to examine the benefits and trade-offs of range targeting during
the hypersonic regime. This is compared against the state-of-the-art Apollo Final
Phase guidance algorithm. Next, a modification is included to increase guidance
performance. Finally, a propulsive divert algorithm is assessed for its impact on
landing accuracy and propellant usage.

NOMENCLATURE

CDF = Cumulative Distribution Function

EDL = Entry, Descent, and Landing

FNPEG = Fully Numerical Predictor-Corrector Entry Guidance

G-FOLD = Guidance for Fuel-Optimal Large Divert

h0 = Initial altitude

Isp = Specific Impulse

JPL = Jet Propulsion Laboratory

L/D = Lift-to-Drag ratio

MSL = Mars Science Laboratory

MOLA = Mars Orbiter Laser Altimeter

T/W = Total vehicle thrust-to-weight ratio
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Figure 1. Ballistic coefficients of previous Mars landers.[1]

TDI = Terminal Descent Initiation

V0 = Initial planet-centered inertial velocity

β = Ballistic coefficient

γ = Initial inertial flight path angle

λ = FNPEG energy blending variable

INTRODUCTION

MANNED Mars missions will require a paradigm shift in how we accomplish Entry, Descent, and
Landing. These missions will necessarily include multiple high-mass payloads landing within

walking distance of each other. At the same time, launch vehicle capabilities place constraints
on the maximum diameter of aeroshells, which means high ballistic-coefficient vehicles will be
required. Achieving sufficient deceleration while retaining adequate timeline and altitude to execute
terminal descent remains one of the primary challenges of landing vehicles on Mars. Additionally,
precision landing is required to enable access to a wider variety of scientifically interesting sites and
to position assets for human landings.[1]

Early Mars lander missions maintained relatively small ballistic coefficients near 60 kg/m2 to
enable greater deceleration in the hypersonic regime (see Fig. 1). More recently, the Mars Science
Laboratory (MSL) has pushed the upper bound of what is possible with a 145 kg/m2 ballistic coef-
ficient. Landing a 1 t payload, MSL represents the state-of-the-art. New supersonic descent options
will be required to increase landed payload masses. Multiple technology options are being ex-
plored to mitigate this issue: lightweight deployable drag devices to reduce the ballistic coefficient
for higher-mass vehicles,[2] high-performance parachutes to improve terminal descent margins,[3]
and supersonic retropropulsion to increase deceleration during descent.[4] [5] Of these, supersonic
retropropulsion is the easiest to scale to larger payloads and may be the only option for the large
payload masses associated with human-class missions.[6]
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Figure 2. Example trajectory a) altitude, b) flight-path angle, c) deceleration, and d)
vertical L/D as functions of relative velocity.

High ballistic coefficient vehicles tend to decelerate low in the atmosphere, which decreases
descent timelines and restricts landing locations to low-lying areas. Previous work has examined
trajectory options for increasing terminal descent altitudes. [7] It is proposed that this method is
also an effective way to decrease the required propellant mass fraction for a given vehicle mass
using supersonic propulsive descent and landing. However, this work did not consider guidance
options and range targeting to improve robustness in dispersed environments. As Garcia-Llama and
others have shown, optimal trajectories often are not robust to atmospheric and vehicle uncertainties
in-flight[8]. This paper will examine the effect of a numerical predictor-corrector range targeting
algorithm applied to trajectories with a bank reversal. These techniques may be applicable to future
large-scale robotic or human EDL architectures [5]. In addition, the performance trades-offs of
propulsive descent guidance will be overviewed.

Benefits of Bang-Bang Trajectory

Previous work by Anderson, et al. demonstrated the altitude raising effects of a bank angle
reversal during hypersonic flight. [7] Fig. 2 demonstrates this effect with two trajectories for an
MSL-like vehicle: a full-lift-up trajectory with u = L/Dmax (the Viking strategy) and an altitude
optimal bang-bang trajectory, where u changes sign near 5 km/s (Fig. 2d). The trajectory terminates
at an arbitrarily chosen velocity. To assess a more realistic terminal condition, this trajectory is
re-formulated as follows: a simple propulsive descent controller is included to land the vehicle at
a pre-specified altitude. A propellant mass fraction is calculated, and the bank-reversal point is
be chosen to minimize the propellant mass used. For this purpose, a reference case is chosen and
outlined in Table 1.

The optimization problem is a simple single-parameter search for the bank reversal time. A
soft constraint keeps the minimum altitude at least 600 m above the target altitude, since optimal
trajectories tend to fly low before lofting. This optimal trajectory is shown with a fully lift-up
trajectory in Fig. 3. The optimal trajectory uses 19.0 percent of the entry mass for fuel, while the
lift-up trajectory uses 29.8 percent. While this comes at a cost of increasing the peak G-loading
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Table 1. Reference Trajectory Parameters

Parameter Value
β 450 kg/m2

L/D 0.24
h0 125 km
V0 6.5 km/s
γ0 -16°

Engine Isp 300 s
T/W 3

Target alt -500 km MOLA

from 11 to 15 g’s, it is clear that an initial bank-down trajectory could significantly increase the
payload capacity of a high-ballistic coefficient Mars vehicle.

Hypersonic Guidance

Previous Mars vehicles have usually flown an unguided lift-up trajectory or ballistic entry. The
Mars Science Laboratory was the first mission to include a form of bank-steering for range targeting.[9]
The algorithm used was a modified form of the Apollo Final-Phase,[10] which takes a nominal tra-
jectory and computes gains using backwards integration of the adjoint equations of motion. It then
computes the bank angle using these gains based on the measured altitude rate and drag force. This
algorithm is remarkably accurate in well-known environments when the vehicle is able to closely
follow the reference trajectory. However, deviations from this reference tend to cause growing er-
rors in range targeting. More modern algorithms have been developed that are able to harness the
massively increased computing power available since the Apollo program. One of these is called the
Fully Numerical Predictor-Corrector Entry Guidance algorithm (FNPEG).[11] Numerical predictor-
corrector algorithms propagate the expected trajectory numerically and correct the bank angle to
minimize the predicted downrange error. This algorithm has been tested for low-lifting vehicles on
Earth, but it has not been examined in the context of bang-bang trajectories for Mars entry.

Propulsive Guidance

The gravity turn, a maneuver in which the thrust vector is aligned with the velocity vector, has
been the simplest guidance option for decades. A gravity turn controller was used to land the lunar
lander during the Apollo missions. The benefit of the gravity turn is it’s simplicity of implementation
and the fact that the final flight-path angle is -90 degrees. However, it is not a fuel-optimal maneuver.
Joel Benito at JPL calculated that the minimum fuel solution from a given state to rest at the target
altitude is actually a constant thrust angle.[12] That is, the vehicle finds the constant angle with
respect to the ground that results in zero velocity. It then calculates the altitude loss during this
burn, and initiates the burn if the predicted landing altitude is at the target. A trajectory produced
by this optimal propulsive guidance is compared against the gravity turn in Fig. 4.

Since propellant usage is directly related to burn time, an algorithm that can delay the TDI point
will save on fuel costs. The optimal solution does this by causing the vehicle to follow a straight
line to the final target in the velocity space, seen in the bottom righthand corner of Fig. 4. The
propellant mass fractions for this trajectory are 22.9% and 20.2% for the gravity turn and optimal
guidance, respectively. The optimal guidance was used for all of the studies in this paper.
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Figure 3. Comparison of full lift-up and bang-bang trajectories
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Figure 4. Propulsive Descent Guidance Comparison
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Figure 5. Nominal Trajectory Control

The optimal propulsive guidance provides a baseline for fuel consumption, but in practice a target-
ing guidance algorithm will be required for precision propulsive landing. One promising algorithm
is Guidance for Fuel-Optimal Large Divert (G-FOLD),[13] developed at JPL. This algorithm uses
convex optimization to compute the minimum fuel trajectory to a specified landing site while re-
specting control and trajectory constraints.

ANALYSIS AND RESULTS

All trajectory simulations used in this paper were performed using ASIM, a 3 degree-of-freedom
flight mechanics simulation developed at Georgia Tech. Vehicle motion is assumed to be planar,
though a higher fidelity analysis would have some error contribution from cross-range control and
heading alignment. The assumed reference trajectory is as follows: in phase 1, the vehicle enters
the atmosphere lift-down (at a bank angle of 180 degrees) until some point chosen to minimize fuel
usage during terminal descent. It then switches to a constant bank angle in phase 2. In phase 3 the
vehicle uses the optimal propulsive descent to land at the target altitude. This is shown schematically
as a function of vertical L/D in Fig. 5.

Based on this reference trajectory, the nominal states at the bank reversal point and at TDI can be
found. These are used as targets for the switch from phase 1 to phase 2 and phase 2 to 3, respectively.
In flight, the vehicle flies fully lift down in phase 1 until it hits some trigger defined by the reference
trajectory. In phase 2 it performs bank-angle modulation (with FNPEG or Apollo) to target the
TDI range from the nominal trajectory. The propulsive descent is initiated based on the optimal
propulsive guidance described in Section . The Monte-Carlo analyses performed use 1000 runs with
the Gaussian distributed dispersions listed in 2. Since these algorithms are nominally used to target
the downrange at terminal descent initiation, a good measure of performance is the distribution
of range errors. Propellant mass fraction usage is also a key performance indicator. Secondary
performance indicators include how close the trajectories come to the nominal TDI velocity, altitude,
and flight-path angle.

Phase 1

The benefits of the bang-bang trajectory come from control authority granted by the high dy-
namic pressure generated during the bank-down flight in phase 1. While range targeting and other
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Table 2. Reference Trajectory Parameters

Parameter 3-σ dispersion
Entry mass 2 kg

Cl 0.04
Cd 0.02

V0 magnitude 2 m/s
γ0 0.2 deg
R0 200 m

density 20%
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Figure 6. Bank Reversal Trigger Range Performance

maneuvers could occur during this portion, for this paper it is assumed that the vehicle stays fully
lift-down during the entire phase in order to achieve the maximum benefit. Therefore, the primary
guidance question in phase 1 is how to determine when to initiate the bank reversal and switch to
phase 2. This topic was covered briefly by Anderson et al,[7] but only at a very high level and led
to elementary insights. The use of velocity, time, and g-loading bank reversal triggers and bank-
angle steering is investigated to determine their effect on terminal descent initiation. The triggers
are implemented as follows: the nominal trajectory is found by the same mass fraction optimization
described above. The state at bank reversal (time, velocity, and g-loading) is picked out and used
as a trigger state. During flight, the vehicle state is monitored and the bank reversal is initiated
when the trigger condition is met. Since time and velocity are nearly always monotonic along the
trajectory, most trajectories are guaranteed to reach the trigger condition at some point. G-loading,
however, reaches a maximum at some point after the trigger condition. If the trigger loading is close
to the maximum loading along the nominal trajectory, there is a chance that a vehicle flying through
slightly different conditions will never reach the trigger condition. In this case, the bank reversal
is set to occur once the G-loading hits tits maximum. Thus, having three different conditions for
initiating the bank reversal, the robustness of the bank reversal triggers can be assessed. The Apollo
algorithm is used for range guidance during the portion of the trajectory after bank reversal. Results
are shown in Figs. 6 and 7.

The three bank reversal trigger produce similar results in TDI state. That is, the Apollo algorithm
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Figure 7. Bank Reversal Trigger TDI State Performance

effectively reaches the nominal TDI state regardless of the trigger used to initiate the bank reversal.
However, the range errors vary with the G-loading trigger producing the smallest range errors (13
km at the 99% level) and the time trigger producing the greatest (40 km at the 99% level). The
G-loading trigger was used for the remaining results in this paper.
Note that the above was only a first look at possible triggering mechanisms that could be imple-
mented in a flight vehicle. It is possible to use state feedback and adjust the trigger point in-flight in
order to improve range and/or propellant performance. This is left to future work.

Phase 2

The algorithm used for range targeting during Phase 2 has the greatest effect on trajectory accu-
racy. To assess how they behave nominally, the FNPEG and Apollo trajectories are shown with no
dispersions in Fig. 8. While some error is to be expected, the two guidance methods are able to
command close to the nominal bank angle and reach the target state with minimal error. The state
at propulsive descent initiation is shown as circles in the appropriate colors.

Focus is now turned to the performance of these algorithms in dispersed cases. An open-loop
control with the bank angle magnitude fixed at a constant 30 deg is shown for comparison in Fig. 9.

Clearly, in the current configuration the Apollo algorithm performs better than FNPEG, with a
99% range error at terminal descent initiation (TDI) of 7 and 35% km respectively. The reason for
this large error in FNPEG seems be the propagation of small errors introduced with the simplifica-
tions of the equations of motion, such as a non-rotating planet and constant gravity. A way to correct
for this is presented in the following section. The altitude, velocity, and flight-path angle errors are
compared along with the total propellant mass fraction in Fig. 10. Here the differences between
the two algorithms are less stark, although the Apollo algorithm is able to reach the nominal TDI
velocity better than FNPEG.

FNPEG Energy Formulation FNPEG works by choosing an energy-like variable e = 1
r −

V 2

2 as
the domain of integration in the predictor function. This variable was chosen because it is monotonic
along and because the initial and final energy can be fully defined in terms of the initial and target
states. However, any similar variable that retains these properties would be an equally acceptable
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Figure 8. Nominal guidance performance
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Figure 9. Dispersed Guidance Range and PMF Performance

10



TDI Velocity error (m/s)
0 200 400

C
D

F

0

0.2

0.4

0.6

0.8

1

Open loop
FNPEG
Apollo

TDI Altitude error (m)
0 1000 2000

C
D

F

0

0.2

0.4

0.6

0.8

1

TDI Flight Path Angle Error (deg)
0 5 10

C
D

F

0

0.2

0.4

0.6

0.8

1

Figure 10. Dispersed Guidance TDI State Performance

domain. Let us redefine the energy domain variable according to Eq. 1 where λ is a blending
variable that alters the relative contribution of velocity and position to the energy. The corresponding
derivative de

dτ is given in Eq. 2

e = (1− λ)
2

r
− λV 2 (1)

de

dτ
=

2V sin γ

r2
(2λ− 1) + 2λDV (2)

Notice that a value of λ = 0.5 makes the energy variable equivalent to the initial formulation.
Since it is still a function of position and velocity, this variable is still defined as a function of the
vehicle state. Note for any λ > 0.5 there is the possibility that de

dτ < 0 at the beginning of the
trajectory when γ < 0 and drag D is very small. To show that e is monotonically increasing in
the region of validity regardless of the value of λ, several curves were plotted along the nominal
trajectory defined in Table 1. This is shown in Fig. 11.

The energy is increasing at all points after bank reversal, indicated by the dotted line. Therefore,
this new blended energy variable would be a good candidate for a domain of integration.
We want to find the optimum value of λ to maximize the performance of the FNPEG algorithm. This
may make a difference in the propellant mass fraction used, since the terminal descent initiation
point is a function of both position and velocity. By changing the target energy formulation, the
algorithm can more accurately achieve the target velocity or position depending on the needs of the
problem. State dispersion CDF’s for different λ are shown in Figs. 12 and 13.

Interestingly, it appears that the best performance comes from very low values of λ. A value of
λ = 0.045 gives the smallest propellant mass fraction usage and the smallest range error at the 99%
level. In fact the only reason λ was not decreased further was because it led to numerical issues
in certain cases (since velocity still has to be calculated from e in the predictor algorithm). These
results suggest that alternative formulations of the domain of integration can alter the performance
of numerical predictor-corrector algorithms. This blended energy term is by no means the only can-
didate. The angular momentum magnitude, which is also defined by velocity and position and is a
monotonically decreasing function of time, could also be used.
A remark on the use of predictor-correctors for entry guidance: the power of FNPEG comes from
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Figure 12. Range and PMF performance for various λ
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Figure 13. TDI State performance for various λ

the simplicity of the underlying problem formulation. The introduction of a blending term is one of
many simple improvements that can be made.[14] For instance, having a direct model of the atmo-
sphere in the predictor loop could allow for real-time updating of the atmospheric density estimate.
This does not rely on the introduction of gains and linear approximations that many optimal control
algorithms (such as LQR trajectory tracking) require. For future high-ballistic coefficient missions
where the margins for success may be small, algorithms like FNPEG could play a key role.

Phase 3

We turn our attention finally to the issue of propulsive divert. While hypersonic guidance is ef-
fective at delivering vehicles close to the target point, the propulsive descent guidance is ultimately
responsible for taking out any remaining position error. For this purpose, G-FOLD is a good can-
didate fuel-optimal algorithm. G-FOLD is assessed by first performing a 1000-run Monte-Carlo
analysis with Apollo hypersonic guidance. The state of the vehicle (velocity, position, and flight-
path angle) at the ignition point is used as an input to G-FOLD. The target condition is the final point
of the nominal trajectory using the optimal propulsive guidance. Note that G-FOLD will allow for
a period of free-fall prior to thrusting if it will lower propellant usage, so these starting conditions
would not necessarily optimal if G-FOLD were fully integrated into the guidance. Results are shown
in Fig. 14.

G-FOLD is able to null all range errors and still use slightly less propellant than the gravity turn.
Relative to the optimal descent guidance, G-FOLD is able to null up to 5 km of range error at a
cost of about 4.3% additional propellant mass. Note also that the pmf cost of using G-FOLD falls
between that of the optimal propulsive guidance and gravity turn. Based on this limited case study,
these two simple descent algorithms may offer a bounding guess of the cost of precision propulsive
landing.

CONCLUSIONS

Various guidance options for high-ballistic coefficient Mars entry vehicles were studied. A nom-
inal trajectory was found which is broken into three phases: first, the vehicle flies lift-down until
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Figure 14. G-FOLD Performance Benefits

some point chosen to maximize total propellant mass usage. Second, the vehicle flies nearly lift-
up and modulates the bank angle in order to hit a downrange target. Finally, propulsive descent
guidance brings the vehicle to rest at the target altitude. This trajectory can reduce propellant mass
fractions for heavy entry vehicles that employ supersonic retropropulsion. Guidance options were
assessed for controlling this trajectory. In particular, the legacy Apollo Final Phase algorithm was
compared against a newer predictor-corrector algorithm called FNPEG. An improvement was ap-
plied to this algorithm that allows engineers to tune performance for a particular problem. Guidance
performance was assessed by looking at the distribution of downrange errors at terminal descent
initiation, which is a proxy for landing site error. State errors at terminal descent as well as propel-
lant mass usage were also presented as performance metrics. Finally, a cursory analysis of G-FOLD
propulsive divert guidance was performed to gain some insight into the trade-off’s of precision land-
ing.
Next steps in this work include testing this trajectory and these guidance options across a range
of entry vehicles and entry conditions. Further improvements can be made to both the FNPEG and
Apollo algorithms to make them more applicable to the presented entry architecture. Introduction of
G-FOLD directly into the simulation would provide a full end-to-end trajectory solution that could
be implemented into a flight vehicle without substantial alteration.
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